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ABSTRACT 

 

 

 The recent rapid progress in information technology (IT) has highlighted the negative 

impact of excessive temperatures on computer systems, particularly the GPU. This can 

significantly impair the device's performance and reduce its lifespan. Presently, GPU cooling 

systems utilise two distinct cooling methods: active and passive cooling. Therefore, it is 

imperative to have a robust cooling system in order to effectively dissipate heat. Hence, it is 

imperative to do thorough research and innovate novel cooling systems that are more 

efficient. This study aims to address the knowledge gaps regarding GPU thermal regulation 

by specifically examining the influence of fan speed on GPU temperatures. The investigation 

will be conducted under identical GPU load situations. The GPU stress indicated pertains to 

the Dagger-Hashimoto mining algorithm. Additionally, there are three distinct thermal pad 

materials: silicone, nickel, and copper. These materials were examined to analyse the thermal 

regulation of the GPU while also considering the impact of fan speed. The employed model 

consists of a sandwich structure consisting of a microchip, a thermal pad, and a heat sink. 

The study utilised the response surface methodology (RSM) with a single factor to forecast 

the ideal fan speeds necessary to achieve certain temperatures. To ensure the accuracy of the 

model, we conducted additional experiments to assess how the suggested GPU temperature 

affects the fan speed, as predicted by the RSM model. For the given scenario, the most 

accurate prediction for the GPU temperature of the stock thermal pad, specifically the Arctic 

TP-3, is achieved using a quartic model. Conversely, the most accurate prediction for the 

nickel thermal pad can be achieved by employing a quartic model for the GPU core 
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temperature and a cubic model for the GPU memory temperature. The cubic model of a 

copper thermal pad is the most appropriate form for determining GPU temperature. When 

evaluating the accuracy of the chosen model, three categories of materials displayed a margin 

of error below 5%, with the highest error being a mere 1.62%. Furthermore, it has been 

discovered that employing a copper thermal pad remains an advantageous option for 

intensive activities such as gaming, cryptocurrency mining, and similar duties. It efficiently 

reduces the temperature of the memory, even when the fan speeds are modest, leading to 

energy savings on the cooling system while still maintaining a high hash rate.  
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ABSTRAK 

 

 

Perkembangan pesat dalam era kontemporari ini dalam teknologi maklumat (IT) 

telah menonjolkan kesan negatif peningkatan suhu pada sistem komputer, terutamanya GPU. 

Ini boleh menjejaskan prestasi peranti dan mengurangkan jangka hayatnya. Pada masa ini, 

sistem penyejukkan GPU menggunakan dua kaedah penyejukkan yang berbeza iaitu 

penjekukkan aktif dan pasif. Oleh itu, ia adalah penting untuk mempunyai sistem 

penyejukkan yang teguh untuk mengalihkan panas secara berkesan. Oleh itu, ia adalah 

penting untuk melakukan penyelidikan menyeluruh dan inovasi sistem penyejukan baru yang 

lebih berkesan. Kajian ini bertujuan untuk mengatasi kesenjangan pengetahuan mengenai 

kawalan haba GPU dengan mengkaji secara khusus pengaruh kelajuan kipas pada suhu 

GPU. Penyelidikan akan dijalankan di bawah keadaan beban GPU yang sama. Tekanan 

GPU yang dinyatakan berkaitan dengan algoritma perlombongan Dagger-Hashimoto. 

Selain itu, terdapat tiga bahan pad haba yang berbeza: silikon, nikel, dan tembaga. Bahan-

bahan ini telah diperiksa untuk menganalisis kawalan haba GPU sambil juga 

mempertimbangkan kesan kelajuan kipas angin. Model yang digunakan terdiri daripada 

struktur sandwich yang terdiri daripada mikrochip, pad haba, dan sinki haba. Kajian ini 

menggunakan kaedah permukaan respons (RSM) dengan faktor tunggal untuk meramalkan 

kelajuan kipas ideal yang diperlukan untuk mencapai suhu tertentu. Untuk memastikan 

ketepatan model, kami menjalankan eksperimen tambahan untuk menilai bagaimana suhu 

GPU yang disyorkan mempengaruhi kelajuan optimal, seperti yang diramalkan oleh model 

RSM. Untuk senario yang diberikan, ramalan yang paling tepat untuk suhu GPU pad haba 
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stok ataupun silikon, khususnya Arctic TP-3, dicapai menggunakan model kuartik. 

Sebaliknya, ramalan yang paling tepat untuk pad haba nikel boleh dicapai dengan 

menggunakan model kuartik untuk suhu teras GPU dan model kubik untuk suhu memori 

GPU. Model kubik pad haba tembaga adalah model yang paling sesuai untuk menentukan 

suhu GPU. Apabila menilai ketepatan model yang dipilih, tiga kategori bahan menunjukkan 

margin kesalahan di bawah 5%, dengan kesilapan tertinggi hanya 1.62%. Selain itu, telah 

ditemui bahawa menggunakan pad haba tembaga kekal pilihan yang menguntungkan untuk 

aktiviti intensif seperti permainan, perlombongan cryptocurrency, dan tugas-tugas 

serupanya. Ia secara berkesan mengurangkan suhu memori, walaupun pada kelajuan kipas 

sederhana, turut membawa kepada penjimatan tenaga pada sistem penyejukan sambil 

mengekalkan kadar hash yang tinggi.
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background Study 

 

 The density of transistors in CPUs and GPUs is increasing at an exponential rate due 

to the rapid advancement of Information Technology (IT) (Abu Raihan Mohammad Siddique, 

et al., 2019). Traditional computers lack the processing speed and efficiency needed to run 

the latest software, which has emerged in response to the explosion of available data. For 

example, video editing software like Adobe Premiere Pro, Solidworks, Catia, AutoCAD, and 

others need not only powerful computers, but also powerful graphics cards, in order to 

function properly. In this case, it's not feasible to use a general-purpose computer that just 

relies on the Central Processing Unit (CPU) to run high-resolution video rendering and real-

time 3-D picture decoding. An alternative processing architecture, GPU has found 

widespread adoption for data-intensive operations in this area (Matthews, 2018). 

 A GPU, or graphics processing unit, is a dedicated chip or electronic circuit for the 

purpose of producing display-ready visuals on a computer or other electronic device (Jake 

Frankenfield, 2021). The GPU is a non-graphics compute processor that differs in 

architecture from conventional sequential processors in a number of ways (Wong et al., 

2010). The graphics processing unit (GPU) was first released to the public in 1999, and its 

primary function is to ensure the high-quality visuals present in today's popular videos and 
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games. The multi-threading capacity of GPUs makes them ideal for processing huge datasets 

quickly and efficiently (Crespo et al., 2011). Because of its ability to do several calculations 

in parallel, a graphics processing unit (GPU) can improve computer efficiency by handling 

more computationally complex tasks, such as rendering, that would otherwise fall to the 

central processing unit (CPU). Unlike typical multi-core CPUs, which cannot offer this 

parallel level, GPUs can accomplish several hundred jobs concurrently, making them what 

is known as a multi-core processor (Fritzen et al., 2014). Nvidia, Advanced Micro Devices 

(AMD), Intel, and ARM are among the few GPU manufacturers that have been considered 

market leaders. 

 The elevated temperature of the system as a result of rising component density in 

electronic components is having an adverse effect on the device's performance and lifespan 

(O. Khonsue, A.I. Uddin et al., 2012). As a consequence of this for the past few decades, 

people have been researching and developing on superior methods of cooling. (X.P. Yang et 

al., 2022) split typical thermal management techniques into three distinct groups: active heat 

dissipation, passive heat dissipation, and thermoelectric cooling. In passive cooling, heat 

transfer takes place by means of the mediums of convection, conduction, and radiation. 

Active cooling, on the other hand, makes use of energy meant for cooling purposes only. 

These two types of cooling methods have current applications in heat sinks and heat 

spreaders. Electronic devices include two types of components: active and passive, and both 

of these contribute to the overall temperature of the system. The GPU is just one of many 

hard-working components that produce tremendous heat. This necessitates the use of an 

active thermal cooling system to keep the internal temperature down (A. Siricharoenpanich 

et al., 2021).  

 Active cooling methods include the use of fans and water, whereas passive cooling 

methods include the use of heat sinks. The GPU cooling system makes use of these three 
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main systems for cooling. For a fan-cooling system, the graphics processing unit is cooled 

using an air-based system that includes a fan, a finned heat sink, and heat pipes. The GPU's 

working temperature can be lowered with the help of a fan, which will generate forced air 

convection and aid in the heat sink's dissipation of the GPU's heat. As opposed to fan-cooling, 

which relies on air to vent GPU heat, water-cooling employs liquid. Compared to air, liquids 

are superior heat transfer media because their heat capacities and thermal conductivities are 

much larger (F. Meng et al., 2019). Compared to air cooling, commercially available liquid 

cooling systems are said to be more effective. There are four main parts to a liquid cooling 

system: the heat sink, the pump, the radiator, and the fan. These parts are often prefilled with 

liquid and connected via piping systems (Abu Raihan Mohammad Siddique et al., 2019).  

An electronic component or chip's heat can be dissipated by a heat sink. According to 

research (Jeehoon Choi et al., 2012), a heat sink's effectiveness is mostly determined by the 

forced air convection created by its fans. (Amir Faghri et al., 2020) found that among the 

many heat sink types, two-phase forced-convection cooling of high-heat-flux/high-power 

electronic devices were one of the most effective methods of thermal management. 
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1.2 Problem Statement 

 

 The development of cutting-edge energy technology has been an increasingly 

popular topic in recent years. As the information technology industry continues to advance 

at a breakneck pace, the potential of individual computer cabinets to generate heat is also 

growing. However, if the temperature in the computer system gets too high, the chip within 

could be damaged, leading to errors (He W et al., 2022). Thus, internal heat is the primary 

cause of performance issues within computers. When computers are left on for too long in 

hot environments, they can lose functionality and fail sooner than expected. Solid-state 

devices start to degrade and fry at temperatures over 120 degrees Celsius (Paul Chamber, 

Element Digital, 2016). As the need for more powerful computing systems increases 

exponentially, cooling electronic chips has been identified as one of the greatest difficulties 

(Vargas-Vazquez et al., 2018). 

 A powerful cooling system is required for heat dissipation. This is why it's important 

to research and develop new, more effective cooling techniques. The cooling system of a 

computer can be either active cooled i.e., air-cooled, water-cooled, or passively cooled by a 

heat sink, all of which are available on the present market. To improve the efficiency of a 

regular air-cooling system, however, one must currently resort to increase the fan's size, the 

number of fans, the radiator's size, the pump's size, and the power input to the fans and pump. 

An increase in the size of any component in a cooling system may necessitate an increase in 

the amount of physical space required, which in turn may increase the cost of the cooling 

system, reduce its efficiency, and make it less convenient for the user (Abu Raihan 

Mohammad Siddique et al., 2019). Therefore, to improve cooling system performance, new 

developments in technology and system optimisation are needed. These include, but are not 

limited to, optimising water blocks (A.B. Etemoglu, 2007), employing nanofluids (I. Sauciuc 

et al., 2005), employing two-phase cooling techniques (J.V. Es et al., 2013), enhancing 
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vapour chambers (S.S. Khaleduzzaman et al., 2014), and use of thermoelectric cooler (TEC) 

(A.H. Shourideha et al., 2018) to achieve higher cooling capacity and better thermal 

management of GPU cooling system.  

 In order to fill in some knowledge gaps about controlling GPU temperature with 

cooling technologies, the goal of this study is to do new research on GPU thermal control. 

The primary purpose of this research is to investigate the impact of fan speed on GPU 

temperature under identical GPU load situations and to figure out the ideal fan speed that is 

able to attain minimal GPU core and memory temperature through the application of Design 

Expert software. The GPU load addressed in this context corresponds to the use of Nicehash, 

notably with respect to the Dagger Hashimoto mining algorithm. This load is influenced by 

elements such as the GPU power limit, core clock, and memory clock speed. The second 

purpose of this study is to explore the impact of various materials for radiator heatsinks, 

notably copper and nickel, on the thermal dissipation performance of GPU memory. The 

literature research has shown that the memory component of the GPU is the principal cause 

of heat generation. Therefore, this research attempts to further explore the radiator heatsink 

material properties of GPU memory and their influence on thermal dissipation. 

 

1.3 Objectives 

 

 The objective of this study are as follows: 

 

1. To investigate the effects of fan speed on GPU temperature under identical GPU load 

conditions. 

2. To obtain and validate the optimal fan speed through numerical solution of RSM on 

GPU core and memory temperature. 
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3. To investigate the impact of various material of thermal pad on GPU memory thermal 

dissipation performance by utilizing RSM analysis. 

 

1.4 Scope of Study 

 

 The bounds of this project are: 

 

1. The research scope is limited to GPU active cooling system which is fan-cooled. 

2. The GPU used for this study is limited to ASUS Tuf Gaming 3060. 

3. The investigation will focus solely on the thermal dissipation performance of GPU 

core and memory temperature. 

4. The fan speed of the ASUS TUF Gaming 3060 is set at 550 rpm as the lowest, while 

3000 rpm is the maximum fan speed for the analysis. 

5. The fan speed obtained through RSM numerical optimization will be verified and 

validated to ensure the suitability of the mathematical model chosen. 

6. The deviation between the optimised memory temperature and the actual temperature 

would be determined. 

7. The materials used for testing heatsink radiator thermal performance will be limited 

to copper and nickel. 

8. The thermal performance comparison between original, nickel and copper thermal 

pad would be compared based on the memory temperature achieved at the same fan 

speed. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.0 Overview 

 

 This chapter will provide a basic overview of the GPU and its various components. 

The primary emphasis lies on the heat-generating components and cooling infrastructure of 

the GPU. The literature review will encompass three primary classifications of GPU cooling 

systems, namely air-cooled, liquid-cooled, and heat sink. The three fundamental concepts, 

namely material, design, and size, will be further categorised into three separate categories. 

By integrating these three approaches, it enables a more effective approach towards 

achieving proficiency in GPU heat control. To acquire knowledge regarding the execution 

of an optimal fan speed experiment and the selection of suitable materials for a radiator heat 

sink in a GPU, it is imperative to consult relevant literature. This literature should encompass 

topics such as GPU load generation, heat transfer mode, mining activities, mining platforms, 

mining algorithms, and the utilisation of Design Expert software. The Design Expert 

software serves as a tool for conducting optimisation through analytical and graphical 

approaches.
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2.1 Introduction of Graphic Processing Unit (GPU) 

 

 GPUs are designed for data-parallel processing and 3D graphics rendering. 

Rendering 3D graphics shows intensive parallel processing. It calculates geometric (vertex) 

and raster (pixel). GPUs are continually improving towards highly parallel, configurable 

processors with plenty of GFLOPS and fast throughput to meet market needs and the rapidly 

growing gaming sector. GPUs' transition from fixed pipelining to programmable parallel 

processors is well documented. Vector architectures' simultaneous instruction management 

and ILP-accelerated graphical processing. SWAYAM (2011) stated that GPUs use parallel 

threads to hide the high cost of global memory accesses, making them data-parallel and 

throughput-oriented CPUs. According to Fujihiko Ino (2013), CPUs focus on latency and 

can multitask. GPUs require thousands of threads, making them many-core processors. 

CPUs may use several threads at once. GPUs work well with CPUs in scenarios with lots of 

predictable data and calculations. The CPU performs sequential programming parts, while 

the GPU handles computationally intensive parts to boost throughput. 

 Early GPUs used open GL and the Microsoft DX API to render 3D graphics with 

fixed-function vertex pixel shaders. The quest for more complex visual effects from fixed-

function graphics hardware led the trend towards programmable CPUs. After that SWAYAM 

(2011) claimed that Nvidia launched the first programmable vertex processor with vertex 

shaders in 2001. Later, DX9 and OpenGL GPUs were available. Nvidia released dynamic 

parallelism-based Kepler in 2012. Shilan Ahmed Mohammed et al (2021) stated that Nvidia 

bought a pascal with advanced AI, deep learning, and other computing capabilities. GPUs 

have many uses. The academic community was an early user, but the general research 

community has since caught on because of its massive speedups in several sectors. GPUs 
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are used in banking, oil and gas exploration, computational physics, chemistry, life sciences, 

and signal processing. 

 

Figure 2.1 Example of GPU  

 

2.2 Thermal Management of GPU under Computational Fluid Dynamics Simulation 

 

 The use of graphics processing units (GPUs) in high-performance computing has 

turned into the major heat source. When a computer gets too hot, the graphics processing 

unit (GPU) stops working as efficiently, which slows down the machine's performance. 

However, the distribution of temperature at the heat sink and the direction and rate of heat 

transmission inside a computer case remain mysteries. To find a solution to the graphics card 

overheating problem, a team of researchers led by Zambri Harun et al. (2019) used a 

computational fluid dynamics (CFD) simulation to investigate and observe the transfer of 

heat flow within a computer case and heat sink. 

 Zambri Harun et al. (2019) modelled a computer casing and a simplified graphic card 

to simulate a computer's functionality. Size, shape, and material of graphic card and heat 

sink are represented similarly to market availability. The simulation is carried out using a 

programme called STAR-CCM+. Case dimensions were specified as 0.5 m × 0.5 m × 0.2 m, 

with the GPU taking up 30 cm × 10 cm × 2 cm of space. Then, three heat sink models were 

built to examine how changing the shape, size, or number of fins on a heat sink might affect 
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its ability to dissipate heat. Below is a diagram detailing the shape and dimensions of a heat 

sink:

 

Figure 2.2 Three heat sink case studies (Zambri Harun et al., 2019) 

The simulation's boundary conditions were designed so that the air input velocity and 

pressure outlet velocity were each 1 m𝑠−1. The air was thought to be moving steadily and 

incompressible the whole time, with a constant density of 1.225 kg/𝑚3 . Both the air 

temperature and air pressure were considered to be standard conditions, with a value of 25°C 

and 101325 Pa, respectively. Below is a diagram depicting the simulation's boundary 

conditions. 

 

Figure 2.3 Boundary conditions (Zambri Harun et al., 2019) 

 

 

 

Outlet 1 

Outlet 2 

Graphic card 

Inlet 1 

Inlet 2 
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Figure 2.4 Components of GPU 

The material properties of the components are according to the standard mechanical 

properties of each material. The materials for heat sink and graphic card are shown in Table 

2.1. 

Table 2.1 Material for each component 

Component Material 

Heat sink Aluminum 

Capacitor Alumina 

Memory chip Silicon 

GPU chip Aluminum 

Printed circuit board (PCB) FR-4 + copper 

Connector port block Aluminum 

Back plate Aluminum 

            

 

Port Block 

PCB 

GPU chip 

Memory chip 

Capacitor 

SLI / CrossFire Slot VRAM (Video Memory) 

PCI-Express x 16 connector 

8-pin connector 



12 

 

 

Figure 2.5 Temperature contours on heat sink (Zambri Harun et al., 2019) 

 The simulation showed that the heat sink's temperature distribution is highest in its 

centre and drops away from it. Figure 2.5 shows that the GPU chip and VRAM are the 

hotspots. The GPU chip-heat sink interface conducts. The GPU chip and other electronics 

conduct heat to the heat sink. Hot air from the heat sink is transported away by incoming 

convective air, causing convection. This phenomenon showed why electronic parts should 

be kept away from, or partially covered by, heat sources to avoid overheating and failure. 

Heat sink maximum temperature was likewise shown to be inversely proportional to inlet 

wind speed. Increased air velocity lowers heat sink maximum temperature. The fast breeze 

speeds up heat dissipation from the heat sink. Bejan (2013) claimed that accelerating 

convection lowers peak temperature. 

 Also, out of the three heat sinks tested, the largest surface area and greatest volume 

belonged to heat sink A, making it the most efficient. Leach (2005) notes that the rate of heat 

loss increases as volume area increases. Below is a graph depicting the maximum 

temperature of a heat sink at various velocities: 



13 

 

Table 2.2 Maximum temperature of heat sink for different velocity (Zambri Harun et al., 

2019) 

Heat 

sink 
  

Velocity 

inlet 

(m𝒔−𝟏)   

Maximum 

temperature 

(°C)   

Volume 

area 

(𝒎𝒎𝟑) 

A 
  1   90.52   6.31 

 2  67.78  6.31 

    
   

B  1  125.94  4.03 

 2  96.467  4.03 

  
 

 
   

C  1  115.48  4.3 

 2  88.225  4.3 

              

  

 According to Table 2.2, the maximum temperature of a heat sink decreases as its 

volume area increases, since a larger volume area results in a higher rate of heat loss via 

convection. The number of fins on the heat sink is proportional to the volume, and this is 

how heat is transferred away from the graphics card during the conduction process. Shah 

(2003) claimed that greater surface area means more fins, which means faster heat 

transmission and a cooler maximum temperature for the GPU chip. 

 

Figure 2.6 Heat transfer performance against number of fins (Maplesoft et al., 2008) 
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Figure 2.7 Graph of relationship between convective heat transfer coefficients against air 

velocity. (Khabari et al., 2014) 

 The rate of heat transmission via convection is greatly dependent on the air velocity 

for convection cooling. There is a direct correlation between the speed of the air and the heat 

convection coefficient. According to Khabari et al. (2014), more heat is transferred at a given 

rate when the air velocity is greater. The idea presented by Khabari et al. (2014) is applicable 

to graphic cooling systems as well; the faster the velocity of the wind entering the system, 

the faster the heat will be transferred from the heat sink. 

 Zambri Harun et al. (2019) has also looked into the GPU's thermal behaviour in a 

transitional condition. According to Smith (1975), a system is in a transient state when the 

process variable is changing but the system has not yet attained steady-state conditions. It 

can be shown that heat started to spread to the heat sink slowly based on the comparison 

between the temperature distribution contour of each heat sink for speed at a different time 

interval (t = 100 s, 200 s, 300 s, 400 s, 500 s). Here is where heat was transferred from the 

GPU to the heat sink. 
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Figure 2.8 Temperature distribution contour of each heat sink for speed 1ms^(-1) at 

different time interval. (Zambri Harun et al., 2019) 

 Figure 2.8 illustrates that heat sink B has the highest rate of heat exchange, followed 

by heat sink C and heat sink A. As can be seen in Table 2.2, heat sink B has the smallest 

volume area. Thermodynamic principles can be used to heat sink B, as the heat transfer rate 

per unit area is proportional to the square of the area.  

Table 2.3 Initial & final temperatures of each heat sink. (Zambri Harun et al., 2019) 

Heat 

sink 
  

Initial 

Temperature 

(°C)   

Final 

Temperature 

(°C)   

Change in 

Temperature 

(°C) 

A 
  

26 
  

71 
  

45 
  

 

    
   

B  26  122 
 

96 
  

 

  
 

 
   

C  26  81 
 

55 
  

 

              

 

 From the data of Table 2.3, it shows that the lower the volume area, the greater the rate 

of heat transfer, and the higher the temperature will be in the end. 
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 Zambri Harun et al. (2019) also investigated how temperatures changed over time. 

The findings pointed to the vicinity of the graphics card as the source of the majority of the 

heat generated by it. Then the convection processes gradually brought the heat up to the top 

of the CPU case. Due to the decreased density of hot air compared to cold air, this 

phenomenon took place. Therefore, as the time interval increases, the hot air will continue 

to concentrate at the top of the CPU case. 

 

Figure 2.9 Temperature distribution in CPU case with time interval t = 100 s, 200 s, 300 s, 

400 s, 500 s. (Zambri Harun et al., 2019) 

 Zambri Harun suggested that an increase in the height and number of heat sink fin to 

allow to enhance the overall surface area can be used to improve the cooling system for the 

CPU. Some fans also need to be moved to the top of the CPU case in order to better dissipate 

the heat that builds up there. The CPU's power supply, which is now placed at the top, should 

be moved down to the case's underside to maximise cooling.
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2.3 GPU Cooling System 

 

GPU heat management and behaviour were determined in the preceding section. It 

was found where most CPU case heat was generated and accumulated. Thus, the GPU's 

cooling system will be extensively explored below. GPU cooling is vital because GPU 

performance and longevity depend on it. C. Nadjahi et al. (2018) stated that the cooling 

system regulates air temperature and relative humidity to keep electronic equipment safe. 

GPU efficiency is temperature-dependent. Thermal throttle lowers GPU speed and compute 

frequency to lower temperatures when they exceed a threshold. An underpowered GPU will 

produce lower-quality graphics, making it less performance-efficient. 

In short, compromising performance and graphics quality to keep the GPU cool is 

not the best option. In addition to the aforementioned methods, air-cooling, water-cooling, 

and a heat sink are all viable options for GPU cooling. Heatsinks are an example of passive 

cooling, as they cool the GPU by natural convection without using any additional energy, in 

contrast to active cooling methods like air-cooling and water-cooling. The material, design, 

and dimensions of these cooling technologies, as they pertain to GPU thermal management, 

will be addressed at length. 

 

2.4 Fan-cooling 

 

 GPUs have gotten more durable and space-intensive as the gaming industry grows in 

computational power and graphics. As GPUs get more powerful, heat sinks fail to remove 

heat. In 1997, a fan-cooling system was created and is now commonly used to cool electronic 

components. Active cooling uses fan cooling with a heat sink to force convection and cool 

the GPU. Kheirabadi and Groulx (2016) found that forced-convection cooling applications, 



18 

 

including server and router cabinets and GPUs, use axial-flow cooling fans. Optimising fan-

cooling systems includes material selection, design optimisation, and dimension parameter 

investigation for axial-flow cooling fans. 

 

Figure 2.10 Axial Flow Fans 

 

2.4.1 Study of Glass Fibre Reinforced Plastic on Fan Blades 

 

  The use of non-biodegradable materials, such as glass fibre reinforced plastics, in 

axial flow fan blades has been proven to have an adverse effect on the environment after the 

blades' lifespans of use have ended. This is supported by research conducted by Venkata 

Sushma Chinta, et al. (2022). The tension-tension fatigue life of three hybrid composites for 

axial fan blades was studied by Venkata Sushma Chinta et al. (2022), who tested the 18-foot 

axial flow fan blade material (GFRP), the 8th layer of GFRP replaced with woven jute (G8J), 

and the 12th layer of GFRP replaced with woven jute (G12J). Refer to the diagram below to 

learn about the layering sequence of GFRP blade material: 
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Figure 2.11 Layer Sequence of GFRP blade material [CSM/(GR/𝑊𝑅)4/𝑈𝐷/(WR/𝐺𝑅)2] 

Table 2.4 Tensile Properties of composites. (Venkata Sushma Chinta et al., 2022) 

 

 They observed that for all three materials, the endurance limit (10^6 cycles) was met 

at a normalised peak stress ratio of 0.4. Thus, at any given normalised peak stress ratio, 

GFRP exhibits the longest fatigue life. Hybrid composites made of G8J and G12J have the 

same fatigue life regardless of the orientation of the woven jute. In addition, this study found 

that the fatigue life of the woven jute reinforced composite was almost 78% that of GFRP. 

In order to ensure biodegradability after service life, they suggested using woven jute for 

partial reinforcement in fan blades at low normalised peak loads. The production of the 

woven jute blade also costs less than the production of a standard blade. 

 To make GFRP composites more biodegradable after their useful lives have ended, 

it is necessary to investigate the extent to which natural fibres can be used as reinforcement 

without significantly degrading the composites' mechanical qualities. Therefore, Venkata 

  

Hybrid 

composite 
  

Ultimate 

Tensile 

strength 

(Mpa) 

  

Axial 

Young's 

Modulus 

(Gpa) 

  

Failure 

strain 

(%) 
  

 GFRP 
 

395±13 
 

22.8±0.60 
 

3.68±0.34  

                

 G8J  391±5.5  22.7±0.35  3.47±0.24             

 G12J  391±6.5  22.4±0.20  3.51±0.10  
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Sushma Chinta et al. (2023) tested material C1 with a GFRP axial fan blade measuring 18 

feet in length to investigate the shear properties of partial woven jute reinforcement. C2–C6 

were produced by replacing one layer of C1 with woven jute and shifting the jute's position 

within C1. Shear strength tests were conducted on all of the materials in accordance with IS 

1998-62. 

 

Figure 2.12 Layout Sequence of blade material with and without woven jute 

reinforcements [CSM/(GR/𝑊𝑅)4/𝑈𝐷/(WR/𝐺𝑅)2] (Sushma Chinta et al., 2023) 

 

Figure 2.13 Shear Strength from experiment (Sushma Chinta et al., 2023) 

 The results showed that when jute was positioned in the second position (C2), the 

woven jute fibre composite exhibited superior shear characteristics. C2 enhances 

biodegradability and maintains the shear strength qualities of the GFRP blade material. 
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Therefore, it was suggested that woven jute be used in place of GFRP in the second layer 

(C2) because its shear properties are comparable to those of the first (C1). 

 The tensile characteristics of GFRP with woven jute were tested in accordance with 

ASTM D-638 by Venkata Sushma Chinta et al. (2022), who replaced GFRP layer blades 

with woven jute at different layers. The tensile behaviour was then evaluated by substituting 

woven jute for GFRP in a number of configurations (2 layers, 3 layers, 4 layers, and 5 layers). 

Below is a table illustrating the sequence of woven jute in GFRP blade material. 

Table 2.5 Laminate designation for various cases (Sushma Chinta et al, 2022) 

 

ANSYS R19.2 will be used to compare the tensile test results obtained from experimental 

results in order to estimate the tensile stress created in each material. The table below 

displays the experimental and ANSYS R19.2 tensile test results: 

Table 2.6 Tensile stress obtained from tension test vs ANSYS R19.2 results (Sushma 

Chinta et al, 2022)  

 

 According to the table above, the conventional fan blade (C1) has the highest axial 

Young's modulus of all examined materials. The C5 specimen has a 22460 MPa axial 

Young's modulus, 98.5% higher than the C1. C2 has the lowest axial Young's modulus, 
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21260 MPa. By moving woven jute, GFRP blade material C5 has 5.3% greater axial Young's 

modulus than C2. C5 and C6 have the highest ultimate tensile strengths at 391 MPa, or 99% 

of C1, while C2 has the lowest at 366 MPa. Adding jute at the eighth and twelfth locations 

improves stress-bearing capacity by 6.4%. Only 1.89% separates experimental and ANSYS 

R19.2 values. The finite element method was useful for calculating hybrid composite 

equivalent stress. 

 By shifting the number of jute layers and the location of jute layers in the GFRP 

material, it is possible to theoretically analyse the axial Young's modulus for 32 different 

cases, as shown in Table 2.5. Figure 2.14 below illustrates the axial Young's modulus 

determined by CLT for all 32 examples: 

 

Figure 2.14 Axial Young's modulus of 32 cases by CLT (Sushma Chinta et al, 2022) 

According to CLT's calculations, increasing GFRP's woven jute layers lowers 

Young's modulus. Shifting woven jute layers changes GFRP's axial Young's modulus. The 

axial Young's modulus of woven jute-reinforced cases showed that C6 (12th position) had 

the highest value. C6, C16, C26, and C31 have a higher axial Young's modulus than one, 

two, three, and four-layer jute-reinforced composites. The lowest axial Young's modulus of 

all 32 CLT instances is C32, which has 5 layers of woven jute. Stresses created in C5, C6, 

and C7 were found to be lower than their ultimate tensile strength in GFRP analysis using 

CLT of laminated woven jute, whereas stresses developed in the remaining materials were 
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found to exceed their ultimate tensile strength. Thus, Sushma Chinta et al. (2022) found that 

woven jute orientation greatly affects its tensile properties. The eighth or twelfth position is 

more important than the second, fourth, or sixth position in reinforcing woven jute for tensile 

properties, according to their research. Based on experimental and ANSYS R19.2 results, 

laminates (with a glass-to-jute ratio of 95:5), C5 (with woven jute in the 8th position of 

GFRP), and C6 (with woven jute in the 12th position) are the first and second recommended 

layup sequences because they improve biodegradability after service life without affecting 

stiffness. 

 

2.4.2 Study of short inlet duct cooling fan design on aerodynamic noise reduction 

 

 As electronic devices have shrunk in size, the need for quiet operation in confined 

locations has risen as a design priority for axial flow fans. This is due to the fact that 

numerous small axial-flow fans are often operated at high speeds in such applications to 

meet heat-dissipation requirements. However, doing so will produce unacceptable levels of 

aerodynamic noise. In order to meet a product's noise requirements, it is sometimes 

necessary to sacrifice equipment performance in order to lower heat generation and hence 

slow down the cooling fans. The performance of electrical devices is hampered by 

aerodynamic noise. 

 Figure 2.15 illustrates the basic components of a cooling fan: rotor blades, stator 

vanes, and an exterior frame with an asymmetrical bellmouth. Azimuthal acoustic modes, 

which make up tonal noise at the blade passing frequency (BPF) and its harmonics, are 

known to be produced by interactions between rotor blades and stator vanes (Tyler and Sofri, 

1962). Pure-tone spectral tones are a defining feature of tonal noise, also known as discrete 

frequency noise.  
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Figure 2.15 Typical cooling fan configuration (Tian et al., 2020) 

 Zhonghan Sun et al. (2023) found that tone noise was the predominant cause of 

aerodynamic noise while testing three different sized cooling fans with tip Mach numbers of 

0.143, 0.156, and 0.174. Shot inlet ducts were tested as a means of reducing noise in axial-

flow cooling fans. Short inlet ducts, like the one depicted in Figure 2.16, can reduce overall 

noise by as much as 3.5, 4.8, and 7.1 decibels (dBA) on average. 

 

Figure 2.16 Picture of installation method for the short inlet duct (Zhonghan Sun et al., 

2023) 

 The parameter L/D is suggested for studying how ducts of different lengths L affect 

fans of different diameters D. L/D ranged from 0.08 to 0.16, 0.32 to 0.48, and 0.64 to 0.8. 

The most noise-efficient duct was L/D = 0.08. According to Zhonghan Sun et al. (2023), L/D 

= 0.08 was the optimal duct length (L) for all fan types to provide the best tonal, broadband, 

and overall SPLs. It suggests that L/D = 0.08 may be the optimal parameter option. 

Computational fluid dynamics (CFD) showed that the duct with L/D = 0.08 did not harm 
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aerodynamic performance and may even improve it. According to Zhonghan Sun et al. 

(2023), a short inlet duct with a length-to-diameter ratio (L/D) of 0.08 is ideal for installation 

on a fan with a blade-tip Mach number of less than 0.2, requiring only minor fan structural 

alterations. 

 

2.4.3 Study of fan blade sweep angle on aerodynamic fan noise production rate. 

 

 However, the implementation of a swept blade design remains a highly effective 

method for acoustically mitigating spinning fan noise. The study conducted by Park et al. 

(2022) aimed to examine the comprehensive impact of an automotive cooling fan on its 

acoustic characteristics through both numerical simulations and empirical measurements. In 

automotive cooling systems, the utilisation of straight, forward, and reverse-swept blades is 

employed for the purpose of assessing both performance and noise levels. The vehicle 

cooling fan under consideration has suitable geometric characteristics, including a hub 

diameter of 154 mm, a configuration consisting of seven rotor blades evenly distributed 

radially, and connecting bands measuring 390 mm in length. A fan blade with both angled 

and perpendicular orientations was fabricated in order to investigate the impact of sweeping 

orientations on fan noise. This paper presents a comparative analysis between straight fan 

geometry and arrangement, and sweep-angle fan geometry and layout. 
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Figure 2.17 Geometries of automotive cooling fan: (a) definition of sweep angle of fan. (b) 

straight fan with no sweep angle, (c) swept fan with 45 degrees forward sweep angle, and 

(d) swept fan with 45 degrees backward sweep angle (Minjun Park et al., 2022) 

 In order to determine the performance and noise level of the fan, it is necessary to 

conduct tests under a variety of system resistance situations. The static pressure, measured 

at the intake and output of the cooling fan, represents the system resistance. The pressure in 

front of the fan is known as the intake pressure, while the pressure measured after the fan is 

known as the outlet pressure. The amount of air that can flow through the fan is limited by 

the system's resistance. Numerical prediction findings were verified using the criteria of fan 

performance and nouse, as reported by Minjun Park et al. (2022). The following table 

displays the outcomes of a comparison between experimental and numerical data for the 

mass flow rate of the straight, forward, and backward-swept fans: 

Table 2.7 Comparison of the experimental and numerical results for the mass flow rate 

(Minjun Park et al., 2022) 

 
  

 It can be seen from the aforementioned data that the mass flow rate calculated using 

CFD simulation is in good agreement with the measurements, both in terms of its magnitude 

and fluctuations depending on the sweep directions. It is demonstrated that forward-swept 

fans generate a smaller mass flow rate. The noise levels of both straight and swept fans were 

measured in a semi-anechoic room under free-field conditions to check the accuracy of the 
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numerical forecasts. The following table summarises the results of studies and numerical 

simulations about the overall sound pressure levels (OASPL) produced by the three distinct 

fan designs. 

 

Table 2.8 Comparison of experimental and numerical results for OASPL (Minjun Park et 

al., 2022) 

 
  

 Then, the fans' sweeping impacts are analysed. The A-weighted sound pressure levels 

were measured for the straight, forward, and backward-swept fans at various rotating speeds 

by Minjun Park et al. (2022). Total A-weighted sound pressure levels for straight, forward, 

and backward-swept fans are indicated in the figure below: 

 
Figure 2.18 Overall A-weighted sound pressure levels of the straight, forward- and 

backward-swept fans depending on rotational speeds (filled symbol: experimental results, 

open symbol: numerical prediction) (Minjun Park et al., 2022) 

The data reveals that the straight fan's OASPL is 5 dBA higher than the forward-swept fan's 

at the same speed. At 1600 rpm, the straight dan's OASPL is comparable to the forward-

swept fan's at 1900 rpm. The forward-swept fan has a 4dBA lower OASPL than the 
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backward-swept fan. Compared to a straight, backward-swept, and forward-swept fan, the 

forward-swept fan makes less noise at the same rotational speed. Minjun Park et al. (2022) 

used velocity, vorticity, the time derivative of pressure contours, and streamlines to identify 

and study backward and forward-swept fan noise sources and reduction methods. Results 

are shown in figure: 

 

Figure 2.19 Velocity vector in the xz plane: (a) backward and (b) forward-swept fans.  

(Minjun Park et al., 2022) 

 

Figure 2.20 Velocity vector in the xy plane: (a) backward and (b) forward-swept fans.  

(Minjun Park et al., 2022) 

 The forward-swept fan flow is travelling towards the centerline and downstream 

from the velocity vector in the picture above. Behind a backward-swept fan's shroud, a large 

recirculation flow stops downstream. Minjun Park et al. (2022) found that the primary noise 
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sources in an automotive cooling fan system are unsteady flow interaction between rotating 

blades and shallow shrouds and strong blade vortex interaction (BVI) around the blade tip 

region. After that, the authors estimated the noise contribution mapping to understand the 

blade's main noise. Mapping results are shown below. 

 

Figure 2.21 Averaged noise contributions at the observer: (a) backward and (b) forward-

swept fans. (Minjun Park et al., 2022) 

 Backward-swept fans have a louder leading edge than forward-swept fans. The 

OASPL of backward-swept fans is around 4 dB higher than that of forward-swept fans. 

According to additional research by Minjun Park et al. (2022), the noise source of backward-

swept fans starts on the leading edge of the mid-span of blades, intensifies at the blade tip, 

and then moves to the trailing edge between the fan band and the tip. A forward-swept fan's 

noise originates near the blade's leading edge, advances slightly towards the hub, and finally 

travels towards the trailing edge between the fan band and the tip. The figure below shows 

that forward and backward-swept fans have different noise source dynamics under identical 

settings. 
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Figure 2.22 Time derivative of the surface pressure on backward-swept fan depending on 

the azimuth angles: (a) 0 degree, (b) 10 degrees, and (c) 20 degrees (Minjun Park et al., 

2022) 

 

Figure 2.23 Time derivative of the surface pressure on forward-swept fan depending on 

the azimuth angles: (a) 0 degree, (b) 10 degrees, and (c) 20 degrees (Minjun Park et al., 

2022) 

 

2.4.4 Aerodynamic and structural multidisciplinary optimization of fan rotors 

towards aerodynamic performance. 

 

 The previous section covers axial-flow fan noise suppression. Noise reduction will 

reduce noise, but it won't improve cooling fan aerodynamics. This section discusses fan rotor 

aerodynamic and strength multidisciplinary optimisation design research to maximise 

aerodynamic performance while meeting structural strength requirements. Standard 

interdisciplinary optimisation approaches can be difficult to implement in engineering 

practice. Thus, Zhaoyun Song et al. (2023) suggested a multidisciplinary rotor optimisation 

design technique that accounts for blade curvature. Using the self-organising map (SOM), 
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the blade curvature constraint value was extracted for optimisation. Replace the time-

consuming high-fidelity FEM with the blade curvature constraint value as a penalty function 

to substantially reduce the computational cost and runtime of the multidisciplinary 

optimisation. The free-form deformation (FFD) approach is used to deform the three-

dimensional blade with the fewest design variables and polynomial chaos. 

The main design parameter of the fan stage is shown in Table 2.9 below: 

Table 2.9 The main design parameter of the fan stage (Zhaoyun Song et al., 2023) 

 

 

 

 

 

  

 During the FEM structural study that was carried out by Zhaoyun Song et al. (2023), 

the centrifugal stress of the blade was taken into consideration during the static strength 

simulation. The FEM structural study makes use of an aluminium alloy, which is shown to 

have the following physical properties in Table 2.10. In the meantime, the grid sensitivity 

study can be seen in Table 2.11. The researchers discovered that the threshold grid number 

is somewhere around 0.16 million elements. 

 

 

 

 

 

Design 

parameters   
Value 

  
      

Hub/tip radius ratio 0.29  
Stage pressure ratio 1.6  
Rotor tip speed  504 (m/s)  
Tip Mach number  1.7  
Aspect ratio  2.1  
Rotor blade count  15  
Mass flow  0.94 (kg/s)        
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Table 2.10 Physical properties of aluminium alloy 

 

 

 

 

 

 

Table 2.11 Grid sensitivity analysis of fan rotor stress (Zhaoyun Song et al., 2023) 

 

 

 

 

 

 

It was discovered through the FEM analysis of the fan rotor that the maximum stress 

of the rotor is 321 MPa. This value is lower than the material's yield limit of 420 MPa, which 

was shown to be the case thanks to the mesh and stress distribution diagram. 

 

 

Figure 2.24 Grid and stress distribution diagram for fan motor FEM analysis (Zhaoyun 

Song et al., 2023) 

  
Property  Value 

  
       

 
Young's modulus  71 (Gpa) 

 

 
Density  2800 (kg/m3) 

 

 
Poisson's ratio  0.33 

 

 Tensile yield 

strength 

 

420 MPa 
 

          
              

 Grid number 

(million) 

 Maximum stress 

(Mpa) 

 

          

 
0.04 

 
318 

 

 
0.1 

 
321 

 

 
0.16 

 
322 

 

 
0.22 

 
322 
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Zhaoyun Song et al. (2023) use two optimisation strategies to validate the curvature-

constrained aero-structural multi-disciplinary optimisation design method. Optimisation A 

is based on the aerodynamic PC-Kriging model and the blade curvature constraint function. 

Alternatively, Optimisation B uses an aerodynamic PC-Kriging model without blade 

curvature constraints. Optimisation A's objective function is maximum efficiency at the 

optimisation point, the aerodynamic constraint is the blade's maximum spanwise curvature, 

and the mass flow and pressure ratio fluctuation is less than 5%. Table 2.12 compares the 

design point performance of baseline, optimisation A, and B. 

Table 2.12 Comparison of design point performance of Baseline, Optimization A, and 

Optimization B (Zhaoyun Song et al., 2023) 

  

Performance  

  

Baseline 

  

Optimization 

A   

Optimization 

B   
            

 Mass flow  0.937  0.937  0.939  

 Pressure ratio  1.591  1.599  1.591  

 Efficiency  85.6%  87.4%  87.7%  
 

 
         

  
 

                 

 Figure 2.25 compared the stress levels of the control group with those of the A and B 

optimisations. Clearly, the maximum stress for Optimisation A is lower than the yield limit 

of the material (344 MPa), while the maximum stress for Optimisation B is higher than the 

yield limit of the material (420 MPa). As a result, Optimisation B is inadequate for the 

materials in question. Results like this prove that the curvature constraint-based 

interdisciplinary optimisation design method is the way to go. 
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Figure 2.25 Comparison of the static stress of Baseline, Optimization A, and Optimization 

B (Zhaoyun Song et al., 2023) 

 According to the research conducted by Zhaoyun Song et al. (2023), the structural 

performance will go over the yield limit of aluminium alloy material if aerodynamic 

optimisation is performed without considering the blade curvature limits. Aerodynamic 

optimisation without blade curvature limitations and the approach suggested in the research 

both boost isentropic efficiency by 1.8% and 2.1%, respectively. Therefore, the maximum 

stress on the blade could be reduced by 19.5% using the proposed method with minimal 

impact on aerodynamic performance. 

 

2.4.5 Experimental study on blade thickness on the overall and local performance of 

axial-flow fan 

 

After considering blade curvature constraints, axial-flow fan blade thickness affects 

performance. J. Hurault et al. (2010) stated that blade shape modification may reduce noise 

or increase operating range and actuator need. For years, aeronautics and automotive 

engineers have exploited blade thickness to change lift, drag, and boundary layer separation. 

C. Sarraf et al. (2011) examined how blade thickness affects axial-flow fan performance. 

Two ISO-5801-compliant axial-flow fans with different blade thicknesses were compared 
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for aerodynamic performance. Both aluminium fans have the same geometry except for 

blade thickness. Figure 2.26 shows a thick-bladed fan with hub, mid-span, and tip drawings. 

 

Figure 2.26 Views of the two fans, Front view, sections of thick and thin profiles at various 

span locations and thickness distribution law along the meridional coordinate (C. Sarraf et 

al., 2011) 

 

Table 2.13 Blade cascade parameters for the reference 𝐹𝐴 (C. Sarraf et al., 2011) 

  

  

  

R 

(mm) 

  

c 

(mm

)   

σ γ (°) Profile 

  

D 

  
                

 
Hub 

 
65.4 

 
66.6 

 
0.97 

 
53 

 

NACA 

65(07)06  

0.37

2  

 
Mid-span 

 

122.

2  74.0  0.58  
66 

 

NACA 

65(10)05    

 
Tip 

 
179 

 81.3  0.43  
70 

 

NACA 

65(11)05  

0.65

0  
                                  

 

 Table 2.13 summarises cascade blade properties. The thin blade axial-flow fan 𝐹𝐴has 

a maximum blade thickness of 4 mm, or 5.6% of the chord length at mid-span, while 𝐹𝐵has 

a maximum of 10 mm, or 13.5%. C. Sarraf et al. (2011) found that thickness affects 

performance, fan blade pressure, and velocity fluctuations. Performance was comparable, 

with the thick blades fan dropping 8% of pressure rise at conception flow rate, having a 
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maximum efficiency 3% lower than the thin blades fan, and shifting towards lower flow 

rates. 

 Summary of prior thesis heat management studies: Studies have examined replacing 

fan blades made of glass fibre-reinforced plastic (GFRP) with jute fibre to improve 

biodegradability and service life. Researchers examined the mechanical and tensile 

properties of jute fibre composites with glass fibre-reinforced plastic to determine if they 

might be improved. Meanwhile, fan-cooling system design has been studied to reduce noise. 

The research sought to improve the design and quiet the fan at high speeds. This article 

examines how a small inlet duct on an axial fan's inlet shroud reduces noise. Researchers 

analysed axial and sweeping blade fans' acoustics to determine which makes more noise. 

Then, blade curvature and thickness effects on axial fan performance were examined. Instead, 

these studies are used to cool electrical components and GPUs to improve thermal 

management. 

 

2.5 Liquid Cooling 

 

 The growth of high-powered electronic devices and electronic technology is 

exponentially raising the system's temperature. There are superior cooling strategies that 

have been investigated. Fan-cooling and liquid cooling are popular for CPU and GPU 

cooling. According to J. Seymour et al. (1986) and F.Meng et al. (2017), since the 1980s 

(Cray-2), liquid systems have been employed in large-scale electronics due to their larger 

heat capacities and thermal conductivities than air. Since commercial liquid cooling systems 

are more efficient than air cooling for a given size, they are increasingly used in electronic 

equipment. A conventional liquid cooling system has a heat removal block, pump, radiator, 

and fan. Often prefilled with liquid and connected by pipes. 
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 Technically, liquid cooling technology pumps water from the reservoir into the water 

tank through the water pipe, out through another port, and back into the reservoir. Heat from 

GPUs, CPUs, and motherboards can be removed by the reciprocating cycle. A copper or 

aluminium water-cooling block can dissipate CPU heat. Thus, water-cooling blocks serve 

the same purpose as air-cooling blocks. See Figure 2.27 for the only difference: the water 

cooling block must have a passage for circulating liquid to go through before sealing. 

 

Figure 2.27 Schematic diagram of water cooling block channel 

To avoid electrical short circuits from liquid leaks, this is done. Although liquid 

cooling uses a different medium than air cooling, its large heat capacity allows it to absorb 

a lot of heat while raising temperatures somewhat. Water pumps improve system fluid flow. 

The CPU heat-absorbing liquid flows away from the CPU while the lower-temperature liquid 

continues to flow. A liquid cooling system uses a pipe to transport water between a pump, a 

water-cooling block, and a storage tank via a closed channel. This section describes liquid-

cooling system optimisation, including choosing working fluids, designing water-cooling 

blocks, and researching dimension parameters. 

 Liquid cooling fluid development is being studied to increase electronic device 

cooling system thermal performance. Water is de-ionised in most liquid cooling systems. 

Lower cost and higher heat capacity than air cooling. A fluid may be ethylene glycol. Equal 

ethylene glycol boils higher and freezes lower than water. Nanoparticle-based fluids conduct 

heat better. The replacement of working fluids by nanofluid is significant. Heat-transferring 
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nanofluids cool faster. Nanoparticles improve heat transmission by reducing fluid resistance. 

Tables by Harun and Cik Sidik (2021) examined hybrid and nanofluid research. The 

summary table follows. 

Table 2.14 Summary of the application of nanofluid or hybrid nanofluid in the liquid 

cooling system for CPU (Harun & Cik Sidik, 2021) 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 Harun and Cik Sidik (2021) conducted a literature review in which the thermal 

performance of nanofluid was compared to that of base fluid. According to the research 

conducted, the type of nanofluid, volume concentration, flow rate, and temperature all play 

a role in the thermal performance of the cooling device. Table 2.14 provides a summary of 

the nanofluids utilised in liquid CPU cooling systems, along with an examination of their 

heat transfer coefficients, as presented by Harun & Cik Sidik (2021). 
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Table 2.15 Applications of nanofluid or hybrid nanofluid with heat transfer coefficient 

(Harun & Cik Sidik, 2021)   

 

It is challenging to compare the best nanofluids using the heat transfer coefficient analysis 

because of the wide range of concentrations and heat producing methods. The uneven 

distribution of nanofluid at heat sinks is the subject of additional research. The rate at which 

various nanofluids improve heat transmission varies. Nanofluids' enhanced heat 

transmission can be attributed to their high thermal conductivity. The thermal conductivities 

of several nanoparticles are listed in Table 2.16 below. 

 

 

Cooling 

device 
  Nanofluids   

Vol. 

concentration 

(%) 

  

Heat transfer 

coefficient 

(Maximum 

Enhancement) 

  Authors 

Microchannel  Carboxymethy  0 - 3  386.01 W/m2K  (Al-Rashed et 

al., 2019) 

Heat sink  Cellulose/CuO-

water 
       

Heat sink  Gallium  0.1 - 0.3  Gallium = 600 

W/m2K 
 (Gunnasegaran 

et al., 2017) 

  CuO-water    CuO = 400 

W/m2K 
   

Heat sink  Cu-water  0.1 - 0.4  Cu-water = 

11100 W/m2K 

(Sun & Liu, 

2017) 

   A𝑙2O3water      A𝑙2O3-water = 

8400 W/m2K 
   

Heat sink  A𝑙2O3-water  0.1 - 0.25  A𝑙2O3-water = 

340 W/ m2K 

(Nazari et al., 

2014) 

   CNT-water      CNT-water = 

365 W/m2K 
   

Heat sink  SiO2-water  SiO2: 0.5, 1.0, 

1.5 
 SiO2-water = 

1000 W/m2K 

(Hasan et al., 

2018) 

   TiO2-water  TiO2: 0.1, 0.25, 

0.5 
 TiO2-water = 

920 W/m2K 
   

   A𝑙2O3-water  Al2O3: 0.5, 

0.75, 1.0 
 A𝑙2O3-water = 

1250 W/m2K 
   

Heat Sink  CuO-water  0.1 and 0.2  1900 W/m2K  (Bahiraei et 

al., 2018) 
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Table 2.16 Thermal conductivity of nanoparticles (Harun & Cik Sidik, 2021) 

  

Nanoparticles  

  

Thermal 

Conductivity 

(W/mK)   

Authors 

  

 Water  0.6  

(Rafati et al., 2012) 

 

 A𝑙2O3  36   

 SiO2  1.2   

 ZnO  13   

 CuO  440  (Sarafraz et al., 

2017) 
 

 Gallium  29.4   

 Cu  401  (Sun & Liu, 2017)  
                     

 

A study on nanofluid thermal conductivity discovered that the concentration and 

temperature of base fluid nanoparticles have a big effect on their thermophysical properties. 

Liquid cooling heat transfer is hard to examine with thermal conductivity alone. Enhancing 

thermal performance requires nanofluid concentration. Harun & Cik Sidik (2021) found 

nanofluid concentration improves heat transfer. Most studies use 5% nanofluid in liquids, 

limiting results. Mehrali et al. (2014) say concentration destabilises graphene nanoplatelets. 

Thus, nanofluid concentration enhances heat transmission but decreases stability. Consider 

the heat sink's micron- or millimetre-wide channel when calculating nanofluid concentration. 

Clogged nanofluid channels might lower pressure or damage the cooling system if the 

nanoparticles are numerous. Nanofluid concentration depends on the size of the heat sink. 

 

2.5.1 Performance analysis and structural optimization of a finned liquid-cooling 

radiator for chip heat dissipation 

 

Meanwhile, He et al. (2022) constructed a finned water-cooled radiator and examined 

its operational performance. This was done as part of an effort to analyse and optimise the 

radiator's performance for chip heat dissipation. Their research examines how varying the 

radiator's inlet and outlet locations, fin height, thickness, and spacing affect the radiator's 
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thermal resistance and flow resistance performance. Liquid cooling system optimisation was 

the basis for the research done by He et al. (2022). In addition, He et al. (2022) used 

COMSOL simulation software to test and verify the results by experimental findings, 

providing a more credible assessment of the finned water-cooled radiator's thermal resistance 

performance. Water input and exit locations, fin-covered area, and fin sizes were used to 

optimise the radiator's structure. The optimisation structure's flowchart is depicted in the 

following figure: 

 

Figure 2.28 Flow chart of the optimization procedure (He et al, 2022) 

He et al. (2022) examined the performance of a diagonal and a central layout for the 

input and output of cooling water in terms of optimisation. The equipment parameters used 

in the experimental water cooling system by He et al were shown in table below: 
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Table 2.17 Equipment parameters used in the experimental water-cooling system (He et al, 

2022) 

 

The results showed that the thermal resistances and costs of radiators in a central 

layout were very similar to those in a diagonal arrangement. However, when the water flow 

rate was greater than 0.4 L 𝑚𝑖𝑛−1 , the pressure loss was smaller under the central 

configuration. The central layout type was advocated by He et al. in 2022. 

 

Figure 2.29 Thermal resistance and pressure drop of the radiator under different inlet and 

outlet modes (He et al, 2022) 

In addition, He et al., who optimised the fin-covered area for water cooling, 

discovered that the radiator thermal resistance is minimised when the area of the fin-covered 

plate is in close proximity to the chip region. In addition, the material and running costs of 

Equipment Name Specific Parameter Value 
         
Air cooled chiller Rated refrigerating capacity: 5.3 kw           
Water Pump Rated flow: 2 𝑚3/ℎ ; rated power: 750 W          

Plate heat exchanger 
Heat transfer coefficient: 2025 W𝐾−1; heat 

exchange area: 0.81 𝑚3. 
         

Finned water-cooled radiator 
Lf = 72.6 mm, Wf = 0.8mm, Hf = 3.5 mm, Sf = 

0.45 mm, the number of fins is 38.  
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the radiator can be reduced by adopting a smaller fin area radiator. However, the radiator 

pressure drop was reduced noticeably when the fin area was progressively increased. 

Therefore, the fin-covered plate with a 25mm x 25mm area was recommended after taking 

into account the operational costs, the impacts of heat dissipation, and the pressure drop. He 

et al. optimised not only the fin-covered area but also other critical parameters, including the 

fin height (Hf), spacing (Sf), and thickness (Wf) inside a radiator. He and his colleagues 

discovered that reducing the fin spacing had a dramatic effect on chip temperature. In order 

to effectively dissipate heat from a chip, its fins should be tall, thin, and closely spaced. 

 

Figure 2.30 Thermal resistance and pressure drop for different areas of the fin-covered 

plate for the radiator. (He et al, 2022) 

Heat dissipation and pressure drop evaluations demonstrate that bigger fin height and 

thinner fin thickness are better for both aims. He et al. (2022) recommended a radiator with 

0.5 mm fin thickness and 5 mm fin height. This is because high fin height increases radiator 

area and running costs. He et al. (2022) optimised a liquid-cooled system's structure design 

using data, including a central arrangement type for water inlet and outflow locations and a 

fin-covered plate size equal to the chip area. By increasing fin height, decreasing thickness, 

and increasing distance, a radiator's pressure drop can be reduced, while heat can be better 

dissipated. Fins with a 5mm height, 0.5mm thickness, and 1mm spacing are best for thermal 

resistance and pressure drop
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2.5.2 Evaluation of Water-Cooling Heat Sink Performance and Dynamic Flow Effect  

 

 Wang et al. (2019) conducted extensive testing on three water-cooled heat sinks with 

different pin fins to identify which one had higher heat transfer and flow performance after 

He et al. (2018) covered the ideal structure of a heat sink. As can be seen in the figure below, 

the pin fins came in three distinct shapes: square, circular, and drop-shaped. 

 

 

Figure 2.31 Structure of heat sink (1) Drop-shaped pin fin, (2) Circle pin fin, (3) Square 

pin fin (Wang et al, 2019) 

 

The main parameter of the heat sinks are shown in table below: 

Table 2.18 Main parameters of heat sink (Wang et al, 2019) 

Radiator size 

(LxWxH) 

mm 

  
Pin height 

mm 

  Pin 

diameter 

mm 

  
Column 

spacing mm    
      

          
40*40*40   3.72   0.74   0.8 

 

1. 2. 

3. 
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To find out if the flow inside the radiator is laminar or turbulent, the Reynolds number must 

be calculated. The formula for calculating the Reynolds number (Re) is provided in the 

following equation: 

𝑅𝑒 =  
𝜌𝑈𝑚𝑎𝑥𝐷

𝜇
 

Where µ is the dynamic viscosity of the air, 𝑈𝑚𝑎𝑥 is the velocity at the minimal section area. 

𝑁𝑢 =  
ℎ𝑎𝑣𝐷

𝜆𝑓
 

According to Wang et al. (2019) findings, the Nu number is highest for a heat sink with a 

square pin fin and lowest for one with a circular pin fin. When compared to other pin fins, 

the drop-shaped fin had superior flow performance and was closer to the streamlined 

structure, resulting in lower flow resistance. Heat sinks with square pin fins provide the best 

all-around results in terms of energy savings during careful control of coolant flow, and they 

use the least energy in terms of pump power. Based on their findings, Wang et al. conclude 

that a heat sink's overall performance is a more significant factor in determining cooling 

energy use. 

 

2.5.3 Study of an adjustable closed-loop liquid-based thermoelectric electronic 

cooling system (LTEEC) for variable load thermal management. 

 

Internal heat from tiny electronic components has increased rapidly due to higher 

power densities. To remove excess heat and extend the lives of these electrical components, 

a high-performance, cost-effective cooling system is needed. Siddique et al. (2019) used a 

closed-loop liquid-based thermoelectric electronic cooling (LTEEC) system with variable 

thermal load in order to devise an energy-efficient and environmentally friendly closed-loop 

liquid-based thermoelectric cooling (LTEEC) system that can be adjusted to meet thermal 

loads. Siddique et al. (2019) evaluated LTEEC and commercial system coefficients of 

(2.2) 

(2.1) 
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performance (COP). The suggested LTEEC system was tested in two scenarios. The system 

received 8.8 W to 16.7 W in the first scenario. Next, the system was heated to 70–80 degrees 

Celsius. An air conditioner was activated at 70 degrees Celsius. In comparison, the second 

scenario required the same operational power input and cooling system activation. 

 Siddique et al. (2019) found that the radiator in the commercial system led to a 

heating plateau. Both cooling systems were set to kick on between 70 and 80 degrees Celsius. 

The LTEEC system required 5.4 W of cooling power to get to about 32°C, while the 

commercial system only got to around 30°C. The LTEEC system has been shown to be more 

effective at reducing temperatures than the commercial system when subjected to the same 

cooling load. The figure below shows a comparison between the LTEEC system and a 

commercial system in terms of temperature trends over time. 

 

Figure 2.32 Comparison between the commercial and the proposed LTEEC system for 

heater input power of 16.7W and the cooling system power of 5.4W (Siddique et al., 2019) 
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Figure 2.33 Comparison between different power inputs to proposed LTEEC system 

(Siddique et al., 2019) 

Comparing the proposed LTEEC system's performance for power inputs from 5.4W to 54W 

shows that the temperature rises progressively in all experimental tests except Test 1. This 

likely happened because the mechanism removed more heat quickly than the heater could. 

Other systems must reach equilibrium before dispersing heat. The mass flow rate (m), cold 

water (TCW) entering the heat exchanger, and hot water (THW) exiting the heat exchanger 

are needed to calculate the coefficients of performance (COPs) of LTEEC and commercial 

cooling systems. COP analysis showed that the proposed LTEEC system has a COP of 3.21, 

whereas the commercial system had a COP of 2.81. Siddique et al. (2019) proposed adding 

a TE module to the liquid cooling system to improve it, and the LTEEC system had a higher 

COP than commercial systems. To improve the LTEEC system, the author suggested 

changing the radiator, cooling fan, fins, insulation, etc.
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2.6 Heat Sink 

 

Active and passive heat are both produced by many electronic devices. In order to 

maintain a comfortable body temperature, a lot of individuals rely on high-powered thermal 

cooling systems. Many studies have looked into different approaches to cooling components. 

Heat sinks are commonly used to passively cool electronics. The effect of heat sink design, 

fin width, fin height, and heat sink variety on thermal dissipation resistance has been studied 

by scientists. Then, Naphon et al. (n.d.) commonly used mini-channel and micro-channel 

heat sinks to examine the efficacy of nanofluid jet impingement on heat transfer and flow. 

Heat pipes, because of their capacity for heat transmission, are the most dependable and 

structurally simple means of heat dissipation among heat sink components. A heat pipe is 

referred to as a "thermal super conductor" due to its extremely high thermal conductivity 

compared to other materials. In a closed system, heat is transferred through the evaporation 

and condensation of the working fluid. The working fluid's frequent evaporation and 

condensation cycles allow the heat pipe to transfer more heat than regular conductors. 

 Significant advancements have been made over the past decade in the areas of 

material utilisation, design, optimisation, miniaturisation, and weight reduction while 

attaining increased heat flux capacity. The heat sinks are employed to allow the heat pipe to 

go through forced convection cycles of evaporation and condensation. It will discuss the 

materials that have been used in previous heat sink literature reviews. This is mostly 

attributable to the improvement of materials and working fluids that can dissipate heat more 

effectively. Electrical, electronic, aircraft, spacecraft, and other uses have found heat pipes 

indispensable. Due to this, flexibility in terms of operating temperature and geometrical form 

has resulted. Heat pipes have been the subject of extensive research, with factors like thermal 

conductivity and fluid compatibility taken into account. 
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2.6.1 Studies of material used in Heat Pipe 

 

Identifying a container, wick, and welding materials that are compatible with one 

another and with the working fluid of interest determines the material of the heat pipe used 

to improve quality of life. If one of the heat pipe's components doesn't work well with the 

others, the whole thing can lose efficiency. Within the heat pipe, the components may 

undergo chemical reactions or set up a galvanic cell. To that purpose, Narendra Babu and 

Kamath (2015) have developed a table showing the most recent data on the compatibility of 

metals with working fluids for heat pipes. 
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Table 2.19 Compatible and Incompatible materials suitable for different working fluids (Narendra Babu & Kamath, 2015) 
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The working fluids of a heat pipe can be split into four groups based on their boiling points, 

such as cryogenic, low, medium, and high. The table below provides examples of operating 

temperatures and fluids: 

Table 2.20 Heat Pipe Temperature Range (Narendra Babu & Kamath, 2015) 

Heat pipe 

categories   

Operating 

Temperature (K)   
Working fluids 

Cryogenic 
 

4 ~ 200 
 

Helium, argon, 

oxygen and krypton 
      

Low temperature  

 

200 ~ 550 

 

Ammonia, acetone, 

Freon compounds 

and water 
      

Medium 

temperature  
450 ~ 750 

 

Mercury, sulphur and 

Thermax 
      

High temperature 

 

750 and above 

 

Sodium, lithium, 

cesium, silver and a 

sodium-potassium 

compound (NaK) 

            

 

Every heat pipe possesses specific temperature requirements. The effective pressure 

range spans from 0.1 to 20 atm, including a wide range of pressures. The upper limit of the 

heat pipe's temperature can only be elevated until the thermal resistance of the container 

reaches its maximum thickness at pressures exceeding 20 atm, whereas the vapour pressure 

limit must be approached below 0.1 atm. Therefore, it is imperative that the working fluids 

exhibit thermal stability within the designated range of operating temperatures. The design 

of heat pipes necessitates consideration of the working fluid in order to achieve the desired 

temperature range. The following table presents a compilation of prevalent working fluids, 

including their respective atmospheric melting and boiling temperatures, as well as their 

applicable temperature ranges, as reported by Narendra Babu and Kamath (2015).
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Table 2.21 Working fluids used in heat pipe (Narendra Babu & Kamath, 2015)  

 

  

 

 

 

 

 

 

 

 

 

The following table summarises some of the research conducted by various researchers to enhance the thermal performance of heat pipes 

by employing various materials for container, wick structure, and working fluid combinations. 

2-4 
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Table 2.22 Summarization of research done on material for container, wick structure and 

working fluid combinations (Narendra Babu & Kamath, 2015) 
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2.6.2 Study on the thermal dissipation performance of GPU cooling system with 

nanofluid as coolant 

 

Research on the base fluid utilised within the heat pipe is being done in conjunction 

with the use of heat sinks. Researchers observed that the thermal properties of the base fluid 

used in heat pipes may be further strengthened by employing nanofluid; hence, this has led 

to a steady improvement in thermal flow qualities. Many studies have shown that including 

nanoparticles in the base fluid improves heat transfer in mini- and micro-channels of varying 

designs. The thermal dissipation performance of a cooling system with nanofluid applied 

was measured in an experiment by Siricharoenpanich et al. (2021), who employed a 0.015% 

by volume concentration of Ag nanofluid and de-ionised water as coolants running in the 

cooling system. 

Nanoparticles suspended in the base fluid increased heat removal and decreased 

thermal resistance. Thus, this study compares GPU cooling thermal efficiency utilising de-

ionised and Ag nanofluid. Siricharoenpanich et al. (2021) studied three heat sink designs. 

Before running the research, they considered how coolant types and flow rates might affect 

GPU cooling module thermal dissipation resistance. GPUs of different widths had lower 

temperatures as the coolant flow rate rose. Cooling capacity increases with coolant flow. 

However, cooling capacity expands slower than flow. Thus, increasing coolant flow speed 

significantly lowers GPU temperature. Experimental results are shown in Figures 2.34 and 

2.35. 
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Figure 2.34 Variation of GPU temperature for de-ionized water as coolant. 

(Siricharoenpanich et al. ,2021) 

 

Figure 2.35 Variation of GPU temperature for Ag nanofluid as coolant. (Siricharoenpanich 

et al. ,2021) 

Narrower channels would increase heat transfer surface area and turbulent flow 

across the fin array. The heat sink with a 0.5-mm channel width keeps GPU temperatures 

lower than higher ones across all coolant flow rates. Nanoparticles suspended in a base fluid 
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result in Figure 2.36. The graph illustrates that cooling capacity increases slower than flow, 

resulting in GPU coolant temperature trends similar to those of de-ionised water. As fluid 

flows through the fin array, nanoparticles suspended in the base fluid cause Brownian motion 

and increased turbulent flow. Nanoparticles also change nanofluids' thermophysical 

properties. GPUs cooled by Ag nanofluid are cooler than those cooled by de-ionised water. 

For both de-ionised water and Ag nanofluid, data for thermal resistance variations 

with coolant flow rate show that greater cooling capacity is achieved at higher coolant flow 

rates. This results in a reduction in heat resistance. The following figure illustrates the 

outcomes of the variations in thermal resistance with coolant flow rate for de-ionised water 

and Ag nanofluid as coolants. 

 

Figure 2.36 Variation of thermal resistance for de-ionized water as coolant. 

(Siricharoenpanich et al. ,2021) 
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Figure 2.37 Variation of thermal resistance for Ag nanofluid as coolant. (Siricharoenpanich 

et al. ,2021) 

Both figure of 2.36 and 2.37 shown that coolant flow dramatically reduces thermal 

resistance. Flow rates exceeding 2.0 LPM steadily lower thermal resistance. A flow rate 

below 2.0 LPM may provide the optimum thermal resistance. Channel width greatly reduces 

thermal resistance in the low coolant flow rate zone. Siricharoenpanich et al. (2021) found 

that thermal resistance decreases with a channel width of 0.5mm. Ag nanofluid has higher 

heat resistance than de-ionised water as a coolant. Due to its high cooling capacity, Ag 

nanofluid has low thermal resistance. 

 

2.6.3 Study of heat transport behaviour of micro channel heat sink with graphene 

based nanofluids 

 

 Nanofluid research has previously looked into the convective heat transfer properties 

of f-GnP (functionalized graphene nanoplatelets) suspended in distilled water. Balaji et al. 

(2020) conducted a study in which they measured the convective heat transfer coefficient, 
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temperature drop, Nusselt number, and pressure drop as a function of the mass flow rate 

(from 5 g/s to 30 g/s) and the concentrations of GnP (from 0% to 2.0%). Experimental 

measurements of the various thermophysical parameters and zeta potential analysis have 

been used to find out about the stability features of GnP nanofluids. Thermophysical 

properties were investigated to see how temperature and GnP addition affected them. The 

effects of changing heat loads and GnP inclusion on heat transfer performance were 

investigated experimentally, along with the effects of changing flow rates. Balaji et al. 

(2020) characterised the stability of treated GnP using a zeta potential measurement 

technique based on their research on the stability of nanofluids. Balaji et al.'s (2020) analysis 

of the literature suggests that an indicator of higher stability is a potential value that is either 

greater than +30 mV or less than -30 mV on average. For 0.2% vol% concentrations of GnP, 

the average potential values obtained following immediate preparation were -44.40 mV. 

Similarly, after ten and twenty days of nanofluid synthesis, the zeta potential values were -

38.2 mV and -36.8 mV, respectively. According to the data, a GnP concentration of 0.2% vol. 

was reasonably steady. For GnP, the greatest improvement in thermal conductivity was 

determined to be 11% greater for 0.2% vol percentage as compared with the water at 50 °C, 

respectively. Figure 2.38 below shows the outcomes of thermal conductivity variations for 

different GnP concentrations: 
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Figure 2.38 Thermal conductivity variation for GnP (Balaji et al. ,2020) 

With increased mass flow rates, the temperature difference between the nanofluid 

entrance and heat sink base was reduced. The heat sink's basal temperature lowers as the 

flow rate increases because the fluid absorbs more heat. Due to its increased thermal 

conductivity, GnP concentration lowers heat sink basal temperature. Balaji et al. (2020) 

observed that graphene-based nanofluids cooled the heat sink base to 3.12 °C better than 

water at 50 W. At a 200 W heat load, the highest temperature differential was 10.2 degrees 

Celsius lower than that of pure water. It was also shown that GnP concentration had no effect 

on heat sink base temperature at a lower mass flow rate. At a steady flow rate, adding 0.2 

vol% GnP to a heat sink drops its base temperature by over 3°C. 

The Nusselt number increases with both the mass flow rate and the GnP loading, 

according to a study that analysed the correlation between the two. With the addition of GnP, 

thermal conductivity and HTC both increase, leading to a significant increase in the Nusselt 

number. It was found that a difference of 7.7 percentage points existed between the 

experimentally obtained Nusselt number and the predicted value. When the flow rate is high, 

the Nusselt number rises more quickly than when the flow rate is low. This is because the 
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Nusselt number for convective heat transfer rises with the increasing velocity of the 

nanofluids because the thermal boundary layer thins. When comparing water under a heat 

load of 50 W and GnP loading, the latter can boost the former by as much as 20%. The 

progress is more obvious as the flow rates rise. The figure below shows the variation of the 

Nusselt number with respect to the volume fraction. 

 

Figure 2.39 Variation of Nusselt number at different vol% (Balaji et al. ,2020) 

 The nanofluids based on graphene and nanoparticles (GNP) exhibit a minimal 

increase in pressure drop across the microchannel heat sink, despite their exceptional heat 

transfer capabilities. The graph presented in Figure 2.3.3.7 illustrates the relationship 

between pressure decreases and both GnP concentration and mass flow rate. 
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Figure 2.40 Variation of pressure drop at different vol % (Balaji et al. ,2020) 

As the mass flow rate increased, it was found that the pressure drops also increased. The 

addition of GnP to water raises the pressure drop. The increased pressure drop of nanofluids 

is mostly due to the rise in density of the nanofluids with the introduction of GnP. The highest 

increase in pressure drop over the base fluid with a heat load of 50 W is determined to be 

12% when using a fluid with 0.2 vol% of volatile organic compounds as opposed to 0 vol%. 

Figure 2.41 shows how pressure drop varies as a function of mass flow rate and heat loads. 

 

Figure 2.41 Variations of pressure drop at different vol% (Balaji et al. ,2020) 



62 

 

 A decrease in thermal entropy generation for GnP incorporation into pure water has 

been observed. Additionally, thermal entropy generation decreases as the nanofluid flow rate 

increases. Because nanofluids conduct heat better than water, Thus, adding GnP improves 

heat transfer by reducing thermal entropy formation. Balaji et al. (2020) found that thermal 

entropy formation decreased by 41.49% at higher volume fractions than in pure water. The 

diagram below shows that thermal entropy formation varies with mass flow rate for different 

heat loads, pure water concentrations, and 0.2 vol%. 

 

Figure 2.42 Variation of thermal entropy generation rate. (left) Varying heat load at 0 

vol%, (Right) Varying heat load at 0.2 vol% (Balaji et al. ,2020) 

 

 The zeta potential results show that GnP-based nanofluids have better convective 

heat transmission than water and survive longer without settling. It has 11% higher maximal 

heat conductivity than water. GnP's CHTC and Nusselt numbers improved 71% and 60% at 

50 degrees Celsius, respectively. The functionalized GnP-based nanofluid's pressure drop 

increment was slightly limited by the dispersion of highly thermally conductive GnP. This 

can be rectified by increasing pumping capacity. Thus, functionalized GnP can replace liquid 

coolants in electronic systems due to its stability and heat transfer capability. 
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 A flat heat-pipe-thermal module application in a high-end VGA card cooling system 

was compared to a copper-based plate embedded with three 6mm-diameter modules at 0 

degrees, 90 degrees, and 180 degrees of inclination to determine its optimal thermal 

performance. Wang (2012) tested fin material, thickness, and spacing by optimising thermal 

modules. Wang (2012)'s flat heat pipe-thermal module was simulated with 165 W of input 

power and found that the optimal total thermal resistance is 0.273 °C/W at a 1.7 mm gap and 

42 counts, with the heat source's lowest temperature being 88.4°C. Wang (2012) 

recommended 0.3 mm Al fins, 37 pieces of fin counts, and 1.9 mm fin spacing for a flat heat 

pipe-thermal module for cost and performance. When inclined horizontally, a copper-based 

plate with an incorporated three-heat pipe-thermal module has the best overall thermal 

resistance of 0.277 °C/W at a 1.7 mm gap and 42 count. 

 

2.6.4 Numerical and experimental models study on flat and embedded heat pipes 

applied in high-end VGA card cooling system 

 

In accordance with Wang (2012), the large heat flow from the GPU is quickly and 

uniformly dissipated by the flat heat pipe, which then conducts to the Al fins, where the heat 

capacity is dissipated to the ambient atmosphere, leading to a temperature difference of 2.4 

degrees Celsius. It was also deduced by Wang (2012) that a flat heat pipe-thermal module 

with a fin gap of 1.7mm would have a total thermal resistance of no more than 0.263°C/W 

at low heat source temperatures. The reason for this is that with 42 fins, the fan can reach its 

maximum fin/cooling efficiency and quickly dissipate heat capacity, while with less than 

1.5mm between them, flow resistance is excessively high, weakening fin efficiency to the 

point where it can't dissipate heat capacity from 46 or 52 fins and causing total thermal 

resistance to rise slightly. Wang (2012) conducted a thorough analysis of the results and 

concluded that for a high power of 180W and an inclination angle of 180°, the optimal design 
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for flat heat pipe and embedded heat-pipe thermal modules is 0.3 mm thickness, 1.7 mm gap, 

and 42 counts of aluminium fins, with a total thermal resistance of 0.232°C/W and 

0.259°C/W, respectively. 

 Wang (2012) found that the overall thermal resistance of a flat heat pipe-thermal 

module is 0.232°C/W when the Al fins are 29 mm in height, 0.3 mm in thickness, 37 in 

number, and spaced 1.9 mm apart. Wang (2012) presented his experimental findings in the 

Table 2.23 below. 

Table 2.23 Experimental results for the embedded heat pipe thermal module (Wang, 2012) 

 

 

2.7 Mode of Heat Transfer 

 

Energy can be transferred in two distinct ways: through work and through heat. Heat 

is the movement of thermal energy from a hotter to a colder area. A large pan of lukewarm 

water, on the other hand, will receive heat from a lighted match, which is a higher-

temperature object. Heat transfer requires a temperature difference between the objects 

involved. Heat transfer cannot occur in the absence of a temperature gradient. Understanding 

heat transport at its most fundamental level is the primary goal of this research. Heat transfer 

involves both a change in temperature and the transmission of thermal energy; the latter can 

be calculated using the specific heat formula, which is: 

 

 

Inclination angles

0° 90° 180°

0.277 (°C/W) 0.273 (°C/W) 0.259 (°C/W)

0.279 (°C/W) 0.276 (°C/W) 0.262 (°C/W)

0.281 (°C/W) 0.277 (°C/W) 0.263 (°C/W)

Power (W)

180

165

150
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Q = m𝐶𝑝∆𝑇 

Where:  

Q = heat capacity (Joules, J) 

m = mass of substance (kg) 

𝐶𝑃 = specific heat (J/Kg.K) 

∆𝑇 = temperature difference (°C) 

 There are three modes in which heat can be transferred: conduction, convection, and 

radiation. Without the actual motion of the molecules in the body, heat can be transmitted 

from a warmer region to a cooler region by a process known as "conduction." The vibrational 

motion of molecules is responsible for the transfer of heat from one to another. Conduction 

relies on physical touch to transfer thermal energy. The most effective materials for 

conduction are those with close-packed, simple molecules, whether they be solids, liquids, 

or gases. Metal, for instance, is superior to wood or plastic as a conductor. Below is an 

equation that can be used to determine the rate of heat conduction: 

𝑄𝑐𝑜𝑛𝑑 = 𝐾𝐴
∆𝑇

∆𝑥
 

Where: 

𝑄𝑐𝑜𝑛𝑑 = rate of heat conduction, Watt/s 

k = thermal conductivity, W/Mk 

A = cross sectional area, 𝑚2 

∆𝑇 = temperature difference, L 

∆𝑥 = thickness, m 

 Convection heat transfer, on the other hand, involves the transport of heat through a 

fluid, such as water or air. Through the medium of liquids and gases, heat is transferred from 

hotter to colder areas. A current is the term used to describe the flow of a large body of hot 

air or water. The mass transfer or molecular motion that contributes to convection heat 

(2.1) 

(2.2) 
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transmission Natural convection occurs when density changes due to temperature alone 

generate currents in the fluid. When the convection currents are caused by an external 

component such as a pump or fan, the process is referred to as forced convection. Convection 

heat transfer can be seen in action when milk is heated in a pan. The formula for determining 

the convective heat transfer rate is: 

𝑄𝑐𝑜𝑛𝑣 = hA (𝑇𝑆 − 𝑇∞) 

Where: 

𝑄𝑐𝑜𝑛𝑣 = rate of heat convection, Watt/s 

h = convection heat transfer coefficient, W/m2, °C   

𝐴𝑆 = surface area where heat transfer takes place, m2 

𝑇𝑠 = surface temperature, K 

𝑇∞ = ambient temperature, K 

 Both conduction and convection involve the movement of heat via a medium, which 

can be solid or fluid, respectively. However, this does not hold true for radiative heat transfer. 

Heat can be transported from one body to another through radiation without the medium's 

molecules being involved. One real-world example of the effect of electromagnetic waves, 

particularly infrared radiation, is the warming sensation one has when standing in the sun. 

For instance, microwaves heat their contents immediately without using any kind of heating 

medium. To determine the thermal energy released as radiation, use the following formula: 

𝑄𝑟𝑎𝑑 =  𝜀𝜎𝐴𝑆 (𝑇𝑆
4 − 𝑇𝑠𝑢𝑟𝑟

4) 

Where: 

𝑄𝑟𝑎𝑑 = rate of heat radiation, Watt/s 

𝜀 = emissivity 

𝜎 = Stefan-Boltzmann constant, 5.67×  10−8 W/𝑚2𝐾4 

𝑇𝑠 = absolute temperature of surroundings, K 

(2.4) 

(2.3) 
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𝑇𝑠𝑢𝑟𝑟 = absolute temperature of surrounding, K 

 

2.8 Basic of thermal resistance and heat dissipation 

 

 Thermal resistance is a quantification of how difficult it is for heat to be conducted. 

Thermal resistance is represented as the quotient of the temperature difference between two 

given points by the heat flow between the two points (amount of heat flow per unit time). It 

is defined as the ratio of the temperature difference between the two faces of a material to 

the rate of heat flow per unit area. Thermal resistance determines the heat insulation property 

of a textile material. The higher the thermal resistance, the lower is the heat loss. This 

indicated that the higher the thermal resistance, the more difficult it is for heat to be 

conducted, and vice versa. The thermal resistance, R, is connected with the temperature 

difference, ∆T, and the heat flow, P, as follows: 

𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒, 𝑅𝑡ℎ = 
𝑇1−𝑇2

𝐻𝑒𝑎𝑡 𝑓𝑙𝑜𝑤 𝑃
 

                                                                                      =  
𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 ∆𝑇

𝐻𝑒𝑎𝑡 𝑓𝑙𝑜𝑤 𝑃
 [°C/W] 

R is used as the symbol for the electric resistance, while θ is used for the thermal resistance.  

 Thermal conductivity is used to quantify a material's heat conduction properties in 

place of thermal resistance; R. “k” is the most common symbol for it, but “𝜆'' and “k” are 

also acceptable. That quantity's inverse is known as thermal resistivity. It is common practise 

to use heat sink materials with high values of thermal conductivity, while thermal insulators 

have low values. According to Fourier's law of thermal conduction (also known as the law 

of heat conduction), the rate at which heat is transported through a medium is related to the 

area through which the heat flows and the negative of the temperature gradient. The 

following equation represents this law in its differential form: 

𝑞 =  −𝑘. ∇ 𝑇 

(2.5) 

(2.6) 
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Where: 

∇𝑇  refers to the temperature gradient, 

q denotes as the thermal flux or heat flux 

k refers to the thermal conductivity of the material 

Every substance has its own capacity to conduct heat. The thermal conductivity of a material 

is described by the following formula: 

𝐾 =  
(𝑄𝐿)

(𝐴∆𝑇)
 

 

Where: 

K is the thermal conductivity in W/m.k 

Q is the amount of heat transferred through the material in Joules/second or Watts 

L is the distance between the two isothermal planes 

A is the area of the surface in square meters. 

∆𝑇 is the difference in temperature in Kelvin 

 

2.9 Crypto Mining 

 

A distributed network of computers running crypto code verifies and adds 

cryptocurrency transactions to the blockchain through "crypto mining". The legitimacy of 

blockchain transactions is established by bitcoin mining. Crypto mining uses hardware and 

software to generate a cryptographic number that matches criteria. "Bitcoin mining secures 

the network," says Stefan Ristic. Satoshi Nakamoto says Bitcoin mining revenues double 

every four years. On October 18, 2023, one bitcoin cost over $177,500. You may just make 

a few pennies a day racing to get your powerful computer into the Bitcoin mining pool first. 

This is because Bitcoin mining is unpredictable. 

(2.7) 
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 Mining requires a high-quality GPU. Before adding a block of transactions to the 

blockchain, the GPU validates it. Mining involves powerful computers running algorithms 

to solve mathematical problems and earn crypto blocks for their owners. Complex 

algorithms are needed to validate and record cryptographic transactions on the blockchain. 

Cryptography uses proof-of-work consensus to add a block every 10 minutes. A stronger 

computational infrastructure increases the likelihood of winning blocks, which increases 

revenue. The network validates transactions using a computer's hash rate, which determines 

its Bitcoin mining potential. 

 Mining includes adding transactions to blockchain blocks in a complex process. All 

data in the block is hashed after being allocated. Miners must find a 64-digit hexadecimal. 

Miners conjecture a number smaller than the desired hash on their mining machines. The 

target hash is a hexadecimal number higher than the solved hashes. Mining operations have 

financial and regulatory constraints. Bitcoin mining is risky since people may spend a lot of 

money on GPUs and ASICs and not make a profit. The environmental impact and carbon 

footprint of bitcoin mining are another concern. For those running one or more application-

specific integrated circuits (ASICs) 24/7, mining equipment generates a lot of thermal energy, 

which may raise electricity usage and utility expenses. 

 

2.9.1 Crypto Exchange Platform 

 

The term "cryptocurrency exchange" refers to platforms that allow investors to 

purchase and trade Bitcoin, Ethereum, and Tether. These platforms act as e-brokerages in 

digital marketplaces, like mobile apps or desktop interfaces. Their clients can also choose 

from a variety of trading and investing tools. Crypto exchanges offer margin, loan, futures, 

and options trading for numerous cryptocurrencies. Crypto exchanges charge consumers 
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based on transaction volume or kind to meet their needs. Unlike stock or commodity markets, 

bitcoin trading is more expensive. To facilitate operations, cryptocurrency exchanges might 

be centralised, decentralised, or hybrid. 

 

2.9.2 Introduction to NiceHash 

 

NiceHash is a prominent marketplace that facilitates the connection between sellers 

or miners of hash power and purchasers of hash power. Hash power refers to the computing 

capacity of a computer or hardware device, which is utilised to execute and resolve various 

Proof-of-Work hashing algorithms associated with cryptocurrencies. NiceHash distinguishes 

itself by abstaining from providing cloud mining services to its users, thereby implying that 

the company does not possess or lease any mining hardware. This pertains solely to the 

interconnection of disparate end-users. 

  

Figure 2.43 Operation and services provided by NiceHash. 

NiceHash provides a transparent marketplace for hashing power buyers. In this 

marketplace, purchasers can choose a cryptocurrency to mine, a mining pool, a price, and 

submit their order. The pool will send the cryptocurrency to buyers after NiceHash Miner 

Legacy miners finish the order. This implies that buyers do not need to conduct complex 
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mining operations or buy mining hardware. Miners, the sellers, are the opposite of buyers. 

Sellers or miners can use NiceHash Miner software or connect their mining hardware, such 

as ASICs or PCs, to NiceHash stratum servers to fulfil buyer orders. People's hashing power 

depends on their computer hardware and is directed to the mining pool they choose. The 

current weighted average, updated every minute, determines the Bitcoin payment for each 

valid share submitted. The entire process is automated and requires no technical expertise. 

 

2.9.2.1 NiceHash Miner 

 

The NiceHash Miner (NHM) is open-source software that connects a user's local 

machine or mining setup to the NiceHash hash-power exchange. Users are able to rent out 

the platform's computational power. Bitcoins, a form of digital currency, will be exchanged 

as payment for the computing power provided. NiceHash Miner is a piece of mining software 

that combines miners developed by parties unaffiliated with NiceHash. As a result, NiceHash 

cannot guarantee the quality of every single piece of code in every single release. Given that 

NiceHash has not officially endorsed NiceHash Miner, users should proceed with caution 

before committing to its use. NiceHash Miner now supports the DaggerHashimoto, 

ETCHash, Autolykos, Ergo, KawPow, Ravencoin, Neoscrypt, KHeavyHash, Kaspa, and 

IronFish mining algorithms, among others. 

 

2.9.2.2 Crypto Mining Algorithms 

 

As described in my undergraduate thesis, I need to have a deep understanding of 

mining algorithms in order to carry out the experiment on the heat dissipation efficiency of 

GPUs successfully. These algorithms serve as the foundational framework for the mining 
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process, enabling programmers to customise their work to accommodate specific 

requirements. In order to successfully mine a block on the blockchain, miners are required 

to solve a hash function that possesses a difficulty level that is either equal to or greater than 

the minimum difficulty level set by the network. Within the realm of proof-of-work 

cryptocurrencies, a mining algorithm refers to a prescribed set of regulations and 

mathematical procedures employed by miners in the course of executing the hashing process. 

In order to accomplish this task, miners iteratively input distinct numerical values, known as 

nonces, into the hash function with the objective of producing a viable solution. The 

possibility of achieving a mining rate of trillions of solutions (hashes) per second, sometimes 

represented as TH/s, is evident. However, it should be noted that this capability varies 

significantly depending on the specific mining algorithm employed. 

 Those interested in mining with software like NiceHash Miner should be aware that 

they can choose from several different mining algorithms. The truth is that there are a wide 

variety of algorithms, each with its own set of advantages. Many factors, including hardware 

compatibility, project security, customization, and others, contribute to the wide range of 

mining algorithms available. Some mining methods, for instance, are optimised for specific 

processors, graphics processing units, or application-specific integrated circuits. Developers 

can manage the network's decentralisation and security by carefully crafting mining 

algorithms. For instance, decentralisation is bolstered by ASIC-resistant algorithms, which 

stop specialised gear from taking over the mining process. Some mining algorithms are built 

with security in mind so that their competitors can't gain an edge over them. 

 However, sharing an algorithm with another project may open up new possibilities, 

such as merged mining. By using this method, miners on a single blockchain can efficiently 

mine on another network without sacrificing hashrate or efficiency. For instance, the Scrypt 

algorithm is used by both Litecoin and Dogecoin. When the mining rewards are low, this is 
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a huge plus for the safety of both networks. The inventor of a mining algorithm can adjust it 

for a number of factors, including the hardware the coin will be mined with. Memory and 

power consumption are two aspects of mining algorithms that are frequently modified. One 

goal of software engineers may be to design algorithms with lower energy consumption or 

larger memory footprints. 

 

2.9.2.3 DaggerHashimoto Mining Algorithm 

 

Dagger-Hashimoto is the predecessor to Ethash and the Ethereum 1.0 mining 

algorithm. 'Ethereum 1.0' uses Proof of Work (PoW) consensus. To append blocks to the 

blockchain, the Proof of Work algorithm uses miners and electrical energy as labour. 

Ethereum 2.0, which uses Proof of Stake (PoS), is an improved version of Ethereum 1.0. 

This upgrade improves security, scalability, and energy efficiency. Ethereum 2.0 uses 

validators and Ethereum depots instead of miners and power. In contrast, the Ethash 

algorithm was meant to reduce computing overhead by improving Dagger-Hashimoto. 

The Dagger-Hashimoto method must resist ASIC mining and verify transactions 

utilising lightweight client implementations. DaggerHashimoto wants to create an algorithm 

that distributes earnings throughout the spectrum of technology, from ASIC miners to CPUs 

and GPUs. Combining the Hashimoto and Dagger frameworks yields the Dagger-Hashimoto 

algorithm. Thaddeus Dryja's Hashimoto technique prioritises memory reads as a mining 

constraint. Random-access memory (RAM) is more broad than computation, making it a 

better alternative for method evaluation, according to Hashimoto. Computer scientist Vitalik 

Buterin created Dagger, a cryptography method. DAGs allow Dagger to perform memory-

intensive computations and efficient validations. It is meant to replace Scrypt, although 

shared memory hardware acceleration has been shown to affect it. 
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2.9.2.4 ETCHash Mining Algorithm 

 

Ethereum Classic uses ETCHash, a sophisticated proof-of-work algorithm. This 

method is distinguished by the DAG file loaded into GPU memory when a miner is begun. 

Every 60000 blocks, the epoch changes, increasing the DAG file by 8 MB. GPUs from 

Nvidia and AMD can mine Ethereum Classics. On November 28, 2020, Ethereum Classic 

hardforked to reduce its DAG file by two times to allow weaker GPUs to mine this technique. 

Ethereum Classics is an open-source, distributed cryptocurrency network based on Ethereum 

and smart contracts. Vitalik Buterin created Ethereum and the Ethereum Foundation in 2015. 

After the DAO breach split the blockchain in two in 2016, most users established Ethereum 

Classic to rectify the robbery and recover their money. 

 

2.9.2.5 Autolykos Mining Algorithm 

 

While similar to Bitcoin's Proof of Work (PoW), Autolykos differs in numerous 

significant ways. It's made specifically for GPU mining and is immune to ASICs and mining 

pools. It is memory-hard, levelling the playing field between specialised hardware (ASICs) 

and commodity GPUs, enabling regular people to participate in mining safely for a reward. 

 

2.9.2.6 KAWPOW Mining Algorithm 

 

In recognition of Ravencoin, the KAWPOW mining algorithm became widely known. 

In addition to Bitcoin and Ethereum, it also works with a wide variety of other 

cryptocurrencies and blockchain projects. KAWPOW is safe against ASICs and possible 

centralization. In order to prevent centralization and ASICs, the KAWPOW algorithm's 

developers switch between the X15 and SHA51 algorithms. When it comes to mining with 
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the KAWPOW algorithm, Nvidia graphics cards far outperform AMD graphics cards. For 

example, the hash rates of the GTX 1080Ti and RTX 2080Ti are 1.5 times greater than those 

of the Vega and Radeon VII. 

 

2.9.2.7 Neoscrypt Mining Algorithm 

 

The Scrypt Proof-of-Work algorithm, first revealed in June 2014, is ASIC-resistant, 

although its predecessor, NeoScrypt, was not. The Scrypt algorithm and the password-based 

derivation function (KDF) were upgraded with this newer version. NeoScrypt was developed 

to enhance the Scrypt algorithm's safety, efficiency, and cost-effectiveness. It is possible to 

mine NeoScrypt with ccMiner, NeoScrypt OpenCL GPU Miner, and Claymore's NeoScrypt 

AMD GPU Miner. The first three cryptocurrencies to begin using NeoScrypt were UFO, 

Feathercoin, and VIVO. To further develop the Scrypt-based DASH cryptocurrency, VIVO 

implemented the NeoScrypt algorithm. 

 

2.10 Introduction to Design Expert 

 

Design Expert is a software application specifically developed to facilitate the 

process of designing and interpreting multi-factor experiments. The act of making significant 

advancements to both one's product and procedure is beneficial. The objective is to conduct 

a comprehensive analysis of essential aspects and components, examine their interactions, 

and eventually determine the most favourable process settings and product recipes. An 

instance where Design Expert can be applied is in the field of polymer processing. In this 

context, the software can be utilised to facilitate the design of an experiment aimed at 

investigating the relationship between processing factors, such as rotor speed or ram pressure, 
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and the resulting variations in tensile strength. The software provides a diverse selection of 

designs, encompassing factorials, fractional factorials, and composite designs. The system 

exhibits the ability to effectively manage various process variables, such as rotor speed, as 

well as mixing variables, such as the resin proportion in a plastic compound. 

The Design Expert software provides computer-generated D-optimal designs as an 

alternative when standard designs are not suitable. The software application facilitates the 

placement of markers and the examination of the shape of interactive two-dimensional 

graphs. Additionally, it enables the visualisation of the response surface from various 

perspectives through the utilisation of rotatable three-dimensional plots. Design Expert 

offers robust tools for designing experiments that are intended for research purposes. These 

tools are particularly useful for planning experiments involving processes, mixtures, or 

combinations of elements and components. In addition to enhancing data visibility, the 

implementation of this approach facilitates the identification of statistical significance and 

enables more detailed modelling of the experimental results. Additionally, it offers a means 

of visualising the trial outcomes, aiding in the identification of noteworthy effects. The 

following subtopic will go into detail on the numerous mathematical models available inside 

Design Expert and how they can be selected in accordance with the requirements of the 

experiment variables. 

 

2.10.1 Introduction to Response Surface Methodology (RSM) 

 

 Several studies lack a theoretical model for their manipulated variables or response 

components. Here, an empirical investigation into the connection between cause and effect 

is necessary. Response Surface Methodology (RSM) was created by Box and Wilson. It takes 

situations like the one given and empirically represents them using mathematical and 
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statistical methods. Specifically, the goals of RSM are the expansion of experimental 

knowledge and the measurement of experimental variability (pure error). The mismatch 

between the proposed model and the experimental data was also identified with the aid of 

RSM. In areas of the experimental domain where no experiments were conducted, it is also 

able to detect a response and make an accurate prediction. Methods for systematically testing 

potential solutions are proposed by RSM. By reducing ambiguity based on experimental data, 

RSM facilitates outlier identification and decision-making under uncertainty. 

 RSM utilises a diverse array of mathematical and statistical techniques to construct 

and employ empirical models. The objective of Response Surface Methodology (RSM) is to 

employ experimental design and analysis techniques in order to ascertain the correlation 

between a response variable and the concentrations of multiple input variables or factors that 

influence it. The linear modelling of two-level factorial designs results in the formation of 

either flat planes or twisted planes when examining interaction responses within a three-

dimensional space. Two-level factorial designs can be considered a sequence of repeated 

screening procedures that aim to identify the most significant inputs for a given project. 

 Nevertheless, it is not uncommon to encounter response surfaces that exhibit a 

significant degree of curvature. In these instances, the use of Response Surface Methodology 

(RSM) may be deemed the most suitable course of action. The Response Surface 

Methodology (RSM) incorporates the consideration of a response that fulfils a bounding 

condition of either a maximum or minimum value. Factorial designs and analysis of variance 

(ANOVA) are commonly employed in statistical modelling to effectively capture the 

response. However, it is important to note that these methods do not provide the means to 

incorporate additional modelling of the effects. RSM primarily emphasises the utilisation of 

screening and three-level factorial studies as prominent types of factorial studies. Additional 
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treatments are incorporated to specifically target the desired outcomes and enhance the 

accuracy of the model as a predictor. 

 

2.10.2 Introduction to Factorial Design 

 

 There is a type of statistical experiment design called the factorial design that allows 

someone to look at how different independent variables (also called factors) affect a 

dependent variable. This methodology enables researchers to examine the primary and 

interactive effects of multiple independent variables on a single dependent variable. Factorial 

designs are types of experiments that look at all the possible levels that can be combined 

across multiple independent variables. This creates all the possible permutations. Through 

the manipulation of various characteristics and the measurement of the dependent variable, 

researchers are able to enhance their understanding of the individual contributions of each 

factor as well as their combined or interactive effects. 

 According to the study conducted by Kerlinger and Lee (2000), there was a 

significant shift in the approach of social scientists towards formulating research questions 

and generating objective results when employing factorial designs in behavioural research. 

The utilisation of factorial design in experimental design enables the examination of multiple 

variables simultaneously. These mechanisms facilitate the establishment of relationships 

between various factors. This instrument can be used by researchers to examine potential 

associations between the influences of factors and concentrations. This may potentially 

unveil captivating mechanisms. This phenomenon enhances the observed effects and 

facilitates the identification of moderators or mediators in associations between variables. 

 Experiments employing factorial designs are widely used and renowned for their 

reliability. The application of analysis of variance (ANOVA) and the seminal research 
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conducted by Ronald A. Fisher have proven to be influential in the field. This tool enables 

researchers to conduct experiments in a controlled setting, allowing them to examine the 

impact of various variables on the final outcome without any potential risks or hazards. 

Modifying the levels of elements enables researchers to observe the individual contributions 

of each component as well as any potential interactive effects. By utilising this knowledge, 

it becomes possible to customise treatments and interventions for a specific population. 

 A 2x2 factorial design examines the effects of two factors, each with two levels. 

Similarly, a 3x3 factorial design investigates the effects of three independent variables, each 

with three levels. Likewise, a 4x4 factorial design explores the effects of four factors, each 

with four levels, and so forth. The utilisation of a 2 × 2 factorial design is a prevalent 

approach in psychological research for investigating the impact of two factors on behaviour 

or outcomes. Medical research frequently necessitates the exploration of numerous variables, 

thus rendering a 3x3 factorial design a valuable tool. 

 

2.10.3 Introduction to Mixture Design 

 

 In the context of experimental design, a mixture is operationally defined as a 

substance resulting from the combination of two or more constituents. Mixture designs, a 

type of response surface experiments, depend on many factors and how much of each one 

there is. The proportions of all components from each experiment are aggregated. In the 

majority of experiments, the sum of the component proportions is equal to 1. The increased 

complexity resulting from this has rendered mixture experiment design and analysis more 

intricate; however, it enables a more precise estimation of the effects of components on the 

response variable. Mixture design is a methodology used to ascertain the optimal proportions 

of ingredients in order to attain a desired outcome. 
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 Researchers have the ability to examine the impact of various combinations of 

components on a response variable through the use of a mixture design. Researchers have 

the capacity to investigate the primary impacts, interactions, and non-linear effects of the 

mixture across various concentrations. The simplex lattice, centroid, axial, and extreme 

vertex are the four most frequently encountered mixture designs. The simplex lattice design 

is capable of characterising the response surfaces of multiple components through the use of 

a polynomial equation of order 2 or greater. The design criteria exhibit uniformity across the 

simplex. In addition, the simplex centroid design can be employed to accomplish the same 

objective as the simplex lattice design or to discern the numerous constituents of larger ones. 

The simplex centroid design exclusively incorporates centroid points.  

 In different situations, the simplex axial design is used to selectively remove 

important parts from complex mixtures. The simplex axial design is characterised by the 

presence of points located within the simplex, in contrast to the simplex lattice and centroid 

designs, where all points, except for the centroid, are situated on the boundaries of the 

simplex. Extreme vertex design is a methodology employed for the purpose of handling 

constrained mixture components or linearly constrained components. The feasible region of 

the factor space is determined by the strict constraints imposed on vertex design, with the 

initialization parameters serving as the boundary points. 

 There is a common confusion among Design of Experiment (DOE) experts regarding 

the distinction between a mixture DOE and a factorial or response surface methodology 

(RSM) DOE during the formulation process. This phenomenon has the potential to yield 

inaccurate outcomes. The design of experiments (DOEs) involving response surface 

methodology (RSM) and factorial designs is characterised by their independence, whereas 

DOEs related to formulation and mixture designs incorporate the consideration of 
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ingredients. The factorial levels in the design of experiments (DOE) will be replaced with 

ratios of ingredients in the mixture. 

 

2.10.4 Introduction to Combined Design 

 

 The Design Expert provided designs that incorporated both mixture components and 

process factors. Combination and split designs are commonly employed in experimental 

design to investigate multiple independent variables concurrently. The researcher observes 

a range of distinct levels for the independent variable, although they are not identical. The 

researchers systematically analyse all potential combinations of factors. This method can be 

employed by researchers to examine the individual and collective impacts of each 

permutation. 

 In order to assess individuals' preferences for colour and shape, a combination design 

would be employed wherein all conceivable combinations of colours and shapes would be 

presented (e.g., red circles, blue squares, green triangles, etc.). In a combination design study, 

participants serve as their own controls across all conditions, thereby obviating the necessity 

for a control group and yielding direct insights into interactions among independent variables. 

The integration of design elements has the potential to extend the duration of a project and 

impose additional strain on individuals involved in its execution. Furthermore, the presence 

of numerous permutations may render the task infeasible.  

 

 The primary objective of this project is to address the existing knowledge gaps 

pertaining to contemporary thermal management systems employed in Graphics Processing 

Units (GPUs). In this study, we aim to evaluate the efficacy of the ASUS TUF Gaming 3060 

OC Edition GPU through the manipulation of fan speed. Our analysis will involve a 
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comparison of the obtained results with the default power limit, clock setting, and memory 

clock frequency of the mining chamber. The literature review examined deficiencies in the 

field of mining, including mining practices, mining software, mining algorithms, and the 

utilisation of design expert software for optimal model selection. The objective of this study 

is to examine the optimality of fan speed through the application of response surface 

methodology (RSM). In the subsequent analysis, a comparative assessment is conducted 

between nickel and copper memory heatsinks in order to ascertain the influence of material 

composition on the thermal dissipation of GPU memory. By pursuing these objectives, the 

investigation of thermal resistance, conductivity, and dissipation can be conducted in order 

to empirically ascertain thermal dissipation.
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CHAPTER 3 

 

METHODOLOGY 

 

3.0 Introduction 

 

 This chapter covers the steps taken throughout the project to obtain and validate the 

optimised fan speed for GPU mining proposed via Response Surface Methodology (RSM) 

by means of the Design Expert programme. The ASUS TUF Gaming 3060 OC Edition was 

the GPU of choice for this mining rig. The effectiveness of a nickel and copper heatsink 

radiator in decreasing the temperature of the GPU memory was tested as part of an ongoing 

research investigation on thermal management for mining GPUs. There is little room for 

error and no need to start over because everything has been meticulously planned. This is a 

crucial stage because it describes the workflow and project routines that were used to carry 

out the experimental part of the project. A condensed version of the methodology used 

throughout the study is shown in Figure 3.2. 

 

3.1 Literature Review 

 

 The first step is to conduct a literature review. Learning the fundamentals of how 

GPUs work and the criteria for achieving optimal thermal performance and thermal 

dissipation rate is the first step in building a library. Thermoelectric cooler (TEC), water-

cooled heat sink, finned water-cooled radiator, and heat transfer mode are all relevant search 

terms for a literature review on axial fans. In order to determine the best fan speed to use in 
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order to achieve the most desirable GPU core and memory temperatures, the relevant 

literature is reviewed. Various methods, including response surface modelling (RSM), 

factorial design, mixture design, and combined design, have been studied in order to 

establish which is best for determining the optimal fan speed. Copper and nickel were used 

in these studies to better understand how different material properties affect the thermal 

performance of GPU miners.  

 This preliminary step is very helpful for the experimental stage of this project. PSM 

II's experimental components required extensive background reading from a wide range of 

sources in order to be carried out successfully. The data collected emphasises the significance 

of understanding the concept of heat transfer, including the modes of heat transfer and 

thermal properties, as well as the GPU's components, the most heat-generating components 

within a GPU, and the methods for optimising a GPU's cooling system to achieve lower 

temperatures in a working GPU system without compromising GPU computing performance. 

Having a solid understanding of the fundamentals and context will make the experimentation 

part of the research a breeze.
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3.2 General Methodology of PSM 

 

Figure 3.1 General Methodology of PSM. 

PSM 1 

PSM 2 
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 The overall methodology for the PSM project is shown in Figure 3.1. The flow 

diagram shows that the first part of this research was a literature review, which meant reading 

and understanding all the previous research on GPU thermal management. Assessing the 

method's appropriateness for application on GPUs was the subsequent step following the 

completion of the literature review. After that, the next step is to gather data and sort it by 

cooling method: air, liquid, or passively through a heat sink. Afterwards, the data will be 

further discretized based on the optimisation parameters, which might encompass 

dimensions, materials, or design optimisation. The only remaining steps for PSM I are to 

select a cooling system and test parameters for this project.  

 Employing experimental conduction, PSM II would determine the effects of fan 

speed on GPU core and memory temperature. By incorporating RSM (Response Surface 

Methodology), Design Expert software would facilitate the Design of Experiments (DOE). 

To achieve the optimisation solution recommended by the Design Expert, the experimental 

test on fan speed will be carried out again. A second round of experimental testing would 

confirm and validate the optimisations. Immediately following that, the validated 

optimisation solution for fan speed will be discussed and written in the report in order to 

complete this project. 

 

3.3 Initial stages of setting up the experiment 

 

 Before conducting the experiment, it is imperative to undertake the necessary 

research during the preliminary phase of the investigation. For instance, the methodologies 

employed for GPU loading. In this study, mining was employed as the workload to evaluate 

the thermal performance of the GPU fan speed. In order to ensure its efficacy within this 

particular context, thorough preliminary research should be conducted on the mining 
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algorithm, mining platform, and mining method selected. In this particular scenario, the 

utilisation of the NiceHash mining platform and the Dagger Hashimoto mining algorithms 

will be implemented. Utilising the default settings of the GPU for mining operations may 

result in excessive heat generation, thereby necessitating a thorough examination of the 

mining settings. This finding is in accordance with the research conducted by Chamber 

(2022).  

 Consequently, the technique employed to regulate and track the temperature of the 

GPU's core and memory was critical, as these experimental outcomes would be utilised in 

the DOE to gather optimisation data. Therefore, in order to collect the experimental data, it 

is required to utilise the software that controls the clock setting of the GPU as well as the 

software that monitors the temperature. For this case, we use HWINFO64 and MSI 

Afterburner. Also, since Nvidia kept the hash rate of their RTX series graphics cards low to 

keep their products affordable for gamers, research on the best graphics drivers to use is 

necessary to unleash full mining performance. According to the research, the 512.15 driver 

is required on Windows in order to unlock the full mining potential of Nvidia RTX series 

graphics cards based on the work of Smith (2022).
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Figure 3.2 Graphics processing unit (GPU) fan speed and radiator heatsink material experiment flowchart
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3.4 Graphic Processing Unit (GPUs) selection 

 

 It is widely believed that selecting the optimal GPU is pivotal to achieving success. 

An air-cooled GPU is selected for this project. All of the required tools and space must be 

available at the UTeM laboratory in order to make this happen. Both Nvidia and AMD, two 

of the biggest manufacturers, make a vast range of different GPU types. Both of these market 

giants create GPUs, each with its own distinctive design and set of advantages and 

disadvantages. Since Nvidia GPUs can be found in the UTeM lab, they are the primary focus 

of our investigation. Since Nvidia GPU makers included more potent "Ti" versions of their 

RTX 30 series family, the RTX 30 Ti is a potent yes worth considering. Notable examples 

are the Geforce RTX 3090 Ti and Geforce RTX 3080 Ti, both of which are simply more 

powerful and expensive variants of the corresponding non-Ti GPUs. Therefore, the 

following suggestions are still generally applicable. 

 Here is some terminology that needs clarifying for readers' better comprehension 

before going deeper into the specification's comparison between the RTX 30 series family 

of GPUs. To begin, a GPU's parallel data processing units are known as Nvidia CUDA cores. 

They function much like a computer's central processing unit. The greater the number of 

CUDA cores in a GPU, the more complicated data it can process rapidly. Meanwhile, boost 

clock is the highest speed a GPU can run at with sufficient power and temperature. While 

there is a basic clock statistic, gamers should be aware that Nvidia graphics processing units 

(GPUs) consume significantly more system resources than average when playing games. 

There are many other elements, such as the PC's hardware, that affect performance, so don't 

assume that a higher Boost Clock speed automatically means better performance. There is a 

fine line between the various types of GPU memory. For instance, GDDR6X memory can 

handle more demanding games at higher settings since it has more bandwidth than GDDR6 

memory. The maximum amount of electricity that a graphics processing unit (GPU) can 
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consume when it is fully loaded is known as its power drawn. Below is a table that compares 

the specifications of different RTX 30 series GPUs:
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Table 3.1 Specifications comparison between RTX 30 series GPU (Honorof & Moore-Colyer, 2023) 

 

 The specifications of each GPU in the RTX 30 series family were compared in Table 3.1. The RTX 3080 shares the most similarities with 

the RTX 3090 with regard to boost clock and memory type, as can be seen from the information provided above. Hence, the RTX 3080 is the way 

to go when checking its thermal performance with various fan speeds and heat sink memory radiator materials. It would be ridiculous not to get an 

RTX 3080 when looking for a top-tier gaming rig. It has a lot of advantages over cheaper GPUs, such as GDDR6X memory and around 9000 

CUDA cores. The large size and high power consumption of the card would make the thermal performance metrics more noticeable. The project 

supervisor suggested the ASUS TUF Gaming 3060 as the best GPU for testing due to its adaptability and the fact that it is smaller and less 

demanding on electricity than the RTX3080, making it easier to set up.
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3.4.1 Specifications pertaining to the ASUS TUF Gaming 3060 

 

 The final testing GPU chosen for undergoing testing was ASUS TUF GAMING 3060. The figure below shown the physical appearance of 

the GPU. 

 

 

Figure 3.3 Physical appearance of ASUS TUF GAMING 3060 (ASUS TUF RTX 3060 GAMING Specs, n.d.) 
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Table 3.2 Specifications of ASUS TUF GAMING 3060 (Specification Sheet (Buy Online), 

2023) 

Graphic Engine 

  

NVIDIA Geforce 

RTX 3060 

Bus Standard   PCI Express 4.0 

OpenGL   OpenGL 4.6 

Video Memory   8 GB GDDR6 

Memory Interface   192-bit 

Resolution 

 

Digital Max 

Resolution 7680 × 

4320 

Interface 

  

Native HDMI 2.1 × 

2 

 

Native DisplayPort 

1.4a × 3 

  HDCP Support 

Maximum Display 

Support   
4 

Nvlink/ Crossfire 

Support   
No 

Dimensions (inches)   11.81 × 5.63 × 2.13 

Recommended PSU 

(W)   
750 

Power Connectors   1 × 8-pin 

Slot   2.7 slot 

 

  

3.4.2 ASUS TUF GAMING 3060 GPU Mining Setting 

 

 As previously mentioned, conducting tests on the heat dissipation performance of a 

GPU through mining while utilising the default settings would result in excessive heat 

generation and potential overheating of the GPU. In this particular context, it was imperative 

to establish an optimal mining configuration for the RTX 3060 in order to ensure the 

seamless execution of the test while mitigating the risk of GPU overheating and potential 

consequential harm to the electrical module. The mining algorithm employed in our study 

was DaggerHashimoto, which is commonly used for mining ETChash. According to 
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Chamber (2022), the recommended mining configuration for the RTX 3060 is presented in 

the table below: 

Table 3.3 RTX 3060 ETChash Mining Overclocks setting (Chamber, 2022) 

PARAMETER   DESCRIPTION 

Expected Mining Results  50 MH/s [31.5 MH/S (Stock)] 

Power Consumption  115 Watts [140 Watts (Stock)] 

Core Voltage (VDD)  N/A 

Power Limit  120 Watts or 70% 

Core Clock (CCLOCK)  Absolute: 0 or Offset: 0 

Memory Clock 

(MCLOCK)  
Absolute: 0 or Offset: +1400 

Memory Voltage   N/A 

Fan Speed (%)   70% ± based on your temps 

 

 MSI Afterburner was used to control the power limit, core clock, memory clock, and 

fan speed to set the GPU setting, according to Chamber (2022). To verify that the device 

manager detected the RTX 3060 graphic driver, we clicked on the display adaptor before 

applying the mining setting. Figure below shows MSI Afterburner settings for the ASUS 

TUF Gaming 3060 GPU: 

 

Figure 3.4 GPU Mining Setting through MSI Afterburner 
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3.4.3 Setup of the Nicehash miner prior to testing 

 

 To induce a workload on the ASUS TUG Gaming 3060 GPU for the purpose of 

examining its core and memory temperatures, the Nicehash miner software was employed. 

Prior to initiating the Nicehash miner software, it is imperative to access the MSI Afterburner 

application in order to configure the GPU clock settings, as depicted in Figure 3.4. 

Subsequently, proceed to launch the HWINFO 64 software in order to monitor the 

temperature of the GPU core and memory, as depicted in the accompanying figure. 

 

Figure 3.5 Initial GPU core and memory temperature checks. 

 Once the appropriate GPU model and the initial GPU core and memory temperature 

have been verified, the Nicehash miner application can be launched to commence the initial 

mining process. Within the programme interface, it was imperative to select the Dagger-

Hashimoto algorithms, as our sole emphasis is placed on these specific mining algorithms. 

Upon initiating the mining process by clicking the "start mining" button, it became 
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imperative to commence monitoring the temperature curve, which is observable through the 

HWINFO 64 and MSI Afterburner software applications. The monitoring of GPU core and 

memory temperature can be achieved through the use of HWINFO 64, as depicted in the 

figure presented below. 

           

Figure 3.6 Method to log GPU temperature before and after the test. 

 

3.5 Variable fan speed impact upon GPU temperature under identical GPU load 

and RSM Analysis optimal fan speed prediction validation 

 

 In the experiment that examined the effect of varying fan speeds on GPU 

temperatures under identical GPU load conditions, an ASUS TUF Gaming 3060 was used. 

The experimental data shows that the fan speed ranges from 550 rpm all the way up to 3000 

rpm. The rationale for this was that it is acceptable for a graphics card to function properly 

while maintaining a temperature of 85 degrees Celsius or lower. To illustrate the point, all 

series of Nvidia graphic cards—which are now the most popular GPUs on the market—have 

the same maximum temperature report of 93 degrees Celsius. The 30 series cards are the 

sole exception; they can only withstand temperatures up to 92 degrees Celsius. Sarnick (2022) 

Additionally, the manufacturer of the graphics card had already configured MSI Afterburner, 
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forbidding users to adjust the fan speed lower than 550 rpm in order to prevent damage to 

their machines, so the least controllable fan speed was 40% of the total fan speed, which was 

approximately 550 rpm. Next, we went for 3000 rpm, as this was the highest fan speed that 

an ASUS TUG Gaming 3060 could handle. 

 Turning to the Design Expert software, reducing the total number of RSM experiment 

will aids in identifying the ideal input variables, considering the desired response outcomes 

and the values attained via the use of experimental techniques.  

 

Figure 3.7 RSM sequence for the GPU fan speed optimization. (Elumalai & Ravi, 2023) 
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The application sequence of RSM is shown in Figure 3.6. The investigation should begin 

with the establishment of the input variables' values, including their minimum and maximum 

values. As a result of the study, the specified response parameters are used to conduct the 

tests using the required data measurements. Once the dependent and independent variables 

have been determined, an RSM strategy may be devised, and experimental data sets can be 

created. Once everything is in order, the built experimental sets can be run using the specified 

input settings. In this research of GPU fan speed optimization, we used the response surface 

methodology (RSM) and selected the one factor to adjust the fan speed from 550 rpm to 

3000 rpm. Since our testing only included one influencing variable—fan speed—we decided 

to concentrate on only one factor. In the illustration below, we can see the input of the single 

factor: 

 

Figure 3.8 Single-factor RSM input for 550–3000 rpm fan speed. 

A quadratic model was selected for the modelling because it was necessary to execute the 

experiment seven times. It turned out that the main difference between the cubic, linear, and 

quadratic designs was how well they estimated terms with more complex structures. When 

it comes to the quadratic model, the majority of the designs are sufficient. Therefore, a 

quadratic model was used for the design, and the table below shows the necessary variations 

in fan speed that were needed to carry out.

Manipulating Variable 
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Table 3.4 Completed RSM fan speed optimisation experiment design.  

Std. 

run 

no. 

  Run   Factor     Response 

  Fan Speed 

(RPM) 
 GPU Core 

Temperature °C 

 
GPU Memory 

Temperature °C         

5  1  3000       
2  2  550       
1  3  550       
4  4  2387.5       
6  5  3000       
7  6  1775       
3  7  1162.5       
                        

 

 The seven required runs for conducting RSM analysis using the one-factor method 

are shown in Table 3.4. For the sake of minimising experimental error, the running order 

must adhere to the normal run number. Once the 7th run was finished, the optimisation and 

RSM ANOVA results could be acquired using the Design Expert 10 software. 

 

3.6 Variable material of thermal pad on thermal dissipation performance of GPU 

memory by utilizing RSM analysis  

 

 The experiment aimed to investigate the impact of different thermal pad materials on 

the thermal performance of GPU memory. Specifically, nickel and copper thermal pads were 

utilised as replacements for the original thermal pads provided by ASUS TUG Gaming 3060 

manufacturers. To conduct the test, the GPU was disassembled to perform the thermal pad 

replacement procedure. The disassembled GPU would thereafter employ isopropyl alcohol 

to eliminate any remnants of thermal grease on the GPU core and remove the thermal pad 

on the GPU memory. The disassembled GPU is depicted in the diagram below.  
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Figure 3.9 The disassembled ASUS TUG GAMING 3060 

 It would then substitute the original thermal pad with a copper and nickel version. The detail 

specification of original thermal pad against nickel and copper thermal pad were shown in 

table below: 

Table 3.5 Detail Specification of original, nickel and copper thermal pad (“Thermal 

Conductivity Experiments – Resistance: Materials,” 2021) 

Properties Types of Thermal Pad 

Arctic TP-3 

(Stock) 

Nickel Copper 

Tensile Strength (psi) 13.7 8560 32000 

Thermal Conductivity 

(W/ mk) 

1 ~ 7 87.86 397.48 

Thermal Resistance 

(°C/W) 

0.1540 0.0042 0.0010 

Colour Grey Silver Reddish Brown 

 

 

GPU Memory 

GPU heat spreader with heat sink 

after isopropyl alcohol cleaning. 

Original Thermal pad 

GPU Core 
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Prior to applying the nickel thermal pad, it was essential to shield the PCB board with Kapton 

tape in order to insulate the conductive area and prevent any contact between the nickel 

thermal pad and the risk of an electrical short circuit. 

 

Figure 3.10 Placement location of nickel thermal pad on GPU PCB. 

 Following the placement of the Kapton material and nickel thermal pad on top of the 

GPU memory, a thermal paste was applied to enhance the thermal connection between the 

nickel thermal pad, the GPU memory chip, and the heat spreader of the GPU heat sink. The 

thermal paste employed must exhibit non-conductive properties to prevent electrical short 

circuits on the GPU component in the event that the thermal pad becomes misaligned from 

its original position. The OCinside website conducted a performance comparison review of 

the Arctic MX4, MX5, and MX6. The researchers chose to employ Arctic MX4 due to its 

comparatively lower viscosity compared to MX5, which allows for easier application and 

better spreading over the processor or GPU surface. Meanwhile, MX4 may be easily 

removed from the CPU without much difficulty, as it does not adhere strongly. Furthermore, 

GPU Core after cleaned 

up with isopropyl 

alcohol. Nickel 

Thermal pad 

Region where Kapton 

tape was placed. 

GPU PCB 
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according to the performance test results presented in the table below, the MX6 exhibits the 

highest level of performance, but with a marginal difference of only 0.3 °C and 0.4 °C. The 

venerable MX4 was in remarkably close proximity. Therefore, while comparing 

performance, it is reasonable to consider using an MX4 thermal grease as thermal paste for 

our test. 

Table 3.6 Performance Comparison between Arctic MX4, MX5 & MX6. (Arctic MX-4 Vs 

MX-5 Vs MX-6 Thermal Paste Review Handling and Workability, n.d.) 

Heat Transfer Paste Coolest Core Hottest Core 

Arctic MX-4 72.9°C 83.4°C 

Arctic MX-5 74.2°C 84.6°C 

Arctic MX-6 72.5°C 83.1°C 

 

The details specifications of thermal paste Arctic MX4 was shown in table below: 

 

Table 3.7 General Specification of Thermal Paste Arctic MX4 (MX-4 | Premium 

Performance Thermal Paste | ARCTIC, n.d.) 

 

 

  

 

 

 

 

 

 

 According to the comparative analysis of performance, the study examined the 

differences between the Arctic MX4, MX5, and MX6. All three thermal pastes are 

electrically non-conductive and can be used at sub-zero temperatures. Although the MX6 

Properties Value 

Viscocity    31600 Poise 

Density (g/cm3)  2.5 

Thermal Conductivity 

(W/mK) 
8.5 

Volume Resistivity (Ω-cm) 3.8 × 1013 

Colour  Grey 

Form  Grease 

Odour  None 

Flash point >100°C (Seta Closed Cup) 

Explosive Properties No 

Specific Gravity  4.2 

Oxidizing Properties No 
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paste managed to slightly outperform the MX-4 paste by a few tenths of a degree, the MX-

4 thermal paste definitely excelled in terms of its affordability, since it is currently priced at 

almost half of the MX-6 paste in the open market. Therefore, MX-4 thermal paste was 

selected for application in the investigations of nickel and copper thermal pads. In order to 

obtain optimal thermal dissipation performance, it is necessary to fully cover the surface of 

nickel and copper thermal pads with thermal paste. This ensures maximum thermal contact 

between the thermal pad and the GPU heat sink. The graphic below displays the region where 

the thermal paste is applied. 

                                 

Figure 3.11 Thermal Paste covered area for GPU on different thermal pad materials. 

 Once the thermal paste has been applied to the nickel thermal pads and GPU core, 

the GPU will be reassembled, and testing will commence. The testing method employed was 

identical to the variable fan speed test, which aimed to determine the optimal fan speed 

through RSM optimisation. Additionally, a comparison was made between the original 

thermal pad and nickel and copper thermal pads to assess the impact of different material 

properties on GPU memory temperature. Furthermore, the energy consumption savings in 

terms of cooling fan energy consumption were evaluated by comparing the thermal 

Nickel 

Thermal Pad 

Copper 

Thermal Pad Thermal Paste 

Covered Area 
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conductivity of the original thermal pad with that of nickel and copper. The objective was to 

assess the impact of thermal conductivity on the thermal dissipation performance and energy 

consumption of a cooling fan. 

 

3.7 Performing Response Surface Methodology (RSM) analysis 

 

 Conducting an examination of response surface methodology (RSM) is essential to 

ascertaining the statistical significance of both the response and each term in the model. In 

order to assess the null hypothesis, the p-value for each term in the model was compared to 

the significance level to determine the connection between the response and the term. The 

null hypothesis presented here pertained to the coefficient of the term being equal to zero, 

indicating that there is no correlation between the term and the response. Typically, the 

significance threshold, commonly represented as α, set at 0.05 is generally effective. A 

significance level of 0.05 signifies a 5% probability of erroneously concluding the presence 

of a relationship when no such relationship actually exists. 

 In RSM analysis, it was imperative to ascertain if the P-value was less than or equal 

to α or greater than α. This determination is crucial as it determines the statistical significance, 

or lack thereof, of the relationship. In this scenario, the P-value for the GPU fan speed, GPU 

core, and memory temperature should be less than or equal to α in order to indicate a 

statistically significant relationship between the response variable and the term. Alternatively, 

it was necessary to modify the model by excluding the term. According to the Analysis of 

Variance (ANOVA) conducted using Design Expert software, if a coefficient for a 

component is found to be significant, it indicates that the means of all levels of that factor 

are not equal. If the coefficient for a squared term is statistically significant, it indicates that 
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the relationship between the factor and the response variable may be described by a curved 

line. 

 In addition, it was imperative to assess the degree of alignment between the model 

and our data by scrutinising the goodness-of-fit numbers presented in the Model Summary 

Table. The Model Summary Table displays the values of S, R-sq, adjusted R-sq, and 

projected R-sq, which indicate the degree to which our model accurately represents our data. 

A higher R2 value suggests a stronger match between the model and the data. The adjusted 

R2 was employed to compare models with varying amounts of predictors. The coefficient of 

determination, R2, consistently increases as a predictor is added to the model, regardless of 

whether there is any actual enhancement to the model's performance. The predicted R2 is 

used to assess the accuracy of your model in predicting the response to new observations. A 

higher R2 value indicates stronger predicting ability. 

 Next, it was necessary to assess whether the RSM model satisfies the assumptions of 

the analysis, as shown by the optimisation recommended by numerical analysis. Residual 

plots are used to determine the adequacy of the model and assess whether it fits the 

assumptions of the analysis. In the residuals versus fits plot, a fanning or uneven spreading 

pattern indicates nonconstant variance, whereas a curved pattern suggests the presence of a 

missing higher-order term. If a point is significantly distant from zero, it could potentially 

be an outlier. Similarly, if a point is considerably distant from the other points in the x-

direction, it may suggest the presence of an influential point. In addition, a normal 

probability plot of the residuals was employed to confirm the premise that the residuals 

follow a normal distribution. If the graphs do not exhibit a linear pattern, it may suggest 

nonnormality.
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3.8 Summary 

 

 The objective of this study is to use the RSM one-factor technique to identify the 

ideal speed for the fan by numerical analysis, thereby achieving an optimised fan speed. The 

improved fan speed will be tested by actual experimentation to confirm the accuracy of the 

model's response. The study proceeded by using various thermal pad materials, including 

nickel, copper, and the stock thermal pad which is referring to Arctic TP-3. The RSM study 

was conducted to determine the best fan speed and compare the performance of Arctic TP-

3, nickel, and copper thermal pads. The variation in recommended fan speeds will be 

evaluated and examined based on the thermal conductivity of the materials and their 

parameters.
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CHAPTER 4 

 

RESULTS AND DISCUSSION 

 

4.0 Overview of RSM analysis 

 

 This section will go over the results of the RSM analysis that determined the optimal 

fan speed for three different kinds of thermal pads: the copper thermal pad, the nickel thermal 

pad, and the Arctic TP-3 thermal pad. In order to provide a quantitative comparison, the 

response surface analysis would use optimization for the first response surface factor. 

Considering the thermal conductivity characteristics of the materials and the discrepancies 

between the two sets of temperatures, the suggested optimization compares the fan speed 

needed to generate a specific temperature as predicted by the Design Expert software with 

the actual temperature attained. Also, we'll see what percentage of energy we can save by 

switching out the original thermal pad with different materials. In order to determine which 

model was most suited for making predictions, we ran a lack of fit test, compared the models 

graphically to see which had the fewest outliers, and finally, checked the numerical 

optimisation solution to make sure the model was fit for the process order. This was all part 

of the results and discussion analysis.
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4.1 Results of Design of Experiments (DOE) for variable fan speed under identical 

GPU load 

 

4.1.1 Optimization of GPU core temperature-dependent fan speed via response 

surface-based Response Surface Methodology (RSM) with a single factor 

 

 Based on the testing for variable fan speed under identical GPU load, it was required 

to run 7 times for quadratic model. The results of 7 run of experiments that had been done 

were shown in the table below: 

 

Table 4.1 Results of Design of Experiments for variable fan speed on original thermal pad. 

 

 It was observed, according to the data in Table 4.1, that as fan speed increased, the 

GPU core and memory temperatures decreased gradually. This was significant because it 

was related to the study of thermodynamics, as an increase in fan speed would increase the 

velocity of air blowing onto the GPU's heat sink, resulting in more powerful forced 

convection and a literal acceleration in the rate at which heat is transferred away from the 

GPU. At 3000 rpm, the utmost fan speed, both the core and memory temperatures were at 

their minimum. Nonetheless, it was observed that the temperature of the GPU memory was 

significantly higher than that of the GPU core, indicating that the GPU memory had 

produced significantly more heat than the GPU core. Therefore, the component of a GPU 

Std. 

run 

no. 

  Run   Factor     Response 

  Fan Speed 

(RPM) 

 GPU Core 

Temperature  

°C 

 GPU Memory 

Temperature  

°C       
  

5  1  3000  43.6  54.5 

2  2  550  89.7  104 

1  3  550  89.9  104.5 

4  4  2387.5  46.4  57.4 

6  5  3000  44.7  55.5 

7  6  1775  49.2  60.1 

3  7  1162.5  56.7  68.3 
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that generated the most heat was the memory. When the fan speed was set to 550 rpm, the 

memory reached its maximum temperature of 104°C. Additionally, as the fan speed 

increased from 550 rpm to 1162.5 rpm, the greatest temperature difference occurred, which 

decreased from 89.7°C to 56.7°C, a 33°C difference. GPU core and memory temperature 

were slightly affected by this fan speed, whereas the temperature difference was only about 

10.9°C for the fan speed ranging from 550 rpm to 2387.5 rpm, which was not as significant 

as the temperature difference for the fan speed ranging from 550 rpm to 1162.5 rpm. A 

marginal temperature reduction of approximately 1.5°C was observed across the fan speed 

spectrum of 2387.5 rpm to 3000 rpm. Based on this scenario, it was determined that 

increasing the fan speed starting from 2387.5 rpm had no appreciable effect on the change 

in temperature; thus, the maximal cooling capacity had already been reached. 

 

Table 4.2 Model Evaluation of Quartic Order for GPU Core and Memory Temperature 

Term Std Error VIF Ri-Squared 2 Std. Dev. 

A 1.89 16.13 0.9380 6.3 % 

A2 6.26 48.36 0.9793 5.5 % 

A3 2.00 16.13 0.9380 6.2 % 

A4 5.54 48.36 0.9793 5.6 % 
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Table 4.3 Summary of Statistics of various models for GPU Core Temperature 

Source Sequential Lack of Fit Adjusted Predicted  

p-value p-value R-Squared R-Squared  

Linear 0.0068 0.0018 0.7572 0.6221  

Quadratic 0.0079 0.0084 0.9569 0.9316  

Cubic 0.0068 0.0690 0.9964 0.9824 Suggested 

Quartic 0.0690  0.9993  Suggested 

Fifth     Aliased 

 

 Table 4.3 illustrates the P-values, Adjusted 𝑅2, and Predicted 𝑅2values for the linear, 

quadratic, cubic, and quartic models that were studied in the investigation. The sequential p-

value column displays the level of significance for each model term as it is added to the 

model in succession. The observed data or more extreme outcomes are used to calculate the 

likelihood of receiving such data if the null hypothesis is correct. A p-value below 0.05 

indicates that the term is statistically significant, implying that it has a meaningful impact on 

the variation in the response variable. The summary of statistics for GPU core temperature 

models indicates that all models had a substantial impact on the variance in the response 

variable. However, only the quartic model had a slightly higher value than 0.05. The 

Adjusted 𝑅2 column displays the fraction of the overall variability in the dependent variable 

that can be explained by the model while considering the number of independent variables. 

A greater adjusted 𝑅2 value signifies a superior alignment of the model with the data. The 

Predicted 𝑅2column is the anticipated proportion of variability in future observations that 

the model can explain. A higher Predicted 𝑅2 score suggests that the model is more likely to 

exhibit good performance when applied to new data. 

 Upon examination of the table, it is evident that the cubic and quartic models exhibit 

the greatest Adjusted 𝑅2  values (0.9964 and 0.9993) as well as a Predicted 𝑅2  value of 
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0.9824. This indicates that these models offer the most accurate fit to the data and are 

therefore the optimal choices for predicting the response variable. The quadratic model 

exhibits a significantly high Adjusted 𝑅2 value of 0.9569, while the linear model 

demonstrates the lowest Adjusted 𝑅2 values. The fifth model does not provide any Adjusted 

𝑅2 or predicted 𝑅2 values and is marked as aliased. The meaning conveyed is 

indistinguishable from another model due to collinearity or confounding factors. Therefore, 

the cubic and quartic models were chosen for further examination in this study.  

 

Table 4.4 ANOVA outcome for the suggested cubic model on GPU Core Temperature 

Source Sum of 

Squares 

df Mean 

Square 

F 

 Value 

p-value 

Prob > F 

 

Model 2586.94 3 862.31 551.45 0.0001 Significant 

A-FANSPEED 10.47 1 10.47 6.70 0.0812  

A2 449.98 1 449.98 287.76 0.0004  

A3 69.72 1 69.72 44.59 0.0068  

Residual 4.69 3 1.56    

Lack of Fit 4.07 1 4.07 13.01 0.0690 Not significant 

Pure Error 0.63 2 0.31    

Cor Total 2591.63 6     

 

 Table 4.4 presents the ANOVA results for the cubic model based on GPU core 

temperature. The sources of variation are enumerated, accompanied by their respective sums 

of squares, degrees of freedom, mean squares, F-values, and p-values. ANOVA uses the F-

value to assess the significance of the variation between components. The estimation is 

obtained by dividing the variation among the factors by the variance within the factors. The 

F-value of 2586.94 indicates that the model is statistically significant, as the probability of 
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attaining such a high F-value by chance alone is very low at 0.0001%. The p-values for 

FANSPEED are greater than those for lack of fit, indicating that both FANSPEED and lack 

of fit are not significant factors in impacting the response. The p-values for the 𝐴2 and 𝐴3 

terms are more than 0.05, suggesting that they are not statistically significant. However, the 

p-value for the model terms is less than 0.0001, indicating that it is a statistically significant 

term. 

 

Figure 4.1 Normal Plot of Residuals against Externally Studentized Residuals of Cubic 

model on GPU Core Temperature 

 The points in the normal plot of residuals vs. externally studentized residuals form a 

straight line, indicating that the residuals follow a normal distribution. Along the straight line, 

there were just a handful of noticeable outliers, but they were largely minor. Regression did 

not encounter any major problems due to the low leverage observations, which were only an 

outlier. 
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Figure 4.2 Graph of Predicted against Actual of cubic model on GPU Core Temperature 

 A graph comparing the expected and actual response levels may be seen in Figure 

4.2. A value or set of values that defy easy model prediction can be located with its help. A 

high linear association with the real core temperature was observed in the graph in Figure 

4.2. Thanks to the 45° line's equal distribution of the data points, we can see that the expected 

and actual responses are reasonably in agreement. Based on the corresponding fan speed 

RPM, it appears that the GPU core temperature has been successfully forecasted using a 

cubic model. A tiny subset of data points, called low leverage data, might skew the results 

of a fitted regression model with little effect. 

Design-Expert® Software

GPU Core Temperature

Color points by value of

GPU Core Temperature:

89.9

43.6

Actual

P
re

d
ic

te
d

Predicted vs. Actual

40

50

60

70

80

90

40 50 60 70 80 90



114 

 

 

Figure 4.3 Model Graph of cubic model on GPU Core Temperature 

 The reaction surface plot of the GPU Core indicates that the temperature changes 

with the speed of the fan. The 95% confidence band on the mean prediction at any given 

GPU core temperature is shown by the dotted lines. As demonstrated, every fan speed and 

accompanying GPU core temperature fell inside the dotted lines, indicating a 5% possibility 

of making an inaccurate decision using this supposed proper model. A 95% confidence 

interval spanning 91.5 to 43.6 degrees Celsius is seen from the model graph, which 

represents the response mean value. 
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Table 4.5 ANOVA outcome for the suggested quartic model on GPU Core Temperature 

Source Sum of 

Squares 

df Mean 

Square 

F 

 Value 

p-value 

Prob > F 

 

Model 2591.01 4 647.75 2072.81 0.0005 Significant 

A-FANSPEED 10.47 1 10.47 33.50 0.0286  

A2 1.11 1 1.11 3.56 0.1998  

A3 69.72 1 69.72 223.11 0.0045  

A4 4.07 1 4.07 13.01 0.0690  

Pure Error 0.63 2 0.31    

Cor Total 2591.63 6     

 

 Table 4.5 presents the ANOVA results for the quartic model based on GPU core 

temperature. The F-value of 2591.01 indicates that the model is statistically significant, as 

the probability of attaining such a high F-value by chance alone is very low at 0.005%. The 

p-values for FANSPEED are greater than those for 𝐴3and 𝐴4, indicating that all FANSPEED, 

𝐴3and 𝐴4 are not significant factors in impacting the response. The p-values for the 𝐴2 terms 

are more than 0.05, suggesting that they are not statistically significant. However, the p-

value for the model terms is less than 0.005, indicating that it is a statistically significant 

term. 
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Figure 4.4 Normal Plot of Residuals against Residuals of quartic model on GPU Core 

Temperature 

Upon analysing the normal plot of residuals, it was noted that the Design Expert was not 

able to calculate all externally studentized residuals hence it was switched to normal plot of 

residuals against residuals. From the plot, it was determined that there are few points ranging 

from 89.9 until 43.6 had run against the lines which emitted as outlier. Since we did not 

detect any conspicuous outliers or atypical observations, There were simply a few 

insignificant observations. The low leverage observations were an anomaly that did not pose 

a significant issue in regression. 
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Figure 4.5 Graph of Predicted against Actual of quartic model on GPU Core Temperature 

 

 Figure 4.5 displays a graph that compares the anticipated and observed levels of 

reaction. The assistance of this tool can be used to identify a value or group of values that 

are difficult to anticipate using a model. The graph in Figure 4.5 demonstrates a strong 

positive correlation with the actual core temperature. Due to the even distribution of data 

points along the 45° line, it is evident that the expected and actual responses are fairly 

consistent. The quartic model has effectively predicted the GPU core temperature based on 

the associated fan speed RPM. Based on the aforementioned result, it can be inferred that 

the quartic model is an effective tool for exploring the design space of GPU core temperature. 
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Figure 4.6 Model Graph of Quartic model on GPU Core Temperature 

 The GPU Core's reaction surface plot demonstrates that the temperature varies in 

accordance with the fan's speed. The dotted lines represent the 95% confidence interval for 

the mean prediction at any certain GPU core temperature. As shown, all fan speeds and 

corresponding GPU core temperatures remained within the boundaries represented by the 

dotted lines, suggesting a 5% chance of making an erroneous decision using this presumedly 

accurate model. According to the displayed model graph, it was seen that the gap between 

two dotted lines was thinner for the quartic model compared to the cubic model. This 

suggests that the quartic model had less error in forecasting the real GPU core temperature 

at different fan speeds. Therefore, the quartic model is the most appropriate choice for 

optimising fan speed. 
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4.1.2 Optimization of GPU memory temperature-dependent fan speed via response 

surface-based Response Surface Methodology (RSM) with a single factor 

 

Table 4.6 Summary of Statistics of various models for GPU Memory Temperature 

Source Sequential Lack of Fit Adjusted Predicted  

p-value p-value R-Squared R-Squared  

Linear 0.0072 0.0015 0.7519 0.6141  

Quadratic 0.0079 0.0071 0.9561 0.9305  

Cubic 0.0055 0.0668 0.9968 0.9844 Suggested 

Quartic 0.0668  0.9994  Suggested 

Fifth     Aliased 

 

 Table 4.6 displays the cubic and quartic models, which have the greatest Adjusted 

𝑅2 values of 0.9968 and 0.9994, respectively. Additionally, cubic models have a Predicted 

𝑅2 value of 0.9844. Utilising these models to forecast the response variable is the optimal 

choice since they offer the most accurate alignment with the data. The quadratic model 

exhibits a significantly high Adjusted 𝑅2 value of 0.9561, while the linear model has the 

lowest value. Due to its aliasing, the fifth model does not provide any Adjusted 𝑅2  or 

Predicted 𝑅2  values. Due to collinearity or other complicating conditions, the meaning 

ascribed is indistinguishable from another model. Therefore, this study will only examine 

the cubic and quartic models. 
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Table 4.7 ANOVA outcome for the suggested cubic model on GPU Memory Temperature 

Source Sum of 

Squares 

df Mean 

Square 

F 

 Value 

p-value 

Prob > F 

 

Model 3022.36 3 1007.45 624.70 0.0001 Significant 

A-FANSPEED 11.16 1 11.16 6.92 0.0782  

A2 537.39 1 537.39 333.23 0.0004  

A3 83.72 1 83.72 51.91 0.0055  

Residual 4.84 3 1.61    

Lack of Fit 4.21 1 4.21 13.48 0.0668 Not significant 

Pure Error 0.63 2 0.31    

Cor Total 3027.20 6     

 

 The ANOVA findings for the cubic model incorporating GPU core temperature are 

presented in Table 4.7. The model exhibits statistical significance, as evidenced by its F-

value of 3022.36. The probability of obtaining such a high F-value by chance alone is 

exceedingly low, at 0.0001%. The observation that the p-value of FANSPEED is greater than 

that of 𝐴2and 𝐴3implies that none of these factors have a significant impact on the outcome. 

The lack of fit terms is not statistically significant since their p-values exceed 0.05. The 

model terms exhibit p-values below 0.0001, indicating their statistical significance. 
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Figure 4.7 Normal Plot of Residuals against Externally Studentized Residuals of cubic 

model on GPU Memory Temperature 

 Figure 4.7 shows a straight line representing the normal distribution of residuals 

against externally studentized residuals. This means that the residuals are distributed 

normally. On the linear path, there were just a few noticeable anomalies, but they were 

mostly insignificant. Regression did not face any severe complications due to the low 

leverage observations, which were merely an aberration. 
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Figure 4.8 Graph of Predicted against Actual of cubic model on GPU Memory 

Temperature 

Figure 4.8 shows a graph that compares the expected and actual reaction levels. It can help 

you find a value or set of values that are difficult to forecast using a model. Figure 4.8's graph 

showed a strong linear relationship with the actual core temperature. The 45° line shows that 

the data points are evenly distributed, so we can see that the expected and actual responses 

are rather close to each other. It seems that the cubic model has been successful in forecasting 

the GPU core temperature, as indicated by the associated fan speed RPM. Low leverage data 

refers to a small selection of data points that may slightly alter the outcomes of a fitted 

regression model. 
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Figure 4.9 Model Graph of Cubic model on GPU Memory Temperature 

 Figure 4.9 shows the GPU Core's reaction surface map, which shows that the 

temperature changes as the fan speed does. The dashed lines represent the 95% confidence 

interval around the mean projection for each specific GPU core temperature. All of the fan 

speeds and GPU core temperatures were within the specified range, suggesting a 5% chance 

of making a mistake with this purportedly precise model. The reaction mean value, as shown 

by the model graph, falls within a 95% confidence zone of about 54.5 degrees Celsius. 
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Table 4.8 ANOVA outcome for the suggested quartic model on GPU Memory Temperature 

Source Sum of 

Squares 

df Mean 

Square 

F 

 Value 

p-value 

Prob > F 

 

Model 3026.57 4 756.64 2421.26 0.0004 Significant 

A-FANSPEED 11.16 1 11.16 35.73 0.0269  

A2 1.70 1 1.70 5.43 0.1452  

A3 83.72 1 83.72 267.91 0.0037  

A4 4.21 1 4.21 13.48 0.0668  

Pure Error 0.62 2 0.31    

Cor Total 3027.20 6     

 

 Table 4.8 presents the ANOVA results for the quartic model based on GPU Memory 

Temperature. The F-value of 2421.26 indicates that the model is statistically significant, as 

the probability of attaining such a high F-value by chance alone is very low at 0.0004%. The 

p-values for FANSPEED are greater than those for 𝐴3and 𝐴4, indicating that all FANSPEED, 

𝐴3and 𝐴4 are not significant factors in impacting the response. The p-values for the 𝐴2 terms 

are more than 0.05, suggesting that they are not statistically significant. However, the p-

value for the model terms is less than 0.0004, indicating that it is a statistically significant 

term. 
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Figure 4.10 Normal Plot of Residuals against Residuals of quartic model on GPU Memory 

Temperature 

 Upon evaluating the normal plot of residuals, it was noticed that the design expert 

was not able to calculate all externally studentized residuals; hence, it was switched to the 

normal plot of residuals against residuals. From the plot, it was discovered that a few points 

of normal probability ranging from 64.3 to 35.7 had run against the lines that emitted an 

outlier. Since we did not find any apparent outliers or abnormal observations, there were 

only a few minor observations. The low leverage observations were an aberration that did 

not pose a substantial challenge in regression. 
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Figure 4.11 Graph of Predicted against Actual of quartic model on GPU Memory 

Temperature 

Figure 4.11 shows a graph that contrasts the expected and actual levels of response. 

If you're having trouble predicting a certain value or set of data using a model, this tool can 

help. The real core temperature is strongly positively correlated with the curve in Figure 4.11. 

The data points are evenly distributed along the 45° line, so it's clear that the expected and 

actual responses are rather consistent. In this case, the quartic model's prediction of the GPU 

core temperature from the corresponding fan speed RPM was spot on. The data shown above 

suggests that the quartic model works well for investigating GPU core temperature design 

space. 
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Figure 4.12 Model Graph of quartic model on GPU Memory Temperature 

 The response surface plot of the GPU Core shows that the temperature changes as a 

function of the fan speed. The mean projection at any given GPU core temperature is 

accompanied by a 95% confidence interval, shown by the dotted lines. Considering that all 

fan speeds and GPU core temperatures stayed inside the dotted lines, there's a 5% possibility 

that this assumedly accurate model made a mistake. In comparison to the cubic model, the 

quartic model had a narrower space between the two dotted lines, as shown in the model 

graph. Results like these show that the quartic model was better at predicting the actual GPU 

core temperature over a range of fan speeds. Optimising fan speed based on GPU memory 

temperature is best accomplished using the quartic model. 
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4.2 Results of RSM analysis of Nickel thermal pad on GPU core and memory 

temperature  

 

4.2.1 Optimization of GPU Core Temperature on nickel thermal pad via response 

surface-based Response Surface Methodology (RSM) with a single factor 

 

 Based on the testing for variable fan speed under identical GPU load for nickel 

thermal pad, it was required to run 7 times for quadratic model. The results of 7 run of 

experiments that had been done were shown in the table below: 

Table 4.9 Results of Design of Experiments for variable fan speed on nickel thermal pad. 

 

 According to the data in Table 4.8, it was noted that the temperatures of the GPU 

core and memory reduced progressively as the fan speed rose. An important reason for this's 

importance in thermodynamics is that a faster fan speed would cause air to blow faster onto 

the GPU's heat sink, leading to stronger forced convection and a real acceleration in the rate 

of heat transfer. The lowest temperatures for the core and memory were seen at 3000 rpm, 

which is the maximum fan speed. Still, it was noted that the GPU memory had a far greater 

temperature than the GPU core, suggesting that the memory had generated a lot more heat. 

Thus, the GPU's memory was the heat-generating component. The memory attained a 

maximum temperature of 93°C when the fan speed was set to 550 rpm, which is marginally 

lower than the original thermal pad. The nickel thermal pad's high thermal conductivity and 

Std. 

run 

no. 

  Run   Factor     Response 

  Fan Speed 

(RPM) 

 GPU Core 

Temperature  

°C 

 GPU Memory 

Temperature  

°C       
  

4  1  2387.5  53.2  66.3 

7  2  1775  56.8  69.3 

2  3  550  79.4  92.4 

1  4  550  79.9  93 

5  5  3000  51.8  64.7 

3  6  1162.5  61.7  75.1 

6  7  3000  51.4  64.4 
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low thermal contact resistance likely caused this. Compared to the old thermal pad, the nickel 

one had better thermal contact resistance and greater thermal conductivity, allowing more 

heat to be transferred out of the GPU memory board. In addition, the biggest temperature 

difference was seen for the GPU core temperature, which dropped from 79.9°C to 61.7°C, 

an 18.2°C drop, when the fan speed increased from 550 rpm to 1162.5 rpm. The fan speed 

had a small but noticeable effect on the temperature of the GPU memory; however, the 

temperature differential between the GPU core and the fan speed range of 550 rpm to 1162.5 

rpm was much larger, at 17.9°C. From 2387.5 rpm all the way up to 3000 rpm, the fan speed 

spectrum showed a slight drop in temperature of about 1.4°C. In this case, we found that 

increasing the fan speed from 2387.5 rpm had no noticeable impact on the temperature 

change, meaning that we had reached the maximum cooling capability. 

 

Table 4.10 Model Evaluation of Quartic Order for GPU Core and Memory Temperature on 

nickel thermal pad. 

Term Std Error VIF Ri-Squared 2 Std. Dev. 

A 1.89 16.13 0.9380 6.3 % 

A2 6.26 48.36 0.9793 5.5 % 

A3 2.00 16.13 0.9380 6.2 % 

A4 5.54 48.36 0.9793 5.6 % 
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Table 4.11 Summary of Statistics of various models for GPU Core Temperature 

Source Sequential Lack of Fit Adjusted Predicted  

p-value p-value R-Squared R-Squared  

Linear 0.0028 0.0023 0.8287 0.7312  

Quadratic 0.0055 0.0128 0.9746 0.9586  

Cubic 0.0267 0.0427 0.9948 0.9739 Suggested 

Quartic 0.0427  0.9993  Suggested 

Fifth     Aliased 

 

 As accordance to Table 4.10, the cubic and quartic models stand out with the highest 

adjusted R2 values (0.9948 and 0.9993) and a predicted R2 value of 0.9739, as can be seen 

from the table. This means that these models are the best options for predicting the response 

variable since they provide the best fit to the data. With an adjusted R2 value of 0.9993, the 

quartic model stands out, while the linear model shows the lowest results. As it is labelled 

as aliased, the fifth model fails to supply either adjusted R2 or projected R2 values. Because 

of collinearity or other complicating factors, the meaning that is given is identical to another 

model. As a result, this research focused on the cubic and quartic models. 
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Table 4.12 ANOVA outcome for the suggested cubic model on GPU Core Temperature on 

nickel thermal pad 

Source Sum of 

Squares 

df Mean 

Square 

F 

 Value 

p-value 

Prob > F 

 

Model 941.68 3 313.89 384.14 0.0002 Significant 

A-FANSPEED 12.37 1 12.37 15.14 0.0301  

A2 118.76 1 118.76 145.33 0.0012  

A3 13.57 1 13.57 16.60 0.0267  

Residual 2.45 3 0.82    

Lack of Fit 2.25 1 2.25 21.92 0.0427 Significant 

Pure Error 0.20 2 0.10    

Cor Total 944.13 6     

 

 Results of the analysis of variance (ANOVA) for the cubic model that relies on the 

temperature of the GPU core on a nickel thermal pad are shown in Table 4.11. Because a big 

F-value like this can only happen by accident (with a probability of only 0.02%), the 941.68 

F-value indicates that the model is statistically significant. The significance of the model 

terms was demonstrated by "Prob > F" values below 0.0500. The A2 and A3 terms are 

statistically significant, as their p-values are smaller than 0.05. The significance of the lack 

of fit is indicated by the "Lack of Fit F-value" of 21.92. The likelihood of a "Lack of Fit F-

value" of this magnitude occurring as a result of random chance is 4.27%. The request was 

made for the model to fit because the absence of fit is considerable. 
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Figure 4.13 Normal Plot of Residuals against Externally Studentized Residuals of Cubic 

model of GPU Core Temperature on nickel thermal pad 

 There is a straight line connecting the points in the normal plot of externally 

studentized residuals to the residuals, suggesting that the residuals are normally distributed. 

Only a small number of outliers were really evident along the straight line. The low leverage 

observations were merely an outlier; therefore, regression did not face any severe 

complications. 
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Figure 4.14 Graph of Predicted against Actual of cubic model of GPU Core Temperature 

on nickel thermal pad. 

 Figure 4.13 shows a graph contrasting the predicted and observed levels of response. 

It can help you find a value or set of values that are difficult to forecast using a model. Figure 

4.13 shows a very linear relationship with the actual core temperature. We can observe that 

the anticipated and actual replies are quite congruent because the data points on the 45° line 

are evenly distributed. It seems that the cubic model has been successful in forecasting the 

GPU core temperature, as indicated by the associated fan speed RPM. The results of a fitted 

regression model could be slightly skewed by a small group of data points known as low-

leverage data. 
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Figure 4.15 Model Graph of cubic model of GPU Core Temperature on nickel thermal pad 

 Figure 4.14 displays a graph contrasting the projected and observed levels of 

response. It can help you identify a value or set of variables that are tough to forecast using 

a model. Figure 4.14 demonstrates a highly linear relationship with the real core temperature. 

We can note that the predicted and actual replies are highly consistent because the data points 

on the 45° line are uniformly dispersed. It seems that the cubic model has been successful in 

projecting the GPU core temperature, as demonstrated by the accompanying fan speed RPM. 

The results of a fitted regression model could be slightly biassed by a small collection of 

data points known as low leverage data. 
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Table 4.13 ANOVA outcome for the suggested quartic model of GPU Core Temperature on 

nickel thermal pad 

Source Sum of 

Squares 

df Mean 

Square 

F 

 Value 

p-value 

Prob > F 

 

Model 943.93 4 235.98 2302.27 0.0004 Significant 

A-FANSPEED 12.37 1 12.37 120.70 0.0082  

          A2 7.022E-003 1 7.022E-003 0.069 0.8180  

A3 13.57 1 13.57 132.36 0.0075  

A4 2.25 1 2.25 21.92 0.0427  

Pure Error 0.20 2 0.10    

Cor Total 944.13 6     

 

 The graph in Figure 4.12 compares the expected and actual response levels. It might 

help you find a value or group of variables that are hard to model and predict. A very linear 

correlation with the actual core temperature is shown in Figure 4.12. The evenly distributed 

data points on the 45° line allow us to observe that the expected and actual responses are 

very compatible with one another. The fan speed RPM that comes with the GPU shows that 

the cubic model has predicted the core temperature. A tiny set of data points, called low 

leverage data, could somewhat skew the findings of a fitted regression model. 
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Figure 4.16 Scatter plot of residuals versus residuals of a quartic model representing the 

relationship between GPU core temperature and nickel thermal pad. 

 

 After observing that the design expert couldn't compute all externally studentized 

residuals using the normal plot of residuals, the focus shifted to using the normal plot of 

residuals versus residuals. The plot revealed that the lines that produced the outlier crossed 

several times, with normal probabilities varying from 92.9 to 21.4%. Since there were no 

obvious anomalies or outliers, the number of minor observations was quite low. Because 

they were outliers, the low-leverage observations did not significantly complicate the 

regression process. 
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Figure 4.17 Comparison of the quartic model's predicted and actual values for the 

temperature of GPU memory on a nickel thermal pad 

 Figure 4.17 displays a graph comparing the anticipated and observed levels of 

reaction. If you are encountering difficulties in forecasting a specific metric or dataset using 

a model, this tool can provide assistance. There is a high positive correlation between the 

actual core temperature and the curve shown in Figure 4.16. The data points exhibit a 

uniform distribution along the 45° line, indicating a high level of consistency between the 

expected and actual responses. The quartic model accurately predicted the GPU core 

temperature based on the associated fan speed RPM in this instance. The data shown above 

indicates that the quartic model is effective in exploring the design space of GPU core 

temperature. 
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Figure 4.18 Model Graph of quartic model of GPU Core Temperature on nickel thermal 

pad 

 The reaction surface plot of the GPU Core illustrates the relationship between 

temperature and fan speed. The average forecast at any specific GPU core temperature is 

accompanied by a 95% confidence interval, indicated by the dotted lines. Given that the fan 

speeds and GPU core temperatures remained below the specified limits, there is a 5% 

probability that this presumably precise model has made an error. The quartic model 

exhibited a smaller gap between the two dashed lines on the model graph, in contrast to the 

cubic model. These results demonstrate that the quartic model outperformed in forecasting 

the real GPU core temperature across various fan speeds. The most effective approach to 

optimising fan speed depending on GPU core temperature is by utilising the quartic model. 
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4.2.2 Optimization of GPU memory temperature on nickel thermal pad via response 

surface-based Response Surface Methodology (RSM) with a single factor 

 

Table 4.14 Summary of statistical data on GPU memory temperature across different 

models using a nickel thermal pad. 

Source Sequential Lack of Fit Adjusted Predicted  

p-value p-value R-Squared R-Squared  

Linear 0.0027 0.0025 0.8306 0.7353  

Quadratic 0.0038 0.0168 0.9789 0.9663  

Cubic 0.0093 0.1160 0.9978 0.9901 Suggested 

Quartic 0.1160  0.9993   

Fifth     Aliased 

 

 

 The cubic and quartic models, shown in Table 4.13, had the highest adjusted R2 

values of 0.9978 and 0.9993, respectively. In addition, cubic models exhibit a predicted R2 

value of 0.9901. Using these models to predict the response variable is the best choice since 

they provide the most exact fit with the data. The quadratic model demonstrates a notably 

high adjusted R2 value of 0.9789, ranking slightly below the cubic and quartic models. In 

contrast, the linear model reveals the lowest value. The fifth model lacks adjusted R2 or 

predicted R2 values due to aliasing. As a result of collinearity or other complicating factors, 

the attributed meaning cannot be differentiated from that of another model. Hence, this study 

will just investigate the cubic models. 
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Table 4.15 ANOVA outcome for the suggested cubic model on GPU Memory Temperature 

Source Sum of 

Squares 

df Mean 

Square 

F 

 Value 

p-value 

Prob > F 

 

Model 952.36 3 317.45 925.18 < 0.0001 Significant 

A-FANSPEED 13.84 1 13.84 40.33 0.0079  

A2 121.22 1 121.22 353.29 0.0003  

A3 12.37 1 12.37 36.04 0.0093  

Residual 1.03 3 0.34    

Lack of Fit 0.80 1 0.80 7.15 0.1160 Not significant 

Pure Error 0.22 2 0.11    

Cor Total 953.39 6     

 

 Table 4.14 displays the results of the analysis of variance (ANOVA) for the cubic 

model that takes GPU core temperature into account. A statistical significance of 925.18 is 

demonstrated by the model. The odds of getting such a high F-value by pure chance are 

0.0001%, which is extremely low. Given that FANSPEED's p-value is larger than A2 and A3, 

it may be inferred that none of these factors significantly affect the result. When compared 

to the pure error, the "lack of fit F-value" of 7.15 indicates that the lack of fit does not warrant 

substantial consideration. A noise-induced lack of fit F-value of this magnitude is possible 

(11.60% likelihood). The p-values for the lack of fit terms are greater than 0.05; hence, they 

are not considered statistically significant. The statistical importance of the model terms is 

indicated by their p-values being less than 0.0001. 
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Figure 4.19 The thermal nickel pad for normal plot of residuals versus externally 

standardised residuals of a cubic model of GPU memory temperature 

In Figure 4.19, we can see that the residuals, when compared to the externally 

studentized residuals, follow a normal distribution. The usual distribution of the residuals is 

indicated by this. There were a handful of small but apparent outliers throughout the linear 

path. Although the low-leverage observations were unusual, they did not pose any serious 

problems for regression. 
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Figure 4.20 Graph comparing the predicted values to the actual values of a cubic model 

representing the GPU memory temperature on a nickel thermal pad. 

Graph 4.20 illustrates a comparison between the anticipated and observed levels of 

reaction. It can assist in identifying elusive or challenging-to-predict values or sets of 

variables that cannot be accurately forecasted using a model. The graph in Figure 4.20 

exhibited a robust linear correlation with the actual temperature of the memory. The presence 

of a 45° line indicates a uniform distribution of data points, suggesting a close proximity 

between the expected and actual answers. The cubic model appears to have effectively 

predicted the GPU memory temperature in the nickel thermal pad, as seen by the 

corresponding fan speed RPM. 
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Figure 4.21 Graphical representation of a cubic model of the temperature of GPU memory 

on a nickel thermal pad 

 The reaction surface map of the GPU memory temperature, as shown in Figure 4.21, 

reveals that the memory temperature changes in relation to the fan speed. For each GPU 

memory temperature, the dotted lines show the 95% confidence interval around the mean 

projection. With no outliers observed, this supposedly accurate model has a 5% margin of 

error because both the fan speeds and GPU memory temperatures fell within the prescribed 

range. According to the model graph, the average reaction temperature is within a 95% 

confidence interval of approximately 69.3 degrees Celsius. 
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4.3 Results of RSM analysis of copper thermal pad on GPU core and memory 

temperature  

 

4.3.1 Optimization of GPU Core Temperature on nickel thermal pad via response 

surface-based Response Surface Methodology (RSM) with a single factor 

 

 Based on the testing for variable fan speed under identical GPU load for copper 

thermal pad, it was required to run 7 times for quadratic model. The results of 7 run of 

experiments that had been done were shown in the table below: 

Table 4.16 Results of Design of Experiments for variable fan speed on copper thermal pad. 

 

 Based on the data shown in Table 4.15, it was seen that the temperatures of the GPU 

core and memory decreased gradually as the fan speed increased. A significant factor 

contributing to its significance in thermodynamics is that an increased fan speed would result 

in a higher velocity of air blowing across the GPU's heat sink, resulting in enhanced forced 

convection and a tangible augmentation in the rate of heat transfer. The core and memory 

saw their lowest temperatures at 3000 rpm, which corresponds to the highest fan speed. 

However, it was observed that the temperature of the GPU memory was far higher than that 

of the GPU core, indicating that the memory had produced a significantly larger amount of 

heat. Therefore, the component responsible for generating heat was the memory of the GPU. 

At a fan speed of 550 rpm, the memory reached a peak temperature of 90.3°C, which is 

Std. 

run 

no. 

  Run   Factor     Response 

  Fan Speed 

(RPM) 

 GPU Core 

Temperature  

°C 

 GPU Memory 

Temperature  

°C       
  

7  1  1775  52.3  64.3 

5  2  3000  48.4  60.6 

2  3  550  77.4  90.2 

4  4  2387.5  51.2  63.3 

6  5  3000  48.9  61.6 

1  6  550  77.2  90.3 

3  7  1162.5  59.1  71.7 
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somewhat below both the original thermal pad and the nickel thermal pad. The copper 

thermal pad's superior thermal conductivity and minimal thermal contact resistance, 

compared to the original and nickel thermal pads, certainly contributed to this issue. When 

comparing the original and nickel thermal pads, the copper pad exhibited superior thermal 

contact resistance and higher thermal conductivity. This resulted in a more efficient transfer 

of heat from the GPU memory board. Furthermore, the most significant disparity in 

temperature was observed in the GPU core temperature, which decreased from 77.4°C to 

59.1°C, resulting in a reduction of 18.3°C when the fan speed escalated from 550 rpm to 

1162.5 rpm. The fan speed had a slight yet discernible impact on the temperature of the GPU 

memory. However, the temperature difference between the GPU memory and the fan speed 

range of 550 rpm to 1162.5 rpm was significantly greater, measuring at 18.6°C. Between 

2387.5 rpm and 3000 rpm, the fan speed spectrum exhibited a minor decrease in temperature 

of around 2.3°C. Upon investigation, we discovered that raising the fan speed from 2387.5 

rpm did not result in any discernible effect on the temperature alteration, indicating that the 

cooling capacity had hit its upper limit. 

 

Table 4.17 Model Evaluation of Quartic Order for GPU Core and Memory Temperature on 

copper thermal pad. 

Term Std Error VIF Ri-Squared 2 Std. Dev. 

A 1.89 16.13 0.9380 6.3 % 

A2 6.26 48.36 0.9793 5.5 % 

A3 2.00 16.13 0.9380 6.2 % 

A4 5.54 48.36 0.9793 5.6 % 
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Table 4.18 Summary of Statistics of various models for GPU Core Temperature on copper 

thermal pad 

Source Sequential Lack of Fit Adjusted Predicted  

p-value p-value R-Squared R-Squared  

Linear 0.0036 0.0014 0.8109 0.7094  

Quadratic 0.0055 0.0078 0.9719 0.9561  

Cubic 0.0004 0.5833 0.9996 0.9991 Suggested 

Quartic 0.5833  0.9996   

Fifth     Aliased 

 

 According to the data presented in Table 4.17, the cubic and quartic models exhibit 

the greatest adjusted R2 values (0.9996) and a predicted R2 value of 0.9991, as indicated in 

the table. Consequently, these models are the most optimal choices for forecasting the 

response variable, as they offer the most accurate alignment with the data. The quartic and 

cubic models provide a remarkable adjusted R2 value of 0.9996, while the linear model 

demonstrates the lowest results with a value of 0.8109. The fifth model, which is designated 

as aliased, does not provide adjusted R2 or predicted R2 values. Due to collinearity or other 

complicating variables, the assigned meaning is indistinguishable from another model. 

Consequently, our research specifically concentrated on the cubic models. 
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Table 4.19 ANOVA outcome for the suggested cubic model on GPU Core Temperature on 

copper thermal pad 

Source Sum of 

Squares 

df Mean 

Square 

F 

 Value 

p-value 

Prob > F 

 

Model 989.41 3 329.80 5638.61 < 0.0001 Significant 

A-FANSPEED 9.25 1 9.25 158.21 0.0011  

A2 137.39 1 137.39 2348.86 < 0.0001  

A3 18.35 1 18.35 313.67 0.0004  

Residual 0.18 3 0.058    

Lack of Fit 0.030 1 0.030 0.42 0.5833 not significant 

Pure Error 0.15 2 0.073    

Cor Total 989.59 6     

 

 The ANOVA findings for the cubic model based on GPU core temperature on a 

copper thermal pad are presented in Table 4.18. The F-value of 5638.61 suggests that the 

model is statistically significant, as the probability of obtaining such a high F-value by 

chance alone is extremely low at 0.0001%. The F-values for FANSPEED are higher than 

those for lack of fit, suggesting that neither FANSPEED nor lack of fit have a substantial 

impact on the reaction. The p-values for the A2 and A3 components are below the threshold 

of 0.05, indicating that they lack statistical significance. The p-value for the model terms is 

less than 0.0001, indicating that it is a statistically significant term. 
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Figure 4.22 Normal Plot of Residuals against Externally Studentized Residuals of Cubic 

model of GPU Core Temperature on copper thermal pad 

 The residuals appear to follow a normal distribution, as they are connected to the 

points in the normal plot of externally studentized residuals by a straight line. A handful of 

extreme values were clearly visible along the straight line. Because the low leverage 

observations were an aberration, regression did not encounter any major challenges. 
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Figure 4.23 Graph of Predicted against Actual of cubic model of GPU Core Temperature 

on copper thermal pad. 

 A graph comparing the expected and actual levels of response is shown in Figure 

4.23. The real core temperature and the curve in Figure 4.23 are highly correlated. The data 

points are evenly distributed along the 45° line, showing that the expected and actual 

responses are very consistent. In this case, the GPU core temperature was precisely predicted 

by the cubic model using the appropriate fan speed RPM. The data presented above supports 

the idea that the cubic model works well for investigating GPU core temperature design 

space. 
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Figure 4.24 Graph depicting the cubic model of GPU core temperature on a copper 

thermal pad. 

 

 The reaction surface plot of the GPU Core illustrates the correlation between the 

temperature and the speed of the fan. The dashed lines depict the 95% confidence interval 

for the average forecasted value at a specific GPU core temperature. As observed, the fan 

speeds and accompanying GPU core temperatures consistently stayed within the limits 

indicated by the dotted lines. This indicates that there is a 5% probability of making an 

incorrect decision using this presumably accurate model. Based on the presented model 

graph, it is apparent that the gas between the two dotted lines is tightly connected, indicating 

a negligible margin of error. These findings indicate that the cubic model exhibited the lowest 

level of inaccuracy when predicting the actual GPU core temperature under varying fan 

speeds. Hence, the cubic model is the most suitable option for improving fan speed. 
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4.3.2 Optimization of GPU memory temperature on copper thermal pad via response 

surface-based Response Surface Methodology (RSM) with a single factor 

 

Table 4.20 Summary of statistical data on GPU memory temperature across different 

models using a copper thermal pad. 

Source Sequential Lack of Fit Adjusted Predicted  

p-value p-value R-Squared R-Squared  

Linear 0.0040 0.0044 0.8028 0.6966  

Quadratic 0.0041 0.0287 0.9746 0.9598  

Cubic 0.0029 0.5652 0.9988 0.9969 Suggested 

Quartic 0.5652  0.9985   

Fifth     Aliased 

 

 The cubic and quartic models, as displayed in Table 4.19, exhibited the highest 

adjusted R2 values of 0.9988 and 0.9985, respectively. Furthermore, cubic models 

demonstrate a forecasted R2 value of 0.9969. Utilising these models for predicting the 

response variable is the optimal decision since they offer the most precise alignment with 

the data. The quadratic model exhibits a significantly high adjusted R2 value of 0.9746, 

which places it somewhat lower than the cubic and quartic models. Conversely, the linear 

model indicates the minimum value. The fifth model does not have modified R2 or 

anticipated R2 values because of aliasing. Due to collinearity or other complicating 

circumstances, it is not possible to distinguish the attributed meaning from that of another 

model. Therefore, this study will solely examine the cubic models. 
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Table 4.21 ANOVA outcome for the suggested cubic model on GPU Memory Temperature 

Source Sum of 

Squares 

df Mean 

Square 

F 

 Value 

p-value 

Prob > F 

 

Model 1038.13 3 346.04 1667.09 < 0.0001 Significant 

A-FANSPEED 11.22 1 11.22 54.07 0.0052  

A2 153.12 1 153.12 737.69 0.0001  

A3 16.95 1 16.95 81.64 0.0029  

Residual 0.62 3 0.21    

Lack of Fit 0.12 1 0.12 0.47 0.5652 Not significant 

Pure Error 0.50 2 0.25    

Cor Total 1038.75 6     

 

 The ANOVA findings for the cubic model, which include GPU memory temperature, 

are presented in Table 4.20. The model demonstrates a statistical significance of 1038.13. 

The probability of obtaining such a high F-value by random chance is 0.0001%, indicating 

an exceedingly low likelihood. Since the p-value of FANSPEED is greater than that of A2 

and A3, it may be concluded that none of these parameters have a significant impact on the 

outcome. The "lack of fit F-value" of 0.47 suggests that the lack of fit is not significant 

enough to be given serious consideration as compared to the pure error. It is feasible to have 

a noise-induced lack of fit F-value of this magnitude with a likelihood of 56.52%. The p-

values for the lack of fit terms exceed 0.05, indicating that they are not statistically 

significant. The model terms are considered statistically significant if their p-values are less 

than 0.0001. 
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Figure 4.25 The thermal copper pad for normal plot of residuals versus externally 

standardised residuals of a cubic model of GPU memory temperature 

Figure 4.25 demonstrates that the residuals comply with a normal distribution when 

compared to the externally studentized residuals. This is indicative of the typical distribution 

of the residuals. Several modest but noticeable outliers were present along the linear course. 

While the low-leverage observations were atypical, they did not provide any significant 

issues for regression. 
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Figure 4.26 Graph comparing the predicted values to the actual values of a cubic model 

representing the GPU memory temperature on a copper thermal pad. 

 

Figure 4.26 depicts a comparison between the expected and actual levels of response. 

It can help find elusive or difficult-to-predict values or groupings of variables that cannot be 

successfully projected using a model. The graph displayed in Figure 4.26 demonstrated a 

strong linear association with the true temperature of the memory. A 45° line on the graph 

signifies a homogeneous distribution of data points, implying a strong correlation between 

the predicted and observed values. The cubic model accurately forecasted the GPU memory 

temperature in the copper thermal pad, as seen by the associated fan speed RPM. 
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Figure 4.27 Graphical representation of a cubic model of the temperature of GPU memory 

on a copper thermal pad 

 Figure 4.27 displays a reaction surface map illustrating the correlation between the 

fan speed and the temperature of the GPU memory. It demonstrates that the memory 

temperature fluctuates in response to variations in fan speed. The 95% confidence interval 

around the mean projection is represented by the dotted lines for each GPU memory 

temperature. Without any outliers, this purportedly precise model exhibits a 5% margin of 

error due to the fact that both the fan speeds and GPU memory temperatures were within the 

specified range. Based on the model graph, the mean reaction temperature falls within a 95% 

confidence interval of around 64.3 degrees Celsius. 
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4.4 Discussion on the GPU core and memory temperature achieved by various 

thermal pad material. 

 

 

Figure 4.28 Graph of GPU Core Temperature against variations of thermal pad. 

 

Figure 4.29 Graph of GPU Memory Temperature against variations of thermal pad. 
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 In theory, increasing the fan speed and wind velocity will result in improved cooling 

performance. Upon doing a comparative analysis of the three thermal pad variants on the 

GPU core temperature, it was observed that the conventional thermal pad had the highest 

temperature reading at a fan speed of 550 rpm. The nickel thermal pad and copper thermal 

pad exhibited lower temperatures in contrast. This phenomenon can be ascribed to the 

thermal pad's ability to withstand high temperatures, which is consistent across three distinct 

materials. The initial thermal pad has the most elevated thermal resistance, quantified at 

0.1540 °C/W. When comparing the two, the nickel thermal pad exhibits a thermal resistance 

of 0.0042 °C/W, whilst the copper thermal pad has the lowest thermal resistance, measuring 

at 0.0010 °C/W. The copper thermal pad achieved the lowest temperature when the fan speed 

was set at 550 rpm, making this explanation the most lucid. The copper thermal pad exhibits 

the most minimal thermal resistance, facilitating effective transmission of heat to the heat 

sink of the GPU. Upon comparing the rates at which heat is dissipated by copper, nickel, and 

stock thermal pads, it was determined that the copper thermal pad exhibited the highest rate. 

Despite operating at a low fan speed and with limited air flow, the copper thermal pad 

successfully lowered the core temperature to 77.2°C. In contrast, thermal pads designed for 

stocks achieve their peak core temperature at 89.7 °C. 

 The increase in fan speed, ranging from 1162.5 rpm to 2387.5 rpm, significantly 

reduced the GPU core temperature. Nevertheless, by progressively raising the fan speed 

from 1162.5 rpm to 2387.5 rpm, the thermal pad provided with the product achieved the 

lowest temperature for the GPU core. These circumstances can be attributed to the inherent 

heat capacity of materials. The stock thermal pad is made of silicone, which has a heat 

capacity of 1300 J/kg (Blinzler et al., 2020). In comparison, nickel has a heat capacity of 445 

J/KgK (“Specific Heat for all the elements in the Periodic Table,” n.d.), while copper has a 

heat capacity of 385 J/KgK (“Specific heat capacity,” n.d.). The heat capacity of a material 
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is defined as the amount of heat energy required to increase its temperature by 1°C. Therefore, 

in this scenario, even if the fan speed remains constant, the stock thermal pad can exhibit the 

lowest temperature. This is because it has the capacity to retain more heat energy before its 

temperature increases, as compared to the nickel and copper thermal pads. Even though 

nickel and copper thermal pads had better yet higher thermal conductivity than stock thermal 

pad, however, due to its higher elastic modulus than stock thermal pad. Its solid metal body 

of nickel and copper thermal pad results to lesser actual contact area with GPU heat sink 

which cannot further enhance its heat transfer characteristics fully between the interfaces, in 

contrast, the softer stock thermal pads provide softer contact surface which enhance the 

thermal contact with GPU heat sink allows better heat transfer than nickel and copper 

thermal pad. 

 Apart from that, it is well known to us that thermal conductivity of the thermal pad 

will greatly influence the heat dissipation from chip to heat sink. As accordance to (Ren et 

al., 2023) who had done a numerical study on thermal pad, they found that the temperature 

of the chip sharply decreases with an increase in the thermal conductivity of the thermal pad, 

which shows that a higher thermal conductivity of the thermal pad will significantly enhance 

the heat dissipation. In our case, this statement validated on the 550 rpm fan speed where the 

copper thermal pad behaved the lowest temperature followed by nickel and the stock thermal 

pad at the last. This were due to their corresponding thermal conductivity of material itself, 

for copper thermal pad, it has thermal conductivity of 397.48 W/mK while 87.86 W/mK for 

nickel thermal pad followed by around 1 ~ 7 W/mK for the stock thermal pad. This scenario 

clearly explain why we could obtain a lowest temperature on copper thermal pad if 

comparing with nickel and stock thermal pad on 550 rpm fan speed.  
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4.5 Verification and validation of GPU core and memory temperatures in 

accordance with the RSM mathematical model's optimised fan speed. 

 

 In order to ensure the accuracy of the selected mathematical expression, this subtopic 

will be utilised to validate and verify the actual GPU core and memory temperatures against 

the proposed GPU core and memory temperatures. The mathematical models that would be 

the focus in this scenario are the cubic and quartic models. A limited number of criteria 

would be used to evaluate the numerical optimisation, including selecting the minimum 

values for fan speed, core temperature, and memory temperature or falling within the 

acceptable ranges for each of these variables. 

 

4.5.1 Verification on GPU Core Temperature and memory temperature for stock 

thermal pad in accordance with the RSM mathematical model’s optimised fan 

speed. 

 

 Based on the numerical optimization criteria, the optimization chosen were all 

minimize for fan speed, core and memory temperature. The table of constraints was shown 

in table below: 

Table 4.22 Table of constraints RSM numerical optimization  

Name Goal 

A: FANSPEED Minimize 

GPU Core Temperature Minimize 

GPU Memory Temperature Minimize 

 

Table 4.23 Solutions proposed by RSM numerical optimization. 

FANSPEED 

(RPM) 

GPU Core 

Temperature 

(°C) 

GPU Memory 

Temperature 

(°C) 

Desirability 

1430.592 51.885 63.001 0.759 
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Figure 4.30 Temperature validation on 1430 RPM on stock thermal pad 

 The analysis of the temperature versus time graph in Figure 4.30 revealed that the 

GPU memory temperature stabilised at 63.7°C, whereas the GPU core temperature attained 

52°C. The mathematical model yielded a standard error of approximately 1.11% for GPU 

memory and 0.22% for GPU core temperature in the given scenario. It was evident that the 

quartic model had accurately predicted the temperature of the GPU core and memory; 

consequently, this model could be employed to optimise the temperature by utilising the 

recommended fan speed. 

 

4.5.2 Verification on GPU Core Temperature and memory temperature for nickel 

thermal pad in accordance with the RSM mathematical model’s optimised fan 

speed. 

 

 Based on the numerical optimization criteria, the optimization chosen were in range 

for fan speed and GPU core temperature while minimize for GPU memory temperature. The 

table of constraints was shown in table below: 
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Table 4.24 Table of constraints RSM numerical optimization  

Name Goal 

A: FANSPEED In-range 

GPU Core Temperature In-range 

GPU Memory Temperature Minimize 

 

Table 4.25 Solutions proposed by RSM numerical optimization. 

FANSPEED 

(RPM) 

GPU Core 

Temperature 

(°C) 

GPU Memory 

Temperature 

(°C) 

Desirability 

2979.046 51.514 64.546 0.995 

 

 

 

Figure 4.31 Temperature validation on 2979 RPM on nickel thermal pad 

 Upon examining the temperature versus time graph depicted in Figure 4.31, it was 

determined that the GPU memory temperature reached a state of stability at 63.5°C, while 

the GPU core temperature peaked at 51.1°C. In the provided scenario, the mathematical 

model produced standard errors of around 1.62% and 0.80%, respectively, for GPU memory 

and GPU core temperature. The accuracy with which the quartic model predicted the GPU 

core and memory temperatures was readily apparent. As a result, this model could be used 

to optimise the temperature by implementing the suggested fan speed. 
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4.5.3 Verification on GPU Core Temperature and memory temperature for copper 

thermal pad in accordance with the RSM mathematical model’s optimised fan 

speed. 

 

 Based on the numerical optimization criteria, the optimization chosen were in range 

GPU core temperature while minimize for fan speed and GPU memory temperature. The 

table of constraints was shown in table below: 

Table 4.26 Table of constraints RSM numerical optimization  

Name Goal 

A: FANSPEED Minimize 

GPU Core Temperature In-range 

GPU Memory Temperature Minimize 

 

Table 4.27 Solutions proposed by RSM numerical optimization. 

FANSPEED 

(RPM) 

GPU Core 

Temperature 

(°C) 

GPU Memory 

Temperature 

(°C) 

Desirability 

1365.734 55.848 68.218 0.704 

 

 

Figure 4.32 Temperature validation on 1365 RPM on copper thermal pad 

55.9

68.4

40

45

50

55

60

65

70

75

G
P

U
 T

em
p

er
a
tu

re
 (

°C
)

GPU Temperature Validation on 1365 rpm

GPU Core Temperature GPU Memory Temperature



163 

 

 After analysing the temperature versus time graph illustrated in Figure 4.32, it was 

ascertained that the GPU core temperature peaked at 55.9°C, whereas the GPU memory 

temperature stabilised at 68.4°C. The mathematical model generated standard errors of 

approximately 0.27% and 0.093% for GPU memory and GPU core temperature, respectively, 

in the given scenario. It was immediately apparent that the quartic model accurately 

anticipated the temperatures of the GPU's core and memory. Thus, by implementing the 

recommended fan speed, this model could be utilised to optimise the temperature. 
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CHAPTER 5 

 

CONCLUSION AND RECOMMENDATIONS 

 

5.1 Conclusions 

 

 Essentially, this study examined how changes in fan speed impact the behaviour of 

GPU temperature while the GPU is under the same level of load. This study involved 

applying GPU load to the GPU by utilising Dagger Hashimoto mining algorithms via the 

NiceHash Miner programme. The MSI Afterburner was employed to regulate the clock 

settings and fan speed of the GPU, while HWINFO 64 was utilised to monitor the 

temperature of the GPU's core and memory. Based on the collected data, it was discovered 

that increasing the fan speed has a substantial impact on the GPU temperature. This is 

because the increased air flow velocity to the GPU's heat sink enhances the rate of heat 

transfer between the heat sink and the GPU chips. However, it was observed that increasing 

the fan speed to 1162.5 rpm and beyond did not result in a substantial decrease in temperature 

compared to the increase in fan speed from 550 rpm to 1162.5 rpm. This can be attributed to 

the inherent cooling capability of the GPU system. For instance, when the fan speed of the 

stock thermal pad was decreased from 550 rpm to 1162.5 rpm, the temperature decreased by 

33°C. However, when the fan speed was increased from 1162.5 rpm to the maximum speed 

of 3000 rpm, the temperature only decreased by approximately 12°C. If the ASUS TUF 

Gaming 3060 GPU were to be fully utilised, increasing the fan speed further would have a 

significant impact on heat dissipation performance. 

 Furthermore, it has been discovered that the elastic modulus of the thermal pad has 

a substantial impact on the actual contact area at the interface, which in turn impacts the heat 
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transfer of the sandwich structure between the thermal pad and the heat sink. (Ren et al., 

2023) Therefore, the thermal pad made of stock material, which had a lower elastic modulus, 

exhibited a softer surface. This softness enabled a larger contact area between the thermal 

pad and the GPU heat sink, resulting in enhanced heat transfer compared to thermal pads 

made of nickel and copper. During this investigation, the RSM analysis proposed the use of 

cubic and quartic models through the Design Expert programme. To validate the results, we 

conducted additional experiments to evaluate if the required GPU core and memory 

temperatures could be achieved. According to the validation process, it was seen that the 

validation was successful, as the margin of error was found to be below 5%. This indicates 

that the mathematical model selection accurately predicted the GPU core and memory 

temperature based on the recommended fan speed. The study successfully accomplished its 

purpose by utilising RSM to input values and determine the appropriate fan speed required 

to attain the specified GPU core and memory temperature. 

 Regarding the impact of different thermal pad materials on the temperature of the 

GPU core and memory, it was observed that nickel and copper thermal pads exhibited lower 

temperatures compared to the stock thermal pad when the fan speed was set to low. This was 

attributed to the significant influence of their material properties on their heat dissipation 

performance. Increasing material thermal conductivity towards surface thermal resistivity is 

more effective, as it can enhance the convective heat transfer coefficient on the side of the 

heat sink. The experiment demonstrated that the copper thermal pad attained a temperature 

of 90°C, while the nickel thermal pad reached a slightly higher temperature of 93°C. In 

contrast, the stock thermal pad recorded the greatest temperature at 104°C. Although the heat 

capacity of the stock thermal pad, which is primarily composed of silicone rubber, is higher 

than that of nickel and copper, However, thermal conductivity plays a crucial role in the 

disposal of heat. Despite the copper thermal pad maintaining a higher temperature than the 
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stock thermal pad at high fan speed, Using a copper thermal pad on the GPU memory is still 

a beneficial choice for extreme applications such as gaming and cryptocurrency mining. It 

effectively lowers the memory temperature even when the fan speed is low, resulting in 

energy savings on the cooling system while still attaining a high hash rate. 

5.2 Recommendations for future study 

 

In this study, we conducted tests on three different materials, namely silicone rubber, 

nickel, and copper thermal pads, under the same GPU load. It was discovered that materials 

with higher thermal conductivity, such as nickel and copper, and lower thermal resistance 

can effectively reduce the temperature of the GPU. However, the thermal pads made of 

nickel and copper have a lower heat capacity compared to the stock thermal pad. As a result, 

they exhibit slightly higher temperatures than the stock thermal pad when the fan speed is 

increased. This is due to their characteristic of heating up more quickly than the stock thermal 

pad. Additionally, it was discovered that the solid thermal pad had inferior thermal contact 

compared to the softer stock thermal pad, resulting in improved thermal contact and a higher 

rate of heat transfer. 

In this scenario, I recommend conducting a replicated test on the thermal dissipation 

performance of GPU thermal pads using higher-ranked GPUs such as the RTX 3080, RTX 

3090, or the latest Nvidia graphic cards like the RTX 4070 and RTX 4090. I assert this 

because the aforementioned graphic cards have allocated a higher memory bandwidth, 

indicating a greater number of memory chips compared to the ASUS TUF Gaming 3060. 

Consequently, this leads to more heat generation. Therefore, it is ideal to verify the efficacy 

of these materials in extracting memory chips from the GPU. Additionally, I propose 

conducting the tests by utilising alternative mining algorithms such as KAWPOW, Autolykos, 

and others. 
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3 Preliminary Test Run

4
Test run for fan speed optimization 

using stock thermal pad

5
Actual run of experiment for stock 

thermal pad

6
Synthesis data obtained using RSM 

analysis

7
Prepare nickel thermal pad for 

upcoming test

8 Progress Report Preparation

9 Progress Report Submission

10
Actual Run of Experiment using 

nickel thermal pad

11
Prepare copper thermal pad for 

upcoming test

12
Synthesization of data obtained for 

three types of thermal pad

13
Final Report Preparation and 

Submission

14 Seminar Slide Preparation

Seminar Presentation + Correction 

of final report if applicable

15 Hardbound Report Submission

NO. TASK LIST

BMCU 4984 - UNDERGRADUATE PROJECT II (PSM II)

GANTT CHART PLANNING

PROJECT TITLE: Optimization of GPU Thermal Management Via Response Surface Methodology (RSM) Analysis

WEEK 


