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ABSTRACT 

Unmanned aerial vehicles (UAVs) have gained significant popularity across various 

industries and applications due to their versatility and accessibility. To facilitate these 

applications, this project aims to develop a system capable of tracking and following a 

moving object using the DJI Tello drone. The DJI Tello drone is a compact quadcopter 

equipped with a built-in 5-megapixel camera capable of capturing 720p video at 30 frames 

per second. The project leverages computer vision techniques, specifically, Convolutional 

Neural Networks (CNNs), to locate the target in real-time and adjust the drone's flight path 

to maintain visibility. The system's core components involve creating and testing an 

algorithm that evaluates video data from the DJI Tello drone's camera and sends flying 

commands to its flight controller. The control mechanism is crucial to ensuring the drone 

maintains a safe distance from the object and avoids collisions with obstacles. Python 

programming language is utilized to control the drone via Wi-Fi, providing commands for 

take-off, landing, movement, rotation, and other flight maneuvers. The completed system 

will undergo rigorous testing using real-world scenarios, such as tracking a moving vehicle 

or object. By combining the capabilities of the DJI Tello drone, computer vision algorithms, 

and the control mechanism, the system aims to achieve real-time object tracking and 

following, contributing to enhanced disaster management, emergency response, and search 

and rescue operations. 
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ABSTRAK 

Kenderaan udara tanpa pemandu (UAV) telah mendapat populariti yang ketara dalam 

pelbagai industri dan aplikasi kerana kepelbagaian dan kebolehcapaiannya. Untuk 

memudahkan aplikasi ini, projek ini bertujuan untuk membangunkan sistem yang mampu 

menjejak dan mengikuti objek bergerak menggunakan drone DJI Tello. Drone DJI Tello 

ialah quadcopter kompak yang dilengkapi dengan kamera 5 megapiksel terbina dalam yang 

mampu merakam video 720p pada 30 bingkai sesaat. Projek ini memanfaatkan teknik 

penglihatan komputer, khususnya, Convolutional Neural Networks (CNN), untuk mencari 

sasaran dalam masa nyata dan melaraskan laluan penerbangan dron untuk mengekalkan 

keterlihatan. Komponen teras sistem melibatkan mencipta dan menguji algoritma yang 

menilai data video daripada kamera drone DJI Tello dan menghantar arahan terbang kepada 

pengawal penerbangannya. Mekanisme kawalan adalah penting untuk memastikan dron 

mengekalkan jarak selamat dari objek dan mengelakkan perlanggaran dengan halangan. 

Bahasa pengaturcaraan Python digunakan untuk mengawal dron melalui Wi-Fi, 

menyediakan arahan untuk berlepas, mendarat, pergerakan, putaran dan gerakan 

penerbangan lain. Sistem yang lengkap akan menjalani ujian yang ketat menggunakan 

senario dunia sebenar, seperti menjejak kenderaan atau objek yang bergerak. Dengan 

menggabungkan keupayaan dron DJI Tello, algoritma penglihatan komputer dan mekanisme 

kawalan, sistem ini bertujuan untuk mencapai penjejakan dan pengikut objek masa nyata, 

menyumbang kepada pengurusan bencana yang dipertingkatkan, tindak balas kecemasan 

dan operasi mencari dan menyelamat. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background 

Unmanned aerial vehicles (UAVs) are aircraft that function without the presence of 

a human pilot. They can fly autonomously or remotely utilizing pre-programmed flight 

plans, inbuilt sensors, and navigation systems. UAVs have grown in popularity and are 

becoming more common in a variety of industries and fields due to their versatility, 

accessibility, and wide range of applications. 

One of the applications being used is in disaster management and emergency 

response. Their ability to quickly reach remote or hazardous areas and provide real-time 

aerial views assists in assessing damage, identifying survivors, and coordinating relief 

efforts. Additionally, UAVs have proven valuable in search and rescue missions, surveying 

large areas in a short time, and locating missing persons.  

In order to accomplish the application mentioned above, a system allowing to track 

and follow a moving object by using DJI Tello drone will be developed. The DJI Tello drone 

is a mini quadcopter that weighs 80 grams and has a built-in 5 megapixel camera that can 

capture 720p video at 30 frames per second. Another computer vision techniques such as 

Convolution Neural Networks (CNNs) will be applied to locate the target in real time and 

adjust the drone's flight path to keep it visible. To enable real-time object tracking, creating 

and testing an algorithm that evaluates video data from the DJI Tello drone's camera and 

sends flying commands to the drone's flight controller is a must. The drone can be controlled 

via Wi-Fi using python programming language that provides commands for takeoff, landing, 
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movement, rotation etc. Besides, a control mechanism is crucial to ensure that the drone 

maintains a safe distance from the object and prevents collisions with obstacles. The 

completed system will be tested using a real-world scenario, such as tracking a moving 

vehicle or object. Last but not least, the overall block diagram shows the clear complete 

flows of the object-following system. Figure 1.1 shows the block diagram of object-

following system. 

 

Figure 1.1 Block Diagram 

1.2 Problem Statement 

In recent years, drones have been applied in several fields due to drone versatility 

and accessibility. However, object-following systems can encounter a number of problems 

depending on the specific technology and circumstances in which they are used. Object-

following systems that rely on visual cues can be sensitive to changes in lighting conditions. 
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For example, shadows or reflections can cause objects to appear differently, which can 

confuse the tracking algorithm. Besides that, in complex environments with many objects or 

where objects are moving in unpredictable ways, object tracking systems can struggle to 

distinguish the object of interest from other objects in the scene. Under these circumstances, 

an extra positioning technique is necessary, and since the majority of drones contain imaging 

cameras, positioning based on machine vision is one of the best options.  

1.3 Problem Objective 

The objectives of this project are as follows: 

i. To design and implement an object following algorithm that processes video data from 

the DJI Tello drone's camera and sends flight commands to the drone's flight controller 

in real-time. 

ii. To integrate a control system that ensures the drone maintains a safe distance from the 

object and avoids collisions with obstacles. 

iii. To test the algorithm and control system in a real-world scenario and evaluate its 

performance in terms of accuracy, speed, and stability. 

1.4 Scope of Project  

By narrowing the needs for this project, a few guidelines are proposed to ensure that this 

project will achieve its objectives. The scopes covered for this project are: 

i. Designing and developing an object-following algorithm that processes video data from 

the DJI Tello drone’s camera and sends flight commands to the drone’s flight controller. 

ii. Implementing a control system that ensures the drone maintains a safe distance from the 

object and avoids obstacles. 
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iii. Integrate the algorithm and control system with the DJI Tello drone’s flight controller 

to enable real-time object following. 

iv. Testing the system in a controlled environment, such as an indoor space with predefined 

paths, and in a real-world scenario. 

v. Evaluating the system’s performance in terms of accuracy, speed, stability, and safety. 
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CHAPTER 2  

 

 

LITERATURE REVIEW 

2.1 Introduction 

This chapter reviews the relevant papers and journal articles. Previously, researchers 

at various institutions of higher education created comparable projects. The concepts and 

implementation of the earlier project's components, equipment, and programming language 

are covered here. 

2.2 OpenCV 

To understand OpenCV, let’s start by defining computer vision. The definition of 

computer vision is a branch of artificial intelligence (AI) that allows machines to make 

appropriate decisions based on the information they have learned from the given data. The 

data can be delivered to computers in the form of photos, videos, or any other visual input. 

Computer vision gives the computer the ability to analyze vision like human eyes.  It makes 

it possible for them to be intelligent enough to recognize objects and distinguish between 

physical features [1].  

OpenCV stands for Open-Source Computer Vision which is a library of 

programming functions mainly for real-time computer vision. It is the most widely used and 

well-documented computer vision library. Numerous computer vision algorithms are 

included in the open-source OpenCV library. OpenCV facilitates real-time applications and 

improves processing performance. One of the main objectives of OpenCV is to offer an open 

and user-friendly infrastructure for computer vision that enables anyone to create complex 

computer vision applications quickly. OpenCV is a powerful library and an effective tool for 
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image processing and computer vision tasks. It is essential for real-time image processing 

and computer vision tasks in current applications. OpenCV makes use of NumPy, a highly 

optimized Python library for numerical computations. All OpenCV array structures are 

converted to and from NumPy arrays [2]. The applications for Open CV include stitching 

images shows in , face tracking, object detection and etc [3]. Figure 2.1 a) shows image 

stiching, while Figure2.1 b) shows simultaneous recognition and segmentation, and Figure 

2.1 c) shows real-time face detection. 

 

Figure 2.1 a) image stiching; b) simultaneous recognition and segmentation;  

c) real-time face detection 

2.3 Convolutional Neural Networks (CNNs) 

The foundation of Convolutional Neural Networks (CNNs) can be traced back to 

the discovery of Hubel and Wiesel in 1968 [4]. However, CNNs gained significant attention 

after the record-breaking performance of AlexNet in 2012 [5]. CNNs are a specific sort of 

multilayer neural network architecture built for spatial data. CNN architecture is inspired by 

real beings' visual perception, and they have gained popularity in domains [6]. Especially 

widely used in various computer vision tasks, such as image classification, object detection, 
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and image segmentation. Figure 2.2 shows the image of Convolutional Neural Networks 

(CNNs). 

 

Figure 2.2 Convolutional Neural Networks (CNNs) 

 

The study “A Review of Object Detection Models based on Convolutional Neural 

Network” is about object detection in computer vision, which involves identifying the class 

and location of objects within an image. The paper reviews different object detection models 

based on Convolutional Neural Networks (CNNs) [7]. These models are categorized into 

two different approaches: 

Two-stage approach: This approach involves generating object proposals in the first 

stage and then classifying those proposals in the second stage. The models that follow this 

approach include R-CNN, Fast R-CNN, and Faster R-CNN. Figure 2.3 shows Two-stage 

approach, Figure 2.4 shows architecture of R-CNN, Figure 2.5 shows architecture of Fast R-

CNN, and Figure 2.6 shows architecture of Faster R-CNN. 

 

Figure 2.3 Two-stage approach 
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Figure 2.4 Architecture of R-CNN [8] 

 

 

Figure 2.5 Architecture of Fast R-CNN [8]  

 

 

Figure 2.6 Architecture of Faster R-CNN 

 

One-stage approach: This approach involves directly predicting the class and 

location of objects in a single stage. The models that follow this approach include YOLO, 

SSD, and RetinaNet. Figure 2.7 shows the architecture of Yolo, Figure 2.8 shows the 

architecture of SSD, and Figure 2.9 shows the arrchitecture of RetinaNet. 
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Figure 2.7 Architecture of Yolo [9] 

 

 

Figure 2.8 Architecture of SSD [10] 

 

 

Figure 2.9 Architecture of RetinaNet [11] 

 

2.4 Recurrent Neural Networks (RNNs) 

Recurrent Neural Networks (RNNs) are primarily used for sequential data analysis, 

including natural language processing and speech recognition. RNNs have connections with 
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feedback loops, allowing information to persist and influence future predictions. Figure 2.10 

shows Recurrent Neural Network (RNNs). 

 

Figure 2.10 Recurrent Neural Networks (RNNs) 

 

The fundamental principle behind applying RNNs is to improve their learning by 

repeating observations of a specific phenom or object, which is frequently coupled with a 

time-series collection. Long Short-Term Memory (LSTM) is a form of RNN that is now 

being used in a variety of applications. 

The paper titled "Fundamentals of Recurrent Neural Network (RNN) and Long 

Short-Term Memory (LSTM) Network" by Alex Sherstinsky [12] provides a comprehensive 

tutorial on the essential concepts of RNN and LSTM networks. The research uses Signal 

Processing ideas to explicitly construct the canonical RNN formulation from differential 

equations. It also presents and demonstrates a precise statement, from which the RNN 

unrolling approach is derived. The study examines the challenges of training the ordinary 

RNN and addresses them by changing the RNN into the "Vanilla LSTM" network using a 

series of logical arguments. The document includes all of the LSTM system's equations as 

well as extensive explanations of its constituent entities. It also discovers new ways to 

improve the LSTM system and incorporates these enhancements into the Vanilla LSTM 
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network, resulting in the most broad LSTM version to date. The study is intended for readers 

who have experience with RNNs and LSTM networks and are open to a different 

pedagogical approach. It is also useful for Machine Learning practitioners who want to know 

how to deploy the new augmented LSTM model in software for experimentation and 

research.      

Furthermore, in the field of remote sensing [13], RNN models have been used to 

deal with time series task analysis, with the goal of producing, for instance, land cover 

mapping. RNN models outperformed classical ML techniques in a pixel-based time series 

analysis aimed at discriminating classes of winter vegetation covering using SAR Sentinel-

1 [14]. A recent method for accurate vegetation mapping [15] utilized multiscale CNN to 

extract spatial characteristics from UAV-RGB data, which was then input into an attention-

based RNN to establish the sequential dependency between multitemporal features.  

2.5 Deep Reinforcement Learning Networks (DRLN) 

Deep Reinforcement Learning Networks (DRLN) have evolved as a powerful 

artificial intelligence solution that combines deep neural networks with reinforcement 

learning algorithms [16] . This fusion enables agents to learn difficult tasks by interacting 

with their environment and receiving feedback in the form of incentives or punishments. 

DRLN has attracted significant interest and achieved amazing success in a variety of fields, 

including robotics, gaming, and control systems, over the years. Figure 2.11 shows Deep 

Reinforcement Learning Networks (DRLN). 
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Figure 2.11 Deep Reinforcement Learning Networks (DRLN) 

 

A research [17] by Patrik Reizinger and Marton Szemenyei introduces novel 

techniques for curiosity-driven exploration within the framework of Deep Reinforcement 

Learning. These methods leverage the attention mechanism to incentivize exploration and 

enhance generalization. The proposed approaches, namely AttA2C and RCM, are 

empirically evaluated on Atari games from OpenAI Gym, demonstrating encouraging 

outcomes. The authors summarize that incorporating attention-based curiosity-driven 

exploration can be highly effective for training agents in scenarios with limited rewards. 

Furthermore, this approach has the potential to improve overall performance and 

generalization capabilities of the agents. 

The study in [18] introduces a novel deep reinforcement learning algorithm called 

Soft Actor-Critic (SAC) designed for continuous state and action spaces. SAC is built upon 

the maximum entropy reinforcement learning framework, where the actor's objective is to 

maximize both the expected reward and the entropy. By combining off-policy updates with 

a stable stochastic actor-critic formulation, SAC achieves impressive performance on 

various continuous control benchmark tasks, surpassing previous on-policy and off-policy 

approaches. The paper also investigates the significance of specific SAC components and 

examines the algorithm's sensitivity to hyperparameters such as reward scaling and target 

value update smoothing constant. 
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Moreover, DRLN has been successfully applied to complex tasks with high-

dimensional state spaces. The Asynchronous Advantage Actor-Critic (A3C) algorithm, 

introduced by Mnih et al. [19] , utilized multiple agents that asynchronously interacted with 

separate instances of the environment, sharing the learned information periodically. This 

approach demonstrated excellent scalability and accelerated learning in challenging 

environments. 

Another significant advancement in DRLN is the introduction of model-based 

approaches. Model-based methods leverage the use of learned models of the environment to 

plan and make more informed decisions. These methods aim to address the sample 

inefficiency problem often encountered in model-free approaches. For instance, the Model 

Predictive Control (MPC) algorithm in reference [20] combines a learned dynamics model 

with an optimization algorithm to plan actions that optimize long-term rewards. By 

incorporating learned models, these approaches have shown promise in achieving faster 

learning and improved data efficiency. 

Furthermore, the combination of DRLN and deep generative models has sparked 

interest in domains such as unsupervised learning and exploration. DRLN has been related 

to Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs) to 

enable generative modeling, allowing agents to learn complex representations and produce 

new examples. By learning diverse and representative state spaces, these techniques have 

the potential to address the difficulty of exploration in reinforcement learning. 

Deep Reinforcement Learning Networks (DRLN) have revolutionised artificial 

intelligence by integrating deep neural networks with reinforcement learning techniques. 

DRLN has gained great success in a variety of sectors thanks to developments such as DQN, 

policy gradient methods, model-based approaches, and the integration of generative models. 
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These breakthroughs continue to fuel research and show great promise for solving 

complicated real-world challenges. 

2.6 Generative Adversarial Networks (GANs) 

Generative Adversarial Networks (GANs) first introduced by Goodfellow I [21]. 

GAN is made up of two parts: a generative network that generates samples and a 

discriminator that identifies the source of the samples. When new samples created by the 

generative network and real-world samples are put into the discriminator, the discriminator 

will accurately distinguish between the two types of samples. They are commonly utilised 

in the production of images, videos, and voices. Figure 2.12 shows Generative Adversial 

Networks. 

 

Figure 2.12 Generative Adversarial Networks (GAN) [22] 

 

Since its first introduction, GAN has been extended into various applications. For 

instance, hybrid-augmented intelligence which is a new type of AI that integrates human 

cognitive capabilities or human-like cognitive models with machine learning methods [22]. 

 Furthermore, Mirza et al. [23] propose the Conditional GAN which can be used to 

direct the data generation process by conditioning the model on additional information such 

as class labels or data from other modalities. Radford et al. [24] proposed a class of GAN 
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results in stable training across a range of datasets and allow for training higher resolution 

and deeper generative models. Recently GAN has also been extended for generating images 

based on word descriptions [25] producing the aesthetic and architecture of natural indoor 

scene photos [26] , converting an image from one site to another [27] , and transform thermal 

face images into visible faces [28][29]. 

2.7 Variational Autoencoders (VAEs) 

Variational Autoencoders (VAEs) have emerged as a prominent class of generative 

models in the field of deep learning. VAEs combine the power of neural networks with 

probabilistic modeling, enabling the generation of new data samples from learned latent 

representations.  VAEs are frequently employed for generative modeling projects. Figure 

2.13 shows Variational Autoencoders. 

 

Figure 2.13 Variational Autoencoders (VAEs) 
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While variational autoencoders (VAEs) have made a significant impact in the field 

of deep generative models, there are still certain aspects of their underlying energy function 

that lack complete understanding. In particular, there is a prevailing belief that assuming 

Gaussian encoders and decoders limits the ability of VAEs to generate realistic samples. 

However, a comprehensive study titled "Diagnosing and Enhancing VAE Models" [30] 

challenges this notion and provides a detailed analysis of the VAE objective. The study 

demonstrates that the common perception of Gaussian encoder/decoder assumptions 

hindering the effectiveness of VAEs in generating realistic samples is not always accurate. 

Moreover, the paper introduces a straightforward enhancement for Variational 

Autoencoders (VAEs) that does not require additional hyperparameters or intricate tuning. 

This enhancement brings about significant improvements, resulting in the generation of clear 

and sharp samples. It also achieves stable FID (Fréchet Inception Distance) scores, 

effectively narrowing the gap between VAEs and Generative Adversarial Network (GAN) 

models when employing a neutral architecture. Importantly, this enhancement preserves the 

desirable qualities of the original VAE architecture. 
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2.8 Comparison of article paper 

Different article paper is study and the applications of each neural network are stated 

in the table 2.1. Table 2.1 shows comparison of article paper. 

 

Table 2.1 Comparison of article paper 

No. Algorithm used Applications Paper 

1 Convolutional Neural 

Networks (CNNs) 

Primarily used for 

image processing tasks. 

[4][5][6][7][8][9][10][11] 

2 Recurrent Neural 

Networks (RNNs) 

Suitable for sequential 

data. 

[12][13] 

3 Deep Reinforcement 

Learning Networks 

(DRLN) 

Learn to make 

decisions and take 

actions based on 

rewards and penalties in 

a given environment. 

[14][18][19] 

4 Generative Adversarial 

Networks (GANs) 

Utilize in production of 

images, videos, and 

voices. 

[22][23][24][25][26][27][28][29] 

5 Variational 

Autoencoders (VAEs) 

Often used for 

generative modeling 

tasks. 

[30] 
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2.9 Summary 

In summary, based on the previous research, a suitable computer vision techniques 

for image processing tasks is selected. CNNs are suitable for image processing tasks due to 

their ability to automatically learn hierarchical patterns and spatial relationships within 

images. The convolutional layers perform localized operations by applying filters to extract 

features from different regions of the input image. Pooling layers downsample the feature 

maps, reducing their spatial dimensions. This hierarchical feature extraction allows CNNs 

to capture important visual characteristics at different scales. Additionally, weight sharing 

in CNNs enables parameter efficiency and translation invariance, making them highly 

effective in handling large image datasets. These characteristics make CNNs a powerful tool 

for tasks like image classification and object detection. 

19.2.2024
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CHAPTER 3  

 

 

METHODOLOGY 

3.1 Introduction 

This chapter will cover into the methods and processess employed throughout the 

project. The methodology includes components such as research methodologies, and 

experimental procedures that were aimed to direct the project towards its goals. Several flow 

charts have been included in this project to illustrate and explain the procedure. These flow 

charts are useful for describing and clarifying the sequential processes involved in project 

execution, as well as providing a visual depiction of the process and assisting in the 

understanding of the project's structure and dependencies. By following the approach and 

employing the flow charts, the researhcer can efficiently plan, execute, and monitor the 

progress of the project, ensuring that it stays on track and achieves its desired goals. 

3.2 Methodology 

To understand the research project, the project has been separated into 4 milestones. 

Each milestone will describe the activities that have been done. Figure 3.1 shows the 

flowchart of the methodology of this project. 
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Figure 3.1 Methodology Flowchart 

3.3 First Milestone 

• Activity 1: Project Objectives 

The project objectives were discussed with the supervisor to ensure they do not run 

out of the project scope. This project is to design and implement an object-following 

algorithm that processes video data from the DJI Tello drone's camera and sends 

flight commands to the drone's flight controller in real time. 

To achive the objectives, the hardware used in this project is DJI Tello drone. This 

drone is programmable and supports the Tello SDK, which enables developers to 

create bespoke applications and functionalities. An infared sensor located on the 

bottom of the drone for precise hovering. This drone also support wireless 

connectivity and supports programming using various programming language. 



30 

Besides, it have maximum 13 minutes flight time, 720 HD transmission video, and 5 

MP image sensor. Moreover, the software used in this project is Pycharm. PyCharm 

is an integrated development environment (IDE) used for programming in Python. It 

provides code analysis, a graphical debugger, an integrated unit tester, integration 

with version control systems, and supports web development with Django. OpenCV 

are intepret in Pychram, which is a powerful library and an effective tool for image 

processing and computer vision tasks.  

• Activity 2: Literature Review 

To learn how to develop an object tracking system, it is required to read relevant 

topic research articles from a variety of sources. Project scopes direct researchers in 

the right direction in order to summarise research articles and provide a better 

knowledge of the project. Figure 3.2 shows the literature review flowchart of this 

project. 
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Figure 3.2 Literature review flowchart 

3.4 Second Milestone 

• Activity 3:  Design the code to program the drone 

The programming codes will be designed in this activity. The programming codes 

will be written in Pycharm with OpenCV library. The programming codes influence 

the performance of the drone. If any error occurs in this part, the programming codes 

need to be rewritten to get the expected results. The programming codes will be 

implemented later in the simulation part. Figure 3.3 shows the design flowchart of 

this project. 
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Figure 3.3 Designing Flowchart 

3.5 Project Design  

This part will be explaining the design of the project including programming codes, 

and safety distance to avoid collision. The programming codes is written using Python with 

OpenCV library. Some of the example of codes have shown in Figure 3.4, Figure 3.5, Figure 

3.6 and Figure 3.7. Completed code can refer to the Appendix A.  

A library is a collection of existing functions that can be used in our code. The 

import keyword lets us import entire libraries or specific library functions into our code. The 

codes in Figure 3.4 shows the codes import from the library.  1.2.2024
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Figure 3.4 Codes import from the libraries 

 

In order to make the object-following system achieve stable, accurately and safety 

state, a PID is a good control mechanism which can use. In this system only proportional 

controller (P-controller) and integral controller is used. The P-controller will make the drone 

stay in specific height. Whereas the I – controller accumulate the error overtime enable the 

drone more stable and precise hovering at the specific height. Figure 3.5 shows the codes to 

perform PID. 

 

Figure 3.5 Codes to perform PID 

 

An algorithm is used to control the motion for the drone. In image processing the 

distance is count in pixels instead of meter or centimeter. Figure 3.6 shows the codes for 

control left, right, up and, down motion.  
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Figure 3.6 Codes for control left, right, up and, down motion 

 

Next, the forward and backward motion of the drone is controlling by the area 

detected from the object in the image. Figure 3.7 shows the codes for control forward and 

backward motion. 

 

Figure 3.7 Codes for control forward and backward motion 
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3.6 Third Milestone 

• Activity 4: Object tracking system based on camera view 

In this part, when the drone takes off without any error such as the motor being stuck 

or broken. If errors occur, the drone will land else the program will proceed to object 

detection. From the flowchart below, when the drone detects the object it will show 

the shape of the object in the processing view, when giving a command to stop it the 

drone will be landing and the whole process will stop. Figure 3.8 shows the Object-

tracking system flowchart of this project. 

 

Figure 3.8 Object-tracking system flowchart 

 

3.7 Fourth Milestone 

• Activity 5: Object-following system based on positioning from the camera 

In this part, when the drone takes off without any error such as the motor being stuck 

or broken. In contrast, once errors occur, the drone will land else the program will 
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proceed to object detection. From the flowchart below, when the drone scans the 

object on top of the view, the drone will rise. If the scanning positioning of the object 

is at the bottom, the drone will lower the level until finding the center position. If the 

drone’s scanning is at the left or right, the drone will be based on the position to slide 

it. Besides, the object is at the center of the view the drone will hold at the high. 

Futhermore, if the object is near to the drone, the drone will move backward. While 

the object is far away from drone, the drone will move forward. Figure 3.9 shows the 

Object-following system flowchart of this project. 

 

Figure 3.9 Object-following system flowchart 

 

Additionally, to ensure that the drone and person is always in a safe distance. An 

algorithm has developed as illustrated in figure 3.10. During the tracking process, the 

drone is always higher than person and maintain a safety distance with the person 

where h denotes high whereas the d denotes distance. Figure 3.10 shows the concept 

of safety distance between drone and person.  
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Figure 3.10 Concept of safety distance between drone and person 
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CHAPTER 4  

 

 

RESULTS AND DISCUSSIONS 

4.1 Introduction 

This chapter presents the results and analysis on the development of an object-

following system by using DJI Tello drone. A few experiment has been studies and discuss 

in this chapter. 

Refer to the algortihm illustrated in figure 3.10 concept of safety distance between 

drone and person. This algorithm has tested in indoor. The height of the person in figure 4.1 

is 155 cm, wheares the height of the person in figure 4.2 is 162 cm. After applied the 

algorithm, we can see that the outputs of the height of drone is 165 cm and 172 cm 

respectively, which display on the left with purple color text. 

 

Figure 4.1 Vision from a) drone; b) reality 
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Figure 4.2 Vision from a) drone; b) reality 

4.2 Proper detection range Between Person and DJI Tello Drone 

This experiment aimed to determine the proper detection range between the person 

and the DJI Tello drone. The experimental areas were set outdoors. The drone and person 

initially are at the starting point, then the person will walk towards the ending points, while 

the drone will stay static at the starting point. The distance between the starting point and the 

ending point is 10 meters. Figure 4.3 shows the experimental area. 

 

Figure 4.3 Experimental area 

 

From figures 4.4 and figures 4.5 we can observe that when the person is still in the 

range of  10 meters, the person is still detectable. However, after surpassing the ending point, 

the person detection has lost.  
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Figure 4.4  Person in the range of 10m 

 

Figure 4.5 Person surpass 10m 

The distance test in this experiment are 1 m, 5 m, 10 m and more than 10 m, where 

(/) indicates detected, (X) indicates no detection.  This experiment has tested 5 round to make 

sure the data collected is accurate. Table 4.1 shows the results of detection of person in 

difference distances. 
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Table 4.1 Results of detection of person in difference distances 

Round Distance(m) 

1 5 10 <10 

1 / / / X 

2 / / / X 

3 / / / X 

4 / / / X 

5 / / / X 

4.3 Exploration of Light Intensity for Human Motion Detection 

This experiment is aimed at exploring light intensity for target motion detection. 

The experiment is divided into two parts, explored light intensity in an indoor environment 

and, explored light intensity in an outdoor environment. The Lux Light Meter Pro mobile 

application installed on the phone was used as an instrument to examine the light intensity. 

The indoor experiment is conducted in the daytime and separated into two parts, one with 

the lamp-on and one with lamp-off.  

The light intensity range of the environment lamp-off is a maximum of 26 lux 

whereas the light intensity range of the situation with lamp-on is a maximum of 34 lux. 

Figure 4.6 shows indoor light intensity with lamp-off and lamp-on. 

 

Figure 4.6 Indoor light intensity a) lamp-off ; b) lamp-on 
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Figure 4.7 shows the results of experiments conducted in a lamp-off environment.  

 

Figure 4.7 Person a) moving forward; b) moving backward; c) move left; d) move right 

 

Figure 4.8 shows the results of experiments conducted in a lamp-on environment. 

 

Figure 4.8 Person a) moving forward; b) moving backward; c) move left; d) move right 
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From figure 4.7 and  4.8 we can observe the visibility of the target is clear and enables 

detection of the motion of the target moving forward, moving backward, moving left, and 

moving right. 

 

Next, the experiment conducted in an outdoor environment is divided into three time 

periods, which are morning (10.00-11.00), afternoon (14.00-15.00), and evening (18.00-

19.00). The light intensity in the morning is 3085 lux, while the afternoon is 3442 lux and 

the evening is a maximum of 300 lux. Figure 4.9 shows the light intensity for mornig, 

afternoon, and night respectively. 

 

Figure 4.9 Light intensity in a) morning ; b) afternoon; c) evening 

Figure 4.10 shows the results of experiments conducted in the morning. 

 

Figure 4.10 Person a) moving forward; b) moving backward; c) move left; d) move right 



44 

Figure 4.11 shows the results of experiments conducted in afternoon. 

 

Figure 4.11 Person a) moving forward; b) moving backward; c) move left; d) move right 

Figure 4.12 shows the results of experiments conducted in the evening. 

 

Figure 4.12 Person a) moving forward; b) moving backward; c) move left; d) move right 
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From figure 4.10, 4.11 and  4.12 we can observe the visibility of the target is clear 

and enables detection of the motion of the target moving forward, moving backward, moving 

left, and moving right. 

Table 4.2 shows results of detection motion in different environment where (/) 

indicates detected, (X) indicates no detection 

Table 4.2 Results of detection motion in different environment 

Environment Human motion 

Move forward Move backward Move left Move right 

(Indoor) 

Lamp-off 

/ / / / 

(Indoor) 

Lamp-on 

/ / / / 

(Outdoor) 

Morning 

/ / / / 

(Outdoor) 

Afternoon 

/ / / / 

(Outdoor) 

Evening 

/ / / / 
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4.4 Automatic tracking of target motion 

This section demonstrates the automatic object-following system by using DJI Tello 

drone to follow the motion of the target. We will discuss three scenarios in this experiment. 

The first scenario is a drone following a person walking in curve motion. Secondly, the drone 

tracks a person moving in a multi-person scenario. Third scenario, the drone searches for a 

person when no target is tracked. 

In the first scenario, the curve motion path is set as figure 4.13. The person will move 

from starting point to ending point. When the drone detects person it will following the 

person along path. Figure 4.13 shows the curve motion path. 

 

Figure 4.13 Curve motion path 

The motion of person walking along path detected by drone is recorded. Total 16 

sampling frames is selected from the recorded video. The number A1 denotes the staring 

point while number A16 denotes the ending point as illustrated in figure 4.14. Figure 4.14 

shows the sampling frames A1-A16 captured from the recording video. 
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Figure 4.14 Sampling frames A1-A16 captured from recording video 

 

In second scneario, when there is more than one person in the tracking frame, the 

object-following system will tend to detect the person who is closest to the drone. Initially, 

there is only one person in the frame, a new person comes closer to the drone, then the drone 

will track the new person instead of the first person, as illustrated in B1-B16 of figure 4.15. 

Figure 4.15 shows the target detection when a new person comes closer than first person. 
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Figure 4.15 Target detection when a new person comes closer than first person 

 

Third scenario, during the tracking process, if the person is out of frame, the system 

will start searching, the drone will rotate from the previous location where the target was lost 

until a person is detected, as illustrated in C1-C16 of figure 4.16. Figure 4.16 shows the 

drone action when no person is in the frame. 
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Figure 4.16 Drone action when no person is in the frame 

4.5 Summary 

This chapter presented case studies to demonstrate applicability of the object-

following system. From the experiment, the proper detection range between the person and 

the DJI Tello drone is between 1 m to 10 m. Moreover, based on the results of light intensity 

experiment conducted in indoor and outdoors environments, we can conclude that the object-

following system can work in most of the environments. The automatic tracking of target 

motion are successful and three different scenario has discussed. 
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CHAPTER 5  

 

 

CONCLUSION AND RECOMMENDATIONS  

In conclusion, computer vision techniques play a crucial role in the design and 

implementation of an object-following system using the DJI Tello drone. In this project, 

Convolutional Neural Networks (CNNs), a powerful computer vision algorithm, will be 

employed for real-time target detection. A DJI Tello drone will be control via Wi-Fi using 

the Python programming language, and a program will be coded to transmit flying 

commands to its flight controller to follow an object. Initially, some article paper from 

previous research related to object tracking algorithms has been study. These papers 

provided valuable insights and served as a foundation for the project. Throughout the project, 

the primary objective was to develop a comprehensive algorithm that would enable the drone 

to effectively track object. Several iterations of the algorithm were designed, implemented, 

and evaluated to ensure optimal performance. A PID has integrated in the system to ensures 

the drone maintains a safe distance from the object and avoids collisions with obstacles. Last 

but not least, a few experiment have conducted to prove the performance of the object-

following system.Overall, the algorithm have been fully developed and fine-tuned, 

empowering the DJI Tello drone with the ability to autonomously follow objects while 

ensuring a safe distance is maintained at all times. 

5.1 Potential for Commercialization 

The object-following system by using DJI Tello drone project has significant 

potential for commercialization, across a wide range of sectors. Surveillance and monitoring 

are important areas where these drones can be used to provide effective security measures. 
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Their capacity to travel particular regions autonomously, track movements, and offer live 

video feeds without continual human control improves surveillance capabilities, making 

them invaluable for protecting important infrastructure or private properties. Autonomous 

tracked drones provide a lifeline in search and rescue operations by quickly reaching isolated 

or hazardous regions and delivering real-time aerial pictures that aid in the identification of 

survivors. Furthermore, the adaptability of drones extends to aerial photography and 

filmmaking, allowing experts to record amazing sights from altitudes inaccessible by people.  

5.2 Future Works 

There are several potential future improvements that can be added to this object-following 

system to enhance their capabilities. In current stage, the object-following system will 

change the target based on the algorithm implemented while following, therefore a 

techniques can be developed and implement to locked a specific target during the tracking 

process in future. Additionally, improving energy efficiency or adopting more advanced 

battery technologies can increase the operational time of the drones. This would allow drone 

to travel further or stay in the field for longer periods of time without having to recharge. 

Futhermore, advanced obstacle avoidance can also enhance this object-following system. 

Using improved obstacle detection and avoidance algorithms can help the drone navigate 

complex environments. This may involve utilising advanced sensors, computer vision, and 

machine learning algorithms to detect and respond to dynamic barriers in real time. 
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APPENDICES 

Appendix A  Programming Codes 

import cv2 

import numpy as np 

import time 

from djitellopy import Tello 

 

# set points (center of the frame coordinates in pixels) 

rifX = 960 / 2 

rifY = 720 / 2 

 

# PI constant 

Kp_X = 0.1 

Ki_X = 0.0 

Kp_Y = 0.2 

Ki_Y = 0.0 

 

S1 = 30 

S2 = 10 

S3 = 10 

 

UDOffset = 150 

dimensions=(960,720) 

cWidth=int(dimensions[0]/2) 

cHeight=int(dimensions[1]/2) 

 

# Loop time 

Tc = 0.05 

 

# PI terms initialized 

integral_X = 0 

error_X = 0 

previous_error_X = 0 

integral_Y = 0 

error_Y = 0 

previous_error_Y = 0 

 

centroX_pre = rifX 

centroY_pre = rifY 

 

# neural networkq 

model_config_file_path = 

r"C:\Users\suen\PycharmProjects\pythonProject2\.idea\MobileNetSSD_deploy.

prototxt.txt" 

model_weights_file_path = 

r"C:\Users\suen\PycharmProjects\pythonProject2\.idea\MobileNetSSD_deploy.

caffemodel" 

 

net = 

cv2.dnn.readNetFromCaffe(model_config_file_path,model_weights_file_path)  

# modify with the NN path 

CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat", 

           "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", 

           "dog", "horse", "motorbike", "person", "pottedplant", "sheep", 

           "sofa", "train", "tvmonitor"] 
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#colors = np.random.uniform(0, 255, size=(len(CLASSES), 3)) 

 

drone = Tello()  # declaring drone object`789 

for_back_velocity=0 

left_right_velocity=0 

up_down_velocity=0 

yaw_velocity=0 

speed=10 

 

time.sleep(2.0)  # waiting 2 seconds 

print("Connecting...") 

drone.connect() 

print("BATTERY: ") 

print(drone.get_battery()) 

time.sleep(1.0) 

print("Loading...") 

drone.streamon()  # start camera streaming 

print("Takeoff...") 

drone.takeoff()  # drone takeoff 

drone.send_rc_control(0,10,0,0) 

time.sleep(3.0) 

 

while True: 

    start = time.time() 

    frame = drone.get_frame_read().frame 

 

    cv2.circle(frame, (int(rifX), int(rifY)), 1, (0, 0, 255), 10) 

 

    h, w, channels = frame.shape 

 

    blob = cv2.dnn.blobFromImage(frame, 

                                 0.007843, (180, 180), (0, 0, 0), True, 

crop=False) 

 

    net.setInput(blob) 

    detections = net.forward() 

 

    for i in np.arange(0, detections.shape[2]): 

 

        idx = int(detections[0, 0, i, 1]) 

        confidence = detections[0, 0, i, 2] 

 

        if CLASSES[idx] == "person" and confidence > 0.5: 

 

            box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) 

            (startX, startY, endX, endY) = box.astype("int") 

 

            label = "{}: {:.2f}%".format(CLASSES[idx], 

                                         confidence * 100) 

            cv2.rectangle(frame, (startX, startY), (endX, endY), 

                          (0, 0, 255), 2) 

            # draw the center of the person detected 

            centroX = (startX + endX) / 2 

            centroY = (2 * startY + endY) / 3 

 

            centroX_pre = centroX 

            centroY_pre = centroY 

 

            h = int(endY-startY) 

            w = int(endX - startX) 
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            area = h * w 

 

            vtr = np.array((cWidth,cHeight,22000)) 

            vtg = np.array((centroX,centroY,area)) 

            vDistance = vtr - vtg 

 

 

            cv2.circle(frame, (int(centroX), int(centroY)), 1, (0, 0, 

255), 10) 

 

            error_X = -(rifX - centroX) 

            error_Y = rifY - centroY 

 

            cv2.line(frame, (int(rifX), int(rifY)), (int(centroX), 

int(centroY)), (0, 255, 255), 5) 

 

            y = startY - 15 if startY - 15 > 15 else startY + 15 

            cv2.putText(frame, label, (startX, y), 

                        cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) 

 

            text = "Height: {}cm".format(drone.get_distance_tof()) 

            cv2.putText(frame, text, (int(rifX) - 450, int(rifY) - 300), 

                        cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 0, 255), 2) 

 

            # PI controller 

            integral_X = integral_X + error_X * Tc  # updating integral 

PID term 

            uX = Kp_X * error_X + Ki_X * integral_X   # updating control 

variable uX 

            previous_error_X = error_X  # update previous error variable 

 

            integral_Y = integral_Y + error_Y * Tc  # updating integral 

PID term 

            uY = Kp_Y * error_Y + Ki_Y * integral_Y 

            previous_error_Y = error_Y 

 

 

            print("Area: ", area) 

            print("Distance: ", vDistance) 

 

            if vDistance[0] < -100: 

                #yaw_velocity = S1 

                left_right_velocity = S2 

                print("LEFT ", yaw_velocity) 

            elif vDistance[0]>100: 

                #yaw_velocity = -S1 

                left_right_velocity = S2 

                print("RIGHT ", yaw_velocity) 

            else: 

                #yaw_velocity = 0 

                left_right_velocity = 0 

                print("Y STOP", yaw_velocity) 

 

            if vDistance[1]>55: 

                up_down_velocity=S1 

                print("Go UP ",up_down_velocity) 

            elif vDistance[1]<-55: 

                up_down_velocity=-S1 

                print("Go DOWN ",up_down_velocity) 

            else: 

                up_down_velocity=0 
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                print("UD STOP ",up_down_velocity) 

 

            if 170000<area<250000: 

                for_back_velocity=0 

                print("A STOP ",for_back_velocity) 

            elif area<170000: 

                for_back_velocity= S1 

                print("FORward ",for_back_velocity) 

            elif area>250000: 

                for_back_velocity=-S1 

                print("BACKward ",for_back_velocity) 

            else: 

                for_back_velocity=0 

                print("A STOP",for_back_velocity) 

 

            drone.send_rc_control(left_right_velocity, for_back_velocity, 

up_down_velocity, round(uX)) 

            # break when a person is recognized 

 

            break 

 

 

        else:  # if nobody is recognized take as reference centerX and 

centerY of the previous frame 

            centroX = centroX_pre 

            centroY = centroY_pre 

            cv2.circle(frame, (int(centroX), int(centroY)), 1, (0, 0, 

255), 10) 

 

            error_X = -(rifX - centroX) 

            error_Y = rifY - centroY 

 

            cv2.line(frame, (int(rifX), int(rifY)), (int(centroX), 

int(centroY)), (0, 255, 255), 5) 

 

            integral_X = integral_X + error_X * Tc  # updating integral 

PID term 

            uX = Kp_X * error_X + Ki_X * integral_X  # updating control 

variable uX 

            previous_error_X = error_X  # update previous error variable 

 

            integral_Y = integral_Y + error_Y * Tc  # updating integral 

PID term 

            uY = Kp_Y * error_Y + Ki_Y * integral_Y 

            previous_error_Y = error_Y 

 

            drone.send_rc_control(0, 0, round(uY), round(uX)) 

 

            continue 

 

    cv2.imshow("Frame", frame) 

 

    end = time.time() 

    elapsed = end - start 

    if Tc - elapsed > 0: 

        time.sleep(Tc - elapsed) 

    end_ = time.time() 

    elapsed_ = end_ - start 

    fps = 1 / elapsed_ 

    print("FPS: ", fps) 
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    if detections.all(): 

        seconds = int(elapsed % 60) 

        times = str(seconds) 

        cv2.putText(frame, times, (int(rifX) - 450, int(rifY) - 280), 

                    cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 2) 

 

    if cv2.waitKey(1) & 0xFF == ord("q"): 

        break 

 

drone.streamoff() 

cv2.destroyAllWindows() 

drone.land() 

print("Landing...") 

print("BATTERY: ") 

print(drone.get_battery()) 

drone.end() 
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