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ABSTRACT 

The manufacturing industry has enormous impact on the economic well-being of many 

industrialised nations, both existing and developing. Malaysia’s annual energy 

consumption increased by 6.64%, with manufacturing sector contributing to 79% of total 

energy consumption, emphasizing the importance of developing sustainable practices. The 

study focused on the robotic welding machine MIG, contribute to energy consumption in 

manufacturing. The research examines the neccesity to investigate the effects of the 

process parameters specific cutting energy. The study adopts a Design of Experiment 

technique, employing an Orthogonal Array (L27) to collect data on robotic welding 

machine MIG process parameters. The process parameters considered were current, wire 

feed rate, voltage, welding speed and nozzle to plate distance This experiment involved 

welding mild steel plates and the welding joint type is butt joint. The relationship between 

process parameter and energy is predict using Random Forest Method. The Root Mean 

Square Error (RMSE) and Coefficient of Determination (R² score) are used to evaluate this 

model. Based on this study, the most optimal process parameter influencing robotic 

welding machine MIG is wire feed rate. Interestingly, energy consumption in robotic 

welding machine MIG is less affected by welding speed. Voltage of 21 V, wire feed rate of 

10 m/min, current of 140 A, welding speed of 205 mm/s, and nozzle to plate distance of 1 

mm were determined to be the optimal parameter values. This study provides important 

insights for optimizing robotic welding machine MIG processes, increasing energy 

efficiency, and developing sustainable manufacturing methods. 
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ABSTRAK 

Industri pembuatan memainkan peranan besar dalam kesejahteraan ekonomi banyak 

negara, sama ada yang sudah maju atau masih dalam fasa pembangunan. Penggunaan 

tenaga di Malaysia meningkat sebanyak 6.64%, dengan sektor pembuatan menyumbang 

kepada 79% daripada keseluruhan penggunaan tenaga, menekankan kepentingan 

mengembangkan amalan pembangunan mampan. Kajian ini difokuskan kepada mesin 

pengimpal robotik MIG, yang menyumbang kepada penggunaan tenaga dalam proses 

pembuatan. Penyelidikan ini menyiasat kesan parameter-proses, terutama tenaga 

pemotongan. Kajian menggunakan teknik Reka Bentuk Eksperimen dengan menggunakan 

Kaedah Ortogonal (L27) untuk mengumpul data mengenai parameter-proses mesin 

pengimpal robotik MIG. Parameter-proses yang dipertimbangkan termasuk arus, kadar 

pemakanan wayar, voltan, kelajuan pengimpalan, dan jarak nozel ke plat. Eksperimen 

melibatkan pengimpalan plat keluli lembut dengan jenis sambungan pengimpalan 

bertumpuk. Hubungan antara parameter proses dan tenaga diramalkan menggunakan 

kaedah Random Forest. Galat Nilai Purata Kuasa Dua (RMSE) dan Pemalar Penentuan 

(skor R²) digunakan untuk menilai model ini. Hasil kajian menunjukkan bahawa kadar 

pemakanan wayar adalah parameter-proses yang paling optimal yang mempengaruhi 

mesin pengimpal robotik MIG, sementara kelajuan pengimpalan kurang memberi kesan 

yang signifikan terhadap penggunaan tenaga. Parameter optimum dicadangkan sebagai 

voltan sebanyak 21 V, kadar pemakanan wayar sebanyak 10 m/min, arus sebanyak 140 A, 

kelajuan pengimpalan sebanyak 205 mm/s, dan jarak nozel ke plat sebanyak 1 mm. 

Kesimpulannya, kajian ini memberikan pandangan penting untuk mengoptimumkan proses 

mesin pengimpal robotik MIG, meningkatkan kecekapan tenaga, dan memajukan kaedah 

pembuatan yang mampan. 
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CHAPTER 1  

 

 

INTRODUCTION 

            The manufacturing industry significantly influences the economic well-being of 

numerous industrialized nations, both established and developing. It is also contribute to 

both use of energy and the damage environment. Malaysia’s yearly energy consumption 

increased by 6.64%, with the manufacturing industry accounting for 79% of the country’s 

total energy consumption (Husaini et al., 2023). In the Americas, manufacturing industries 

are projected to account for 31% of total energy consumption, while in the European 

Union, they contribute to 19% of total greenhouse gas emissions (Saad et al., 2019).  

            According to World Bank data from 2018-2019, the manufacturing sector 

represents 15.4% of global GDP, with varying percentages ranging from 9-14% in 

countries like the United States, United Kingdom, India, and Russia. China stands out with 

manufacturing playing a larger role, contributing 27% to the country's GDP (Karkalos et 

In the 21st century, one of the key challenges for the industry is to produce high-quality 

components at the lowest possible cost while adopting clean and sustainable manufacturing 

practices. Achieving this goal involves incorporating ecological aspects such as efficient 

waste management (Enroth & Zackrisson, 2000), reducing energy and time consumption, 

implementing recycling practices, and minimizing the overall environmental impact of 

industrial operations (Krolczyk et al., 2019). 

1.1 Background of Study 

al., 2021). This indicates that the energy demand is growing at a faster pace than its supply. 
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            Robotic welding is the most extensively used application of industrial robots. 

Extensive research has been conducted since the early 1980s, focusing on various aspects 

of the welding process (Ruiwale et al., 2015). The adoption of robot automation 

technology is rapidly replacing human labor in this field. One benefit of this transition is 

that it frees up human workers to concentrate on tasks that require greater creativity. Arc 

welding automation robot stations, particularly those using Gas Metal Arc Welding 

(GMAW) and Gas Tungsten Arc Welding (GTAW), are proliferating at a rapid pace 

(Ruiwale et al., 2015). 

            This work specifically discusses the robotization of the welding process using 

covered electrodes, which offers a combination of process flexibility, repeatability, and 

safety in automation (Lima Ii & Bracarense, n.d.). Industrial robotic welding stands out as 

the most prevalent robotics application worldwide (Hong et al., 2014). Welding activities 

are crucial in the assembly of various products, with the automotive sector serving as a 

prominent example. Spot welding and MIG/MAG welding processes are extensively used 

in vehicle body workshops on assembly lines. Additionally, there is a growing number of 

smaller, customer-oriented businesses that manufacture small series or custom-made 

products. These enterprises require efficient and highly automated welding processes to 

meet customer demands promptly and with high quality. 

            Gas Metal Arc Welding (GMAW) is a welding process that employs an electric arc 

to heat metals to their melting point (Nuraini et al., 2014). This versatile technique is 

suitable for joining a wide range of metals, including carbon steels, low alloy steels, 

stainless steels, aluminum alloys, magnesium, copper and copper alloys, and nickel alloys 

(Nuraini et al., 2014). GMAW is applicable for welding both sheet metal and heavier 

sections, making it a versatile and widely used method in various industrial applications. 

The process can be utilized for automated welding using robotic applications, as 
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demonstrated in the mentioned work, or for semi-automatic welding. MIG/MAG welding 

is a fast method for achieving fully and semi-automatic welds. The welding can be 

performed in different positions depending on the arc properties. The mechanical 

properties of the weld metal, including impact strength, are excellent due to low oxide and 

slag content. Metal thicknesses ranging from 2 to 10 mm are suitable for this process. 

1.2 Problem Statement 

            In recent experimental research, different methodologies have been employed to 

explore the correlation between process parameters and performance indicators in the 

robotic welding machine MIG process. Key process parameters, including current, voltage, 

wire feed rate, welding speed and nozzle to plate distance have been extensively measured 

to evaluate their influence on the stability of the robotic welding process. Understanding 

the impact of these process parameters on performance indicators is vital for optimizing 

the robotic welding process and ensuring consistent and high-quality welds. 

            However, there is a research gap when it comes to analyzing the effects of process 

parameters on other performance indicators, specifically the specific cutting energy 

required for welding the material joint. Specific cutting energy is a parameter that 

evaluates the efficiency of the cutting process and describes the work material's 

machinability. It is calculated as the ratio of the cutting power, which represents the energy 

consumed during cutting, to the material removal rate, which indicates the amount of 

material removed per unit of time. The specific cutting energy provides insights into the 

energy efficiency and performance of the cutting operation, helping to assess the overall 

machining efficiency and optimize cutting parameters for improved productivity and 

reduced energy consumption. Specific cutting energy also refers to the amount of energy 

needed to weld a given volume of material and to optimize the energy.  
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            In order to study and reduce energy consumption in the MIG process of robot 

welding machines, it is essential to examine the impact of various process factors on the 

energy requirement. Given the significant energy consumption associated with robot 

welding machines, minimizing energy usage becomes a critical objective. To address this 

challenge while ensuring high welding quality and efficiency, this study employs the 

Random Forest (RF) technique. The goal is to leverage the RF model to identify the 

optimal parameter values that can minimize energy consumption during the MIG process 

of robot welding machines. By achieving energy efficiency in the welding process, this 

research contributes to sustainable manufacturing practices and resource conservation. 

1.3 Research Objective  

            The main aim of this research is made an analysis on energy consumption of 

robotic welding machine MIG process using Random Forest method. Specifically, the 

objectives are as follows: 

a) To identify process parameter of robotic welding machine MIG. 

b) To develop model for the estimation of specific cutting energy as a function 

of different process parameters using Random Forest method. 

c) To determine the optimal parameters for setting process parameters in 

robotic welding machine MIG. 

1.4 Scope of Research 

The following limitations will influence the experiment and data collecting for this 

study: 

• Mild steel is the material that will be applied. 
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• The experiment and data gathering will take place on an robotic welding 

machine MIG in the Advanced Fusion Technology Laboratory, Faculty of 

Mechanical and Manufacturing Engineering Technology (FTKMP) at 

UTeM. 

• The parameters that have been gathered include current, wire feed rate, 

welding speed, voltage and nozzle to plate distance.   

• Based on the data collected, the Random Forest approach will be employed 

to estimate the factors that impact energy consumption on robotic welding 

machine MIG. 



6 

CHAPTER 2  

 

LITERATURE REVIEW 

2.1 Introduction 

            Energy efficiency is a critical factor in the contemporary manufacturing industry's 

pursuit of sustainable growth. Strategic energy management and energy-efficient 

operations are essential for companies to meet climate change mitigation goals and reduce 

greenhouse gas emissions, comply with regulations and achieve economic effectiveness. 

This has led to increased legal obligations and environmental regulations that will impact 

corporate practices and economies in the coming years. By optimizing energy use and 

finding the right balance between energy efficiency and cost-effectiveness, manufacturers 

can contribute to a greener future while reaping the benefits of reduced energy 

consumption and improved competitiveness. 

            Automated welding is widely adopted in assembly lines due to its popularity and 

advantages over manual welding. Many industries prefer robotic welding because it offers 

easier automation and greater efficiency compared to skilled human welders. The benefits 

of automated welding include improved weld quality, higher productivity, reduced waste, 

and decreased labor expenses. However, it is important to note that not all applications can 

benefit from automated welding. When determining the suitability of a robotic welding 

operation for a specific application, a company needs to consider several factors. One such 

factor is the comparative initial cost, where manual welding processes tend to be more 

affordable than setting up an automated system. Therefore, an automated welding system 

should demonstrate a rapid return on investment to justify the higher initial expenses. 
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            This chapter review the effectiveness of various strategies and interventions for 

reducing energy consumption across different sectors. It involves analyzing existing 

research from multiple disciplines, including engineering, economics, and environmental 

science, to identify common themes, best practices, and emerging trends in the field of 

robot welding machine MIG energy consumption. This comprehensive approach allows for 

a holistic understanding of the current state of knowledge regarding energy-saving 

measures. The importance of reducing energy consumption in industries globally, 

addressing concerns related to sustainability, rising energy costs, and the urgency of 

mitigating climate change. 
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2.2 Type Of Welding Process Chart  

 

Figure 2.1 An overview of welding process 
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2.2.1 Robotic Welding Machine MIG 

            Due to its multitude of benefits over traditional manual welding, robotic welding 

technology has gained widespread acceptance across various industries, notably in 

automotive manufacturing. The utilization of robots for welding operations offers 

enhanced consistency in weld quality, faster process speed compared to manual 

techniques, reduced waste production, and overall cost savings. Nevertheless, despite its 

popularity, manual adjustments of welding parameters are still necessary to ensure the 

precision and quality of welds, particularly in butt joint configurations. In recent years, 

significant progress has been achieved in arc welding technology, specifically in the Gas 

Metal Arc Welding (GMAW) process, renowned for its high productivity and weld quality. 

GMAW encompasses different variations such as Metal Inert Gas (MIG) and Metal Active 

Gas (MAG) welding. In the GMAW process, a consumable wire is employed to generate 

metallic droplets that are then transferred to a welding pool on the workpiece through an 

electric arc. 

           Various factors, including the consumable wire's composition and diameter, shield 

gas composition, arc length, and electric current, can influence the specific behavior of 

metallic droplet transfer in welding, known as metallic transfer modes (Guilherme et al., 

2020). These parameters play a crucial role in determining the effectiveness and success of 

the Gas Metal Arc Welding (GMAW) process. The advancements in arc welding 

technology, particularly in GMAW, have revolutionized the welding industry by 

significantly enhancing productivity and producing higher-quality welds. The ability to 

manipulate different welding parameters enables better control and customization of the 

welding process, resulting in superior welding outcomes. 
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            Metal Inert Gas (MIG) welding is a widely adopted welding technique that can be 

easily integrated into robotic systems. MIG welding offers faster welding speeds, 

particularly when automated with robots. Robotic MIG welding systems provide extensive 

coverage, enhancing the flexibility of the welding process. Robotic welding, including 

MIG welding automation, offers several advantages over traditional welding methods. 

These benefits include fume protection, improved weld quality, radiation protection, and 

increased operational efficiency. 

 

Figure 2.2 Robotic Welding Machine MIG 

2.3 MIG Welding Process 

            The MIG welding process, also known as gas metal arc welding, employs the heat 

generated by an electric arc to melt both the electrode wire and the metal components 

intended for welding. To prevent contamination from atmospheric gases such as oxygen, 
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nitrogen, and hydrogen, the fusion process occurs under the protection of a shielding gas or 

a combination of gases. The stability of the welding process is influenced by several 

critical welding parameters, including current, voltage, welding speed, stick-out (the length 

of wire extending from the contact tube), shielding gas composition, and arc length. 

            The MIG welding process is highly sensitive to even minor adjustments in the 

distance between the welding torch and the workpiece, as these adjustments can lead to 

significant changes in current and voltage levels. The specific current, voltage, and 

shielding gas used directly influence how the molten filler wire is transferred to the 

workpiece, ultimately impacting the quality of the weld (Pires et al., 2003). An unstable 

electric arc can result in various welding defects, including a poor penetration profile, 

undercut (a groove formed at the weld toe), or excessive spatter. Therefore, maintaining 

stable and controlled welding parameters throughout the MIG welding process is essential 

for achieving desirable weld quality and minimizing the occurrence of welding defects. 

2.3.1 Subtypes of GMAW 

            The gas metal arc welding technique (GMAW), also known by its subtypes metal 

inert gas (MIG) and metal active gas (MAG), produces metal coalescence by heating a 

welding arc between a continuous filler metal (consumable) electrode and the work piece. 

Figure 2.3 demonstrates the welding principle. 
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Figure 2.3  Schematic diagram of gas metal arc welding process and the  

driving force (Hu et al., 2021) 

2.3.1.1 MAG welding 

              Metal Active Gas (MAG) welding, a subtype of Gas Metal Arc Welding 

(GMAW), has been a staple in the welding industry for many decades owing to its notable 

advantages. These include high productivity, a simple mechanism, good weld quality and 

mechanical properties, and versatility in welding various materials and filler metals. In 

MAG welding, a direct current (DC) electric arc is established between a continuous filler 

electrode and the base metal. The heat generated by this arc leads to the fusion of the metal 

in the joint area.  

               To protect the molten weld pools and the electrode wire from atmospheric 

contaminants, an active shielding gas is employed. This shielding gas creates a protective 

atmosphere around the welding area, preventing the weld pool and the electrode from 

exposure to airborne impurities. This process ensures a clean and reliable welding 

(Ampaiboon et al., 2015). MAG welding's ability to provide efficient and high-quality 

welds, along with its adaptability to a variety of materials, contributes to its continued 

widespread use in the welding industry. 

2.3.1.2 MIG welding 

              The technique known as Metal Inert Gas (MIG), also referred to as gas metal arc 

welding (GMAW), involves the heating, melting, and solidifying of the parent metals and a 

filler (wire electrode) material in a confined fusion zone. This process utilizes a transient 

heat source to create a junction between the parent metals (Aini Ibrahim et al., 2012). In 

MIG welding, a continuous solid wire electrode is heated and fed into the weld pool using 

a welding gun. The heat generated melts the two base materials, allowing them to fuse and 
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form a joint. Simultaneously, the welding gun supplies a shielding gas that flows alongside 

the electrode. The primary purpose of this shielding gas is to protect the weld pool from 

airborne contaminants, ensuring a clean and sound weld. MIG welding's ability to create 

strong and reliable joints, coupled with its versatility in various applications, has made it a 

widely used and effective welding technique. 

2.3.2 Subtypes of Robot Welding 

            Robot welding is a welding process that involves the utilization of robotic systems 

to perform welding operations. This automated approach offers numerous benefits in terms 

of efficiency, precision, and productivity. Several types of robot welding methods are 

commonly employed in industrial applications. Here are some of the most widely used 

types. 

Table 2.1 Types of Robot Welding 

Welding Type Description 

Spot Welding Spot welding involves the application of high current and 

pressure by a robot to join two or more metal sheets. It creates 

localized fusion points and is commonly used in automotive 

manufacturing, sheet metal fabrication, and other applications 

that require rapid, precise, and strong welds. 

Arc Welding Arc welding utilizes an electric arc between an electrode and 

the workpiece to create a weld. It encompasses various 

subtypes such as MIG (Metal Inert Gas), TIG (Tungsten Inert 

Gas), and Plasma Arc Welding. Arc welding is versatile and 

widely used in different industries. 

Laser Welding Laser welding employs laser beams to melt and fuse materials 

together. It offers high precision, minimal heat-affected zones, 

and excellent weld quality. Laser welding is commonly used 

for small and delicate components in industries such as 

automotive, electronics, and medical devices. 

Plasma Welding Plasma welding is similar to TIG welding, where an electric 

arc is created between a tungsten electrode and the workpiece. 

However, plasma welding utilizes a high-velocity ionized gas 

(plasma) to shield the electrode, resulting in higher welding 

speeds and deeper penetration. 
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Welding Type Description 

Resistance 

Welding 

Resistance welding involves the application of pressure and 

electrical current to create a weld. It includes subtypes such as 

spot welding, seam welding, and projection welding. 

Resistance welding is commonly used for joining metal 

components in automotive and appliance manufacturing. 

Spot Welding Spot welding involves the application of high current and 

pressure by a robot to join two or more metal sheets. It creates 

localized fusion points and is commonly used in automotive 

manufacturing, sheet metal fabrication, and other applications 

that require rapid, precise, and strong welds. 

 

2.3.3 Examples of Welding Robot 

            This section contains a few examples of current welding robots: 

1) KUKA robots are highly favored and widely used due to their remarkable 

versatility and adaptability. These master movers are capable of handling 

payloads of 6 or 16 kg, making them suitable for various applications. Their 

design enables efficient and cost-effective system layouts, making them an 

excellent choice for space-saving requirements. 
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                   Figure 2.4 KUKA KR 6-2 Robot (Hong et al., 2014) 

2) Motoman has introduced its latest innovation in arc welding robots with the 

release of the first 7-axis model. Building upon the success of its previous arc 

welding robotic arms, the VA1400 model offers exceptional versatility. This 

versatility allows for optimized floor space utilization and increased robot 

density, leading to improved productivity. The VA1400 model represents a 

significant advancement in arc welding technology from Motoman, catering to 

the evolving needs of industrial applications. 

                       

                  Figure 2.5: MOTOMAN VA1400 Robotic Arm (Hong et al., 2014) 

2.4 Robot Welding System 

            Robots primarily operate based on position control, receiving and executing 

trajectories as their main function (Pires et al., 2003). In welding applications, it is crucial 
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to begin with a trajectory, typically a CAD model of the workpiece, and have the capability 

to make real-time adjustments based on the observed results of the welding process. To 

achieve this, guidance and inspection systems are essential, enabling real-time correction 

of the robot's position and welding settings. Additionally, a suitable computing platform is 

necessary to develop software that can handle the monitoring and control tasks associated 

with these activities. 

 

Figure 2.6 The Robotic Welding System (Xu & Wang, 2021) 

2.4.1 Components of Robot Welding System 

            To ensure both effective performance and human safety in automated welding 

systems, several components must be provided. It is important to view automated welding 

as a complete work cycle rather than solely focusing on the welding process itself. The 

cycle typically involves a part entering the designated area or cell, being positioned using 

fixtures, the welding operation being carried out, followed by the ejection or removal of 

the finished part from the work area. Depending on the specific application and production 
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requirements, a significant portion of this entire cycle, not just the welding process, can be 

automated. Seeking assistance from an expert automation integrator can help determine the 

most suitable equipment and configuration for a particular application. Table 2.2 provides 

an overview of the components in a robotic welding system, while Figures 2.7 and 2.8 

visually depict the various components involved in a robot welding system. 

 

Figure 2.7 Robot Welding Station (Ruiwale et al., 2015) 

 

 

Figure 2.8 Main components of GMAW robot welding system (Xie, 1992) 
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Table 2.2 Components in Robotic Welding System 

Components Functions 

Power source The choice of power source for robotic welding applications 

depends on specific requirements. Inverter-based power 

sources with constant-voltage output are commonly used in 

GMAW (Gas Metal Arc Welding). These power sources, 

when combined with a constant-speed wire feeder, allow for 

self-adjustment and stabilization of the arc length, 

compensating for variations in the distance between the torch 

and the workpiece (Pires J. N., 2006). 

Shielding gas To protect the weld metal from atmospheric contamination, 

shielding gases are employed. Contamination can lead to 

issues such as porosity, weld cracking, scaling, and changes 

in the chemical composition of the melted material. Shielding 

gases also play a significant role in maintaining arc stability  

(Ruiwale et al., 2015). 

Welding torch In MIG (Metal Inert Gas) welding, the electrode feed unit and 

welding control mechanism are typically integrated into a 

single package. The electrode feed unit pulls the electrode 

from the reel and feeds it into the welding torch through a 

conduit (Ruiwale et al., 2015). 

Welding speed In MIG welding, increasing the welding speed reduces both 

the linear heat input to the workpiece and the deposition rate 

of filler metal per unit length (Ruiwale et al., 2015). 

The Welding 

Equipment 

Power stability is crucial for optimal welding quality, 

especially at high speeds. It is recommended that welding 

equipment produces a short arc with minimal spatter. The 

wire is advanced using wheel rollers on the wire feeder 

(Ruiwale et al., 2015). 

The Robot and the 

Controller 

Robotic welding involves programming a robot to move the 

welding torch along a predetermined path. Industrial robots 

typically consist of various connections and linkages, which 

are controlled by linear, pneumatic, hydraulic actuators, or 

electric motors. AC servo motors have become the preferred 

choice in high-end robots, replacing hydraulic actuators and, 

more recently, DC servo motors (Ruiwale et al., 2015). 

Manipulators / 

Fixture 

In many cases, a manipulator is used alongside the robot to 

enhance access and improve welding locations. A 

manipulator is a device with movable links that assists in 

reaching and positioning the weld joint (Ruiwale et al., 2015).  
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2.5 Process Parameter 

            Properly setting welding parameters plays a crucial role in enhancing the accuracy 

of the welding robot and ensuring that the welding gun accurately locates the welding 

position and deposits the appropriate filler material. Welding robots offer the advantage of 

improving welding efficiency while maintaining high-quality welds. Key welding 

parameters include welding current, welding voltage, manipulator movement speed, 

manipulator precision, welding torch position and orientation, and others.  

           Operators have the ability to configure these parameters based on specific 

requirements. The quality, productivity, and cost-effectiveness of the welding joint are 

directly influenced by the welding parameters in Gas Metal Arc Welding (GMAW). When 

all welding parameters are properly adjusted, the desired arc is achieved. The factors 

encompassed in this list include arc welding current, arc voltage, welding speed, torch 

angle, free wire length, nozzle distance, welding location and direction, and gas flow rate, 

all of which contribute to optimal welding outcomes (Karadeniz et al., 2007). 

 

Figure 2.9: A Schematic Diagram Of The Relationship Between Input And Output 

Parameters (Park et al., 2018) 
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2.5.1 Welding Parameters 

            The metal inert gas (MIG) welding method, involves the localized fusion of the 

parent metal and filler material by applying transient heat. This process includes heating, 

melting, and solidifying the materials to create a joint. In MIG welding, the parameters 

used have a significant impact on the quality, productivity, and cost of the welded joint. 

One important aspect affected by the input parameters is the shape factor of the weld. The 

following input parameters are currently being studied and analyzed for their influence on 

the welding process and resulting weld quality. 

Table 2.3 Input Variables (Abbasi et al., 2012) 

Parameters Functions 

Welding current It is the crucial welding parameters since it determines the 

burn off rate of the electrode, the fusion depth, and the weld 

shape. 

Welding voltage It determines the shape of the fusion zone and the height of the 

weld reinforcement. 

Welding speed It is described as the speed at which a workpiece moves 

beneath an electrode. 

Wire Feed Rate The wire feed rate is the rate at which the welding wire is 

supplied into the welding arc. It is commonly measured in 

inches per minute (IPM) or millimeters per minute (mm/min). 

The wire feed rate has a direct impact on the deposition rate 

and heat input during the welding process. It plays a crucial 

role in determining the quality and efficiency of the weld. 

 

2.5.1.1 Effect of Input Parameters 

              There are multiple factors that contribute to increased penetration and strength in 

welded joints. The importance of each welding parameter can be represented in a 

histogram. According to optimization studies, three key parameters carry the greatest 

weight: welding current, welding speed, and welding voltage. Among these, welding 

current is considered the most crucial factor in achieving high penetration. In the MIG 
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welding process, welding current increases as wire speed increases. However, to maintain 

alignment with the wire speed and achieve greater penetration, the torch travel speed 

should also be increased when the wire feed rate is increased. Conversely, reducing torch 

travel speed will result in decreased penetration. It is essential to find the optimal balance 

between welding current, wire speed, and torch travel speed to achieve the desired 

penetration depth in MIG welding. (Gandhe, 2019). 

 

Figure 2.10 Weight age of welding input parameters (Gandhe, 2019) 

2.5.1.2 Selection of Output Parameters 

              Output parameters, similar to input parameters, can be determined by analyzing a 

histogram based on a thorough review of relevant literature. The histogram reveals the 

significance of various factors such as tensile strength, microstructure, hardness, and 

penetration. Tensile strength measures the joint's ability to resist applied tensile forces 

during its application. Two commonly used terms to describe tensile strength are ultimate 

tensile strength and yield strength. Ultimate tensile strength refers to the maximum stress 

level just before failure, while yield strength indicates the likelihood of future failure. In 

most cases, yield strength is utilized for designing welded joints. It is generally expected 

that welded joints exhibit greater strength compared to the base metal of the workpiece. 

Achieving desirable tensile strength, along with appropriate microstructure, hardness, and 
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penetration, is crucial for ensuring the overall integrity and performance of welded joints. 

(Gandhe, 2019). 

 

Figure 2.11 Outcomes of the MIG welding (Gandhe, 2019) 

2.6 Energy Consumption 

            Figure 2.12 shows the distribution of energy consumption for each of the joints 

made in this study using GMAW. These calculations incorporate the energy expended 

throughout the welding process, not just during the idle periods before and after welding. 

Therefore, the energy utilized in GMAW welding provides an accurate reflection of the 

energy expended in creating the joint (Shrivastava et al., 2015). Energy consumption 

(kWh) is an unfavorable environmental parameter, and lower values are preferred. It 

quantifies the amount of power consumed by each procedure. Higher levels of energy 

consumption are undesirable since they contribute to environmental harm through 

increased CO2 emissions and elevated operational costs.  
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Figure 2.12  Energy consumption distribution for GMAW joints (Shrivastava et al., 2015). 

2.7 Existing Study 

            Based on this research, most of the researcher study on measure quality in GMAW 

robot machine compared to manual welding. In this study, they only focus on measuring 

welding quality rather than energy consumption. Table 2.3 describes the process 

parameters, models, materials, response and type of welding applied from the journal.  
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Table 2.4 Existing Study 

Authors Year Model Process 

Parameters 

Material Response Types of Welding 

K. Siddharth Kumaran 

and S. Oliver Nesa Raj 

(Siddharth Kumaran & 

Oliver Nesa Raj, 2018) 

2018 Response Surface 

Methodology (RSM) 

Voltage, wire 

feed rate, nozzle 

to plate distance 

Aluminum Measure Welding 

Quality 

Robot Welding 

Prakash Babu 

Kanakavalli 

(Babu Kanakavalli et al., 

2020) 

2020 Orthogonal Array Current, voltage, 

welding speed 

Alloy Steel Measure Welding 

Quality 

Manual Welding 

Zhenbang Sun 

(Sun et al., 2018) 

2018 Finite Element 

Method 

Current, wire feed 

rate, voltage 

Aluminum Measure Welding 

Quality 
Robot Welding 

Sakari Penttilä 

(Penttilä et al., 2019) 

2019 Artificial Neural 

Network (ANN) 

Wire feed rate, 

voltage, nozzle to 

plate distance 

Alloy Steel Measure Welding 

Quality 

Robot Welding 
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Authors Year Model Process 

Parameters 

Material Response Types of Welding 

Caixia Zhu 

(Zhu et al., 2022) 

2022 Random Forest 

Model 

Current, voltage, 

welding speed 

Galvanized 

steel 

Measure Welding 

Quality 

Manual Welding 

Zhifen Zhang 

(Zhang et al., 2019) 

2019 Random Forest 

Model 

Current, nozzle to 

plate distance 

Aluminum Measure Welding 

Quality 

Robot Welding 

David Curiel 

(Curiel et al., 2023a) 

2023 Artificial Neural 

Network (ANN) 

Current, voltage, 

welding speed 

Metal Measure Welding 

Quality 
Robot Welding 

Iqbal Shareefa and 

Christopher Martin 

(Shareef & Martin, 

2020) 

2020    Orthogonal Array Nozzle to plate 

distance, current 

Alloy Steel Measure Welding 

Quality 
Robot Welding 

Mayank Pandit 

(Pandit et al., 2019) 

2019 ANOVA and 

Response Surface 

Methodology (RSM) 

Wire feed rate, 

welding speed, 

voltage 

Stainless- 

Steel 

Measure Welding 

Quality 

Manual Welding 

Vivek Singh 2021 Teaching Learning- Wire feed rate, Stainless Measure Welding Manual Welding 
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Authors Year Model Process 

Parameters 

Material Response Types of Welding 

(V. Singh et al., 2021) Based Optimization 

(TLBO) 

voltage, welding 

speed 

Steel Quality 

A. Sumesh 

(Sumesh et al., 2018) 

2018 Decision Tree 

Algorithm 

Current, voltage Carbon 

Steel 

Measure Welding 

Quality 

Robot Welding 

Robsan Abebe and 

Mahesh Gopal 

(Abebe & Gopal, 2023) 

2023 Genetic Algorithm Welding speed, 

nozzle to plate 

distance 

Stainless-

Steel 

Measure Welding 

Quality 

Robot Welding 

David Curiel 

(Curiel et al., 2023) 

2023 Mathematical 

Method 

Voltage, current, 

nozzle to plate 

distance 

Mild steel Measure Welding 

Quality 

Robot Welding 

Zhifen Zhang 

(Zhang et al., 2020) 

2019 Random Forest 

Model 

Welding speed, 

wire feed rate,  

Aluminum Measure Welding 

Quality 

Robot Welding 

M.-H. Park 

(Park et al., 2018) 

2018 Artificial Neural 

Network (ANN) 

Welding voltage, 

current, welding 

Aluminum Measure Welding 

Quality 

Robot Welding 
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Authors Year Model Process 

Parameters 

Material Response Types of Welding 

speed 

Shahazad Ali 

(Ali et al., 2022) 

2022 ANOVA Voltage, wire 

feed rate, current, 

welding speed 

Alloy Steel Measure Welding 

Quality 

Robot Welding 

K. Venkatarao 

(Venkatarao, 2021) 

2021 Finite Element 

Method 

Current, wire feed 

speed, welding 

speed 

Mild steel Measure Welding 

Quality 

Robot Welding 

Yanling Xu and Ziheng 

Wang 

(Xu & Wang, 2021) 

2021 Artificial Neural 

Network (ANN) 

Welding speed, 

nozzle to plate 

distance 

Aluminum Measure Welding 

Quality 

Robot Welding 

Kyle Epping and Hao 

Zhang 

(Epping & Zhang, 2018) 

2018 Decision Tree 

Algorithm 

Current, voltage Aluminum Measure Welding 

Quality 

Robot Welding 

P. Devendran and P. 2021 Fuzzy Analysis and  Current, welding Stainless- Measure Welding Robot Welding 
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Authors Year Model Process 

Parameters 

Material Response Types of Welding 

Ashoka Varthanan 

(Devendran & Ashoka 

Varthanan, 2021) 

Orthogonal Array speed, wire feed 

rate 

Steel Quality 
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2.8 Material and Application 

            The metal material is a crucial factor to consider while robotic welding; while all 

metals may be welded, each metal is unique, having well-defined traits and qualities. A 

classification of metallic materials may be constructed based on their weldability 

index(Curiel et al., 2023) Ferrous metals consist primarily of iron and have great tensile 

strength and hardness. Steel and cast iron are prominent. Non-ferrous metals: metals that 

do not contain iron in their composition (Curiel et al., 2023). These can be further 

categorized into: 

Table 2.5 Metal Category (Curiel et al., 2023) 

Metals  Material Types 

Heavy Metals Tin, Stainless Steel, Copper, Zinc, Lead, Chromium, Nickel, Cobalt and Tungsten 

Light Metals Titanium 

Ultralight Metals Magnesium, Aluminum and Beryllium 

2.8.1 Mild Steel 

            Mild steel refers to carbon steel with a low carbon content, typically ranging from 

0.05% to 0.25% by weight. On the other hand, high carbon steel contains higher carbon 

levels, usually ranging from 0.30% to 2.0%. If the carbon content exceeds 2.0%, it is 

classified as cast iron. One of the most common types of mild and hot-rolled steel is 

ASTM A36, which possesses good welding characteristics and can be easily worked on 

through processes such as grinding, punching, tapping, drilling, and machining (Amosun et 

al., 2022). 

            Mild steel plates are available in various sizes, grades, and thicknesses, making 

them versatile for different applications. Mild steel is a cost-effective material and finds 

widespread use in various industries. It can be welded using typical welding processes 

without difficulty. With a carbon content ranging from 0.05% to 0.15%, mild steel is 
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neither brittle nor ductile. While mild steel is affordable and malleable, it has relatively low 

tensile strength. To enhance surface hardness, carburizing can be employed, which 

involves heating the alloys in a carbon-rich atmosphere (Oluwasegun Biodun et al., 2016). 

Steel has been the primary material for manufacturing vehicle parts since the 1920s, 

indicating its long-standing and continued importance in the automotive industry. 

  

Figure 2.13 Mild steel (Amosun et al., 2022) 

2.9 Design of Experiment 

            The Design of Experiments (DoE) is a systematic approach aimed at enhancing 

product quality and improving productivity across various industries, including chemical, 

polymer, and automotive manufacturing. This method involves planning, executing, 

analyzing, and interpreting controlled tests to assess factors influencing parameter values. 

Experimental design utilizes different process inputs to observe and analyze corresponding 

outputs, following seven fundamental procedures. 

             For this project, the chosen experimental approach is the orthogonal array design 

methodology. This design allows for efficient data collection by systematically selecting a 

subset of combinations from a larger set of parameter factors, thereby reducing the number 

of experimental runs while capturing key interactions and main effects (Chen et al., 2018). 
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The orthogonal array design offers the advantage of resource efficiency, requiring fewer 

experimental runs compared to a full factorial design. 

2.10 Random Forest Method 

            The random forest method (RF) is a highly popular and powerful supervised 

learning algorithm that can handle both regression and classification problems. It operates 

through the ensemble learning approach, where multiple machine learning algorithms are 

combined to make predictions and generate more accurate outputs compared to a single 

model. Figure 2.14 provides a visual representation of the Random Forest modeling 

process. In RF, ensemble learning is used to combine multiple decision trees. For 

classification tasks, the output category is determined by the mode of the individual tree 

outputs. In regression problems, the final regression result is obtained by averaging the 

outputs of each decision tree (Zhu et al., 2022). This approach enhances the predictive 

power and robustness of the model, making random forest a popular choice for various 

applications. 

 

Figure 2.14 Process Diagram of The Random Forest Modelling (Cao et al., 2023) 
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2.11 Orthogonal Array 

            Orthogonal arrays serve as a powerful tool in experimental design, offering an 

efficient way to explore the effects of multiple factors on a system or process. Introduced 

by Genichi Taguchi in the 1950s, these arrays systematically design experiments to capture 

significant factor interactions while minimizing the number of runs required. There are 

various types of orthogonal arrays, including: 

1. L-Orthogonal Arrays: These arrays study L factors simultaneously and are suitable 

for situations with a relatively small number of factors, making them ideal for 

initial screening experiments. 

2. T-Orthogonal Arrays: Designed for investigating a larger number of factors, T-

orthogonal arrays strike a balance between the number of factors studied and the 

number of experiments conducted. 

3. OA(n, k, s, v): Representing arrays with n runs, k factors, s levels per factor, and v 

interactions, these arrays are useful for studying complex systems with multiple 

factors and interactions, minimizing the required number of runs. 

            To utilize an orthogonal array, the process involves identifying factors and their 

levels, selecting the appropriate array from available resources, assigning numerical values 

based on the array's coding scheme, conducting experiments following defined 

combinations, collecting response variable data, and analyzing the data using statistical 

methods. The use of orthogonal arrays enhances experimental efficiency and aids in 

drawing conclusions about the effects of factors on the response. 
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2.12 Energy Measuring Device 

            Clamp meters are devices designed for measuring alternating current (AC) or direct 

current (DC), featuring a broad measuring range that often extends up to 2000 A. The 

measuring circuit is situated outside the instrument and typically includes a coil that can be 

opened using a lever. The two jaws of the clamp can be separated by a few centimeters, 

allowing the instrument to be placed around the conductor being measured, as outlined by 

(Capra et al. 2005). The measurement of current is converted through an electronic circuit, 

requiring a power supply. The resulting output quantity, which can be either voltage or 

current, is then made available through two terminals or directly measured, depending on 

the specific design of the instrument, as depicted in Figure 2.15. 

           The use of clamp meters offers several advantages. One significant advantage is that 

current measurement can be performed without interrupting the conductor being measured. 

This is highly beneficial in terms of convenience and efficiency. Additionally, this 

approach provides a high level of insulation between the clamp and the measuring 

equipment, ensuring operator safety. Some clamp meters utilize a Hall effect sensor as a 

transduction element, allowing them to measure both DC and AC current, often up to 

frequencies of 100 kHz (Capra et al., 2005). 

 

 

Figure 2.15 Clamp Meter (Capra et al., 2005) 
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2.13 Summary 

            From previous research, information and knowledge related to this research 

gathered in this chapter including the teory aspect as guidelines and references to improve 

the understanding on welding, energy consumption ,process parameters and robot welding 

system. This literature review presents a comprehensive overview of robot welding 

machine MIG, with a specific focus on process parameters, energy consumption, and the 

ultilization of Random Forest (RF) for modeling purposes. The review highlights the 

importance of optimizing process parameters to attain desires weld quality and enhance 

productivity. Additionally, it addresses the imperative of adopting energy efficient welding 

practices to minimize environmental impac. Lastly, the review underscores the potential of 

Random Forest modeling as a valuable tool for predicting. 
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CHAPTER 3  

 

METHODOLOGY 

3.1 Introduction 

            In this chapter, the proposed methodology focuses on identifying process 

parameters for the MIG robotic welding machine and developing a model to estimate 

welding quality based on these parameters. However, there is a research gap when it comes 

to analyzing the effects of process parameters on other performance indicators, such as the 

specific cutting energy. The specific cutting energy refers to the amount of energy required 

to weld a given volume of material. 

           Understanding how different process factors influence the energy requirement is 

crucial, particularly in terms of energy consumption. Given that the MIG robotic welding 

machine process consumes significant energy, it becomes essential to minimize energy 

consumption. To address this challenge, this study utilizes Orthogonal Array L27 and the 

Random Forest (RF) technique to determine the optimal parameter values that can 

minimize energy consumption by run the robotic welding machine MIG while maintaining 

welding quality and efficiency.  
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3.2 Process Flow Chart 

 

Figure 3.1 Process Flow 

Identify paramaters 

Determine Material 

Selection on Orthogonal Array (OA) 

Robotic Welding Machine MIG Start Up 

Define the Data Analysis 

Analyze Data by using Random Forest Method 

Predict the Model Performance 

Optimization   
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3.2.1 Selection and Setting of Parameters 

            For this study, the parameters chosen are current, welding speed, voltage, wire feed 

rate and nozzle to plate distance. These parameters were selected based on the conditions 

and available parameters in the Advanced Fusion Technology Laboratory at UTeM. The 

objective is to optimize these parameters as they have a significant effect on the tensile 

strength and hardness of the joint. Current is a crucial parameter in welding as it provides 

the primary power source of heat. Increasing the wire feed rate leads to a higher welding 

current, resulting in increased heat input.  

           Current has a direct impact on heat input and fusion during welding, and it primarily 

affects the depth of the weld bead. Voltage plays a role in influencing the arc length, arc 

stability, and overall weld quality. The combination of current and voltage determines the 

quality of the weld, including factors like burn-through and porosity. Voltage, along with 

wire feed rate, affects the weld bead geometry and needs to be optimized for better weld 

bead quality. 

           Wire feed rate influences the size, shape, and reinforcement of the weld bead. By 

adjusting the wire feed rate, the characteristics of the weld bead can be controlled. Lastly, 

both wire feed speed and welding speed have a significant impact on the width and height 

of the weld bead. In the initial state, there exists a nozzle-tip gap, which is the space 

between the inner diameter of the nozzle and the outer diameter of the contact tip. This gap 

falls within a specified range of 1mm to 2mm. Optimizing these parameters is crucial to 

achieve the desired weld bead dimensions. In a nutshell, this study seeks to enhance energy 

efficiency and sustainability by optimizing key parameters such as current, voltage, 

welding speed, wire feed rate, and nozzle-to-plate distance. Through meticulous 

optimization of these factors, the goal is to contribute to the reduction of energy 

consumption and promote sustainable practices in welding processes. 
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Table 3.1 Machining parameters and their respective levels. 

Label Machining Parameter Level 1 Level 2 Level 3 

A Voltage, (V) 21 23 25 

B Current, (A) 140 145 150 

C Wire Feed Rate, (m/min) 10 12 14 

D Welding Speed, (mm/s) 205 210 215 

E Nozzle to plate distance (mm) 1.0 1.5 2.0 

 

3.2.2 Determine Material 

            In the current study, mild steel has been chosen as the material of interest. Mild 

steel is a cost-effective type of steel and finds widespread use in various applications. It is 

known for its ease of welding using standard welding processes. For the welding of mild 

steel plates, a robotic welding machine MIG is utilized. Table 3.2 provides the chemical 

composition of mild steel and table 3.3 presents the mechanical properties of mild steel. 

 

Table 3.2 Chemical Composition of Mild Steel (M. Singh & Chatra, 2018) 

Element % C Mn P S Si 

Mild Steel 0.19 1.2-1.5 0.006 0.002 0.07-0.1 

 

Table 3.3 Mechanical And Physical Properties of Mild Steel (M. Singh & Chatra, 2018) 

Tensile  

strength (MPa) 

Yield strength  

(MPa) 

Elastic  

modulus (GPa) 

Thermal coeff.  

(10−6m/m°C) 

Density  

(Mg/𝑚3) 

450–585 240  200 11.7 7.8 

 

3.2.2.1 Shape and Size of Material  

              In the welding experiment, a rectangular plate of mild steel was utilized, as shown 

in Figure 3.2 and Figure 3.3. The base metal for the experiment was mild steel, with 

dimensions of 100mm length, 50mm width and thickness of 6mm. These size are common 
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in real-world welding circumstances. The butt configuration were chosen to run the 

experiment using robotic welding machine MIG. 

 

 

Figure 3.2 Mild Steel Plate Specimens 

 

Figure 3.3 Schematic diagram of welding test plate  

 

3.2.3 Experimental Setup 

            Figure 3.3 showcases the robotic welding machine MIG that was employed in the 

welding process conducted at FTKMP, UTeM. To apply the MIG robot welding machine, 

initiate the process by activating the gas supply, powering on the machine, and switching 

on the KempArc Pulse 350 power source. Subsequently, place the mild steel plate onto the 
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jig. Utilize the teach pendant to configure a welding program to start weld the mild steel 

plate. After making the necessary adjustments to the program settings, save the program.                 

             Following that, proceed to set up the parameters on both the teach pendant and the 

KempArc Pulse 360 power source, ensuring that the configurations align with the chosen 

factors and their corresponding levels. Adjust the settings systematically to ensure 

alignment with the selected criteria for an optimal setup and initiate the welding process by 

pressing the play button. The experimental design involved the use of several variable 

parameters, and a standardized Orthogonal Array L27 was adopted to conduct the 

experiment. The selected factors and their corresponding levels are detailed in Tables 3.1 

and 3.4, respectively. 

Table 3.4 Robotic Welding Machine MIG Setup 
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3.2.4 Selection on Orthogonal Array 

            Table 3.4 presents the experimental configuration and results using the L27 

orthogonal array. The research focused on investigating the effects of five factors, current, 

welding speed, voltage, wire feed rate and nozzle to plate distance on the welding process. 

To ensure comprehensive coverage of the input parameter space, a three-level L27 

orthogonal array was employed. We chose L27 orthogonal array because we need more 

data of this experiment and to determine the optimal energy consumption of the robotic 

welding machine MIG equipment, it is necessary to examine all possible combinations of 

the influencing factors. Table 3.4 specifically displays five columns of the L27 orthogonal 

array that correspond to the primary factors, also referred to as machining parameters. 

           By utilizing the L27 orthogonal array, the study aimed to efficiently explore and 

analyze the effects of different levels of current, welding speed, voltage, wire feed rate and 

nozzle to plate distance on the welding process and the associated energy consumption. 

The results obtained from this experimental configuration provide valuable insights into 

identifying the most influential factors and their optimal levels for achieving improved 

energy efficiency in robotic welding using the MIG process. 
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Table 3.5 Selection of Orthogonal Array L27 

Run A B C D E 

1 21 140 10 205 1.0 

2 21 140 10 205 1.5 

3 21 140 10 205 2.0 

4 21 145 12 210 1.0 

5 21 145 12 210 1.5 

6 21 145 12 210 2.0 

7 21 150 14 215 1.0 

8 21 150 14 215 1.5 

9 21 150 14 215 2.0 

10 23 140 12 215 1.0 

11 23 140 12 215 1.5 

12 23 140 12 215 2.0 

13 23 145 14 205 1.0 

14 23 145 14 205 1.5 

15 23 145 14 205 2.0 

16 23 150 10 210 1.0 

17 23 150 10 210 1.5 

18 23 150 10 210 2.0 

19 25 140 14 210 1.0 

20 25 140 14 210 1.5 

21 25 140 14 210 2.0 

22 25 145 10 215 1.0 

23 25 145 10 215 1.5 

24 25 145 10 215 2.0 

25 25 150 12 205 1.0 

26 25 150 12 205 1.5 

27 25 150 12 205 2.0 

 

3.2.5 Define the Data Analysis 

            Figure 3.3 shows the run experiment by using clamp meter. Clamp the live wire 

and ensure the appropriate positioning to take the current reading which will be converted 

to power. Subsequently, record the measurement and interpret the displayed numerical 

value on the meter, which corresponds to the current being measured in amperes (A). It is 

essential to confirm the stability of the reading and eliminate any potential disruptions or 

external factors that might impact the accuracy of the measurement.  
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            The determination of energy consumption during the welding process involved a 

detailed analysis. The method described below is employed to convert voltage and current 

readings into power. These equations demonstrate how changes in voltage, current, or 

power affect one another. By manipulating these formulas, one can determine the unknown 

value of voltage, current, or power if the other two are known. The relationship between 

voltage, current, and power can be described by the following equations: 

Power (P) in watts , Current (I), Voltage (V) 

V = P / I 

P = V × I 

I = P / V 

 

Figure 3.4 Clamp Meter 

3.2.6 Analyze Data by using Random Forest Method 

            In this study, the Random Forest technique is employed as an efficient strategy to 

analyze data and enhance energy consumption in robotic welding using the MIG process. 

Random Forest is a machine learning approach that combines multiple algorithms to 
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achieve its objective. The main purpose of using Random Forest in this study is to make 

predictions regarding the outcome. To accomplish this, a decision tree is utilized as the 

prediction model. The model considers the observations of the subject and determines the 

target value by forming branches and leaves. In this context, subject observations refer to 

the input variables, while subject target values refer to the output values. To minimize the 

variance of the predicted results, an ensemble technique called bagging is applied, which is 

particularly suitable for decision trees. 

           For the regression aspect of the study, a recursive fit of a corresponding regression 

tree is employed to generate bootstrap-sampled copies of the training data, with the mean 

value being used. In classification tasks, the predicted class is determined by the majority 

vote of the trees in the committee. Random Forest is a type of bagging method where many 

individual trees are generated, and their results are averaged. The advantage of Random 

Forest lies in the fact that it mitigates the issue of high correlation among trees by 

randomly selecting input variables during the tree-growing process. This improves the 

performance of bagging by reducing correlation without significantly increasing variance. 

3.2.7 Predict the Model Performance 

            To obtain the model with the highest testing accuracy, certain parameters of the 

Random Forest algorithm were modified. Specifically, the number of iterations or subtrees 

was adjusted. In order to evaluate the performance of the model, two metrics were used: 

Root Mean Squared Error (RMSE) and coefficient of determination (R² score). The RMSE 

is a measure of the average difference between the predicted and actual values of the 

response variable, and it provides an indication of how well the regression model predicts 

the absolute value of the response variable. It quantifies the typical deviation between the 

predicted values and the actual values.  



45 

           On the other hand, the R² score measures the proportion of the variance in the 

response variable that can be explained by the predictor variables. It indicates how well the 

independent variables account for the variability observed in the dependent variable. By 

analyzing these metrics, the model with the highest testing accuracy can be determined. 

This accuracy is defined by the ability of the model to predict and explain the variation in 

the output dependent characteristic based on the input independent variables. (Schonlau & 

Zou, 2020). 

3.3 Summary         

            In this chapter, experiment is utilized to illustrate the inherent connection between 

energy savings and sustainability. These case studies serve as examples to showcase that it 

is feasible to reduce energy consumption while maintaining product quality through 

modifications of the machining parameters of robotic welding machines using the MIG 

process. By implementing these modifications, products can be produced and sold at lower 

energy costs, contributing to the pillar of environmental sustainability. The subsequent 

chapter will further delve into multiple case studies, providing additional examples to 

demonstrate, verify, and validate the estimated outcome model approaches presented in the 

current chapter. 
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CHAPTER 4  

 

RESULT AND DISCUSSION 

4.1 Introduction 

4.1.1 Identify Parameters 

            This chapter presents the results and analysis obtained from investigating various 

factors that affect power consumption in robotic welding machine MIG. The study will 

begin by identifying key process parameters, such as voltage, current, welding speed, wire 

feed rate, and nozzle-to-plate distance, associated with the robotic welding machine MIG. 

These parameters play a significant role in influencing the welding process and, 

consequently, specific cutting energy.  

4.1.2 Random Forest Model 

            The development of Random Forest method is chosen for its ability to handle 

complex relationships between variables and provide accurate predictions. The model will 

function as a tool for estimating specific cutting energy based on the identified process 

parameters. Through a systematic experimental approach, data will be collected by welding 

mild steel plates using the MIG robotic welding machine.  

             A standard Orthogonal Array L27 will be employed, allowing for the variation of 

the selected process parameters at different levels. This dataset will then be utilized to train 

and validate the Random Forest model. The Random Forest approach was then utilized to 

develop an empirical model and calculate the RMSE (Root Mean Square Error) and R² (R-
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squared) score for the data. Data visualization graphs were also examined in this chapter to 

provide insights into the findings of the study.  

4.1.3 Optimal Parameters 

            Once the model is established, optimization techniques will be employed to 

determine the optimal values for the process parameters. The objective is to minimize 

specific cutting energy while maintaining high standards of welding quality and efficiency. 

The significance of this research lies in its potential to enhance the efficiency and 

sustainability of robotic welding processes. By identifying optimal process parameters and 

developing a predictive model. 

 

4.2 Data collection 

            Data were collected to facilitate an analysis focused on identifying strategies to 

reduce energy consumption in robot welding machine MIG. The study involved the 

adjustment of various parameters, and the energy consumption was  quantified. The 

Orthogonal Array L27, was created  by combining five key factors, including  voltage, 

wire feed rate, current, welding speed and nozzle to plate distance. The purpose of this 

table is to provide a comprehensive overview of the experimental design and the 

combinations of factors considered in the study. In order to investigate the impact of these 

factors on the energy consumption characteristics, a total of 27 welding process runs were 

performed and are shown in table 4.1. 

Table 4.1 Orthogonal Array L27 

Run Voltage, 

(V) 

Current, 

(A) 

Wire Feed 

Rate, (m/min) 

Welding 

Speed, (mm/s) 

Nozzle to Plate 

Distance (mm) 

1 21 140 10 205 1.0 

2 21 140 10 205 1.5 

3 21 140 10 205 2.0 
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4 21 145 12 210 1.0 

5 21 145 12 210 1.5 

6 21 145 12 210 2.0 

7 21 150 14 215 1.0 

8 21 150 14 215 1.5 

9 21 150 14 215 2.0 

10 23 140 12 215 1.0 

11 23 140 12 215 1.5 

12 23 140 12 215 2.0 

13 23 145 14 205 1.0 

14 23 145 14 205 1.5 

15 23 145 14 205 2.0 

16 23 150 10 210 1.0 

17 23 150 10 210 1.5 

18 23 150 10 210 2.0 

19 25 140 14 210 1.0 

20 25 140 14 210 1.5 

21 25 140 14 210 2.0 

22 25 145 10 215 1.0 

23 25 145 10 215 1.5 

24 25 145 10 215 2.0 

25 25 150 12 205 1.0 

26 25 150 12 205 1.5 

27 25 150 12 205 2.0 

 

4.3 Experimental Result 

            A total of 27 samples underwent welding via a MIG robot welding machine, each 

associated with its respective trial matrix. The quality indicator for the MIG robot welding 

machine is the width of the weld bead. The objective is to assess and compare the quality 

of the welding beads on each specimen. Additionally, the cycle time is employed to 

measure the duration required for each experiment to complete the welding process on the 

mild steel plate.  

            The data for current DC, wire feed speed, and voltage are extracted from the weld 

data provided by the KempArc Pulse 360 power source. Finally, the data for current AC is 

obtained using a clamp meter.The energy consumption for each sample was measured 
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using a clamp meter during the welding process. The clamp meter recorded the current, 

which was then converted to power using a specific formula :  

Power = 415 x √3 x 𝐼 

Table 4.2 Experiment Result 

Run Current, 

(A) (AC) 

Current, 

(A) (DC) 

Wire Feed 

Speed, (m/min)     

Voltage, 

(V) (DC) 

Welding 

Time, (s) 

Weld Bead 

Width, (mm) 

Power, 

(W) 

1 0.854 220 10.0 20.7 14.68 6.78 613.86 

2 0.947 208 9.9 20.6 14.80 6.44 680.70 

3 0.960 209 10.0 20.6 14.70 6.60 690.05 

4 1.424 209 10.0 20.6 14.68 6.64 1023.57 

5 1.450 233 11.9 20.6 14.72 6.84 1042.26 

6 1.879 236 11.9 20.6 14.60 6.68 1350.63 

7 2.530 255 13.9 20.6 14.74 6.66 1818.57 

8 2.722 256 13.9 20.6 14.70 7.20 1956.57 

9 2.830 257 14.0 20.7 14.68 7.60 2034.21 

10 2.382 237 11.9 22.6 14.66 7.68 1712.18 

11 2.669 233 11.9 22.6 14.63 7.64 1918.48 

12 2.488 235 11.9 22.6 14.76 7.79 1788.38 

13 3.361 250 13.9 22.6 14.57 7.87 2415.89 

14 3.451 251 13.9 22.6 14.95 7.86 2480.58 

15 3.494 253 13.9 22.7 14.38 7.82 2511.49 

16 1.664 213 9.9 22.6 14.79 7.58 1196.09 

17 1.939 212 10 22.6 14.72 7.52 1393.76 

18 1.983 214 9.9 22.6 14.66 7.42 1425.38 

19 4.463 253 13.9 24.6 14.63 8.57 3208.01 

20 4.557 256 13.9 24.6 14.83 8.54 3275.58 

21 4.385 255 13.9 24.7 14.98 8.45 3151.94 

22 2.074 200 9.9 24.7 14.56 7.46 1490.79 

23 2.361 206 9.9 24.7 14.60 7.35 1697.09 

24 2.294 207 9.9 24.6 14.62 7.28 1648.93 

25 3.305 226 11.9 24.6 14.68 7.79 2375.64 

26 3.326 229 11.9 24.6 14.47 7.73 2390.73 

27 3.490 226 11.9 24.6 14.75 7.67 2508.62 

 

4.4 Mild Steel Plate Specimens 

            The utilization of a mild steel plate as the specimen underscores a commitment to 

versatility and durability in the final product. The results pertaining to welding quality 
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were collected, with a specific focus on welding beads. The physical characteristics of the 

welding process specimens, as shown in Table 4.3, serve as indicators of the welding 

quality and the performance of the selected parameters.  

Table 4.3 Mild Steel Plate 
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4.4.1 Modeling Development using Random Forest Method 

            A mathematical model can be established to establish a connection between the 

process control parameters (welding speed, wire feed rate, current, voltage, nozzle to plate 

distance) and the response characteristics of the MIG robot welding machine. To predict 

the factors that influence the energy consumption of the machine in terms of the control 

parameters, a Random Forest regression analysis will be employed to develop an empirical 

model. To gather the experimental result, the design of experiment (DOE) approach was 

applied. 

            By applying Spyder software, it explores the application of the Random Forest 

Regressor algorithm in a Python script for regression analysis within the realm of machine 

learning. The script, leveraging the scikit-learn library, encompasses key tasks such as data 
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loading, splitting, model training, metrics computation, and data visualization. It begins by 

importing necessary libraries, including NumPy, Pandas, scikit-learn, Matplotlib, and 

Seaborn, establishing a robust foundation for numerical operations, data manipulation, 

machine learning, and result visualization.  

            The script loads a dataset, separates features and target variable, and utilizes train 

test split for dataset division. A Random Forest Regressor model is trained and evaluated 

using metrics such as Root Mean Squared Error and R-squared. The final section focuses 

on visualizing results, employing line plots, heatmaps, and pair plots to illustrate the 

model's predictive performance and relationships between features and the target variable. 

            The optimal model with the highest testing accuracy was identified through the 

fine-tuning of parameters in the Random Forest. Specifically, the number of iterations, 

representing the number of subtrees, was fine-tuned. The evaluation metrics employed 

included RMSE error, assessed against data subsets not involved in subtree construction. 

Additionally, the coefficient of determination, also known as the R² score, was utilized to 

assess the performance of a linear regression model. The R² score measures the proportion 

of variation in the output dependent attribute that can be predicted from the input 

independent variables, aiding in the determination of the most effective model. 

Table 4.4 Random Forest Code using Python Language 

1 import numpy as np 

2 import pandas as pd 

3 from sklearn.metrics import mean_squared_error, r2_score 

4 from sklearn.model_selection import train_test_split 

5 import matplotlib.pyplot as plt 

6 import seaborn as sns 

7 from sklearn.ensemble import RandomForestRegressor 

8 
 

9 # Load the dataset using pandas 

10 file_path = r'C:\PSM\ISMA.csv'  # Make sure this points to your file's correct 

location 

11 data = pd.read_csv(file_path) 
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12 
 

13 # Separate features (x) and target variable (y) 

14 x = data.iloc[:, 0:5].values  # Assuming columns 0 to 6 are the features 

15 y = data.iloc[:, 5:6].values   # Assuming column 6 is the target variable 

16 
 

17 X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.25, 

random_state=0) 

18 
 

19 #Random Forest Model 

20 model = RandomForestRegressor(n_estimators=19,random_state=20).fit(x,y) 

21 y_pred = model.predict(x) 

22 
 

23 #print(min(y_pred)) 

24 #Root Mean Square Error 

25 rmse = float(format(np.sqrt(mean_squared_error(y,y_pred)),'.3f')) 

26 print("\nRMSE:\n",rmse) 

27 
 

28 # R-squared 

29 r2 = r2_score(y,y_pred) 

30 print("\nR2:", r2),'.3f' 

31 
 

32 plt.plot(y, color = 'red' , label = 'Real Data') 

33 plt.plot(y_pred, color = 'blue' , label = 'Predicted Data') 

34 plt.title('Prediction') 

35 plt.legend() 

36 plt.show() 

37 
 

38 #Heatmap 

39 plt.figure(figsize=(10,8)) 

40 cor = data.corr() 

41 sns.heatmap(cor ,annot=True,cmap=plt.cm.Blues) 

42 plt.show() 

43 
 

44 #Pair Plot for Voltage againts Power 

45 sns.regplot(x = data.iloc[:, 0:1], y = data.iloc[:, 5:6]) 

46 plt.show() 

47 
 

48 #Pair Plot for Current againts Power 

49 sns.regplot(x = data.iloc[:, 1:2], y = data.iloc[:, 5:6]) 

50 plt.show() 

51 
 

52 #Pair Plot for Wire Feed Rate againts Power 

53 sns.regplot(x = data.iloc[:, 2:3], y = data.iloc[:, 5:6]) 

54 plt.show() 

55 
 

56 #Pair Plot for Welding Speed againts Power 
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57 sns.regplot(x = data.iloc[:, 3:4], y = data.iloc[:, 5:6]) 

58 plt.show() 

59 
 

60 #Pair Plot for Nozzle to Plate Distance againts Power 

61 sns.regplot(x = data.iloc[:, 4:5], y = data.iloc[:, 5:6]) 

62 plt.show() 

63 
 

64 xo=np.array([21,140,10,205,1]) 

65 
 

66 # Convert 'xo' to a DataFrame and name columns accordingly 

67 xo_df = pd.DataFrame([xo], columns=['Voltage', 'Current', 'Wire Feed Rate', 

'Welding Speed', 'Nozzle to Plate Distance']) 

68 
 

69 # Convert to float32 

70 xo_df = xo_df.astype(np.float32) 

71 
 

72 # Make the prediction 

73 Powermin = model.predict(xo_df.values) 

74 
 

75 print("Predicted Power:", Powermin[0]) 

4.5 Model Validation 

            In the context of the Random Forest method, the fine-tuning of parameters aimed at 

identifying the model with the highest testing accuracy. The Root Mean Squared Error 

(RMSE) served as a crucial metric, measuring the average difference between predicted 

and actual values. An RMSE of 0 signifies a perfect model. This approach, superior to 

experimental techniques, enables the prediction of parameter impact on the response.  

            Additionally, the Coefficient of Determination (R² score) was employed to evaluate 

the linear regression model's performance. This metric quantifies the predictability of the 

output attribute based on input variables, indicating how well the model replicates 

observed results. The Python script likely includes code for parameter tuning, RMSE 

calculation, and R² score assessment, enhancing the overall understanding of the model's 

accuracy and effectiveness. 
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4.5.1 Root Mean Squared Error 

            The RSME (Root Mean Squared Error) data for this model is 62.445, which is 

relatively high. This high value suggests that the model faces challenges due to limited and 

possibly insufficient data, possibly arising from issues with the robot welding machine MIG. 

Despite the limitations in the data strength, there is still potential for adoption based on the R² 

score result. The R² score provides valuable insights into how well the model can reproduce 

observed results, and its assessment may compensate for the limitations in the data, offering a 

more comprehensive understanding of the model's performance.  

             RMSE stands as one of the primary performance indicators for a regression model, 

gauging the average difference between predicted values and actual values. It serves as an 

indicator of the model's accuracy in predicting the target value. A lower RMSE value 

corresponds to a better performing model. In an ideal scenario (a hypothetical model that 

always predicts the exact expected value), the RMSE value would be 0. The advantage of 

RMSE lies in its representation of error in the same unit as the predicted column, 

facilitating easy interpretation. RMSE technique excels in modeling the response 

concerning significant parameters, their interactions, and square terms.  

4.5.2 Coefficient of Determination (R² score) 

            R² score data for this model is 0.993. The high R² values (90%) obtained from the 

regression models suggest their effectiveness as prediction models for the studied response 

variables. This underscores the models' capability to explain a significant portion of the 

variability in the dependent variables based on the provided input features. The optimal 

score for the coefficient of determination (R² score) is 1.0, indicating a perfect fit between 

the model's predictions and the actual values. The score can also take on negative values, 

suggesting that the model performs worse than a simplistic constant model that merely 
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predicts the average y, regardless of input features. In cases where the true y is non-

constant, such a constant model would yield an R² score of 0.0. 

            The coefficient of determination, also known as the R² score, serves as a key 

indicator for assessing the performance of a linear regression model. It quantifies the 

proportion of the variation in the output dependent attribute that can be predicted from the 

input independent variables. This indicator is employed to gauge how effectively the 

observed results are replicated by the model, based on the ratio of the total deviation of 

results explained by the model. In essence, the R² score provides insight into the model's 

ability to account for and explain the variability in the dependent variable based on the 

independent variables. 

4.6 Accuracy Plot Model Analysis 

            The accuracy plot illustrates both real data and predicted data in figure 4.1. The red 

line corresponds to the data obtained from the experiment, while the blue line represents 

the data generated by the Random Forest regressor model. The alignment of the real data 

and predicted data values in the accuracy plot indicates almost correspondence, suggesting 

that the Random Forest model has successfully predicted the results. The proximity of the 

two lines signifies a strong agreement between the actual experimental data and the 

predictions made by the Random Forest model. 
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Figure 4.1 Accuracy Plot 

 

4.7 Analysis of Optimal Parameter Setting for Robotic Welding Machine MIG 

4.7.1 Analysis of Heatmap 

            The heat map presented in Figure 4.2 illustrates the parameters that exert the most 

substantial impact on energy consumption and identifies the characteristic values 

associated with high and low influence on robot welding machine MIG energy 

consumption. According to the heat map, the wire feed rate is the most influential 

parameter, with a correlation coefficient of 0.74, followed by voltage with a coefficient of 

0.65. In contrast, welding speed, nozzle-to-plate distance, and current exhibit lower 

significance in relation to energy consumption. This information suggests that adjustments 

in wire feed rate and voltage have a more significant effect on energy consumption 

compared to the other parameters. 

 



58 

 
Figure 4.2 Heat Map 

 

 

4.7.2   Analysis of Main Effect Plot 

4.7.2.1 Analysis of Main Effect Plot Voltage against Power 

 



59 

 

Figure 4.3 Main Effect Plot Voltage against Power 

 

            Figure 4.3 illustrates the main effect plot of voltage against power, analyzing the 

voltage settings within the scope of this study, which have three respective levels. These 

levels are designated as level one (21V), level two (23V), and level three (25V). The 

response at level one, 21V, indicates the lowest energy consumption among the three 

settings. Conversely, 25V exhibits the highest energy consumption during the welding 

process. The observed difference in results suggests that energy consumption increases 

with an elevation in voltage. The implication of these findings is that the optimal voltage 

setting for this study is 21V, as it corresponds to the lowest energy consumption for the 

Robot Welding Machine MIG. 

4.7.2.2 Analysis of Main Effect Plot Wire Feed Rate against Power 

 

 
Figure 4.4 Main Effect Plot Wire Feed Rate against Power 

 

 

            The main effect plot for wire feed rate against power shown in Figure 4.4. The wire 

feed rate is the most influence the energy consumption in robot welding machine MIG. By 

observing the level wire feed rate set in this study shown in main effect plot, level one, 10 
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m/min are lowest energy consumption and level three, 14 m/min are the highest energy 

consumption. Meanwhile the level two, 12 m/min are the middle energy consumption of 

level one and level three. The result shown if the wire feed rate increases then the power 

consumption in GMAW will increase. For the optimal setting of wire feed rate for this 

study is 10 m/min. 

4.7.2.3 Analysis of Main Effect Plot Current against Power 

 
Figure 4.5 Main Effect Plot Current against Power 

 

              Figure 4.5 shown main effect plot welding current against power that analyses the 

current that set in this studied and have three respective level. The level one is 140A, level 

two is 145A level three is 150A. The response of level one, 140A is shown the lowest 

energy among the three level setting. 150A is the highest energy consumption while the 

welding process run. The difference from the result shown the energy consumption wil be 

decreased if the current is decreased. Meaning of the result is the optimal setting for 

current is 140A for this study because of the lowest energy consumption for Robot 

Welding Machine MIG. 
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4.7.2.4 Analysis of Main Effect Plot Welding Speed against Power 

 

Figure 4.6 Main Effect Plot Welding Speed against Power 

 

              The main effect plot of welding speed against power is presented in Figure 4.6. 

The plot illustrates three levels of welding speed: level one at 205 mm/s, level two at 210 

mm/s, and level three at 215 mm/s. The welding speed corresponds to changes in energy 

consumption in the robotic welding machine MIG. Upon examining the plot trend, it is 

observed that the setting at level one, 205 mm/s, exhibits the lowest energy consumption, 

while level two at 210 mm/s falls in the middle, and level three at 215 mm/s shows the 

highest energy consumption. Based on this observation, the optimal setting for welding 

speed in this study is at level one, 205 mm/s. 
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4.7.2.5 Analysis of Main Effect Plot Nozzle to Plate Distance against Power 

 
Figure 4.7 Main Effect Plot Nozzle to Plate Distance against Power 

 

              Figure 4.7 shown main effect plot nozzle to plate distance against power. This plot 

analyses nozzle to plate distance that set in this studied with three respective level. The 

level that set for level one is 1mm, level two is 1.5mm and level three is 2mm. The 

response of level one, 1mm are shown the lowest energy and level three setting, 2mm is 

the highest energy consumption while the welding process run. The difference from the 

result shown the energy consumption will be increased if the nozzle to plate distance is 

increased. Meaning of the result is the optimal setting for nozzle to plate distance is 1mm 

for this study because of the lowers energy consumption for robotic welding machine MIG. 

4.7.3 Optimal Parameter Settings 

            The ideal setting parameters may be chosen to decrease the energy consumption 

based on the heatmap and main effect plot, as shown in table 4.5. The value is affected by 

voltage, current, wire feed rate, welding speed and nozzle to plate distance.  
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Table 4.5 Optimal Parameter Settings 

Parameter Value Level Unit 

Voltage 21 1 V 

Wire Feed Rate 10 1 m/min 

Current 140 1 A 

Welding Speed 205 1 mm/s 

Nozzle to Plate Distance 1 1 mm 

 

4.7.3.1 Confirmation Test Run and Result 

              The purpose of a test run is to obtain the output response, which, in this case, is 

energy consumption. A confirmation run is executed in the Random Forest model to 

acquire the energy consumption using the optimal configuration outlined in Table 4.5. The 

result of the confirmation run indicates an energy consumption value of 624.4137W. 

4.8 Discussion 

            The investigation into the influence of welding parameters on specific cutting 

energy in the robotic welding machine MIG has provided valuable insights into the 

welding process. The hypothesis posits that variations in voltage, wire feed rate, current, 

welding speed, and nozzle-to-plate distance would impact specific cutting energy by 

altering the efficiency of the robotic welding machine MIG. 

1) The first objective of this study was to identify the process parameters of the 

robotic welding machine MIG. The exploration of voltage, wire feed rate, current, 

welding speed, and nozzle-to-plate distance is not only relevant but also 

individually affects specific cutting energy. 

2) The second objective aimed to develop a model using Random Forest for predicting 

energy consumption. The Random Forest model's ability to predict specific cutting 

energy on the robotic welding machine MIG and create process settings has been 
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successfully achieved. This accomplishment establishes advanced predictive 

modeling in the welding process, enabling more efficient data processing for 

parameter selection and process optimization. 

3) The third objective is to determine the optimal parameters for setting the process in 

the robotic welding machine MIG. Through the analysis of the data obtained from 

the Random Forest model, optimal parameter settings were identified, and 

subsequent runs predicted power consumption using these optimal parameters.            
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CHAPTER 5  

 

 

CONCLUSION AND RECOMMENDATION 

5.1 Conclusion  

            The primary objectives of the study, which involved analyzing robot welding 

machine MIG process parameters using the Random Forest method, have been 

successfully achieved and are summarized in the concluding section of this chapter. It 

appears that among the five process parameters examined, wire feed rate is the most 

significant process parameters that influenced the energy consumption on robotic welding 

machine MIG. The energy consumption on robotic welding machine MIG is less sensitive 

to welding speed.  

            The study parameter setting for robotic welding machine MIG was identified in the 

literature review. The design experiment was created to run experiment for collecting data 

experiment using Orthogonal Array L27 for arrange the experiment run. The model is 

developed using Anaconda Navigator to create environment for Python language and 

Random Forest Model was created using Spyder software. The model was evaluated using 

Root Mean Square Error (RMSE) and Coefficient of Determination (R² score). 

5.2 Recommendation 

            The insights derived from the validation model present operators with significant 

parameters for the effective management of the MIG (Metal Inert Gas) robot welding 
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machine. Implementing these validated parameters offers several distinct advantages, 

including cost-effectiveness and contributions to environmental sustainability.  

             By incorporating the validated parameters into the welding process, operators can 

optimize efficiency while simultaneously minimizing operational costs. This not only has 

financial benefits but also aligns with environmental goals. The use of these parameters 

contributes to sustainability efforts by promoting resource efficiency, reducing waste, and 

mitigating the environmental impact associated with welding. 

             In essence, the application of validated parameters empowers operators to strike a 

balance between cost savings and environmental responsibility in the operation of the MIG 

robot welding machine. This approach not only enhances the overall performance of the 

welding process but also reflects a commitment to sustainable and responsible 

manufacturing practices. 

5.3 Suggestion 

1) Try to create model using other machine learning tool such Artificial Neural 

Network (ANN). 

2) To enhance optimization, consider combining the current model with Genetic 

Algorithm (GA) to predict accurately. 
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APPENDICES 

             APPENDIX A Gantt Chart PSM 1 
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         APPENDIX B  Gantt Chart PSM 2 

Gantt Chart for PSM 2 

No Task Plan/Actual 
Week 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 Purchase Material Selection 
Plan                             

Actual                             

2 Run Experiment  
Plan                             

Actual                             

3 Run Python Coding 
Plan                             

Actual                             

4 Design of Experiment 
Plan                             

Actual                             

5 Finding and Data Analysis 
Plan                             

Actual                             

6 Discussion with Supervisor  
Plan                             

Actual                             

7 Report Writing  
Plan                             

Actual                             

8 Model Development 
Plan                             

Actual                             

9 PSM 2 Draft Submission 
Plan                             

Actual                             

10 Summary 4 Pages and e-Logbook Submission 
Plan                             

Actual                             

11 PSM 2 Preparation and Presentation  
Plan                             

Actual                             
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