

AUTO VIRUS REMOVAL VERSION 1 (AVRV1)

DASRUL BIN USWENDI

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

i

ii

DEDICATION

 This thesis is dedicated to my father, Uswendi bin Dauni, who taught me that

the best kind of knowledge to have is that which is learned for its own sake. It is also

dedicated to my mother, Wirda binti Mawar, who taught me that even the largest task

can be accomplished if it is done one step at a time. Both of them are my inspiration

and they are everything in my life.

iii

ACKNOWLEDGEMENTS

First of all, I would like to express my grateful to Allah S.W.T, whom

without His guidance I would not have been able to be as I am as today. Second, I

would like to express my thankful to Prophet Muhammad S.A.W, who had taught the

truth of Islam to human in the world. Third, I would like to give a big thanks to my

supervisor, Assoc. Prof. Dr. Mohd Faizal Bin Abdollah for guiding me throughout

this project and he never been regretted to choose me as his student. Lastly, I would

like to give thanks to all my friends especially to my partner, Mohd Aiman Afnan bin

Mohd Yusoff who had helped me to give some ideas for this project. Thanks for

everything.

iv

ABSTRACT

Nowadays, there have many various type of malware which making damage

to our devices. They can infect to the file or registry in the storage whether user are

known or not. With the increasing a number of new malware in year statistic, the

total number of new product of anti-viruses also increase dramatically in order to

against malware. The difficulty to detect the malware on internal devices or external

devices makes people become more interested to make investigation on these

malware. There are need to study the malware behaviour first and suggest the

potential techniques to use to detect and remove the malware. There have many

techniques that used for most existing anti-virus and one of the most popular of virus

detection technique is signature-based detection. The Auto Virus Removal version 1

(AVRv1) is the new anti-virus as a final year project that would be developed by

using several techniques for detecting the virus which refer to the system of existing

anti-virus.

v

ABSTRAK

 Pada zaman kini, terdapat banyak jenis malware dimana ia melakukan

kerosakan pada alat penyimpanan data. Ia bole melakukan jangkitan pada fail di

dalam alat penyimpanan data sama ada disedari oleh pengguna atau pun tidak.

Dengan peningkatan jumlah virus baru mengikut statistik tahunan, jumlah

penghasilan anti-virus yang baru juga meningkat secara mendadak untuk melindungi

serangan malware. Kesukaran untuk mengesan malware di dalam computer atau pun

pada alat penyimpanan data yang lain membuatkan manusia ingin lebih mengetahui

tentang perkara ini. Mereka perlu mengetahui tentang pergerakan malware dahulu

dan perlu mencadangkan teknik-teknik untuk mengesan virus secara berkesan.

Terdapat banyak teknik yang digunakan oleh kebanyakkan anti-virus yang sedia ada

dalam mengesan dan membuang virus ini. Salah satu teknik yang popular adalah

teknik penyamaan. The Auto Virus Removal version 1 (AVRv1) adalah sebuah anti-

virus yang baru dan sebagai satu projek sarjana muda yang akan dibangunkan

sebagai sebuah anti-virus yang baru di mana akan menggunakan beberapa teknik

mengikut sistem dalam anti-virus yang tersedia ada.

vi

TABLE OF CONTENT

CHAPTER CONTENT PAGE

DECLARATION i

DEDICATION ii

ACKNOWLEDGEMENTS iii

ABSTRACT iv

ABSTRAK v

CHAPTER I INTRODUCTION

 1.1. Introduction 1

 1.2. Problem Statement (PS) 2

 1.3. Project Question (PQ) 3

 1.4. Project Objectives (PO) 4

 1.5. Project Scope 5

 1.6. Project Contribution (PC) 5

 1.7. Thesis Organization 6

 1.8. Conclusion 8

vii

CHAPTER II LITERATURE REVIEW

 2.1 Introduction 9

 2.2 Related Work 9

 2.2.1 Malware 10

 2.2.2 Virus 18

 2.2.3 The Sandbox 20

 2.2.4 Anti-Virus 24

 2.3 Critical review of current problem and justification 27

 2.3.1 The Comparison of virus detection method 27

 2.3.2 Comparison the three Anti-Virus on Windows 28

 2.3.3 The Pros and Cons of three Anti-Virus 29

 2.4 Proposal Solution 31

 2.4.1 Flowchart of Proposed Solution 31

 2.4.2 Techniques 32

 2.5 Conclusion 38

CHAPTER III METHODOLOGY

 3.1. Introduction 39

 3.2. Project Methodology 39

 3.2.1. Waterfall Model 40

 3.2.2. Research Framework 44

 3.3. Project Milestones 45

 3.4. Gantt Chart 48

 3.5. Conclusion 49

viii

CHAPTER IV ANALYSIS AND DESIGN

 4.1. Introduction 51

 4.2. Flow Chart of the proposed system 53

 4.3. Requirement Analysis 54

 4.3.1. Data Requirement 54

 4.3.2. Functional Requirement 55

 4.3.3. Non-functional Requirement 56

 4.3.4. Other Requirement 56

 4.4. High-level Design 58

 4.4.1. System Architecture 58

 4.4.2. User Interface Design 60

 4.5. Detailed Design 63

 4.5.1. Software Design 63

 4.6. Conclusion 64

CHAPTER V IMPLEMENTATION

 5.1. Introduction 65

 5.2. Software Development Environment setup 66

 5.2.1. Installation of required software 67

 5.2.2. Indicator of compromise 68

 5.2.3. Update the file signature in database 69

 5.3. Software Configuration Management 71

 5.3.1. Configuration environment setup 71

 5.4. Implementation Status 76

 5.5. Conclusion 77

ix

CHAPTER VI TESTING

 6.1 Introduction 78

 6.2 Test Plan 79

 6.2.1 Test Organization 79

 6.2.2 Test Environment 79

 6.2.3 Test Schedule 80

 6.3 Test Strategy 80

 6.3.1 Classes of tests 81

 6.4 Test Design 81

 6.4.1 Test Description 82

 6.4.2 Test Results and Analysis 84

 6.5 Conclusion 92

CHAPTER VII PROJECT CONCLUSION

 7.1 Introduction 93

 7.2 Project Summarization 93

 7.3 Project Contribution 94

 7.4 Future Works 95

 7.5 Conclusion 95

x

REFERENCES 96

APPENDICES 98

 Appendix A: The home page website of Auto Virus

 Removal version 1 (AVRv1) 98

 Appendix B: The second page website of Auto Virus

 Removal version 1 (AVRv1) 99

xi

LIST OF TABLES

TABLE TITLE PAGE

Table 1.1 Problem Statement 2

Table 1.2 Project Question 3

Table 1.3 Summary of Project Objectives 4

Table 1.4 Summary of Project Contribution 5

Table 2.1 The comparison of virus detection method 28

Table 2.2 The comparison of three anti-viruses on Windows 28

Table 2.3 The pros and cons of three anti-viruses on Windows 30

Table 3.1 Project Schedule and Milestones 48

Table 4.1 The hardware requirements 61

Table 5.1 The Modules Table 76

Table 6.1 Test Environment 79

Table 6.2 Test Schedule 80

Table 6.3 Input Test Case 89

Table 6.4 Virus Program Test Case 90

Table 6.5 File Scanning Test Case 90

Table 6.6 Output Test Case 91

Figure 6.1 The output of Online Sandbox 92

Figure 6.2 The virus program installing 93

Figure 6.3 The process of virus program viewing 94

Figure 6.4 The result of file scanning in E drive 95

Figure 6.5 The result of file scanning in D drive 96

xii

Figure 6.6 The result of scanning file in C drive 97

Figure 6.7 The result of detecting infected file in C drive 98

Figure 6.8 The result of deleting infected file in C drive 99

xiii

LIST OF FIGURES

FIGURE TITLE PAGE

Figure 2.1 The increase in the known number of new malware

 from 2014 to 2015 12

Figure 2.2 The increase in the known number of total malware

 from 2014 to 2015 13

Figure 2.3 The percentages of new malware in 2015 14

Figure 2.4 The extraction of the Stinger in MCafee 15

Figure 2.5 Symantec in Norton AntiVirus 16

Figure 2.6 Firewall is on 17

Figure 2.7 Windows Update is on 18

Figure 2.8 Function of the Sandbox 21

Figure 2.9 The Sandbox under Windows 24

Figure 2.10 The flowchart of Proposed Solution 33

Figure 2.11 The samples of files infected by malware 35

Figure 2.12 The other samples of files infected by malware 36

Figure 2.13 The Infected file submission 37

Figure 2.14 The samples of infected files in Windows 38

Figure 2.15 Search pattern for Stone virus 39

Figure 3.1 The Waterfall Model for this project methodology 44

Figure 3.2 The Research Framework of project development 46

xiv

Figure 3.2 The time table of Gantt chart 51

Figure 3.3 The timeline of Gantt chart 52

Figure 4.1 The flowchart of the proposed system 56

Figure 4.2 The Data Flow Diagram (DFD) for level 0 of

 the system 59

Figure 4.3 The system architecture 63

Figure 4.4 The home page of the system 65

Figure 4.5 The interface in the part of computer scanning 66

Figure 4.6 The result after scanning process 67

Figure 4.7 The Data Flow Diagram (DFD) for level 1 on

 the computer scanning 68

Figure 4.8 The Data Flow Diagram (DFD) for level 1 on the

 pendrive scanning 69

Figure 5.1 The Software Development Environment Setup

 Architecture 72

Figure 5.2 Deployment Diagram 73

Figure 5.3 Virus infected task manager 74

Figure 5.4 The problem of Microsoft Windows 75

Figure 5.5 The list of file signature in the database of the system 76

Figure 5.6 The output of Online Sandbox 77

Figure 5.7 The interface of scanning process 73

Figure 5.8 The interface of deleting process 75

1

CHAPTER I

INTRODUCTION

1.1. Introduction

Any computer can be infected by malware. Malware is a catch-all term for

malicious programs, such as viruses, worms, Trojans, and spyware, which are

designed to infect and take control of computer. Anti-virus software is designed

to protect computer against malware. There have many types of Anti-virus

software such as Avira, Avast, Kaspersky, and so on.

In this project, The Auto Virus Removal version 1 (AVRv1) is a virus

removal tool that will be developed to detect and remove the virus effectively.

The Online Sandbox is used as a requirement to get the output from it. The

output from the Online Sandbox is samples of infected file by malware. With

these samples, The Auto Virus Removal version 1 (AVRv1) will try to detect the

virus from these samples and remove the detected virus as well.

2

1.2. Problem Statement (PS)

When scanning the virus infected storage with anti-virus software, it will

inform to user that no threat detected which was really confusing because not all

anti-virus can detect this virus. In addition, somebody who did not know on how

to remove this virus, they just formatting the infected storage as last choice. So,

the virus with all the important or non-important data will be lost together. Other

than that, the details about the techniques on how to use the virus remover tool at

default web page are not more user-friendly and uninformative to user.

Table 1.1: Problem Statement

PS Problem Statement

PS1 The existing anti-virus software are not really detect the virus on the

storage

PS2 The instruction on how to use the anti-virus software are not

informative

The main problem that support to develop the Auto Virus Removal version

1 (AVRv1) is the existing anti-virus software are not really detect the virus on the

storage as shown on Table 1.1.

3

1.3. Project Question (PQ)

The first question referred by the problem statement is on how to detect the

virus from the output of the Online Sandbox by using the Auto Virus Removal

version 1 (AVRv1). The second one is on what type of virus that can be detected.

Another question is on how to remove the virus that has been detected by using

the Auto Virus Removal version 1 (AVRv1).

Table 1.2: Project Question

PS PQ Project Question

PS1 PQ1 How can the Auto Virus Removal version 1 (AVRv1) helps in

this project?

PS2 PQ2 How can the webpage of the Auto Virus Removal version 1

(AVRv1) provides informative instructions to user?

Based on Table 1.2, the main questions that support to develop the Auto

Virus Removal version 1 (AVRv1) are on how can the Auto Virus Removal

version 1 (AVRv1) helps in this project and how can the webpage of the Auto

Virus Removal version 1 (AVRv1) provides informative instructions to user.

4

1.4. Project Objectives (PO)

Project objective defines the things that want to achieve. The objectives

must be considered based on the problem statement and the project question of

this project.

Table 1.3: Summary of Project Objectives

PS PQ PO Project Objective

PS1

PQ1

PO1 To detect the virus that has been found from the output of

the Online Sandbox by using the Auto Virus Removal

version 1 (AVRv1)

PO2 To remove the virus that has been detected by using the

Auto Virus Removal version 1 (AVRv1)

PS2 PQ2 PO3 To provide an informative instructions of the Auto Virus

Removal version 1 (AVRv1) on the webpage

Based on table 1.3, there have three objectives that need to achieve in order

to make a successful project.

5

1.5. Project Scope

Scope of project going to be handled as follows:

1) Focusing on how to detect the virus from the output of the Online

Sandbox

2) Focusing on how to remove the detected virus by using Auto Virus

Removal version 1 (AVRv1)

3) Analyzing and testing the function of the Auto Virus Removal

version 1 (AVRv1) by using the virtual machine, VMware.

1.6. Project Contribution (PC)

Project contribution defines the expected output from this project. This part

can be referred to the objectives of this project.

Table 1.4: Summary of Project Contribution

PS PQ PO PC Project Contribution

PS1 PQ1 PO1 PC1 Proposed an effectiveness anti-virus for user

PO2

PS2 PQ2 PO3 PC2 Proposed a user-friendly and informative in web

page

6

In this project contribution, there have two contributions that have been

considered of this project as shown on Table 1.4.

1.7. Thesis Organization

Thesis organization defines the summary of each chapter presented in this

report of project. There have seven chapters that need to implement and present.

All the descriptions of each chapter are shown in below:

Chapter 1: Introduction

This chapter discuss about the beginnings of system development. It will focuses

on introduction, background of the project, problem statement of the current

project, questions of the project, objective of the project, scope of the project,

project significant and report organization

Chapter 2: Literature Review

This chapter discuss about more explanation and details about the project

referred on the chapter 1. This chapter need supported with reading materials

and conference paper.

7

Chapter 3: Project Methodology

This chapter discuss about what method are used in this project. This chapter

also discuss about the whole organization of this project.

Chapter 4: Analysis and Design

This chapter discuss about the analysis of this project. This chapter also discuss

about the design of the tool and the web page of the Auto Virus Removal version

1 (AVRv1). The requirements of hardware and software has been introduced

with environment setup,

Chapter 5: Implementation

This chapter discuss about environment setup, sample of virus will collected.

The Online Sandbox is needed to get the output from it. The techniques to detect

the virus also will be used.

Chapter 6: Testing

This chapter discuss about the testing on detect and remove the virus that got

from the output of the Online Sandbox. VMware is needed as beginnings for

analyzing and testing the function of the Auto Virus Removal version 1

(AVRv1).

Chapter 7: Project Conclusion

This chapter discuss about all project summarization, project contribution and

project limitation will be explained. All the steps that have been made and that

have been developed for this project will be listed briefly. In this last chapter also

explain on additional work can be done in future.

8

1.8. Conclusion

In conclusion, it was clearly on what to do as beginning for developing the

project. The objectives of this project are the key point to achieve. The next

chapter is about literature review. It will cover about model approach, and related

work about malware behaviour.

9

CHAPTER II

LITERATURE REVIEW

2.1 Introduction

In this chapter, it will discuss about the literature review on finding the

technique to detect the infected file which implement all materials and resources

such several of virus detection techniques and some the existing anti-virus. This

chapter will provide a clear understanding based on the objectives that have been

considered in chapter 1.

2.2 Related Work

 For this project, there are three related work that has been done by a few

researcher. There are the Sandbox, Malware, and Anti-Virus.

10

2.2.1 Malware

 Malware is stand of malicious software; it is malicious code, refer to

various types of software that can cause problems, damage, and disrupt

computer. There have many types of malware such as viruses, worms,

spyware, Trojans, hijackers, and adware and many more. (Landage &

Wankhade, 2013)

1. Type of Malware

There have many types of malware which are:

a) Virus: It is a program or programming code that able to copy

itself or initiating its copying to another program, computer boot

sector or document. Viruses can be transmitted as attachments to

an e-mail note or in a downloaded file, and many more.

b) Trojan: It is a program in which pretend itself as an original

program to trick a user into running it. It accesses the infected host

remotely, steal confidential data, monitor users activity, installing

botnet and many more.

c) Worm: It is a self-replicating virus that does not alter files but

resides in active memory and copies itself. It can steal the data,

delete files, crashing a hard drive or create botnets.

11

d) Spyware: It is any technology that spying and monitoring users

activity to gain confidential data without their knowledge.

Furthermore, it can collect users keystroke, harvesting user’s data

and many more.

e) Adware: It is any software application in which advertising

banners are displayed while the program is running. In addition,

most are created to serve the purpose of gaining revenue.

Based on all types of malware given, the virus is the one type of

malware that would be focused on this project as the input and output

data. It is because there have many types virus that infect to the devices

and is one of the most common detected of new malware today. The

statistic of malware and virus will be clarified on the next sub-chapter.

12

2. The statistic of Malware

Figure 2.1: The increase in the known number of new malware from

2014 to 2015

 Based on Figure 2.1, there have 4 quarters for year 2014 and year

2015. The malware sample counting method has been adjusted to all

quarters to increase its accuracy. In year 2015, the number of new malware

sample in Q4 was increased with 42 million new malicious. Compare with

the number of new malware in Q3 at the same year, the number of new

malware in Q4 increase 10%. (McAfee Labs, 2015)

13

Figure 2.2: The increase in the known number of total malware from

2014 to 2015

 The Figure 2.2 shows the total number of malware include the

number of new malware for year 2014 until 2015. The total number of

malware was increased constantly. The total of identified new malware

was increase dramatically for every year. (McAfee Labs, 2015)

14

Figure 2.3: The percentages of new malware in 2015

 The Figure 2.3 shows the percentages of new malware

created in Q2 for year 2015. Based on this figure, Trojans is the most

common malware detected which are 71.16% of all samples witnessed

during Q2 and the second higher followed by viruses which are 10.83% of

all samples. Another new detected malware is worms which just get 6% of

all samples. Adware or spyware get the lowest of the new detected

malware which just 4% of all samples. Lastly, the other new detected

malware only get 8% of all samples.(Santillan, 2015)

71%

11%

6%

4%
8%

New Malware Created in Q2 2015

Trojans Viruses Worms Adware/Spyware Other

15

3. Infection

 The system will get infection by Windows Vulnerabilities,

network connections or shared files, Pop-Ups, E-mail, and free

application. This causes slow system performance, internet homepage

changed, computer crashes, no indication, new toolbars appeared, and

many more.

4. Extraction

 For extraction, user can use any virus specific removal tools.

There have two examples virus specific removal tools which are Stinger

and Symantec.

Figure 2.4: The extraction of the Stinger in MCafee

16

 The Figure 2.4 above shows the example extraction of the

Stinger in MCafee.

Figure 2.5: Symantec in Norton AntiVirus

The Figure 2.5 above shows the example extraction of the Symantec in

Norton AntiVirus.

17

5. Protection

 For protection, the tools that can be used to protect from Malware

are like Aluria Anti-Spyware, CounterSpy, SpySweeper, and Spyware

Doctor. Other than that, user can use the tools that can be continuously

protected like AVG Anti-Virus, Mcafee Anti-Virus, and Norton or

Symantic Anti-Virus.

6. Prevention

 For prevention from infection by malware, user needs to update

the protection tools and review software being installed. Other than that,

make sure the careful of web browsing and e-mail. Lastly, user needs to

monitor user’s child computer usage.

Figure 2.6: Firewall is on

18

The Figure 2.6 above shows the customize setting for each type of

network.

Figure 2.7: Windows Update is on

The Figure 2.7 above shows the setting of important updates of

Windows.

2.2.2 Virus

 The virus is the one type of malware which has been explained on the

previous sub-chapter. As mentioned on previous sub-chapter, this project will

be focus on the virus.

19

1. Types of virus

 There have many types of virus which are:

a) Boot Viruses: This virus can attack the boot record, the

master boot record, the File Allocation Table (FAT), and the

partition table of a computer hard drive. The examples of boot

virus are Joshi and Michelangelo.

b) Stealth Viruses: This virus can disguise their actions and can

be a passive virus which can increase the file size, or can be an

active virus which can attack the antivirus software rendering

them useless. The example of stealth viruses is Tequila.

c) Encrypted Virus: This virus has inbuilt encryption software

code which masks the viral code making it difficult to identify

and detect the virus. The example of encrypted virus is

Cascade.

d) Polymorphic Virus: This virus has an inbuilt mechanism that

can alter the virus signature. During the process of infection, it

creates slightly modified and fully functional copies of itself.

The example of polymorphic virus is SMEG.

e) Macro Virus: This virus attacks applications that run macros

such as Microsoft word. The virus is activated when a

document or a template file in which it is embedded, is opened

by an application. The example of macro virus is Melissa.

20

2.2.3 The Sandbox

 The sandbox is one of requirement that would be used in this project.

This is the software requirement which used on the virtual machine.

1. Overview

 The Sandbox is an isolated environment initially used by software

developers to test new programming code, (H. Mourad 2015). An Online

Sandbox creates isolated environment to general users. So these tools

allow various computer programs to run in an isolated environment and

prevent them from making any permanent change to other programs and

data in computer.

2. Function of the Sandbox

Figure 2.8: Function of the Sandbox

21

The Figure 2.8 provided above explains the workings of the

Sandbox. Without the use of the Sandbox, the infected application would

gain all user data and system resources, which h would later be used by

someone with a malevolent intent to their benefit. With the deployment

of the Sandbox, the infected application will run inside an isolated

environment.

3. Types of Sandbox

 There have two types of sandbox that can be classified which are

online sandbox and standalone sandbox.

a) Online sandbox: It is used for enabling the public to submit any

malicious file through their webpage, analyze the file, and give a

result of the file behaviour for the public. An analyst cannot to

customize an online sandbox because it is governed by another

organization. An example of online sandbox is Malwr.

b) Standalone sandbox: It is used for analyzing a malicious

behaviour at a local environment. A dedicated machine are needed

which are able to run a virtual machine within it for

implementation. The examples of standalone sandbox solutions

are Cuckoo, and Sandboxie

22

4. Techniques of Sandbox

 For malware detection, sandbox will conduct dynamic and static

malware analysis technique to determine whether a program is considered

malicious or not. These two techniques have their advantages and

disadvantages.

a) Static Analysis: It is a technique for analyzing malware which

involves various kinds of tools and techniques to determine

whether a file is malicious or not. This technique including

decompilation, decryption, pattern matching and static system call

analysis. A common approach is filtering binaries by malicious

patterns, called signatures. These are the properties that will be

examined in a static analysis; file type, file name, size of file,

MD5 checksum or hashes and recognition of antivirus detection

tools. (Gandotra, Bansal, & Sofat, 2014)

b) Dynamic Analysis: It is a technique for analyzing malware which

running an application in a controlled environment and monitoring

its behaviour. A common approach to dynamic software analysis

is sandboxing. With dynamic analysis the domain names that

malware is interacting with, IP addresses of the malware

Command and Control server, file path locations, registry keys

and many more can be detected. (Gandotra et al., 2014)

23

5. Pros and Cons of Sandbox

 By looking to the Figure 2.9 below, the Windows is running with

three applications, files and settings, and drivers.

Figure 2.9: The Sandbox under Windows

One of the files and setting is placed around the whole of

sandbox. Other than that, one of three applications also placed around the

whole of sandbox.

a) The pros of sandbox: when the application exits, any

malware that may have been downloaded and installed by the

sandboxed application is discarded

24

b) The cons of sandbox: When an application is starting to run,

it continues to have access to everything that it would were it

not sandboxed. Furthermore, it is not visible outside of the

Sandbox which means other Windows applications cannot see

it. Other than that, it is not saved when the sandboxed

application exits.

2.2.4 Anti-Virus

1. Overview

 Anti-virus is a security program which to protect the storage or

device from getting infected by malware. If computer has become

infected by malware, a cyber attacker can use computer to attack another

zombie army. With grow up of new malware, there are so many new

versions of anti-virus which can detect and protect against all of them.

(Williams, 2014)

25

2. History of Anti-Virus

 1984: Fred Cohen published one of the first academic papers on

computer viruses.

 1987: the first publicly documented removal of a computer virus

in the wild was performed by Bernd Fix. At the same year, two

antivirus applications for the Atari ST platform were developed by

G Data and UVK 2000.

 1987: Fred Cohen published a demonstration that there is no

algorithm that can perfectly detect all possible viruses. At the

same year, the first two heuristic antivirus utilities were released

which are Flushot Plus by Ross Greenberg, and Anti4us by Erwin

Lanting.

 1988: Fred Cohen began to develop strategies for antivirus

software that were picked up and continued by later antivirus

software developers. At the same year, a mailing list named

VIRUS-L was started on the BITNET/EARN network where new

viruses and the possibilities of detecting and eliminating viruses

were discussed.

 1990 – 2000: many antivirus industries were developed to make

some research and create antivirus software. For example like

Norton Anti-Virus by Symantec, Anti-Virus Guard (AVG) by Jan

Gritzbach and Tomas Hofer, and Anti-Virus Guard (AVG) by Jan

Gritzbach and Tomas Hofer.

 2005: AV-TEST reported that there were 333,425 unique malware

samples (based on MD5) in their database. Then, in 2007, it

reported a number of 5,490,960 new unique malware samples

(based on MD5) only for that year.

26

 2012 – 2013: Antivirus firms reported a new malware samples

range from 300.000 to over 500.000 per day.

3. How Anti-Virus works

 The virus can be detected by using any anti-virus software. The

virus detection method can be classified onto two types which are

signature-based detection and behavioural -based detection. (Landage &

Wankhade, 2013)

a) Signature-based detection: It is a technique which detects

malware by comparing pattern against the signature of database.

The disassembled code of malware binary is examined to create

these signatures. Then, that disassembled code is analyzed and

features are extracted. These features are used in constructing the

signature of particular malware family.

b) Behavioural-based detection: It is a technique which analyzes

the behaviour of known or unknown malwares. This technique can

be divided in two phases; training phase and detection phase.

Training phase is a phase which observing the behaviour of

system without any attack. Detection phase is a phase which

comparing a profile against the current behaviour and the

differences are marked as suitable attack.

27

2.3 Critical review of current problem and justification

For the critical review of current problem, several virus detection techniques

are collected. Some existing antiviruses also gathered. All of these will be

compared to make some ideas for develop new anti-virus. Finally, these collected

data will be implemented to create a new antivirus for this project.

2.3.1 The Comparison of virus detection method

Table 2.1: The comparison of virus detection method

Methods/

Parameter

Signature-Based

Detection

Anomaly-Based

Detection

Code Emulation

Strength Efficient New malware Encrypted viruses

Limitation New malware Unproven Complex

Cost

Low Costly to implement

Costly to

implement

Accuracy More if database is

updated

Less More

Advantages

The result is more

accurate and this

method is simple to

implement

New threat can be

detected without

need to update the

database

Can be applied to

metamorphic

viruses that use

single or multiple

encryptions.

Disadvantage

s

This method just detect

simple virus only and

Signature database must

be updated regularly

If malicious activity

looks like normal to

the system, it will

never send an alarm.

Become too slow

if the decryption

loop is very long.

28

 The Table 2.1 shows the comparison between three virus detection

methods. Three of these also have their advantages and disadvantages. Based

this table, Signature-based detection have a simple method which the result of

this method is more accurate compare to anomaly-based detection and code

emulation. Other than that, it has a lowest cost on implementation compare to

anomaly-based detection and code emulation. So that’s why most of anti-

viruses are using signature-based detection.

2.3.2 Comparison the three Anti-Virus on Windows

Table 2.2: The comparison of three anti-viruses on Windows

Software

On-demand

scan

On-access

scan

CloudAV

Heuristics

AntiSpam

Avast Free

Anti-virus









x

Avira Free

Anti-virus





x





AVG Free

Anti-virus





x



 x

 The Table 2.2 shows the comparison between three anti-viruses on

Windows which are Avast Free Anti-virus, Avira Free Anti-virus, and AVG

Free Anti-virus. On-demand scan defines the manually scanning to the

29

devices by user while on-access scan defines the automatically scanning

every file on the devices. CloudAV is similar like on-access scan which is

automatically scanning but it scans on the cloud. Heuristic defines a faster

technique or quick solution on solving the problems. Lastly, AntiSpam

defines the security which prevents from scam and spam on email.

 Based on these three anti-virus, all of these are using on

demand-scan, on- access scan, and heuristics while CloudAV just used by

Avast free anti-virus and AntiSpam just used by Avira free anti-virus.

2.3.3 The Pros and Cons of three Anti-Virus

Table 2.3: The pros and cons of three anti-viruses on Windows

Software The Pros The Cons

Avast Free

Anti-virus

It has good capability on scanning

and light on the system

It has a lot of pop-up’s and needs

improvement on cloud reputation

Avira Free

Anti-virus

It has high quality signatures and

very light on the system

It does not need firewall and also

weak protection on heuristic.

AVG Free

Anti-virus

It has a faster full scan and great

scores in PCMag's hands-on tests

and also in independent lab tests.

The PC tune-up component shuts

down after one-day free trial.

30

The Table 2.3 shows the pros and cons of three anti-viruses on Windows

which are Avast Free Anti-virus, Avira Free Anti-virus, and AVG Free Anti-

virus.

31

2.4 Proposal Solution

2.4.1 Flowchart of Proposed Solution

START

END

Sandbox

Process

Input

Malware

Output

Malware

Virus Detection

Process

Virus Removal

Process

Detected?

NO

YES

Insert the sample of infected file to

Display the output

Copy the output to

Figure 2.10: The flowchart of Proposed Solution

32

The Figure 2.10 shows the flowchart of proposed solution for this

project. The details of each process will be clarified on the next sub-chapter.

2.4.2 Techniques

In this project, the Auto Virus Removal version 1 (AVRv1) is more

concentrate on the virus only. There have many several techniques that will

be used.

1. Heuristic Detection

 The main essence of each method is to analyze the suspicious

file’s characteristics and behaviour to determine if it is indeed

malware. One of the heuristic techniques that will be used is File

Emulation. This technique is known as sandbox testing or dynamic

scanning.

a) File Emulation

 The first step is by getting any sample of file that has

been infected by malware. This sample can be found on the

website.

The Figure 2.11 below shows the one example of

samples of files that have been infected by malware on the

website: http://contagiodump.blogspot.com/

http://contagiodump.blogspot.com/

33

Figure 2.11: The samples of files infected by malware

The Figure 2.12 below shows the other example of

samples of files that have been infected by malware on the

website: http://www.tekdefense.com/downloads/malware-

samples/

http://www.tekdefense.com/downloads/malware-samples/
http://www.tekdefense.com/downloads/malware-samples/

34

Figure 2.12: The other samples of files infected by malware

Just downloading any provided files and make sure that

opening and running that’s file on the platform of VMWare to

avoid damage on real PC.

 After insert the sample of infected file in the Online

Sandbox, it will analyze the behaviour or malware. This step

can be conducted by going to the Online Sandbox’s website:

https://malwr.com/submission/ .

https://malwr.com/submission/

35

Figure 2.13: The Infected file submission

 The Figure 2.13 above shows the one example of

website of the Online Sandbox. Just selecting the infected file

that has been downloaded and clicking the button analyze.

Based on the flowchart on Figure 2.11, this is the data which is

the input malware.

 After clicking the button analyze, the Online Sandbox

will keep on running and analyzing the behaviour of malware.

Based on the flowchart on Figure 2.11, this process is on the

Sandbox process.

 Finally, the result from the Online Sandbox will be

displayed. This result will be inserted to the source code of the

Auto Virus Removal version 1 (AVRv1). Based on the

flowchart on Figure 2.11, this is the data which is the output

malware.

36

2. Signature-Based Detection

 Then, copy all the samples of files that infected by malware

in Windows to source code of the Auto Virus Removal version 1

(AVRv1). All of these samples can be found on the website:

https://malwr.com/analysis/ODdmMGY2ZWY2YzVkNDViODlhYz

Y2MGFiM2Q3YTIxY2U/.

Figure 2.14: The samples of infected files in Windows

The Figure 2.14 above shows the list of files that infected by

malware in Windows. Then, signatures the virus to registry in the

source code of the Auto Virus Removal version 1 (AVRv1).

 After completing the process of the Sandbox, copy the all

files from the result of the Online Sandbox to the source code of the

Auto Virus Removal version 1 (AVRv1). Based on the flowchart on

Figure 2.11, this situation is on the virus detection process.

https://malwr.com/analysis/ODdmMGY2ZWY2YzVkNDViODlhYzY2MGFiM2Q3YTIxY2U/
https://malwr.com/analysis/ODdmMGY2ZWY2YzVkNDViODlhYzY2MGFiM2Q3YTIxY2U/

37

 By running the Auto Virus Removal version 1 (AVRv1), it

will try to detect the virus. In this situation, if the file signature from

the source code is match with the file signature found in the Online

Sandbox, so it will remove the detected virus automatically. Based on

the flowchart on Figure 2.11, this situation is on the virus removal

process.

 If did not match, repeat the process by inserting the new

sample of infected files to the Online Sandbox. Based on the

flowchart on Figure 2.11, this situation is on decision process whether

it is detected or not.

 For an example, 83EB 0274 EB0E 740A 81EB 0301 0000 is

the signature of the input file. This input will be searched in the

signature database. Then, the file will be categorized as W32/Beast

virus since 83EB 0274 EB0E 740A 81EB 0301 0000 is the signature

of the W32/Beast virus. A same pattern used to detect Stoned virus is

shown in Figure 2.15.

Figure 2.15: Search pattern for Stone virus

38

3. On-Demand Scanning

 For this project, the Auto Virus Removal version 1 (AVRv1)

also using on-Demand Scanning technique in which scanning the

files manually.

2.5 Conclusion

In conclusion, it can be understood on what the pattern of infected file from

the output of the Online Sandbox. The techniques to detect the samples of

infected file also have been considered on this project. The next chapter is about

project methodology. It will cover about organization and flow of the project.

39

CHAPTER III

METHODOLOGY

3.1. Introduction

Project methodology is next process after doing the literature review in the

project. It determine how best to plan, develop, control, and deliver a project

throughout the continuous implementation process until successful completion

and termination. The purpose of project methodology is to allow for controlling

the entire management process through effective decision making and problem

solving while ensuring the success of specific process, approaches, techniques,

methods, and technologies.

3.2. Project Methodology

For this project, Waterfall Methodology has been chosen as the best method

for the development process.

40

3.2.1. Waterfall Model

Waterfall Model was introduced by Winston W. Royce in 1970 to

software development. It contains the phase of Requirement Gathering and

Analysis, System Design, Implementation, Testing and Maintenance.. (Bassil,

2012)

Requirement Gathering and Analysis Phase is known as Software

Requirement Analysis (SRS). It is included in specification process which

consists of functional requirements and non-functional requirements. The

functional requirements more focus on how the system should provide, how

the system should react to particular inputs, and how the system should

behave in particular situations. The non-functional requirements more

constraints on the services or functions offered by the system such as timing

constraints, constraints on the development process, and standards. All of

these will be captured and documented in a requirement specification

document.

Design Phase is the process of planning and problem solving for a

software solution. This phase included in development process. This phase

more focuses on how to interface with component, which component to use,

how the system will behave, and how will the system respond on certain

invocation. It consists of algorithm design, software architecture design,

concept design, graphical user interface design, database conceptual schema

and logical design, and data structure definition. The output from this phase is

Software Detail Design (SDD) and Unit Test Plan (UTP).

Implementation Phase is the process of converting the whole

requirements and blueprint into a production environment. This phase

41

included in development process which consists of write program, debug

program, code review, integrate modules, and Unit Testing. By getting the

input from Design Phase, the system is developed in units. Each unit is

developed and tested for its functionality. The output from this phase is

Result of Unit Test Plan.

Testing Phase is a process for checking that a software solution meets

the original requirements and specifications and that it accomplishes its

intended purpose. This phase included in validation process which consists of

integration testing, code review, debugging, and user acceptance test. All the

units developed in the implementation phase are integrated into a system after

testing of each unit. Post integration the entire system is tested for any errors.

The output from this phase is Software Test Result (STR).

Maintenance Phase is the process of modifying a software solution

after delivery and deployment to refine output, correct errors, and improve

performance and quality. This phase included in evolution process which

more focuses on system in operation. Another activity in this phase is

managing files and data. The maintenance activities can be more performed

by changing request or adding features.

42

The Figure 3.1 below shows the Waterfall model which seen as

following steadily downwards like a waterfall.

Analysis

Design

Implementation

Testing

Maintenance

Figure 3.1: The Waterfall Model for this project methodology

In this model, one phase has to finish before move to the next phase

Those five main phases will be scheduled in project schedulling.

1. Analysis: It will cover the activities needed for the chapter of

introduction, chapter of literature review, and chapter of analysis. This

phase has been made by collecting resources from journal, internet, book,

and making some discussion with supervisor too. All the related resources

43

will be implemented to get the best method for developing this project.

This phase also will be clearly plan the activities involved in creating the

project through Gantt chart.

2. Design: It will cover all the design of the system. This phase also focus

on the object placement in user interface in order to make it more user

friendly. Any interface will be explained about the input and output

design.

3. Implementation: It will cover the installation of software needed for the

project. It will continue with creating the designs planned in Design phase

and enhance with some codes and algorithms to make it functions

properly. Any error found during the implementation will be fixed as

well.

4. Testing: It will cover many testing on this project which is starting from

the plan testing, strategy testing, design testing, and finally with result and

analysis testing. Those testing will be scheduled and any error will be

solved as well.

5. Maintenance: System will observe for certain period of time to make

sure it fully operational and free of errors. Maintenance phase then

continue with final presentation to supervisors which determine either

that’s project will be passed or failed. Finally, final report must be done

after doling some corrections and submit to supervisor.

44

3.2.2. Research Framework

START

END

Literature Review

Identify Problem

Objective

Create Proposal

Accept?

Phase I: Analysis

Phase II: Design

Phase III: Implementation

Phase IV: Testing

Phase V: Maintenance

NO

YES

Figure 3.2: The Research Framework of project development

45

The Figure 3.2 above shows the research framework of project

development. It is starting with finding any material and resources on

literature review and identifies their problem. After the problem have

considered, create the objectives based on the problem solutions. Then, a

proposal will be created as beginning for developing a system. When a

proposal has been accepted, the waterfall model is started to use. This model

consist of five phases which are analysis phase, design phase, implementation

phase, testing phase, and lastly maintenance phase.

3.3. Project Milestones

Project milestones or project scheduling is one of the important things while

developing a project. There are some activities that planned through Gantt chart

base on the main activities and days required to implement for each of the

activities planned.

46

Table 3.1: Project Schedule and Milestones

Week Date Activity

1

22 Feb 2016 –

26 Feb 2016

- Proposal PSM : Submission &

Presentation

- Proposal assessment and verification

2

29 Feb 2016 –

4 Mar 2016

- Proposal

(Correction/Improvement)

- Chapter 1: Introduction

- List of supervisor/title

3

7 Mar 2016 –

11 Mar 2016

- Chapter 1: Introduction

(Correction/Improvement)

- System Development Begins

4

14 Mar 2016 –

18 Mar 2016

- Chapter 1: Introduction

(Correction/Improvement)

- Chapter 2: Literature Review

5

21 Mar 2016 –

1 April 2016

- Chapter 2: Literature Review

(Correction/Improvement)

- Chapter 3: Methodology

7

4 April 2016 –

8 April 2016

- Chapter 3: Methodology

(Correction/Improvement)

- Chapter 4: Analysis and Design

- Project Demonstration

47

8

11 April 2016 –

16 April 2016

- Chapter 4: Analysis and Design

(Correction/Improvement)

- Project Demonstration

9

11 April 2016 –

16 May 2016

- Chapter 4: Analysis and Design

(Correction/Improvement)

- Project Demonstration

10

17 May 2016 –

24 May 2016

- Project Demonstration

- PSM Report

11

30 May 2016 –

31 May 2016

- FINAL PRESENTATION (PA) FOR

PSM 1

12

27 Jun 2016 -

22 July 2016

- Chapter 5: Implementation

- Project Demonstration

13

25 July 2016 -

5 August 2016

- Chapter 5: Implementation

(Correction/Improvement)

- Project Demonstration

- Chapter 6: Testing

14

8 August 2016 -

12 August 2016

- Chapter 6: Testing

(Correction/Improvement)

- Project Demonstration

48

Table 3.1 show the project schedule for PSM. Those activities are included

from the early project of PSM 1 until the end of PSM.

3.4. Gantt Chart

Figure 3.2: The time table of Gantt chart

- Chapter 7: Project Conclusion

15

15 August 2016 -

19 August 2016

- FINAL PRESENTATION (PA)

FOR PSM 2

49

Figure 3.3: The timeline of Gantt chart

The Figure 3.2 and Figure 3.3 shows the Gantt chart of project based on

project milestone given. By looking to this Gantt chart, it takes 72 days to

complete the tasks on PSM 1 while it takes 40 days to finish the task on PSM 2.

The total days to complete these tasks are 112 days.

3.5. Conclusion

For this chapter, methodology provides developer more understand on how to

manage the project development. By referring to the implementation of resources

on literature review, it helps developer more understand about the problem and

opportunities of this project on methodology. Other than that, the software and

hardware requirement may also be determined during project development. The

50

next chapter is about analysis and design. It will cover the problem analysis and

make the design from problem solutions.

51

CHAPTER IV

ANALYSIS AND DESIGN

4.1. Introduction

In this chapter, it will be focusing on the analysis and design of the system.

The analysis that will be discussed which are problem analysis and requirement

analysis. The design that will be reviewed consists of high-level design and

detailed design.

The problem analysis will investigate and describe the current system. The

result of investigation will be visualized using appropriate diagram. It will

explain in detail about the problem statement that has been mentioned in the

chapter 1. The requirement analysis include data requirement, functional

requirement, non-functional requirement, and others requirement. Other

requirement will describe about software requirement and hardware requirement

that will be used while developing this system.

52

Software design is activity that acts as a bridge between requirements and the

implementation of the software. It provides structure to any artefacts which

decomposes system into parts, assigns responsibilities, and ensures that parts fit

together to achieve a global goal. By Thayer, R. H. (2004), Software Design Part

1, IEEE Software 110, software design is the process of defining the software

architecture, components, modules, interfaces, and data for a software system to

satisfy specified requirements. The design is needed in this chapter whereby in

this part the analysis designs to show the overall process of this project.

53

4.2. Flow Chart of the proposed system

START

END

Virus Detection Process

Delete?

Virus Removal Process

NO

YES

The input of malware

Display the output of

malware

Scan?

YES

NO

Figure 4.1: The flowchart of the proposed system

54

When scanning the virus infected storage with anti-virus software, it

will inform to user that no threat detected which was really confusing

because not all anti-virus can detect this virus. That is the main problem of

the current system. Based on the flowchart on Figure 4.1, this problem

generally will happen on the display of the output of malware.

In addition, somebody who didn’t know on how to remove this virus

is just formatting the infected storage as last choice. So, the virus with all the

important or non-important data will be lost together. Other than that, the

details about the techniques on how to use the virus remover tool at default

web page are not more user-friendly and uninformative to user.

4.3. Requirement Analysis

For the requirement analysis, it is based on what system can do, what system

must do, and what the user can do with system. There have several requirements

which are data requirement, functional requirement, non-functional requirement,

software requirement, and hardware requirement.

4.3.1. Data Requirement

As mentioned the justification technique on the literature review

before, after the Online Sandbox analyzes the sample of infected file, the

result from the Online Sandbox will be displayed. These result will be

inserted to the source code of the Auto Virus Removal version 1 (AVRv1) for

doing the virus detection process. These results are the input data for the Auto

Virus Removal version 1 (AVRv1).

55

Then, the Auto Virus Removal version 1 (AVRv1) will detect whether

the file signature from the source code is match with the file signature of this

input data. If it match, the Auto Virus Removal version 1 (AVRv1) will

remove it automatically which called virus removal process. These matched

files are the output data for the Auto Virus Removal version 1 (AVRv1).

4.3.2. Functional Requirement

For the functional requirement, it is more focus on what the system is

supposed to do. The Figure 4.2 shows the Data Flow Diagram (DFD) for a

functional requirement in the system. There have two parts of devices which

are local disk drive and removal drive. Both of these will be scanned and the

detected files will be deleted.

Local disk drive

Scan with sample

Scan with file

name / icon / size /

visibility

Removal drive

Delete files

Target content

Search

dependencies

Search

dependencies

Flash drive,

pendrive

Figure 4.2: The Data Flow Diagram (DFD) for level 0 of the system

56

4.3.3. Non-functional Requirement

The non-functional requirement is more based on how the system is

supposed to be. As using the signature-based detection technique, the virus

will be removed if the file signature found in the output of the Online

Sandbox is match with the file signature in the source code of the Auto Virus

Removal version 1 (AVRv1). The Auto Virus Removal version 1 (AVRv1)

will detect and remove the whole of virus only. These viruses may a shortcut

virus, boot virus, program virus, and so on.

4.3.4. Other Requirement

For the other requirement, there are including software requirement

and hardware requirement.

1. Software Requirement

For the software requirement, it contains six requirements that will

be used for developing this project. These are:

a) The Online Sandbox: This software is used to obtain the

behaviours of malware on a file when it runs. It is important to

know which files are infected by malware to be listed and

moved in the source code of project.

b) VMware Workstation: This software is virtual machine that

used to test the functionality of the Auto Virus Removal

Version 1 (AVRv1) by detecting and removing the files that

infected by the malware from the output of the Online

Sandbox. The kind of this solution is to avoid damage on real

machine especially the registries on windows.

57

c) Java Development Kit: This software is used in order to let

the operating system to be able to run java program.

d) Eclipse Java Neon: This software is used as platform for

design system interface. This software provides drag-and-drop

function and so the interface can be developed easily and

quickly.

e) Microsoft Project: This software is used for producing Gantt

chart and other related with project management.

f) Notepad++: This software is used to create a code on HTML,

CSS, and JavaScript. After finish create the code, just running

and launching in Chrome, Internet Explorer, or Mozilla

Firefox to see the interface of webpage.

2. Hardware Requirement

For the hardware requirement, it contains four requirements that

will be used for developing this project. These are:

Table 4.1: The hardware requirements

Hardware Specifications

RAM 4 GB

Hard Disk 500 GB

Processor Intel Premium i5

Operating System Windows 7

58

The Table 4.1 above shows the hardware requirements which are

RAM, hard disk, processor, and operating system. This specification also

is considered for each hardware requirement.

4.4. High-level Design

For the High-level design, it will discuss about the architecture that would

be used for developing this system. It consist of system architecture and user

interface design.

4.4.1. System Architecture

System architecture provide fundamental framework for structuring

the system and guides the development of the design. It also provides a way

of analyzing systems at high-level of abstraction. The design process for

identifying the sub-systems making up a system and the framework for sub-

system control and communication is architectural design. In short, it is the

output of the design process.

59

Search

File Search Registry Search

Memory SearchContent based Icon based

Figure 4.3: The system architecture

The Figure 4.3 shows the system architecture in high-level design. By

looking to this figure, it contains three types of search which are memory

search, file search, and registry search while this memory search is included

in the file search. Other items that contains in file search are content based

and icon based.

Based on this system architecture, the project will concentrate on file

search and content based only.

60

4.4.2. User Interface Design

For user interface design, there have two types of devices to choose

for scanning which are the computer and the pendrive. User need to run the

administrator of the system first.

Figure 4.4: The home page of the system

61

The Figure 4.4 shows the home page of the system. User will be given

the option either to choose on the computer or external device for scanning

the device as shown on the mark given in this figure.

Figure 4.5: The interface in the part of computer scanning

The Figure 4.5 shows the scanning process and the list of infected file

will be displayed on the mark given in this figure. . Just click any scan button

and it will start running.

62

Figure 4.6: The result after scanning process

The result of the scanning process will be displayed after the

computer scanned. All infected files will automatically deleted after the

infected files detected. Just scanning again on the same device and the list of

infected files that detected before will not appear for the second time as

shown in Figure 4.6.

63

4.5. Detailed Design

For the detailed design, it will explain more detail about the logic of the

design and the approach to satisfying the requirements. It consists of software

design.

4.5.1. Software Design

For software design, the specific function of the system will be

explained based on the Data Flow Diagram (DFD) on the Figure 4.2.

Local disk drive

Scan for local disk drive

Use dictionary scan to

match with existing virus

signature or icon

Delete files

Directory search

Search

dependencies

Figure 4.7: The Data Flow Diagram (DFD) for level 1 on the computer

scanning

The Figure 4.7 shows the Data Flow Diagram (DFD) for level 1 on

the computer scanning. For scanning the local disk drive, it will use the

signature-based detection and delete the detected files.

64

Removal drive

Scan for removal drive

Searching for virus as

soon as it plug-in to the

system and block

auto-run activity

Delete virus

Delete

dependecies

Search

dependencies

Flash drive ,

Pendrive

Figure 4.8: The Data Flow Diagram (DFD) for level 1 on the pendrive

scanning

The Figure 4.8 shows the Data Flow Diagram (DFD) for level 1 on

the pendrive scanning. For scanning the removal drive, it will search for virus

as soon as it plug-in to the system and block auto-run activity. Finally, delete

the virus and their dependencies.

4.6. Conclusion

This chapter has reviewed a design that covered all the process of this project

which is system design for the whole project and explanation the details of this

project. In the next chapter, the implementation of this system will be discussed.

65

CHAPTER V

IMPLEMENTATION

5.1. Introduction

 In this chapter, it will be focusing on the software development environment

setup, software configuration management, and implementation status of this

system. The activities involved in this chapter are define the development

environment setup, configuration management setup, and design setup. Other

than that, it will explain about the software tools that used for configuration tool,

and describe the progress of the development status of each module. As the

result, the software tools can be configured correctly and so the system can be

implemented successfully.

66

5.2. Software Development Environment setup

 The implementation of this project will be identified in this section. This

project is standalone information-based system which is developed using Java

Development Kit. The extra plug-in that used for this system is Online Sandbox.

The Figure 5.1 shows the software development environment setup architecture

of the Auto Virus Removal version 1(AVRv1).

VMware Workstation

Microsoft Windows 7

Eclipse Java Neon

Java Development Kit

Figure 5.1: The Software Development Environment Setup Architecture

67

5.2.1. Installation of required software

 VMware Workstation was installed and used as the platform to run

this system on the personal computer. This system should be running on the

virtual machine in order to protect physical machine from virus infection.

Other than that, Microsoft Windows 7 was installed on the platform of

VMware Workstation. This operating system was selected because

nowadays many users are using Microsoft window 7 compared to another

operating system. Java Development Kit (JDK) was installed in order to let

the operating system to be able to run java program. Lastly, Eclipse Java

Neon was installed which provides Graphical User Interface (GUI) for

develop the interfaces for the system. In addition, Graphical User Interface

(GUI) provides drag-and-drop function which can develop the interfaces

easily and quickly.

Figure 5.2: Deployment Diagram

 The Figure 5.2 shows the arrangement of software and hardware to

run the Auto Virus Removal version 1 (AVRv1). The personal computer is a

user and will be conducted as a required hardware.

68

5.2.2. Indicator of compromise

 After all components implemented, some of the virus program (.exe)

should be running on the platform of VMware in order to know their

characteristics. After the virus program (.exe) ran, some of the files in the

windows was infected. What can be concluded about this situation is the

viruses can infect any file at any time. The Figure 5.3 shows other symptom

of virus infection.

Figure 5.3: Virus infected task manager

 Another symptom of virus infection such as the performance of

program become slow and sometime the program will be noticed like 'Not

responding' or 'Windows Explorer has stopped working' such as the Figure

5.4 below.

69

Figure 5.4: The problem of Microsoft Windows

5.2.3. Update the file signature in database

 The file signature in the database is the input of the Auto Virus

Removal version 1 (AVRv1) which is used to match with the pattern of

infected file. If the pattern of infected file is matched with the pattern file in

database of the system, it means that infected file is detected and it will be

automatically removed.

70

Figure 5.5: The list of file signature in the database of the

system

 The Figure 5.5 shows the list of file signature in the database of the

system. Each of file has one pattern that has been collected from the

output of Online Sandbox. There have many pattern of file such as

desktop.ini, Inbox.ini, malware1.exe, netmsg.dll, and many more. If user

want to update the file signature, just open the malware file by notepad,

then replace the new pattern of infected file on that malware file and

save it manually. The new pattern of infected file can get from the

output of Online Sandbox as shown in the Figure 5.6 below and just

copy the pattern of infected file only.

71

Figure 5.6: The output of Online Sandbox

5.3. Software Configuration Management

 This section has a sub-section which is Configuration Environment Setup. It

is more focus on the design setup and also on the configuration management

setup.

5.3.1. Configuration environment setup

 After Eclipse Java Neon was installed, a project with name "Auto

Virus Removal version 1" has been created. The figures show the pseudo

code and their function of each interface of the system:

a. Scan the system, file, and folder

i. Description: This function is to scan the system, file and folder

in windows

72

ii. Input:

virusname.text: string - String value contained in virusname

type.text: string - String value contained in type

wild.text: string - String value contained in wild

threatlevel.text: string - String value contained in threatlevel

affectedplatform.value: number - Integer value contained in

affectedplatform

Output:

N/A

iii. Pseudo code:

for(int io=0;io<point;io++)

 {

 if(database[io].equals(

str221[i1]))

 {

jl2.setForeground(Color.red);

 jl2.setText("Last

Infected File:"+str221[i1]+"([trojen-gender])");

System.out.println("\n\n************* $Virus Found$

***********");

 virus v=new

virus(strRoot[iq]+str22[i]+"/"+str221[i1]);

 System.out.println("2."+strRoot[iq]+str22[i]+"/"+str22

1[i1]);

 vir++;

73

 infected=infected+1;

mu.addElement(str221[i1]+"([trojen-gender]) Action:(File

Modified)");

 }

 }

iv. Interface:

Figure 5.7: The interface of scanning process

74

b. Delete the infected file

i. Description:

This is the function to delete the infected file that matched

with in database. The infected file that detected before will not

detected for the second time when rescan on the same device.

ii. Input:

virusname.text: string - String value contained in virusname

Output:

N/A

iii. Pseudo code:

class virus{

 BufferedReader br=null;

 public String fname="";

 int count=0;

 int ans=0;

 int flag=0;

 JButton b1,b2,b3,b4,b5;

 JFrame jf;

 String name;

 File ee;

 virus(String str)

 {

 File ff=new File(str);

 if (ff.delete()) {

 System.out.println("DELETED...");

 } else {

 System.out.println("NOT

DELETED!!");

75

 }

 }

}

iv. Interface:

Figure 5.8: The interface of deleting process

76

5.4. Implementation Status

 The progress of the development status for each module is described as Table

5.1 below:

Table 5.1: The Modules Table

No. Module name Description Duration

to

complete

Date

completed

1. Input Module Designed the input

interface, list out all

the input, and

performed unit testing

1 week

6/8/2016

2. File Scanning Module Develop the scanning

function, performed

unit testing.

5 days 6/8/2016

3. Output Module Designed the output

interface, develop the

infected file detecting

function, develop the

infected file deleting

function, and

performed unit testing

1 week

13/8/2016

77

5.5. Conclusion

 In conclusion, the system is successfully developed and deployed. All the

configuration are described as well. Finally, the implementation status of the

modules for this system is recorded. After deploying the system, the next activity

will be testing the system to fix all the bugs and errors.

78

CHAPTER VI

TESTING

6.1 Introduction

 After implementing the system, it will go through for software testing.

Software testing is the process of analyzing a software item to detect the

differences between existing and required conditions such as error or bugs and to

evaluate the features of the software item. Testing process is a description of the

major phases of the system testing process. This may be broken down into the

testing of individual sub-systems, the testing of external system interfaces, and

many more.

 This phase is more focus on developing a test plan and test strategy. The

preparation of test plan is to identify the features that will be tested, and the

testing tasks to be performed. The test strategy should be efficient which can

saving the time and cost. Then, the test will be designed and the test results will

be displayed at last.

79

6.2 Test Plan

 The test plan establishes standard for testing process. Other than that, this

sub-chapter also allocate resources and estimate time. The parts of test plan that

will be discussed on this sub-chapter are the test organization, the test

environment, and the test schedule.

6.2.1 Test Organization

 The developer will serve as tester which include in every testing

phases to identify all errors and bugs. Besides that, the result was analyzed by

the software developer to make sure that no errors occur. Lastly, the software

developer interpreted and documented the testing result.

6.2.2 Test Environment

 Test environment is the software and hardware environment where the

testing will be carried out. This section should set out the software tools

required and estimated hardware utilization. The Table 6.1 below shows the

hardware and software requirements that are need to be tested:

Table 6.1: Test Environment

Components Requirement

Hardware - A personal computer

Software - VMware (Virtual Machine)

- Windows 7

- An Auto Virus Removal version

1 (AVRv1) tool

80

6.2.3 Test Schedule

 Test schedule is an overall testing schedule and resource allocation. It

specifies duration and process that should be followed to conduct each of the

test plans. The Table 6.2 below shows the test schedule included:

Table 6.2: Test Schedule

Module Test Cycle Action By Duration

Input 10 times Developer 1 day

File Scanning 45 times Developer 7 days

Output 10 times Developer 1 day

6.3 Test Strategy

 This section which may be completely separate from the test plan, defines the

test cases that should be applied to the system. These tests are derived from the

system requirements specification. In this system, there have two types of testing

that will be used which are white-box-testing, and integration testing.

 Integration testing, which is testing in which software components, hardware

components, or both are combined and tested to evaluate the interaction between

them. It validates that two or more units or other integrations work together

properly, and inclines to focus on the interfaces specified in low-level

design. This testing has two approach which are bottom-up testing and top-down

testing.

81

 White box testing is also known as structural testing which is a technique that

designs test cases based on the information derived from source code. The white

box tester knows what the code looks like and writes test cases by executing

methods with certain parameters. White box testing is focus on control flow or

data flow of a programs.

6.3.1 Classes of tests

 Unit testing is a code based testing which is performed by developers

to test each individual unit of code is to ensure that it performs its intended

functionality. This unit testing can be done for small units of code or

generally no larger than a class.

 Integration testing validates that two or more units or other

integrations work together properly, and inclines to focus on the interfaces

specified in low-level design.

 System testing reveals that the system works end-to-end in a

production-like location to provide the business functions specified in the

high-level design.

 Acceptance testing is conducted by business owners, the purpose of

acceptance testing is to test whether the system does in fact, meet their

business requirements

6.4 Test Design

 Test design consist of test case which developed to exercise a particular

program path or to verify compliance with a specific requirement. It will be

conducted as positive test case when design in such a way that the program or

module being tested succeeds and a valid input is passed to get a valid result.

However, it will be conducted as negative test case when design in such a way

82

that the program or module being tested gives appropriate error code on an

invalid input and an invalid input or condition is created in negative test cases.

6.4.1 Test Description

 After conducting the test plan, several test case with the expected

result for each module is designed and documented.

Table 6.3: Input Test Case

Test Sample malware

Test Purpose To know the characteristic and

pattern of infected file

Test Environment Online Sandbox

Test Step 1. Submit the sample malware

on the online sandbox

2. The online sandbox will

analyze the sample malware

that have been submitted until

it will display the output

3. Copy the pattern of infected

file from the output of

sandbox and save in the

database of the Auto Virus

Removal version 1 (AVRv1).

Expected Result The output from Online Sandbox will

be displayed and the pattern of

infected file can be copied and saved

to database of the Auto Virus

Removal version 1 (AVRv1).

83

Table 6.4: Virus Program Test Case

Test Virus program

Test Purpose To test the virus program whether it is

running on windows or not

Test Environment VMware Workstation

Test Step 4. Take any sample malware

5. Rename that file to format

'.exe'

6. Run the virus program on the

VMware

Expected Result The virus program is running by

viewing on the Task Manager

Table 6.5: File Scanning Test Case

Test files in computer and external drive

Test Purpose To find out the infected files

Test Environment Windows 7

Test Step 1. Choose the user drive whether

on C drive, D drive, or

external drive.

2. Click the button scan

Expected Result The scanned files will be listed and

displayed on the interface

Table 6.6: Output Test Case

Test Infected file

Test Purpose To detect the infected file and remove

the infected file that have been

detected

Test Environment Windows 7

Test Step 1. Scan the drive and wait until

84

the infected file detected

2. If the infected file is detected,

scan again on the same drive

Expected Result The infected files that have been

detected will be deleted and not

appeared on the output of interface

for the second time.

6.4.2 Test Results and Analysis

 After conducting the test, the result were documented. The result were

recorded based on the test cases created during the test design.

1. Input Test

Figure 6.1: The output of Online Sandbox

85

The Figure 6.1 show the output of infected files that have been

analyzed by Online Sandbox.

2. Virus Program Test

Figure 6.2: The virus program installing

The Figure 6.2 shows a virus program named Inbox Games is

installed on the VMware.

86

Figure 6.3: The process of virus program viewing

The Figure 6.3 shows the virus program already run by viewing on the

Task Manager.

87

3. File Scanning Test

a. Scan the external drive

Figure 6.4: The result of file scanning in E drive

The Figure 6.4 shows the result of scanning process in E drive.

The total infected file is zero.

88

b. Scan the D drive

Figure 6.5: The result of file scanning in D drive

The Figure 6.5 shows the result of scanning process in D drive.

The total infected file is zero.

89

c. Scan the C drive

Figure 6.6: The result of scanning file in C drive

The Figure 6.6 shows the result of scanning process in C drive.

The current infected file is zero.

90

4. Output Test

Figure 6.7: The result of detecting infected file in C drive

The Figure 6.7 shows the result of scanning process in C drive. The

infected files was detected.

91

Figure 6.8: The result of deleting infected file in C drive

The Figure 6.8 shows the result of deleting infected file in C drive.

The detected infected files will be removed after rescan the file on

same drive.

92

6.5 Conclusion

 The test has been successfully carried out. The testing phase has covered

every common scenario and cases that may produce bugs to the system. Lastly,

an overall conclusion will be done in the next chapter.

93

CHAPTER VII

PROJECT CONCLUSION

7.1 Introduction

 Project conclusion is the final chapter for this project. From the problem

statement that have been made until the objectives that have been achieved, the

conclusion for overall of the project will be summarized. By listing all the

strengths and weaknesses of the project, the system will not stop here but it can

be enhanced to make this system more useful for the user in the future.

7.2 Project Summarization

 The Auto Virus Removal version 1 (AVRv1) is the simple product for detect

and remove the virus whether on the computer or on the external drive. For the

beginning, this product is just using the signature-based detection. Means that it

will detect and remove the infected file if the pattern on infected file is match

with the on the database of the Auto Virus Removal version 1 (AVRv1).

94

 This product was achieved their objectives. The first objective is to detect the

virus that has been found from the output of the Online Sandbox by using the

Auto Virus Removal version 1 (AVRv1). The second objective is to remove the

virus that has been detected by using the Auto Virus Removal version 1

(AVRv1). The last objective is to provide an informative instructions of the Auto

Virus Removal version 1 (AVRv1) on the webpage.

 For overall, this system cannot become a perfect system. It still has its

weakness that should be enhanced in the future. But, this system still has the

strengths that make user more attractive on it.

The strengths of this system are:

 It can fully scan all driver on one click button

 It can scan all the system on windows effectively.

 This system will automatically delete the selected infected file on the

device.

 It provides the instructions on how to use this tool on the linked website.

Beside these strengths, the weaknesses of this system are:

 It cannot scan the selected folder and file

 This tool also unable to delete a new virus.

7.3 Project Contribution

 This system is very useful for any user. It allows them to clean and protect

their device from virus infection. They can get more information about this tool

by viewing the informative website of the Auto Virus Removal version 1

(AVRv1) which is linked with this system. This website provides the instructions

on how to use this system by clicking a video instruction. Other than that, this

website provides more info about malware which consist of their types, their

95

characteristics and behaviours, and their infections and so they can learn several

knowledge about malware. Please kindly refer to user manual in Appendix A and

Appendix B.

7.4 Future Works

 For the future, this system can be improved more better. Firstly, the function

for detect and delete a new virus should be added in order to make this tool more

secure. Secondly, the function for scan the selected folder and file also need to

be added in order to get quickly scanning. Lastly, the result of detected virus

should be displayed in the interface of the system in order easy for user to get the

current status of scanned file. As the current system of this tool, it was displayed

the detected virus on the console only.

7.5 Conclusion

 The project has met with all the objectives and scopes that are defined in the

proposal and chapter 1 and the system is successfully constructed. Hopefully, this

system can help the users and be used widely.

96

REFERENCES

Abuzaid, A.M. et al., 2013. An Efficient Trojan Horse Classification (ETC).

IJCSI international Journal of Computer Science Issues, 10(Issue 2, No 3),

pp98-99. Available at: http://ijcsi.org/papers/IJCSI-10-2-3-96-

104.pdf\nwww.IJCSI.org.

Adebayo, Surajudeen, O., M.A. Mabayoje, Mishra, A.,Oluwafemi, O., 2012.

Malware Detection, Supportive Software Agents and Its Classification

Agrawal, M., Singh, H., Gour, N., Kumar, A., 2014. Evaluation on Malware

Analysis. Monika Agrawal et al, / (IJCSIT) International Journal of Computer

Science and Information Technologies, pp.3381-3383.

Bassil, Y., 2012. A Simulation Model for the Waterfall Software Development Life

Cycle. International Journal of Engineering & Technology. 2(Issue 5), pp2050

Dixit, N.K., Mishra, L., Charan, M.S., Dey, B.K., 2012. The new age of computer

virus and their detection. International Journal of Network Security & Its

Applications (IJNSA), pp.81.

Kakad, A.R., Kamble, S.G., Bhuvad, S.S., Malavade, V.N., 2014. Study and

Comparison of Virus Detection Techniques, pp252-253. Available online at:

www.ijarcsse.com

Landage, Jyoti, Wankhade, & Mp., 2013. Malware and Malware Detection

Techniques: A Survey. International Journal of Engineering Research.

2(Issue 12), pp62-64.

Maheshwari, S., 2012. A Comparative Analysis of Different types of Models in

Software Development Life Cycle. International Journal of Advanced

Research in Computer Science and Software Engineering. pp.286-287.

Available online at: www.ijarcsse.com

McAfee Labs, 2015. McAfee Labs Threats Report. (Issue November), pp37.

97

Mishra, A., 2013. A Comparative Study of Different Software Development Life

Cycle Models in Different Scenarios. International Journal of Advance

Research in Computer Science and Management Studies, pp.65-66. Available

online at: www.ijarcsms.com

Mourad, H., 2015. Sleeping Your Way out of the Sandbox. SANS Institute.

Santillan, M., 2015. Over 21 Million New Types of Malware Created in Q2 2015,

Report Finds.

Nidhra, S., Dondeti, J.,2012. Black Box and White Box Testing Techniques.

International Journal of Embedded Systems and Applications (IJESA) Vol.2,

No.2. pp.1-2.

Schemes. International Journal of Network Security & Its Applications (IJNSA),

pp37-39.

Shevchenko, A., 2007. The Evolution of Technologies Used To Detect Malicious

Code. Available at: https://securelist.com/analysis/publications/36177/the-

evolution-of-technologies-used-to-detect-malicious-code/ [Accessed March 20,

2016].

Thayer, R. H., 2004. Software Design Part 1, IEEE Software 110

98

APPENDICES

Appendix A: The home page website of Auto Virus Removal version 1

(AVRv1)

99

Appendix B: The second page website of Auto Virus Removal version 1

(AVRv1)

