

HTTP BOTNET DETECTION USING CLASSIFICATION TECHNIQUE

LEE KHER XIN

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS TESIS

JUDUL: HTTP BOTNET DETECTION USING CLASSIFICATION TECHNIQUE

SESI PENGAJIAN: 2015/2016

Saya LEE KHER XIN A

(HURUF BESAR)

mengaku membenarkan tesis (PSM/Sarjana/Doktor Falsafah) ini disimpan di

Perpustakaan

Fakulti Teknologi Maklumat dan Komunikasi dengan syarat-syarat kegunaan seperti

berikut:

1. Tesis dan projek adalah hakmilik Universiti Teknikal Malaysia Melaka.

2. Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dibenarkan membuat

salinan untuk tujuan pengajian sahaja.

3. Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dibenarkan membuat

salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.

4. ** Sila tandakan (/)

 A

(TANDATANGAN PENULIS)

Alamat tetap: 641,LRG ANGSANA 8/2,

 TMN ANGSANA

 09000,KULIM

 KEDAH

Tarikh: 26 AUG 2016

CATATAN: *Tesis dimaksudkan sebagai Laporan Projek Sarjana Muda (PSM)

** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa.

 SULIT

(Mengandungi maklumat yang

berdarjah keselamatan atau kepentingan

Malaysia seperti yang termaktub di

dalam AKTA RAHSIA RASMI 1972)

 (Mengandungi maklumat TERHAD

yang telah ditentukan oleh

organisasi/badan dimana penyelidikan

dijalankan)

 TERHAD

(Mengandungi maklumat yang

berdarjah keselamatan atau kepentingan

Malaysia seperti yang termaktub di

dalam AKTA RAHSIA RASMI 1972)

 TIDAK TERHAD

__________________________A

(TANDATANGAN PENYELIA)

Nama Penyelia: DR. FAHMI ARIF

Tarikh: 26 AUG 2016

HTTP BOTNET DETECTION USING CLASSIFICATION TECHNIQUE

LEE KHER XIN

This report is submitted in partial fulfillment of the requirements for the Bachelor of

Computer Science (Computer Security) with Honours

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY

UNIVERSITI TEKNIKAL MALAYSIA MELAKA 2016

i

DECLARATION

I hereby declare that this project report entitled

HTTP BOTNET DETECTION USING CLASSIFICATION TECHNIQUE

is written by me and is my own effort and that no part has been plagiarized

without citations.

STUDENT : _______ __________ Date : 26 AUG 2016___

 (LEE KHER XIN)

I hereby declare that I have read this project report and found

this project report is sufficient in term of the scope and quality for the award of

Bachelor of Computer Science (Computer Security) With Honours.

SUPERVISOR : ______ ___ Date : 26 AUG 2016____

 (DR. FAHMI ARIF)

ii

DEDICATION

This project is dedicated to Universiti Teknikal Malaysia Melaka (UTeM), which

provide sufficient facility for me to conduct this project. It also dedicated to my great

supervisor, who always teaches me how to solve the problem I faced during this project

and supervises me to finish this project. Besides, it also dedicated to my beloved parents,

who always give encouragement and support to me to complete this project. Then, this

project also dedicated to my friends, who always give their cooperation to me during this

study.

iii

ACKNOWLEDGEMENTS

I would like to thank my supervisor, Dr. Fahmi Arif who giving me valuable guidance

and advice that lead me to complete this project successfully. I would like to appreciate

him for giving me idea and opinion about my project which helped me to understand my

project better. Besides, he also taught me to think out of the box and think critically to

generate a good solution to solve the problem I faced during my project. All of the

guidance helped me to accomplish my project on time. I would also like to appreciate

my evaluator for this project, En Mohd Zaki Bin Mas‟ud for taking his time to evaluate

me. This evaluation gave me a clearer understanding of my project and figure out the

problem needed to solve in my project to make it better than what I already have.

I would also like to thank Universiti Teknikal Malaysia Melaka (UTeM) for providing

me with a comfortable environment and sufficient facilities to finish this project. Finally,

I would also like to thank my beloved families and friends for their motivations and

supports for me throughout my project. With the motivation and support of everyone

that was mentioned above, I am able to overcome many problems that occurred and able

to complete my project successfully on time.

iv

ABSTRACT

 In this final year project, HTTP botnet was detected by using classification

technique. Due to the unknown relationship between network parameter and botnet, it is

difficult to detect HTTP botnet by analysis network traffic. Thus, it is requiring

understanding the relationship between network parameter and botnet before classifying

the malicious network traffic and non-malicious network traffic. The main objective of

this project is investigating the network parameter of the network traffic. Next objective

is to study the relationship between network parameter with HTTP botnet by using

several classification techniques and compare which of the algorithm is more accurate

for classifying the network parameter with botnet. Besides, the scopes of the

investigation in this project are detecting the HTTP-based botnet only by a study on

network traffic and using five type of classification technique to classify the malicious

botnet traffic and non-malicious network traffic. The methodology processes of this

project are literature review, data collection, pre-processing, classification and analysis

and documentation. At the end of this project, it is able to identify the relationship of the

network parameter with HTTP botnet and detect the HTTP botnet by classification the

network parameter.

v

ABSTRAK

 Dalam projek akhir tahun ini, HTTP botnet dikesankan dengan menggunakan

teknik klasifikasi. HTTP botnet sukar dikesankan melalui analisis trafik rangkaian

kerana hubungan yang tidak diketahui antara parameter rangkaian dengan botnet. Oleh

itu, hubungan antara parameter rangkaian dengan botnet perlu difahami sebelum mula

proses mengklasifikasikan trafik rangkaian yang berniat jahat dan trafik rangkaian yang

tidak berniat jahat. Objektif utama projek ini adalah menyiasat parameter trafik

rangkaian. Objektif kedua adalah mengkaji hubungan antara parameter rangkaian

dengan HTTP botnet melalui penggunaan beberapa teknik klasifikasi. Objektif ketiga

adalah pembandingkan algoritma yang lebih tepat untuk mengklasifikasikan parameter

rangkaian dengan botnet. Selain itu, skop untuk projek ini adalah mengesan HTTP

botnet melalui kajian trafik rangkaian dan menggunakan lima jenis teknik klasifikasi

untuk mengklasifikasikan trafik rangkaian botnet dan trafik rangkaian biasa. Proses

metodologi projek ini ialah kajian literatur, pengumpulan data, pra-pemprosesan,

klasifikasi dan analisis dan dokumentasi. Pada peringkat akhir projek ini, hubungan

antara parameter rangkaian dengan HTTP botnet dapat dikenalpastikan dan HTTP

botnet dapat dikesankan mengikut klasifikasi parameter rangkaian.

vi

TABLE OF CONTENTS

CHAPTER SUBJECT PAGE

 DECLARATION i

 DEDICATION ii

 ACKNOWLEDGEMENTS iii

 ABSTRACT iv

 ABSTRAK v

 TABLE OF CONTENTS vi

 LIST OF TABLES xi

 LIST OF FIGURES xii

 LIST OF ATTACHMENTS xiv

CHAPTER I INTRODUCTION

 1.1 Project Background 1

 1.2 Problem Statement (PS) 2

 1.3 Project Question (PQ) 3

 1.4 Project Objective (PO) 3

 1.5 Project Scope (PS) 4

 1.6 Project Contribution (PC) 4

 1.7 Thesis Organization 5

 1.8 Summary 6

vii

CHAPTER II LITERATURE REVIEW

 2.1 Introduction 7

 2.2 Botnet Definition 9

 2.2.1 IRC Botnet 10

 2.2.2 P2P Botnet 10

 2.2.3 HTTP Botnet 11

 2.2.4 Latest Issues Related to HTTP

Botnet

 12

 2.2.5 HTTP Feature 13

 2.2.5.1 HTTP Request 13

 2.2.5.2 HTTP Response 15

 2.3 Botnet Detection 16

 2.3.1 Signature-based Detection 16

 2.3.2 Anomaly-based Detection 17

 2.4 Machine Learning 17

 2.4.1 Unsupervised learning 18

 2.4.2 Supervised learning 18

 2.5 Classification 19

 2.5.1 Naïve Bayes 20

 2.5.2 Support Vector Machines 21

 2.5.3 Artificial Neural Network 22

 2.5.4 Decision Tree 22

 2.6 Evaluation Criteria 23

 2.7 Critical Review 24

 2.5 Summary 25

CHAPTER III METHODOLOGY

 3.1 Introduction 26

 3.2 Project Methodology 27

 3.2.1 Phase 1: Literature review 28

 3.2.2 Phase 2: Data Collection 28

viii

 3.2.3 Phase 3: Pre-processing 28

 3.2.4 Phase 4: Classification 29

 3.2.5 Phase 5: Analysis and

Documentation

 30

 3.3 Project Requirement 30

 3.3.1 Software Requirement 30

 3.3.1 Hardware Requirement 31

 3.4 Project Schedule and Milestones 32

 3.4.1 Milestones 32

 3.5 Summary 34

CHAPTER IV DESIGN

 4.1 Introduction 35

 4.2 Network System Architecture 36

 4.3 Logical Network Design 36

 4.3.1 Logical Network Design for

Malicious Network

 37

 4.3.2 Logical Network Design for Real

Network

 38

 4.4 Possible Scenarios 39

 4.4.1 Data Collecting 39

 4.4.2 Data Analysis 44

 4.5 Summary 46

CHAPTER V IMPLEMENTATION

 5.1 Introduction 47

 5.2 Data preprocessing 48

 5.2.1 Data Cleaning 48

 5.2.2 Data Integration 48

 5.2.3 Data Transformation 49

 5.2.4 Data Reduction 49

ix

 5.2.5 Parameter 50

 5.3 Summary 51

CHAPTER VI TESTING AND ANALYSIS

 6.1 Introduction 52

 6.2 Result and Analysis 53

 6.2.1 Input Dataset in Rapid Miner 53

 6.2.2 Design of classification process 56

 6.2.2.1 Decision Tree 56

 6.2.2.2 K-Nearest Neighbors 57

 6.2.2.3 Naïve Bayes 58

 6.2.2.4 Random Forest 59

 6.2.2.5 Random Tree 59

 6.2.3 Result of Classification 60

 6.2.3.1 Dorkbot 61

 6.2.3.2 Zeus 62

 6.2.3.3 Citadel 63

 6.2.3.4 Spyeye 64

 6.2.3.5 Cutwail 65

 6.2.3.6 Waledac 66

 6.2.3.7 Comparison of the

Performance Measures

 67

 6.3 Summary 71

CHAPTER VII PROJECT CONCLUSION

 7.1 Introduction 72

 7.2 Project Summarization 72

 7.3 Project Contribution 74

 7.4 Project Limitation 74

 7.5 Future Work 74

 7.6 Summary 75

x

 REFERENCES 76

 APPENDICES 80

xi

LIST OF TABLES

TABLE TITTLE PAGE

1.1 Summary of problem statement 2

1.2 Summary of project question 3

1.3 Summary of project objective 3

2.1 Description of methods 14

2.2 Definition of performance metrics 23

3.1 Software requirements 30

3.2 Information of network devices 31

3.3 Hardware requirement for Windows 8.1,

Windows 7 Ultimate and Ubuntu 14.04 LTS

 32

3.4 Milestone 32

4.1 Milestone of release HTTP botnet binary files 42

4.2 List of network parameter 44

5.1 List of selected network parameter 50

6.1 Result of dorkbot 61

6.2 Result of zeus 62

6.3 Result of citadel 63

6.4 Result of spyeye 64

6.5 Result of cutwail 65

6.6 Result of waledac 66

xii

LIST OF FIGURES

FIGURE TITTLE PAGE

2.1 Framework of literature review 8

2.2 Command and control architecture of a botnet 9

2.3 A centralized IRC botnet 10

2.4 The architecture of P2P botnet 11

2.5 HTTP request and responds between client and

server

 13

2.6 HTTP request structure 14

2.7 HTTP response structure 15

2.8 The training and testing for supervised classifier 20

3.1 Project Methodology 27

4.1 Logical design of the malicious network 37

4.2 Logical design for real network 38

4.3 Dorkbot binary files on Malekal’s Forum 39

4.4 Result of VirusTotal part 1 40

4.5 Result of VirusTotal part 2 41

4.6 Script of install tcptrace 42

4.7 Script of extract tcpdump file into CSV file 43

6.1 Interface of repository 53

6.2 Interface of import data 53

6.3 Interface of select the data location 54

6.4 Interface of specify data format 54

6.5 Interface of format columns 55

xiii

6.6 Interface of storing dataset in local repository 55

6.7 Interface 1 of decision tree classification 56

6.8 Interface 2 of decision tree classification 57

6.9 Interface 3 of decision tree classification 57

6.10 Interface 1 of K-NN classification 58

6.11 Interface 2 of K-NN classification 58

6.12 Interface 1 of Naïve Bayes classification 58

6.13 Interface 2 of Naïve Bayes classification 58

6.14 Interface 1 of Random Forest classification 59

6.15 Interface 2 of Random Forest Classification 59

6.16 Interface 1 of Random Tree classification 60

6.17 Interface 2 of Random Tree classification 60

6.18 Comparison of the accuracy with different

classification techniques for each type of HTTP

botnet

 67

6.19 Comparison of the true positive rate with

different classification techniques for each type of

HTTP botnet

 68

6.20 Comparison of the false positive rate with

different classification techniques for each type of

HTTP botnet

 69

6.21 Comparison the average of accuracy, true positive

rate and false positive rate with different

classification techniques

 70

xiv

LIST OF ATTACHMENTS

ATTACHMENTS TITTLE PAGE

A. Gantt Chart 80

B. Network Parameter 81

1

CHAPTER I

INTRODUCTION

1.1 Project Background

Malware is the malicious software that used to interrupt computer operations,

gather personal information, gain access to private computer systems or send unwanted

advertising. Malware may be stealthy and intended to steal information or monitor the

user activities for an extended period without the knowledge of the user. There is

difference type of malware which possesses varying behavior such as virus, worm,

rootkit, botnet, Trojan horse, spyware, adware and ransomware.

Botnet is one type of the malware that uses a collection of compromised

computers to generate spam message, relay viruses or flood a network with excessive

requests to cause the network fail, such as distributed denial of service (DDoS) attack.

Those attacks are coming from a number of computers that are remotely controlled by a

bot master that can be located anywhere across the globe. While HTTP botnet is one

type of botnet which periodically visit certain web server to get updates or latest

commands. Bot masters use HTTP protocol to hide their activities among the normal

2

HTTP flows and easily avoid detection methods like firewall. Nowadays, the HTTP

services are being widely used by the Internet applications, it is not easy to block this

service. Thus detection of the HTTP botnet has become a challenge.

The technique used in this study to detect the HTTP botnet is classification.

Classification is a technique of data mining utilized to forecast group membership for

data samples. Classification is the issue of recognizing which of a set of classes a new

observation is classified, on the foundation of a training set of data containing

observations which the class membership is known. The individual observations are

analyzed into a set of quantifiable properties. Classification is utilized to reveal the

uncommon behavior in network traffic. Classification method use supervised algorithms

to appropriately label the command and control (C&C) channels in HTTP/HTTPS

botnets by means of an in-depth analysis of the network traffic.

1.2 Problem Statement (PS)

In this information age society, most of the people prefer to complete their work

through the internet. Thus, this makes an opportunity for the hacker to steal sensitive

information with malware such as HTTP botnet. HTTP botnet is difficult to detect

because it uses HTTP protocol to hide their communication flow. Since HTTP services

are being used by many Internet application, it cannot simply close the service. Besides,

it is difficult to detect HTTP botnet due to the unknown relationship between network

parameter and botnet. Table 1.1 shows the summary of the problem statement.

Table 1.1: Summary of problem statement

PS Problem Statement

PS1 Difficult to detect HTTP botnet using a network traffic analysis due to

unknown relationship between network parameter and botnet.

3

1.3 Project Question (PQ)

Table 1.2 shows the three project questions of this project.

Table 1.2: Summary of project question

PS PQ Project Question

PS1 PQ1 What are the network parameters existing in the network

traffic?

 PQ2 How is the relationship between each network parameter with

botnet?

 PQ3 Which algorithm is the best in finding out relationship between

network parameter and HTTP botnet?

1.4 Project Objective (PO)

Table 1.3 shows the three objectives of the project.

Table 1.3: Summary of project objective

PS PQ PO Project Objective

PS1 PQ1 PO1 To investigate the network parameter of the network

traffic.

 PQ2 PO2 To study the relationship between network parameter

with HTTP botnet using several classification techniques.

 PO3 To compare which of the algorithm is more accurate for

classify the network parameter with botnet.

4

1.5 Project Scope (PS)

The field of the investigation in this project is detecting the HTTP botnet by

study on the network traffic. The technique used to detect malicious botnet traffic from

the network traffic is classification. Classification using supervised algorithms to

identify the relationship of the network parameter with the HTTP botnet. The type of

botnet detect in this project is HTTP botnet. Only six types of HTTP botnets are release

in a control network such as Dorkbot, Zeus, Citadel, Spyeye, Cutwail and Waledac. The

network parameter was examined and categorized to separate HTTP botnet network

traffic and non-malicious network traffic.

1.6 Project Contribute (PC)

This project helps to enhance Intrusion Detection System (IDS) or Firewall to

detect HTTP botnet. The output of this project is to detect the HTTP botnet by

classification the network parameter to identify the relationship of the network

parameter with HTTP botnet. At the end of this project, this project can differentiate the

non-botnet network traffic and botnet network traffic.

5

1.7 Thesis Organization

Chapter 1: Introduction

This chapter discusses the introduction of the project, problem statement, project

question, project objective, project scope and project contribution.

Chapter 2: Literature Review

In this chapter, among 20 journals needed to study and produce the literature review.

From the journal, the related work of this project, the critical review of the current

problem and the proposed solution of the project were list out. The literature review can

help us more understand about the title of this project.

Chapter 3: Project Methodology

This chapter discusses the methodology of the project which will be carried out and the

project milestones to ensure all the activity is complete on time. In this chapter, the

software and hardware requirement involve in the project was list out.

Chapter 4: Design

This chapter discusses the analysis of the initial design and the result of the detail design.

The design of the network architecture is discussed in this chapter. The network design

will increase the understanding of the arrangement of the network device and the IP

addressing of the workstation. Throughout this chapter, this project can have a clear idea

on the possible scenario.

6

Chapter 5: Implementation

This chapter describes the activity involved in the implementation phase and the

expected output after complete this chapter. During this section, data-preprocessing was

been executed to fill in missing value or delete noisy data of the dataset before

implement the dataset inside classification process.

Chapter 6: Testing and Analysis

This chapter discusses the activity involved in the testing phase and what is the strategy

of testing used in this project. In this section, the design of the classification process and

the result of the classification was studied and analyzed.

Chapter 7: Project Conclusion

This chapter discusses the summarization of the project such as the strength and

weakness of the project, contribution of the project, limitation of the project and the

future works of the project.

1.8 Summary

At the end of this chapter, the problem statement, project question, project

objective, project scope, and project contribution was stated. Next chapter will discuss

the literature review of the project and the related work of this project.

7

CHAPTER II

LITERATURE REVIEW

2.1 Introduction

This chapter discusses the literature review and project methodologies of HTTP

botnet detection by using classification technique. This project title is separate into 3

main parts which are botnet definition, malware detection and machine learning. The

literature review discusses based on the 3 main part of the project title to ensure the

literature is related to the topic and achieve the project objective. This chapter states the

definition of the botnet which includes IRC botnet, Peer-to-Peer (P2P) botnet and HTTP

botnet. The scope of the botnet of this project is HTTP botnet. The feature of HTTP

botnet and the latest issues related to the HTTP botnet were also discussed in this

chapter. For the part of malware detection, it consists of several types of malware

detection technique which are anomaly-based detection and signature-based detection.

This project is using anomaly-based detection technique to detect the malware based

network traffic. Besides, the machine learning part was introduced the supervised

learning and unsupervised learning. The classification method used in this project is

8

under supervised learning. Inside classification, the algorithms such as Naïve Bayes,

Support Vector Machines, Artificial Neural Network and Decision Trees and the

evaluation criteria of the classification algorithms were discussed in this project.

Figure 2.1: Framework of literature review

9

2.2 Botnet Definition

In this information age society, botnets are the new emerge dangerous threats on

the Internet to carry out the sophisticated cybercrimes. A botnet is a collection of

compromised computer that the botmaster can remotely control it to carry out malicious

activities (Saad et al., 2011). A botmaster is a person who gives the command to C&C

server. The bots will receive and responds to that command from the C&C server and

execute the malicious activities which order by the botmaster. Botnets are used to carry

out a distributed denial of service (DDOS), execute a click-fraud trick, spread spam, or

steal individual sensitive information such as email address and credit card numbers.

The lifecycle of a botnet can be divided into four phases which are formation, C&C,

attack and post-attack phases (Saad et al., 2011). During the phase of formation,

botmaster will continuously increase the bot number by infecting other victim machines

on the network. Some botnet has the propagation tactics as worms which are duplicate

and propagate themselves automatically. Then the infected victim machine will act as a

bot that will receive the instructions from the botmaster regularly during the C&C phase.

During the attack phase, the bots will execute the instruction from the botmaster to carry

out malicious activities. After the attack phase, the botmaster will try to probe the botnet

to gain information about active bots and plan for the formation of new bots. This is

because some bots may be detected and removed during the phase of an attack. Botnets

can be classified as IRC-based, P2P-based and HTTP-based botnets. Moreover, the

botnet investigated in this project is HTTP-based botnet.

Figure 2.2: Command and control architecture of a botnet

Source: Wang et al. (2010)

10

2.2.1 IRC Botnet

IRC botnet is the first generation of botnet which using Internet Relay Chat (IRC)

protocol and IRC servers always build up a central C&C server to issue the botmasters‟

command (Eslahi et al., 2013). The botmaster will communicate and control the bots by

using established IRC command and C&C channels. The botmaster will keep control the

bot as long as possible. The bots will only respond when the botmaster pushes new

commands to the botnet. The IRC botnets are easy to control, manage and execute. The

weakness of IRC botnets is it will face the problem of central point of failure. To solve

this problem, P2P botnet is designed with no central point to shut down the botnet.

Figure 2.3: A centralized IRC botnet

 Source: Feily, Shahrestani, & Ramadass (2009)

2.2.2 P2P Botnet

P2P botnet uses peer-to-peer communication which is P2P based C&C channel

to proxy command from the botmaster (Fedynyshyn et al., 2011). P2P botnet produces a

network structure without a central C&C server which is difference from the network

structure of IRC botnet and the individual bot plays a role as both server and client

(Zhao et al., 2013). In P2P networks, communication between botmaster and bots forms

11

unforeseeable paths. The botmaster sends an instruction to any one or two bots and the

bot will distribute the instruction to their neighbors. The advantage of P2P botnet is it

does not have a central point of failure. Besides, the absence of centralized C&C makes

it hard to hijack the botnet or locate the botmaster. Unfortunately, with this decentralized

architecture of the P2P botnet, the botmaster is very hard to measure the size of a

network structure of P2P botnet. In this decentralized architecture, shutdown of a proxy

server may cause part of the botnet unable to function normally. Thus, in the P2P

topology, shutdown a single bot will not affect the entire P2P botnet as alternate paths

are available. Nugache is one type of encrypted P2P botnet which able to evade the

botnet detection techniques.

Figure 2.4: The architecture of P2P botnet

 Source: Wang et al. (2010)

2.2.3 HTTP Botnet

HTTP botnet also is a central C&C model which same with the IRC botnet.

HTTP botnet use HTTP protocol to distribute the malicious commands on web servers

(Eslahi et al., 2013). HTTP bot periodically to gain updates or new instructions by visit

certain web servers instead of always remaining in the mode of connection. This model

is defined as PULL style. HTTP botnet uses a pull-based model to distribute their

malicious command. The pull-based model means the bots will continue at a regular

12

interval to request latest commands from the C&C server. To bypass traditional firewall

based security, HTTP botnet can be stealthy itself by hijacking a authorize

communication channel and encrypt the network packets to evade detection based on

deep packet analysis (Zhao et al., 2013). The main drawback of HTTP botnet is the

entire botnet can be easily disrupted by shutting the HTTP server because HTTP botnet

is based on centralized architectures. It is difficult to obstruct HTTP botnet because the

wide range of the HTTP service is used. Then, the detection of HTTP botnet is more

difficult, because there are many applications and services on the Internet nowadays

frequently use HTTP protocol to communicate between each other.

2.2.4 Latest Issues Related to HTTP Botnet

Estonia had received a massive Distributed Denial of Service (DDoS) attacks in

2007 reflected a paradigm change in relation to the protection of critical facilities. The

capabilities of botnets have been proved to paralyze service online, including

government servers, payment platforms or financial entities (Puerta et al., 2013). In

February 2006, the network system of the Northwest Hospital at Seattle acts strangely.

After the investigation, the investigator realizes that the network system of the Hospital

was attacked by the botnet (Strayer et al., 2006). In August 2005, Britain‟s NISCC

issued a warning, because they found the Trojan activity is increase which aims the UK

government network. The attacker wants to collect the high sensitive valuable

information of UK government. Content delivery network company CloudFlare in UK

also surfaced DDoS attack which has involved mobile advertisements capable of

generating around 275000 HTTP request per second. This situation is known as a Layer

7 HTTP flood attack. The HTTP botnet attack is hard to detect because the requests send

by the attacker is look like legitimate traffic. These requests can overload the server or

make the site down.

13

2.2.5 HTTP Feature

 Hypertext Transfer Protocol (HTTP) is a protocol at the application level that

used for distributed, collaborative and hypermedia information systems. HTTP is a

generic protocol that used by the World Wide Web for data communication since 1990.

HTTP has a feature which involves the representation of data and allows the system to

transfer data independently. HTTP/1.0 is a common protocol in the Multipurpose

Internet Mail Extensions (MIME) format which contains metainformation during the

process of transferring data on the status of request or respond between client and server

(Fielding et al., 1999). HTTP is a request-response protocol and the HTTP header carries

much information about the browser of client, server, requested page and other (Mah

1997).

Figure 2.5: HTTP request and responds between client and server

Source: Burak Guzel (2009)

2.2.5.1 HTTP Request

 HTTP header for request message is a message send from client to server. The

first line of the request message can divide into three parts which are method, path and

protocol. Method is the action to be performed on the request. The examples of method

are OPTIONS, GET, HEAD, POST, PUT, DELETE, TRACE, and CONNECT. The

three common methods are GET, POST and HEAD. Path is the Request-URI which is

14

Uniform Resource Identifier and identifies which resource applies to the request

(Fielding et al., 1999). Protocol part contains the version of the HTTP protocol. Table

2.1 shows the definition of the methods in the HTTP header.

Table 2.1: Description of methods

Methods Description

OPTIONS A request of message about the options of communication available

on the chain of request or response.

GET A request of retrieve information or data.

HEAD A request same with GET but server does not return body of

message in the process of response. It used to test the validity of the

hypertext links.

POST A request that used to request the server receive the substance

include in the request as a new subordinate of the resource.

PUT A request that used to store the enclosed entity under the supplied

URI.

DELETE A request that used to remove the define resource.

TRACE A request that used to echoes a request message.

CONNECT A request that used to dynamically switch a proxy to become a

tunnel.

Figure 2.6: HTTP request structure

 Source: Burak Guzel (2009)

15

 User agent consists the information about the user who begins the request

(Fielding et al., 1999). The user agent contains the information of the name and the

version of the browser and operating system and the default language. Accept language

is the set of language that favors as a reply to the request. Accept encoding is the type of

encoding which is acceptable.

2.2.5.2 HTTP Response

 The server will give back a responds with a HTTP response to the client after the

client sends a HTTP request. Status-Line is the first line of a HTTP Response message

which consists the version of the protocol, numeric code of status and its short message

(Fielding et al., 1999). The version of the protocol usually is HTTP/1.1. The numeric

code of status is a 3 digit code of the trying to meet the request and the short message is

the description of the status code. HTTP status codes have 200‟s, 300‟s, 400‟s and 500‟s.

200‟s are response to a successful request. 300‟s are response to redirection of the

request. 400‟s are response to an error with the request at the client side. 500‟s are

response to an error with the server which cannot process the request.

Figure 2.7: HTTP response structure

 Source: Burak Guzel (2009)

The header of the HTTP response consists of date, entity tag (ETag), cache-

control, content-type, last modified and so on. Date is used to indicate the time and date

of the information was started. ETag in the field of HTTP response header is used for the

16

purposes of caching and give the present value of the entity tag for the difference

requested. Cache-control is used to define an instruction that must follow by all caching

mechanisms in the process of request and response. “max-age” declares that the cache is

only valid for how many seconds. Content-Type is the type of media of the entity-body

transmits to receiver. Last-Modified represent the date and time for the last modified of

the file.

2.3 Botnet Detection

Botnet detection is a technique to detect the malicious traffic which originated by

botnets. The botnet detection techniques are anomaly-based detection and signature-

based detection. Anomaly-based detection is the technique that used in this project to

detect botnet traffic.

2.3.1 Signature-based Detection

Signature-based detection technique detects the botnet by utilizing the signatures

of current botnet (Zeidanloo et al., 2010). For example, Snort can find the signature of

existing bots by monitoring the network traffic. Signature-based detection only can be

used to discover the botnet which is already known by the public. Thus, the signature-

based detection cannot detect the zero-day bot attacks. This detection approach will also

cannot detect the very similar bot with slight different signature. Rishi is a famous

signature-based botnet detection that matches known nick-name patterns of IRC bot

(Goebel & Holz, 2007). Rishi is used to monitor the IRC servers, uncommon server

ports and suspicious IRC nicknames. It uses the scoring system and n-gram analysis to

detect the bots that use uncommon communication channels.

17

2.3.2 Anomaly-based Detection

Anomaly detection techniques are based on the definition of standard behavior

and performance of certain parameter to detect the malicious traffic (Puerta et al., 2013).

The parameters are the characteristics of network connection, CPU usage or any

modification of the file system. Anomaly detection is good at discovering a new botnet

infection which causes changes in the monitored activity (Fedynyshyn et al., 2011).

Karasaridis et al. have the study on performing an in-depth passive analysis of the traffic

in transport layer (Karasaridis et al., 2007). The aim is able to detect behavior patterns

independently of the nature of the change of information at the application layer. Giroire

et al. state that bot must contact their bot master via C&C server to receive command

(Giroire et al., 2009). Giroire et al. builds a legitimate whitelist destination and observe

the host. If the host connects a new destination, an alarm is raised. The connection of the

communication will be blocked if the connection is pretended to be malicious. The

disadvantage of this method is the whitelist need to update frequently. BotSniffer

exploits the temporal similarity and special of botnet activity contrasting them with the

legitimate network traffic (Gu et al., 2008). The idea behind BotSniffer is each of the

bots in the same network will accept the same command from botmaster and carry out

the similar activity responses at the same time. Thus, if a group of host performs the

same activity to respond the same command from same server so as to mark such traffic

as malicious (Fedynyshyn et al., 2011).

2.4 Machine Learning

Machine learning is an automatic learning technique which will base on the past

observation to make an accurate prediction. Machine learning can avoid people to

18

making mistake during analyses and trying to establish relationship between multiple

features (Kotsiantis, 2007). It uses algorithms that can iteratively learn from data without

being definitely programmed. The repeat feature of machine learning can let it able to

independently analyze data when it exposed to new data. The activities involved

machine learning algorithms are fraud detection, web search result, email spam filtering,

network intrusion detection and so on. The two methods of machine learning are

unsupervised learning and supervised learning. The method used for this project is

supervised based machine learning.

2.4.1 Unsupervised learning

Unsupervised learning has been recommended to detect spam email or spam in

network social by straightly leveraging the pattern of spamming that do not have the

training cost (Tan et al., 2013). Training cost is human labor cost to marking training set.

Thus, the data used for unsupervised learning has no historical marks or labels. (Gao et

al., 2010) recognized spam mail by clustering posts based on the similarities of text and

URL. Besides, unsupervised learning also can use to detect anomalies in the flow of

packets on a TCP/IP network (Zanero & Savaresi, 2004). The techniques of

unsupervised learning are nearest-neighbor mapping, k-means clustering, self-organizing

maps and so on.

2.4.2 Supervised learning

Supervised learning is research for algorithms that study from a lot of instances

to generate universal hypotheses and then the algorithms can make predictions about the

19

future instances (Kotsiantis, 2007). Supervised learning is the process of studying a set

of standards from a training set and producing a classifier that used to generalize from

new instances. The learning algorithm will be given a set of instance with the correlated

estimate outputs (Settles, 2010). The algorithm will learn to find error by contrasting the

estimate output with the actual output. Then, the algorithms modify the model to

minimize the error between estimated output and actual output (Settles, 2010). The

methods of supervised learning are classification, regression, prediction and so on.

Classification is the method used for this project to detect HTTP botnet.

2.5 Classification

In machine learning, classification is a process to train a classifier. The classifier

was trained to recognize different patterns from given samples of training dataset

accurately and classify sample of testing dataset with trained classifier (Cho & Won,

2003). In addition, classification also can define as a process to finds common attributes

between a set of objects in a database (Ming-Syan Chen, Jiawei Han, 1996). Then, it will

classify them into their corresponding classes according to the classification model.

Firstly, a sample of dataset X is act as a training dataset which each row consist the same

set of multiple attributes as the rows in a large dataset Z and each row has a known class

label. The key point of classification is to analyze the training dataset first and construct

an accurate classification model for each class by using the attribute in the dataset. After

that, the classification model is used to classify testing dataset Z. Nowadays, there have

many classification applications such as medical diagnosis, performance prediction,

selective marketing and so on.

Furthermore, classification is a technique use to classify and analyze effectively

behavior characteristics of the network traffic in order to classify botnet behavior

network traffic and normal behavior network traffic (Saad et al., 2011). The behavior

20

characteristics of the network traffic are the flow duration, the packet size, the number of

ACK and SYN packets per flow, and so on. Classification also used to identify four

major classes of network services such as bulk data transfer, streaming, interactive and

transaction (Roughan & Sen, 2004). They generate very accurate network traffic flow

classification by using flow duration characteristic and packet size, and observe the

simple classification schemes. The algorithms of machine learning classification are

Decision Trees, Naïve Bayes, Artificial Neural Network, Support Vector Machine

classifier and so on.

Figure 2.8: The training and testing for supervised classifier

Source: Nguyen et al. (2008)

2.5.1 Naïve Bayes

According Maron and Kuhns (1960), Naïve Bayes is one of the probability

methods that used to classify text and retrieve information. Naïve Bayes use the

conditional probability of each attribute value given the class and the concept

description of prior probability of each class (Maron & Kuhns, 1960). Prior

probabilities are based on the previous experience and used it to predict the outcome. It

calculates the frequency of the classes occurrence and the attribute values for each class

in the training data to estimate the value of prior probability (Kolter & Maloof, 2006). In

21

addition, Naïve Bayes has given an unknown instance to compute posterior probability

of every class based on the Bayes‟ rule and returning as its prediction the class with the

highest probability value. Naïve Bayes has been used to detect flow of the P2P botnet

C&C traffic. According to the earlier research, Naïve Bayes has above 88% of the real

detection percentage of the P2P botnet C&C and the classifier training time was lower

compare to the classifier training time SVM and ANN (Saad et al., 2011).

2.5.2 Support Vector Machines

Support Vector Machines is good on the classification task on traditional text

(Dumais, 1996). The method generates a linear classifier which is a vector of an

intercept and weights (Kolter & Maloof, 2006). SVM will map the training data into

higher-dimensioned space by using the kernel function, so the problem is linearly

divided (Kolter & Maloof, 2006). When applied to the problem of binary classification,

a SVM chooses among all possible hyperplanes dividing the two classes in kernel space

a hyperplane that maximizes its margins to each class as the decision boundary for

classification (Problem & Li, 2013). This means that SVM will choose the best

hyperplane that leaves the maximum margin from both classes. SVM improve the

standard methods of finding optimal dividing hyperplanes (Erbacher et al., 2008). SVM

has been used to detect P2P botnet C&C traffic flows. According to the earlier research,

SVM has above 90% of the true detection rate of the P2P botnet C&C but the classifiers

training time and classification time was higher than Naïve Bayes and ANN (Saad et al.

2011).

22

2.5.3 Artificial Neural Network

Artificial Neural Network (ANN) is a computational modeling tool that have

widely acknowledgment in many fields for modeling complex real-world problem

(Basheer & Hajmeer, 2000). ANN are also capable of carrying out large-scale parallel

calculations for knowledge representation and data processing (Basheer & Hajmeer,

2000). Jain et al. (1996) state the remarkable information processing features of ANN

are nonlinearity, robustness, high parallelism, learning, fault and failure tolerance, fuzzy

information and ability to handle imprecise and their capability to generalize. One of the

advantages of ANN is it has ability of self-training. ANN also capable of finding hidden

interdependencies in raw input data (Erbacher et al., 2008). ANN has been used to detect

P2P botnet C&C traffic flows. According to the research of other people, ANN also has

above 90% of the true detection rate of P2P botnet but the total classification error rate

was higher than SVM (Saad et al., 2011).

2.5.4 Decision Trees

Decision tree is a rooted tree with internal nodes and leaf nodes (Kolter &

Maloof, 2006). The internal nodes represent the attributes and the leaf nodes represent

the class labels. The branches of the attributes lead to the children which represent the

value of the attribute. The main function of decision tree is uses the attributes and the

values of an example to build the tree start from the root to leaf. The decision tree is

built by choosing the attribute that classifies the data of training set into suitable classes.

Decision tree produces the node, branches and children based on the attribute and its

value, eliminate the attribute after consideration and allocate the instance to the suitable

child node. This process will execute iteratively until a node of a class contains an

example. Diminish the induced decision tree by deleting the subtrees that are probably

perform poorly on test data is important to avoid overtraining.

23

2.6 Evaluation Criteria

The performance of the selected classifier was evaluated using True Positive

Rate (TPR), False Positive Rate (FPR) and accuracy. Table 2.2 shows the definition of

TPR, TNR, FPR and FNR.

Table 2.2: Definition of performance metrics

Performance Metrics Description

True Positive Rate (TPR) Ratio of correctly detecting malware

samples as malware.

True Negative Rate (TNR) Ratio of correctly detecting benign

samples as benign.

False Positive Rate (FPR) Ratio of incorrectly detecting benign

samples as malware.

False Negative Rate (FNR) Ratio of incorrectly detecting malware

samples as benign.

The formula of TPR, FPR and accuracy:

Where

TP- Number of malware samples which correctly classify.

FN- Number of malware samples which incorrectly classify as benign.

FP- Number of benign samples which incorrectly classify as malware.

TN- Number of benign samples which correctly classify.

24

Good performance classifiers are indicated by high value of TPR and low value

of FPR (Zaki et al., 2014). The performance of each classifier was evaluated by the

accuracy value which represents the level of accuracy of the classifiers to classify the

samples into the correct class.

2.7 Critical Review

There have been several types of research done by other people to detect the

malicious network traffic. Strayer et al. recommend a method to detect the botnets by

investigating flow characteristics in order to obtain the credential of the botnet command

and control activities (Strayer et al., 2006). The example of flow characteristics is

duration, bandwidth and the timing of the packet. They proposed to eliminate the non-

malicious network traffic first and classify the other network traffic into the group of

malicious network traffic. Then, they correlate that traffic by finding the similar

communication patterns that define as the botnet activity. Livades et.al suggest to

recognizing the command and control (C&C) traffic of IRC botnet by using machine

learning technique (Lu et al., 2009). They propose to identify the difference between

IRC and non-IRC traffic and the difference between IRC botnet traffic and real IRC

botnet traffic. According to Gu et al., they study the correlation and similarity of the

spatial-temporal in network traffic (Gu et al., 2008). They use BotSniffer which is a

prototype system to detect HTTP and IRC botnet. The botnet detection technique

suggests above have the limitation to IRC-based C&C protocols and centralized botnet

structure only.

In addition, Jae-Seo et al. and Tung-Ming el al. proposed one parameter

according to one of the HTTP botnet characteristics which is Degree of Periodic

Repeatability (DPR) (Lee et al., 2008). DPR is the regular connections pattern of HTTP

25

botnet to botmaster. According to Jae-Seo et al. and Tung-Ming el al., when the DPR is

low, this proves that the activity is a bot. This is because a bot usually uses a fixed

connection interval. This detection method will produce a false negative result, if the

botmaster alters the connection intervals technique. Besides, this detection method also

will detect the updaters as a bot and produce a false positive result.

Then, BotMiner was introduced by Gu et al. to investigate the similarities in the

malicious activities which produce by the similar botnet. Although BotMiner can detect

the random interval bot which frequently change the connection intervals, it also faces

the high risk of producing false positive result when it detects the service which needs to

update periodically such as Gmail session that needs to check email regularly. This

detection method shows less efficiency when used in a single bots or small size botnet.

Furthermore, Lu et al. introduce to use payload-signature to classify the services

and application flows (Lu et al., 2009). They use the payload signature to check the bit

string inside packet payload. The bit string in packet payload can use to separate the

unknown traffic and known traffic from the set of network traffic to decrease the false

alarm rate. This method is less effective as it cannot recognize a new pattern and maybe

will increase the false negative rate.

Thus, each of the studies on botnet detection produces the different result in the

field of false alarm rates and efficiency. Therefore, this project used five different

technique of classification to detect the HTTP botnet from network traffic.

2.8 Summary

Finally, the chapter 2 was discussed about the literature review that related to this

project. Throughout the chapter 2, the methodology or technique used in this project was

clearly defined. This review will be used as a reference for the implementation and

analysis phase.

26

CHAPTER III

METHODOLOGY

3.1 Introduction

In this chapter, the project methodology and the project milestone was discussed

clearly. Project methodology and the project milestone become the guideline until the

end of the project. Both of it ensure that the project meets the objective of the project.

27

3.2 Project Methodology

This section described the step of the methodology about the project. The step

listed in the methodology should be followed to make sure the project is in a correct

sequence and do not run out of the scope of the project. Figure 3.1 below show the five

phases of the project methodology.

Literature Review

Data Collection

Pre-processing

Classification

Analysis and

Documentation

Figure 3.1: Project Methodology

28

3.2.1 Phase 1: Literature review

Phase 1 is the phase to study all related previous research paper to understand the

scope and the requirement of the project. The related journal used as a reference to make

the project become more reliable. Besides, this phase also defines the theory about the

HTTP botnet, anomaly-based detection and the method of classification used to detect

the botnet.

3.2.2 Phase 2: Data Collection

 Phase 2 is the phase to release and collect the data of HTTP botnet. During this

phase, the HTTP botnet was released in an isolate network and the data of the network

traffic was collected after one week the HTTP botnet been released. In addition, this

phase was defining the type of HTTP botnet. On the same time, the non-malicious

network traffic also generated by browsing HTTP website for 1 day duration.

3.2.3 Phase 3: Pre-processing

 Phase 3 is the phase to convert the type of the file from tcpdump file to CSV file

by using tcptrace tool. After that, the data clean process is needed to carry out by delete

all the unreadable character of the Rapid Miner in the CSV file. The rapid miner unable

to process the data which involve alphabet character and IP address. Thus, the data

should be clean before classifying the data using the Rapid Miner.

29

3.2.4 Phase 4: Classification

 In this phase, the five types of the algorithms of machine learning classification

use in this project are Decision Tree, K-Nearest Neighbors (K-NN), Naïve Bayes,

Random Forest and Random Tree. After the five types of machine learning classification

algorithms been applied to classify the botnet behavior network traffic and normal

behavior network traffic, the result between the five types of the algorithm need to be

compared to verify which algorithm is the most accurate algorithm to classify the

network traffic.

 Decision Tree is a predictive classification model that predicts the label of a new

sample based on different parameter values of the dataset. K-nearest neighbor (K-NN) is

a type of simple classification technique among memory based induction. K-NN makes

decision to predict the label based on the k closest neighbors with similarity measures.

Naïve Bayes is a classifier based on Bayes Theorem of conditional probability. Random

Forest is a classifier that aggregates the result and it is constructed by a brunch of

decision trees. The good attribute at each node of the decision tree is constructing from a

randomly selected features number. Random Tree classifier functions like the decision

tree classifier, but Random Tree classifier will split a random subset of the attributes.

 The reason of implement these five types of classification technique is these five

types classifier is a common and popular classifier used by another researcher in

malware or botnet detection. According to the earlier research, Random Forest classifier

able to classify the sample into correct classes and achieves 82.53% of detection

accuracy (Puerta et al., 2013). Besides, Naïve Bayes has above 88% of the detection

accuracy and the training time of Naïve Bayes classifier was lower compare to SVM and

ANN classifiers (Saad et al., 2011). In criteria of Area under the Curve (AUC), Random

Forest and KNN have achieve the highest value which around 0.9 and 0.93 (Puerta et al.,

2013). The AUC is percentage of correct test results in while classifying testing data and

AUC value of 1 represents a perfect test (Kapratwar, 2016). Moreover, Decision Tree

classifier also achieves 80% of the correctly classified instances (Puerta et al., 2013).

30

3.2.5 Phase 5: Analysis and Documentation

In this phase, the result of the classification is needed to analysis by producing a

graphical result. After the analysis, all the result of the classification of HTTP botnet is

need to documentation and summarize. The project contribution and the project

limitation is need to list out at the end of the project. Then, it will follow by evaluation

and submission of the completed final year project.

3.3 Project Requirement

This section was discussed about the software and hardware requirement of the

project.

3.3.1 Software Requirement

 Table 3.1 shows the minimum software requirements of the project.

Table 3.1: Software requirements

Requirements Description

Windows 7 Operating System(OS) Machine Operating System.

Ubuntu 14.04 LTS Machine operating system that used for

malware repository.

Wireshark Network packet analyzer tool.

Microsoft Office 2013:

 Microsoft Words

 Microsoft PowerPoint

 Microsoft Excel

The software of Microsoft Office 2013 is

used to prepare the final project report,

Gantt Chart, milestone, slide presentation

and data cleaning.

Rapid Miner Studio Intuitive graphical user interface for the

31

design of analytic processes.

VMware Workstation A virtual machine which creates an

isolate environment used to download

and analysis the HTTP botnet.

Tcpdump A common packet analyzer that runs

under the command line.

Process Monitor A monitoring tool to capture real time

file system activity, registry activity,

process or thread activity and network

activity.

Process Explorer A system resources monitoring tool to

monitoring the currently active processes

and tracking down DLL-version

problems or handle leaks.

3.3.2 Hardware Requirement

Table 3.2 shows the information of the network devices involve in this project

which is router, switch and sniffer. In addition, Table 3.3 figures out the hardware

information for window 8.1, window 7 ultimate and Ubuntu 14.04 LTS.

Table 3.2: Information of network devices

Network Devices Detail

Router Cisco 2800 Series

Switch Catalyst 2950 Series

Sniffer HP ProLiant DL160 G5

32

Table 3.3: Hardware requirement for Windows 8.1, Windows 7 Ultimate and

Ubuntu 14.04 LTS

Requirement Server 1 Server 2 Server 3

Operating System Windows 8.1 Windows 7 Ultimate Ubuntu 14.04 LTS

Processor Intel (R) Core (TM)

i5-4200U

Intel (R) Pentium (R)

D

Intel (R) Core

(TM) i5-3470

Memory (RAM) 4.00 GB 8.00 GB 4.00 GB

System Type 64-bit Operating

System

32-bit Operating

System

64-bit Operating

System

3.4 Project Schedule and Milestones

This section was discussed the project schedule and milestones. Project schedule

and milestone are used to ensure the progress of the project is running on time.

3.4.1 Milestones

Table 3.4 shows the milestone of the project.

Table 3.4: Milestone

Project Activity Milestones Week

Deciding title of Proposal

PSM
Prepare and discuss proposal PSM

04-08 Jan

Proposal PSM Submission

& Presentation
Deliverable proposal PSM

11-15 Jan

Chapter 1: Introduction Preparation of chapter 1

01-04 March

Submission of Chapter 1
Deliverable chapter 1 and discuss

chapter 2

07-11 March

33

Chapter 2: Literature

Review
Preparation of chapter 2

14-25 March

Submission of Chapter 2
Deliverable chapter 2 and discuss

chapter 3

28 Mar -1 April

Chapter 3: Methodology Preparation of chapter 3

04-08 April

MID SEMESTER BREAK

Submission of Chapter 3
Deliverable chapter 3 and discuss

chapter 4

18-22 April

Chapter 4: Design Preparation of chapter 4
25 April- 13

May

Submission of chapter 4 Deliverable of chapter 4

16 - 20 May

Prepare PSM 1 Report Improvement of PSM 1 report
23 - 27 May

FINAL

PRESENTATION (PA)

Submission and presentation PSM 1

Report

30 May - 03

June

REVISION WEEK

Correction draft report

based on supervisor‟s and

evaluator‟s comments

during the final

presentation session.

Submission overall marks

to PSM/PD committee.

Action – Student, Supervisor,

Evaluator. PSM/PD committee.

06 - 10 June

FINAL EXAMINATION SEMESTER

Chapter 5: Implementation Preparation of chapter 5 04-08 July

Submission of chapter 5
Deliverable of chapter 5 and discuss

chapter 6 11-15 July

Chapter 6: Testing Preparation of chapter 6 18-22 July

Submission of chapter 6
Deliverable of chapter 6 and discuss

chapter 7 25-29 July

34

3.5 Summary

Finally, the chapter 3 discussed the five phases include in the project which are

literature review, data collection, pre-processing, classification and analysis and

documentation. This chapter also described the software and hardware requirement of

the project. The project schedule and milestone are listed out to ensure the activity of the

project been completed on time.

Chapter 7: Conclusion Preparation of chapter 7 01-05 Aug

Submission of chapter 7 Deliverable of chapter 7 08-12 Aug

Complete Final Report

PSM 2(draft)

Progress Evaluation

Preparation and Improvement Final

Report PSM 2 15-19 Aug

 Presentation Schedule Deliverable – Complete Report(draft) 22-26 Aug

-PSM 2 presentation and

evaluation

- Correction report based

on supervisor‟s and

evaluator‟s comments

during the final

presentation session.

Improvement of Final Report PSM 2 29-31 Aug

-Submit PSM complete

report for supervisor‟s

signature and binding

Deliverable –

PSM report(3 copies) & CD (1 copy)
29-31 Aug

35

CHAPTER IV

DESIGN

4.1 Introduction

This chapter is about the preliminary design and the result of the detailed design

of the project. The design involves in the project is logical network design. Network

design can help to realize the structure of the implementation of the network. Having a

visual view of a logical network design can help to identify or troubleshooting the

problem quickly. Besides, this chapter also discusses the design of the data collection of

botnet and the scenarios to stimulate the project.

36

4.2 Network System Architecture

In this project, the control network was set up to collects and captures the HTTP

botnet network traffic. The network device involves in this control network are one

router, one switch, one sniffer and three workstations. The network topology of this

malicious network is start topology. In a start topology, all the workstations are

connected to one switch which acts as the center of the network architecture. Data need

to pass through the switch before transfer to other destination. The switch will manage

all the functions of the network and acts as a repeater for the data flow. Start topology is

easy to install and troubleshoot to detect the fault device. As the node are not connected

to each other, thus if one node has problem, the rest of the node also can function well.

The main drawback of start topology is the network will corrupt if the switch fails to

function well.

Besides, network architecture was set up to collects and captures the real network

traffic. The network device involves in this network are one router, one switch, one

sniffer and three workstations. The network topology implement in this network

architecture is start topology.

4.3 Logical Network Design

 Logical network design illustrated the arrangement of the network device and the

network connection between each device inside a network. The logical network design

used was help to understand the IP address and subnet mask of the workstations.

37

4.3.1 Logical Network Design for Malicious Network

PC1
IP: 192.168.2.202

Subnet Mask: 255.255.255.0

PC2
IP: 192.168.2.203

Subnet Mask: 255.255.255.0

PC3
IP: 192.168.2.205

Subnet Mask: 255.255.255.0

Sniffer

Port Mirror

Router

Internet

Figure 4.1: Logical design of the malicious network

Based on Figure 4.1, there have one router, one switch, one sniffer and three

workstations to setup a network environment for generating malicious network traffic.

The sniffer is a network analyzing tool that will capture and view the flow of the packet

receive and transmit on the network. It is used to recording the malicious network traffic

when a botnet is release among the workstation and the bot is communicating with the

C&C server to receive the command from botmaster.

38

4.3.2 Logical Network Design for Real Network

PC1
IP: 192.168.2.201

Subnet Mask: 255.255.255.0

PC2
IP: 192.168.2.202

Subnet Mask: 255.255.255.0
PC3

IP: 192.168.2.203
Subnet Mask: 255.255.255.0

Sniffer

Port Mirror

Router

Internet

Figure 4.2: Logical design for real network

Based on Figure 4.2, there have one router, one switch, one sniffer and three

workstations to setup a network environment for generating real network traffic. The

network sniffer will capture the real network traffic without the existent of botnet.

39

4.4 Possible Scenarios

 The possible scenarios of this experiment have divided into two parts which are

data collecting and data analysis.

4.4.1 Data Collecting

Firstly, the malware binary or execute files was needed to collect from the

Internet. The websites use to collect the malware binary files are Contagio BlogSpot

(http://contagiodump.blogspot.my/), Malware Analysis by Cuckoo Sandbox

(https://malwr.com/) and Malekal‟s Forum (http://malwaredb.malekal.com/). Figure 4.3

is an example of the step to collect the HTTP dorkbot binary files from Malekal‟s Forum.

Figure 4.3: Dorkbot binary files on Malekal’s Forum

40

Secondly, the malware binary file was needed to upload in the website

VirusTotal (https://www.virustotal.com/) to analyze and verify the malware binary file.

The VirusTotal is an online antivirus engine and scanner that analyzes files and URLs to

identification the malicious content such as virus, worms, Trojan, botnet, backdoor and

other malware. The result of VirusTotal scanner can prove that the malware binary file is

a HTTP botnet. Figure 4.4 and Figure 4.5 show the result of the scanner VirusTotal after

uploading a Dorkbot binary file. Figure 4.5 show that has three antiviruses detect the

binary file uploaded contains a Dorkbot.

Figure 4.4: Result of VirusTotal part 1

41

Figure 4.5: Result of VirusTotal part 2

Thirdly, process monitor and process explorer were used to make sure the HTTP

botnet is not in a dormant status. By using the process monitor and process explorer, all

the processes or activity execute by the malware binary file on the user‟s system can

monitor by the user. Process monitor is a real time monitoring tools that can use to

capture all the single activity execute by the botnet such as registry activity, process or

thread activity, network activity and the file system activity. In the registry activity, it

list out the activity carry out by the botnet such as creating, reading, deleting or querying

the registry keys. In process or thread activity, it list out all event for starts or exits of the

process and thread. Besides, the information about the botnet connecting, sending,

receiving, or reconnecting to the IP address of botmaster was recorded in the network

activity. In the file system activity, it listed out all the activity execute by the botnet such

as opening, closing, creating or reading the files. Process explorer act as a task manager

or system monitor application that list out the active processes and Dynamic Link

Library (DLL) in the computer system. The activities monitors by process explorer are

the processes loading a DLL file, running an open window or opening and closing the

file.

42

After verifying the malware binary file is a HTTP botnet and it does not in a

dormant status, the malware binary file was executed in a control network for the

duration of 7 days. Table 4.1 lists out the milestone of release the HTTP botnet binary

files in a control network.

Table 4.1: Milestone of release HTTP botnet binary files

Type of HTTP botnet Start date End date Duration

Dorkbot 24/03/2016 30/03/2016 Seven days

Zeus 31/03/2016 06/04/2016 Seven days

Citadel 07/04/2016 13/04/2016 Seven days

Spyeye 14/04/2016 20/04/2016 Seven days

Cutwail 21/04/2016 27/04/2016 Seven days

Waledac 28/04/2016 04/05/2016 Seven days

After 7 days, the malicious tcpdump file was collected from the network sniffer.

Before analyze the malicious tcpdump file in the Rapid Miner, the tcpdump file was

needed extract into CSV file by using tcptrace. Figure 4.6 shows the script of install

tcptrace and Figure 4.7 shows the script of extract tcpdump file into CSV file.

Figure 4.6: Script of install tcptrace

43

Figure 4.7: Script of extract tcpdump file into CSV file

 In addition, the non-malicious network traffic data was also needed to collect at

the same time. Firstly, network architecture was needed to set up such as one router, one

switch, one sniffer and three workstations. The sniffer was used to intercept and record

the network traffic pass over the network. Secondly, a list of HTTP website was

prepared. Thirdly, HTTP website was browsed for the duration of 1 day to generate the

non-malicious network traffic. Finally, the non-malicious tcpdump file was collected for

the data analysis. After that, the non-malicious tcpdump file was extract into CSV file by

using tcptrace.

 Finally, the malicious network traffic data was combined with the non-malicious

network traffic data to become a big dataset.

44

4.4.2 Data Analysis

 The data collected was analyzed in this phase by using Rapid Miner. Rapid

Miner is an analytic tool use in the field of machine learning, data mining, statistical

analytics and predictive analytics. In this project, the method of classification was used

to classify the malicious network traffic and non-malicious network traffic. Before

classifying the dataset by using Rapid Miner, the data preprocessing was needed to

implement first.

 Data preprocessing is the preliminary step of data mining to prepare the raw data

by removes noise from data before continues to another processing procedure. The steps

involve in data preprocessing are data cleaning, data integration, data transformation and

data reduction. Data cleaning is clean the data by correcting the inconsistence data and

filling the missing values. Data integration is integrating the data from multiple sources.

Data transformation is normalizing and generalizing the data. Data reduction is reducing

or eliminating the redundant parameter of the dataset. In data preprocessing, all the

parameters of the dataset were needed to study. A dataset has 93 columns of parameter

and a numbers of rows. Table 4.2 shows the list of the 93 parameters of the dataset. The

description of the parameters of dataset showed in Appendix B.

Table 4.2: List of network parameter

Source: Lang (2010)

No Parameter No Parameter No Parameter

1. conn 32. zwnd_probe_pkts_a2b 63. min_segm_size_b2a

2. host_a 33. zwnd_probe_pkts_b2a 64. avg_segm_size_a2b

3. host_b 34. zwnd_probe_bytes_a2b 65. avg_segm_size_b2a

4. port_a 35. zwnd_probe_bytes_b2a 66. max_win_adv_a2b

5. port_b 36. outoforder_pkts_a2b 67. max_win_adv_b2a

6. first_packet 37. outoforder_pkts_b2a 68. min_win_adv_a2b

7. last_packet 38. pushed_data_pkts_a2b 69. min_win_adv_b2a

8. total_packets_a2b 39. pushed_data_pkts_b2a 70. zero_win_adv_a2b

9. total_packets_b2a 40. SYN_pkts_sent_a2b 71. zero_win_adv_b2a

10 resets_sent_a2b 41. FIN_pkts_sent_a2b 72. avg_win_adv_a2b

45

11. resets_sent_b2a 42. SYN_pkts_sent_b2a 73. avg_win_adv_b2a

12. ack_pkts_sent_a2b 43. FIN_pkts_sent_b2a 74. initial_window_bytes_a2b

13. ack_pkts_sent_b2a 44. req_1323_ws_a2b 75. initial_window_bytes_b2a

14. pure_acks_sent_a2b 45. req_1323_ts_a2b 76. initial_window_pkts_a2b

15. pure_acks_sent_b2a 46. req_1323_ws_b2a 77. initial_window_pkts_b2a

16. sack_pkts_sent_a2b 47. req_1323_ts_b2a 78. ttl_stream_length_a2b

17. sack_pkts_sent_b2a 48. adv_wind_scale_a2b 79. ttl_stream_length_b2a

18. dsack_pkts_sent_a2b 49. adv_wind_scale_b2a 80. missed_data_a2b

19. dsack_pkts_sent_b2a 50. req_sack_a2b 81. missed_data_b2a

20. max_sack_blks_ack_a2b 51. req_sack_b2a 82. truncated_data_a2b

21. max_sack_blks_ack_b2a 52. sacks_sent_a2b 83. truncated_data_b2a

22. unique_bytes_sent_a2b 53. sacks_sent_b2a 84. truncated_packets_a2b

23. unique_bytes_sent_b2a 54. urgent_data_pkts_a2b 85. truncated_packets_b2a

24. actual_data_pkts_a2b 55. urgent_data_pkts_b2a 86. data_xmit_time_a2b

25. actual_data_pkts_b2a 56. urgent_data_bytes_a2b 87. data_xmit_time_b2a

26. actual_data_bytes_a2b 57. urgent_data_bytes_b2a 88. idletime_max_a2b

27. actual_data_bytes_b2a 58. mss_requested_a2b 89. idletime_max_b2a

28. rexmt_data_pkts_a2b 59. mss_requested_b2a 90. hardware_dups_a2b

29. rexmt_data_pkts_b2a 60 max_segm_size_a2b 91. hardware_dups_b2a

30. rexmt_data_bytes_a2b 61. max_segm_size_b2a 92. throughput_a2b

31. rexmt_data_bytes_b2a 62. min_segm_size_a2b 93. throughput_b2a

 After understand all the meaning of the parameter of the dataset, the unrelated

and duplicated data was needed to delete, the missing value of the data was needed to fill

in and some related data was needed to integrate. The execution of the data

preprocessing can increase the effectiveness and accuracy of the result of data mining.

Next, the dataset was uploaded into Rapid Miner for the classification of the data. In the

stage of classification, 5 types of classification algorithm were used to classify the data.

Then, the result of the performance measures between the 5 types of classification

algorithm was evaluated for classify the malicious and non-malicious network traffic.

46

4.5 Summary

 The network design is important for develop a network architecture. The logical

network design can give a clear understanding about the arrangement of the network

device and the IP addressing. The possible scenario states in this chapter can ensure that

this project is not run out of the objective and the scope of the topic. Besides, it also

gives a clear review of the process of experiment needed to carry out. This chapter was

prepared a good basic and preparation for the implementation of the project.

47

CHAPTER V

IMPLEMENTATION

5.1 Introduction

This chapter discusses the activity execution in the phase of implementation. In

this phase, the malicious and non-malicious tcpdump files are extracting into CSV file

by using tcptrace. After both of the malicious and non-malicious files been extracted,

both data are combine become a big dataset. Besides, data preprocessing is needed to

carry out to make sure the dataset contains significant parameters without missing value.

48

5.2 Data preprocessing

 During this phase, data preprocessing is carried out and divided into four steps

which are data cleaning, data integration, data transformation and data reduction. Data

preprocessing is an essential phase that should be executed carefully before

classification process was started. Data preprocessing can brings benefit of gaining a

high accuracy of the classification result.

5.2.1 Data Cleaning

 Data cleaning is an importance part of the project before start the classification

process. Data cleaning is a process used to eliminate missing value such as symbol NA

which represented as not available and noisy value such as IP address in the dataset that

is unreadable by rapid miner. Data cleaning also can help to improve the accuracy of

classification. In this project, the column of host_a and host_b parameters will be delete

because both of the parameters represented as IP addresses of host a and host b which

cannot interpret by rapid miner. Besides, the NA symbol found in the column of

idletime_max_b2a parameter will be replaced as zero value. The row of the

throughput_a2b and throughput_b2a parameters which consists NA symbol will be

deleted. The column of ttl_stream_length_a2b, ttl_stream_length_b2a, missed_data_a2b,

missed_data_b2a parameters will be deleted because it contains more than 60% of NA.

5.2.2 Data Integration

 Data integration is an association process of combining data from multiple

sources become a big dataset. In this project, the malicious and non-malicious dataset

was needed to combine become a big dataset. Besides, the first_packet and last_packet

49

parameters which act as time of the first packet and last packet sent in the connection

will be integrate become inter_arrival_time parameter which is the interval time between

the time of the first packet and last packet sent in the connection.

5.2.3 Data Transformation

 Data transformation is a process of transform the parameter value into an

appropriate format which is suitable to undergo the classification process in rapid miner.

The example of data transformation is changing the alphabet Y which act as yes into

value 1 and alphabet N which act as no into value 0. Thus all alphabets Y and N of the

parameters req_1323_ws_a2b, req_1323_ws_b2a, req_1323_ts_a2b, req_1323_ts_b2a,

req_sack_a2b, req_sack_b2a are change into value 1 and 0. This is because rapid miner

cannot interpret the alphabet so all alphabets such as Y and N will change into value 1

and 0 corresponding. To label the malicious and non-malicious dataset, class parameter

is added. The malicious dataset was represented as value 1 and non-malicious dataset

was represented as value 0.

5.2.4 Data Reduction

 Data reduction is one of the steps of data preprocessing which needed to delete

unrelated and insignificant parameters in the dataset. Although data reduction will

decrease the size of the dataset but it still maintains to generate the similar classification

result. In this project, the parameter which consist more than 90% value 0 will be deleted.

This is because those parameter contains a lot of value 0 will not bring any effect on the

classification process. Besides, the conn parameter which acts as the numbering of the

dataset also will be deleted, because this parameter is not useful in the classification

50

process. Thus the data reduction can help to improve the accuracy of the classification

result by eliminating the irrelevant parameters.

5.2.5 Parameter

 Table 5.1 shows the list of the network parameters selected after data

preprocessing. The description of the network parameters showed in Appendix B. That

network parameters was used in the classification process.

Table 5.1: List of selected network parameter

Source: Lang (2010)

No Parameter No Parameter No Parameter

1. port_a 21. pushed_data_pkts_a2b 41. avg_segm_size_a2b

2. port_b 22. pushed_data_pkts_b2a 42. avg_segm_size_b2a

3. inter_arrival_time 23. SYN_pkts_sent_a2b 43. max_win_adv_a2b

4. total_packets_a2b 24. FIN_pkts_sent_a2b 44. max_win_adv_b2a

5. total_packets_b2a 25. SYN_pkts_sent_b2a 45. min_win_adv_a2b

6. resets_sent_b2a 26. FIN_pkts_sent_b2a 46. min_win_adv_b2a

7. ack_pkts_sent_a2b 27. req_1323_ws_a2b 47. avg_win_adv_a2b

8. ack_pkts_sent_b2a 28. req_1323_ts_a2b 48. avg_win_adv_b2a

9. pure_acks_sent_a2b 29. req_1323_ws_b2a 49. initial_window_bytes_a2b

10. pure_acks_sent_b2a 30. req_1323_ts_b2a 50. initial_window_bytes_b2a

11. unique_bytes_sent_a2b 31. adv_wind_scale_a2b 51. initial_window_pkts_a2b

12. unique_bytes_sent_b2a 32. adv_wind_scale_b2a 52. initial_window_pkts_b2a

13. actual_data_pkts_a2b 33. req_sack_a2b 53. data_xmit_time_a2b

14. actual_data_pkts_b2a 34. req_sack_b2a 54. data_xmit_time_b2a

15. actual_data_bytes_a2b 35. mss_requested_a2b 55. idletime_max_a2b

16. actual_data_bytes_b2a 36. mss_requested_b2a 56. idletime_max_b2a

17. rexmt_data_pkts_a2b 37. max_segm_size_a2b 57. throughput_a2b

18. rexmt_data_pkts_b2a 38. max_segm_size_b2a 58. throughput_b2a

19. rexmt_data_bytes_a2b 39. min_segm_size_a2b 59. class

20. rexmt_data_bytes_b2a 40. min_segm_size_b2a

51

5.3 Summary

 Finally, this chapter discusses the detail process of the data preprocessing before

we started the classification process. The data preprocessing can help to generate a

dataset without unrelated parameter and noisy data which will affect the accuracy of the

classification result.

52

CHAPTER VI

TESTING AND ANALYSIS

6.1 Introduction

This chapter discusses the classification process and result implementation

through the Rapid Miner analytic tool. During this chapter, the design of classification

process was discussed and the result of the classification process was analyzed. Through

this chapter, the result of difference classification techniques such as Decision Tree, K-

NN, Naïve Bayes, Random Forest and Random Tree was evaluated and compared. At

the end of chapter six, the classification technique has the most accurate performance in

classifying malicious and non-malicious network traffic was concluded.

53

6.2 Result and Analysis

 This section studies the classification process execute in Rapid Miner. Besides,

each performance measures of the difference classification technique were analyzed and

all techniques were compared to choose the technique which has the most accurate

performance in the classification process.

6.2.1 Input Dataset in Rapid Miner

After dataset is clean by removing noisy and irrelevant data through data

preprocessing, then the dataset is prepared to proceed with classification process. Rapid

Miner is an analytic tool which used in this project to execute the classification process.

To input dataset inside Rapid Miner, first click on the button “Add Data” in the

repository.

Figure 6.1: Interface of repository

Next, select the place store dataset such as My Computer.

Figure 6.2: Interface of import data

54

Then, choose the file and click “Next” button.

Figure 6.3: Interface of select the data location

After that, specify the data format such as column separator and click “Next”

button.

Figure 6.4: Interface of specify data format

55

Then, the appropriate data type for each parameter was needed to set. The

example of data type is polynominal, binominal, real, integer, date_time, date and time.

Polynominal represents the different string values such as circle, square, rectangle, and

triangle. Binominal is used for the parameters which have two values only such as yes

and no. Real can used for fractional number while integer used for whole number.

Date_time is a data type which used for both date and time, while date is used for

represents date only and time is used for represents time only. Besides, the role of class

parameter was needed to set as a label which used to differentiate the malicious and non-

malicious dataset.

Figure 6.5: Interface of format columns

Next, the dataset was stored into the local repository of Rapid Miner.

Figure 6.6: Interface of storing dataset in local repository

56

6.2.2 Design of classification process

 This section discusses the design of five classification techniques such as

Decision Tree, K-Nearest Neighbors (K-NN), Naïve Bayes, Random Forest and Random

Tree.

6.2.2.1 Decision Tree

The Figure 6.7, Figure 6.8 and Figure 6.9 below show the design of decision tree

classification. Figure 6.7 show that there have 4 operators which are retrieve spyeye,

shuffle, cross-validation and tree to rules. Retrieve spyeye is the operator to retrieve the

dataset from the local repository. Shuffle is an operator which used to randomize all the

arrangement of the dataset. Cross-validation operator is used to predict the performance

of the decision tree classifier. The number of validation is set to 10. This also means that

the input dataset will be divided into 10 parts equally. Inside the 10 parts of the dataset, a

single part is used as the testing dataset and the other 9 parts of the dataset will be used

as the training dataset. The process of cross-validation was repeated 10 times with each

of the 10 parts used exactly once time as the testing dataset. Moreover, tree to rule is an

operator which used to generate a set of rule from the model of the decision tree.

Figure 6.7: Interface 1 of decision tree classification

57

Figure 6.8 below shows the nested process of the cross-validation operator.

Inside cross-validation operator, it divided into two parts which are training process and

testing process. The training process is used for training the dataset and constructs a

classification model. Then, the classification model was applied in the testing process

and the performance of the classification model also will be measure in the testing

process. Figure 6.9 shows the nested process of the tree to rules operator.

Figure 6.8: Interface 2 of decision tree classification

Figure 6.9: Interface 3 of decision tree classification

6.2.2.2 K-Nearest Neighbors

 Figure 6.10 show that there have 3 operators which are retriever, shuffle and

cross-validation. Figure 6.11 show that the nested process of cross-validation. Inside the

training process, there has k-NN classifier while in the testing process there has apply

model and performance operator.

58

Figure 6.10: Interface 1 of K-NN classification

Figure 6.11: Interface 2 of K-NN classification

6.2.2.3 Naïve Bayes

 Figure 6.12 and Figure 6.13 show the design of the Naïve Bayes classification.

Figure 6.12 show that there have 3 operators which are retriever, shuffle and cross-

validation. Besides, Figure 6.13 show that there have a Naïve Bayes classifier at training

process, while in the testing process there have apply model and performance operator.

Figure 6.12: Interface 1 of Naïve Bayes classification

Figure 6.13: Interface 2 of Naïve Bayes classification

59

6.2.2.4 Random Forest

 Figure 6.14 and Figure 6.15 show the design of the Random Forest classification.

Figure 6.14 is the overall process of Random Forest classification. Figure 6.15 is the

nested process of the cross-validation operator. Inside the training process, there have a

Random Forest classifier while inside the testing process, there have a apply model and

a performance operator.

Figure 6.14: Interface 1 of Random Forest classification

Figure 6.15: Interface 2 of Random Forest Classification

6.2.2.5 Random Tree

 Figure 6.16 and Figure 6.17 show the design of the Random Tree classification.

Figure 6.16 is the main process of the Random Tree classification. Figure 6.17 is the

nested process of the cross-validation operator. In the training part, there have a Random

Tree operator, while in the testing part, there have a apply model and a performance

operator.

60

Figure 6.16: Interface 1 of Random Tree classification

Figure 6.17: Interface 2 of Random Tree classification

6.2.3 Result of Classification

 The performance operator used in the classification has calculated the

performance of the classifier in six types of criteria which are accuracy, precision, recall,

AUC (optimistic), AUC and AUC (pessimistic). Accuracy is the percentage of the

predictive value which similar with the actual value. Precision is the percentage of the

effectiveness measurement which is how correctly the classifier classifies the malicious

network traffic as malware network traffic among the malicious and non-malicious

network traffic i.e. precision= True Positive/ (True Positive + False Positive). Recall is

the percentage of sensitivity measurement which is how correctly the classifier classifies

the malicious network traffic as malware network traffic among the malware network

traffic i.e. recall= True Positive/ (True Positive + False Negative). AUC represents as the

area under the curve of the receiver operating characteristics (ROC) which used to

measure the performance of the classifiers. The AUC with values of less than 0.5

indicates the classifier as a random predictor. The average of the AUC (pessimistic) and

AUC (optimistic) is the value of AUC.

61

6.2.3.1 Dorkbot

Table 6.1: Result of dorkbot

 Classifier

Criteria

Decision

Tree

K-NN Naïve

Bayes

Random

Forest

Random

Tree

Accuracy (%) 87.75 90.07 70.10 81.47 77.14

Precision (%) 86.86 93.69 91.54 81.37 77.37

Recall/ TPR (%) 99.99 94.07 69.46 99.99 98.53

FPR (%) 66.14 26.88 27.22 97.12 88.68

AUC (optimistic) 0.995 0.984 0.800 0.972 0.990

AUC 0.683 0.836 0.799 0.699 0.550

AUC (pessimistic) 0.371 0.688 0.799 0.426 0.109

 Table 6.1 shows the classification result of the dorkbot dataset in seven criteria

of performance measure for five type of classifier. In criteria accuracy, K-NN classifier

has the highest accuracy value which is 90.07% while Naïve Bayes classifier has the

lowest accuracy value which is 70.10%. Decision Tree is the classifier that has the

second highest percentage of accuracy which is 87.75%. In criteria precision, K-NN has

the highest percentage of precision which is 93.69% while the Random Tree has the

lowest percentage of precision which is 77.37%. Besides, most of the classifiers achieve

higher recall value that above 94%. Only Naïve Bayes classifier has the lowest recall

value which is 69.46%. The low recall value of Naïve Bayes classifier makes the

classifier not have high confidence level in classifying botnet network traffic as botnet

network traffic. In criteria False Positive Rate (FPR), K-NN classifier gains the lowest

percentage which is 26.88% while Random Forest gains the highest FPR which is

97.12%. In criteria AUC, K-NN classifier obtains the highest AUC value which is 0.836,

while Random Tree classifier obtains the lowest AUC value which is 0.550. Therefore,

the classifier that has a good performance is K-NN classifier. K-NN has highest

detection accuracy which is 90.07%, high TPR value and low FPR value.

62

6.2.3.2 Zeus

Table 6.2: Result of zeus

 Classifier

Criteria

Decision

Tree

K-NN Naïve

Bayes

Random

Forest

Random

Tree

Accuracy (%) 83.61 86.96 51.84 78.08 76.94

Precision (%) 82.16 91.21 84.85 77.42 76.70

Recall/ TPR (%) 99.82 91.42 43.58 99.93 99.49

FPR (%) 65.07 26.44 23.35 87.51 90.75

AUC (optimistic) 0.998 0.977 0.733 0.959 0.989

AUC 0.678 0.825 0.733 0.720 0.552

AUC (pessimistic) 0.359 0.673 0.733 0.481 0.115

 Table 6.2 shows the classification result of the zeus dataset in seven criteria of

performance measure for five type of classifier. In criteria of accuracy, K-NN and

Decision Tree obtains the high detection accuracy which is 86.96% and 83.61%

respectively. On the other hands, Naïve Bayes classifier achieves the lowest accuracy

value which is 51.84%. In criteria of precision, K-NN, Naïve Bayes and Decision Tree

classifiers obtain the high value of precision which are 91.21%, 84.85% and 82.16%

respectively. Although Naïve Bayes has a higher precision value, but Naïve Bayes

classifier has a lower recall value which is 43.58%. This will cause Naïve Bayes

classifier become a not reliable classifier in classifying malicious and non-malicious

network traffic. In criteria false positive rate, Naïve Bayes classifier has the lowest

percentage which is 23.35% while Random Tree has the highest false positive rate

which is 90.75%. Moreover, K-NN classifier has higher AUC values which are 0.825.

K-NN classifier indicates as a good predictor since it has AUC values that nearly to

value 1. Therefore, the classifier that has a good performance is K-NN classifier. K-NN

has highest detection accuracy which is 86.96%, high TPR value and low FPR value.

63

6.2.3.3 Citadel

Table 6.3: Result of citadel

 Classifier

Criteria

Decision

Tree

K-NN Naïve

Bayes

Random

Forest

Random

Tree

Accuracy (%) 91.70 94.46 73.23 71.88 69.54

Precision (%) 90.39 95.92 85.51 71.02 69.31

Recall/ TPR (%) 98.41 96.04 73.55 99.89 100

FPR (%) 23.10 9.01 27.47 89.85 97.62

AUC (optimistic) 0.985 0.996 0.824 0.948 0.993

AUC 0.952 0.935 0.823 0.822 0.525

AUC (pessimistic) 0.918 0.874 0.823 0.697 0.056

 Table 6.3 shows the classification result of the citadel dataset in seven criteria of

performance measure for five type of classifier. In criteria accuracy, both of the K-NN

and Decision Tree classifiers have the high detection value which above 90%. In the

other hands, Random Tree classifier has the lowest detection value which is 69.54%.

Besides, K-NN and Decision Tree classifier achieve the high precision value which is

95.92% and 90.39% respectively. In criteria of recall, Naïve Bayes classifier has the

lowest recall value which is 73.55%. Random Tree classifier obtains 100% recall value

but has the lowest precision value. This is because Random Tree classifier predicts the

non-malicious network traffic as malicious network traffic. In criteria false positive rate,

the classifier that has the lowest false positive rate is K-NN classifier which is 9.01%. In

term of AUC, Decision Tree obtains the highest value which is 0.952. This indicates that

Decision Tree classifier as a good predictor among other classifier. Random Tree has

lowest AUC value which is 0.525. This states that Random Tree classifier as a random

predictor classifier. Therefore, the classifier that has a good performance is K-NN

classifier. K-NN has highest detection accuracy which is 94.46%, high TPR value and

low FPR value.

64

6.2.3.4 Spyeye

Table 6.4: Result of spyeye

 Classifier

Criteria

Decision

Tree

K-NN Naïve

Bayes

Random

Forest

Random

Tree

Accuracy (%) 90.41 95.26 65.51 76.84 78.15

Precision (%) 96.33 96.84 98.31 76.68 77.73

Recall/ TPR (%) 90.86 96.94 55.66 99.98 99.92

FPR (%) 11.03 10.09 3.06 96.95 91.28

AUC (optimistic) 0.982 0.997 0.905 0.965 0.993

AUC 0.927 0.934 0.905 0.771 0.563

AUC (pessimistic) 0.872 0.872 0.905 0.577 0.133

 Table 6.4 shows the classification result of the spyeye dataset in seven criteria of

performance measure for five type of classifier. From the table above, K-NN has highest

detection accuracy which is 95.26% which Naïve Bayes has lowest detection accuracy

which is 65.51%. In criteria precision, Decision Tree, K-NN and Naïve Bayes obtain a

higher precision values which greater than 95%. In criteria recall, most of the classifiers

achieve higher recall value that more than 90%, only Naïve Bayes obtains 55.66% of the

recall value. Naïve Bayes classifier has lower reliability in classify malicious sample as

malicious sample. In criteria FPR, Decision Tree, K-NN and Naïve Bayes classifiers

have the low false positive rate which is 11.03%, 10.09% and 3.06% respectively. In

criteria AUC, K-NN has the highest value which is 0.934 while Random Tree has the

lowest value which is 0.563. This indicates that K-NN as a good predictor and Random

Tree as a random predictor. Therefore, K-NN classifier is a good classifier which has

highest detection accuracy, 95.26%, high TPR value, 96.94% and low FPR value,

10.09%.

65

6.2.3.5 Cutwail

Table 6.5: Result of cutwail

 Classifier

Criteria

Decision

Tree

K-NN Naïve

Bayes

Random

Forest

Random

Tree

Accuracy (%) 93.73 97.88 87.76 86.38 87.14

Precision (%) 94.91 98.66 95.42 86.33 87.56

Recall/ TPR (%) 97.94 98.87 90.04 99.93 99.07

FPR (%) 31.52 8.06 25.95 94.93 84.49

AUC (optimistic) 0.988 0.999 0.939 0.953 0.959

AUC 0.837 0.954 0.939 0.909 0.734

AUC (pessimistic) 0.686 0.909 0.939 0.864 0.510

 Table 6.5 shows the classification result of the cutwail dataset in seven criteria of

performance measure for five type of classifier. From the table above, six classifiers

achieve a good detection accuracy which all of them have greater than 85% accuracy

value. K-NN obtains the highest detection accuracy which is 97.88%. In criteria

precision, Decision Tree, K-NN and Naïve Bayes classifiers obtain the high precision

value which is 94.91%, 98.66% and 95.42% respectively. In the criteria of recall, five

classifiers achieve a high percentage which all of them greater than 90%. In criteria FPR,

K-NN classifier has the lowest percentage which is 8.06%. Random Tree classifier has

the lowest value of AUC which is 0.734 while K-NN has a highest value of AUC which

is 0.954. Therefore, the classifier that has a good performance among the five classifiers

is K-NN classifier. K-NN has highest detection accuracy which is 97.88%, high TPR

value and low FPR value.

66

6.2.3.6 Waledac

Table 6.6: Result of waledac

 Classifier

Criteria

Decision

Tree

K-NN Naïve

Bayes

Random

Forest

Random

Tree

Accuracy (%) 90.07 89.08 44.25 85.56 85.72

Precision (%) 89.58 93.40 95.34 85.31 85.55

Recall/ TPR (%) 99.74 93.57 35.10 99.96 99.78

FPR (%) 59.48 33.92 8.80 88.25 86.41

AUC (optimistic) 0.994 0.978 0.828 0.982 0.998

AUC 0.704 0.798 0.827 0.685 0.567

AUC (pessimistic) 0.414 0.618 0.827 0.389 0.136

Table 6.6 shows the classification result of the waledac dataset in seven criteria

of performance measure for five type of classifier. In criteria accuracy, Decision Tree

classifier has the highest detection accuracy which is 90.07% while Naïve Bayes

classifier has the lowest detection accuracy which is 44.25%. In criteria precision, Naïve

Bayes classifier has highest precision value which is 95.34% but in criteria recall, Naïve

Bayes has lowest recall value which is 35.10%. The lowest recall value decreases the

confidence level of Naïve Bayes classifier to classify positive instance. In the criteria of

false positive rate, Naïve Bayes classifier has the lowest percentage which is 8.8%. In

criteria AUC, Decision Tree, K-NN and Naïve Bayes have high AUC values which are

0.704, 0.798 and 0.827 respectively. Therefore, Decision Tree is a classifier that has a

good performance among the five classifiers. Decision Tree has highest detection

accuracy which is 90.07%, high TPR value and low FPR value.

67

6.2.3.7 Comparison of the Performance Measures

Figure 6.18: Comparison of the accuracy with different classification techniques for

each type of HTTP botnet

 According to Figure 6.18, the classification technique that achieves the good

performance in criteria accuracy for each type of HTTP botnet datasets is K-NN

classifier. From the figure above, K-NN classifier has reached almost 90% detection

accuracy in classifying malicious and non-malicious network traffic. Then the

classification technique which has the second highest detection accuracy is Decision

Tree classifier. Figure 6.18 show that Decision Tree classifier has the good result of

accuracy which inside the range of 83% until 93%. On the other hands, the classification

technique that has the bad performance in criteria accuracy for each type of HTTP

botnet datasets is Naïve Bayes classifier. Besides, Random Forest and Random Tree

classifiers have achieves almost the same percentage of accuracy for each type of HTTP

botnet datasets.

0

10

20

30

40

50

60

70

80

90

100

Dorkbot Zeus Citadel Spyeye Cutwail Waledac

A
C

C
U

R
A

C
Y

 %

HTTP BOTNET

Comparison of the accuracy with different classification

techniques for each type of HTTP botnet

Decision Tree

K-NN

Naïve Bayes

Random Forest

Random Tree

68

Figure 6.19: Comparison of the true positive rate with different classification

techniques for each type of HTTP botnet

 According to Figure 6.19, the classification techniques that have high percentage

of true positive rate for each type of HTTP botnet dataset are Random Forest and

Random Tree classifiers. Both of these two classifiers have more than 95% of true

positive rate for each type of HTTP botnet datasets. Besides, Decision Tree and K-NN

classifiers have more than 90% of true positive rate in correctly classifying malicious

network traffic. From Figure 6.19, Naïve Bayes classifier has the lowest percentage of

true positive rate for each type of HTTP botnet datasets. For waledac dataset, Naïve

Bayes classifier has only almost 35% of true positive rate in correctly classifying the

malicious network traffic.

0

10

20

30

40

50

60

70

80

90

100

Dorkbot Zeus Citadel Spyeye Cutwail Waledac

T
R

U
E

 P
O

S
IT

IV
E

 R
A

T
E

 %

HTTP BOTNET

Comparison of the true positive rate with different classification

techniques for each type of HTTP botnet

Decision Tree

K-NN

Naïve Bayes

Random Forest

Random Tree

69

Figure 6.20: Comparison of the false positive rate with different classification

techniques for each type of HTTP botnet

 According to Figure 6.20, the classification techniques have good performance

with the lower false positive rate is K-NN and Naïve Bayes classifiers. From Figure 6.20,

both K-NN and Naïve Bayes classifiers have less than 35% of false positive rate for each

type of HTTP botnet datasets. The lower false positive rate can decrease the risk of

misclassifying benign sample as malware sample. On the other hands, Random Forest

and Random Tree have the higher false positive rate which is both of them have more

than 84% of false positive rate for each type of HTTP botnet datasets. Then, Decision

Tree classifier has achieves the lower false positive rate which is almost 10% for spyeye

dataset.

0

10

20

30

40

50

60

70

80

90

100

Dorkbot Zeus Citadel Spyeye Cutwail Waledac

F
A

L
S

E
 P

O
S

IT
IV

E
 R

A
T

E
 %

HTTP BOTNET

Comparison of the false positive rate with different classification
techniques for each type of HTTP botnet

Decision Tree

K-NN

Naïve Bayes

Random Forest

Random Tree

70

Figure 6.21: Comparison the average of accuracy, true positive rate and false

positive rate with different classification techniques

Good performance classifiers are indicated by high value of accuracy, high value

of TPR and low value of FPR. According to Figure 6.21, the classifier which has the

highest percentage of accuracy is K-NN classifier, while Naïve Bayes classifier has the

lowest percentage of accuracy. Besides, in the criteria of true positive rate, most of the

classifier achieves the higher percentage of true positive rate such as Decision Tree, K-

NN, Random Forest and Random Tree classifiers. Only Naïve Bayes classifier has

almost 60% of true positive rate. In the criteria of false positive rate, K-NN and Naïve

Bayes classifiers have less than 20% of the false positive rate, while Random Forest and

Random Tree classifiers have almost 90% of the false positive rate. However, K-NN is

the good performance classifier which has the highest accuracy rate, higher true positive

rate and lower false positive rate.

0

10

20

30

40

50

60

70

80

90

100

Accuracy True Positive Rate False Positive Rate

P
E

R
C

E
N

T
A

G
E

 %

PERFORMANCE MEASURES

Comparison the average of accuracy, true positive rate and false

positive rate with different classification techniques

Decision Tree

K-NN

Naïve Bayes

Random Forest

Random Tree

71

6.3 Summary

 At the end of this chapter, the design of classification process was discussed and

the result of classification was evaluated. The classification technique which has high

accuracy, high true positive rate and low false positive rate is K-NN classifier. Thus, the

best classifier among the five classification technique is the K-NN classifier.

72

CHAPTER VII

PROJECT CONCLUSION

7.1 Introduction

 This chapter summarizes the project by describe the overall process of the

project and integrate the project objective with the information in the phase of

implementation and testing. This chapter also states the weakness and strength of the

project. Besides, this chapter also states out the contribution, limitation and the future

work of the project.

7.2 Project Summarization

In conclusion, this project has been separate into two parts which are data

collection and data analysis. Data collection was completed in PSM 1 while data

analysis was completed in PSM 2. During PSM 1, six types of HTTP botnet binary files

73

were downloaded from several websites. The six types of HTTP botnet are Dorkbot,

Zeus, Citadel, Spyeye, Cutwail and Waledac. After that, the HTTP botnet binary files

were released in a control network for the duration of 7 days. Then, the malicious

network traffic was collected. On the same time, the real network traffic is needs to

generate by browsing the HTTP website for the duration of 1 day. Then, both malicious

and non-malicious network traffic is needed to combine together.

During PSM 2, the tcpdump file is needed to extract into CSV file by using

tcptrace. After that, before classify the combined network traffic, data preprocessing is

needed to execute such as filling the missing value and delete redundant parameter of

the dataset. Then, dataset can upload into Rapid Miner and continuous the process of

classification. The five classification techniques will implement in this project which are

Decision Tree, K-NN, Naïve Bayes, Random Forest and Random Tree. Finally, the

performance measure between the five types of classification technique was needed to

evaluate for classify the malicious and non-malicious network traffic. After analyses the

result of classification, K-NN is the best classifier among the five type of classifier

which has the highest detection accuracy, high true positive rate and low false positive

rate.

Finally, the weakness of this project is time-consuming. At the stage of

collecting malicious and non-malicious network traffic, a lot of time was needed to

spend to collect the network traffic and extract the tcpdump file into CSV file. Besides,

at the phase of classification, the process of classification running in Rapid Miner was

needed to wait for maximum until 20 hours. On the other hands, the strength of this

project is compare five type of the classification technique to select the best performance

classifier in classifying malicious and non-malicious network traffic.

74

7.3 Project Contribution

 The project contribution is helping to enhance Intrusion Detection System (IDS)

or Firewall to detect HTTP botnet. The output of this project is to detect the HTTP

botnet by classification the network parameter to identify the relationship of the network

parameter with HTTP botnet. At the end of this project, the non-botnet network traffic

and botnet network traffic can be differentiated.

7.4 Project Limitation

 The project limitation is this project only used six type of HTTP botnet such as

Dorkbot, Zeus, Citadel, Spyeye, Cutwail and Waledac. Besides the other limitation of

this project is this project only implement and analyze five type of classification

technique in classifies malicious and non-malicious network traffic. The five types of

classification techniques is Decision Tree, K-NN, Naïve Bayes, Random Forest and

Random Tree.

7.5 Future Work

 The future work of the project is added the feature selection technique to increase

the accuracy of the result of classification. Feature selection can select the significant

attributes and improve the performance of classification process for classifying the

malware sample and benign sample.

75

7.6 Summary

 Finally, this project aims to investigate the network parameter of the network and

study the relationship between network parameter with HTTP botnet using five

classification techniques. After the evaluation of the performance measure for the five

classification techniques, the best classifier is the classifier with the highest accuracy,

high true positive rate and low false positive rate which is K-NN classifier.

76

REFERENCES

Basheer, I.A. & Hajmeer, M., 2000. Artificial neural networks : fundamentals ,

computing , design , and application. , 43, pp.3–31.

Cho, S. & Won, H., 2003. Machine Learning in DNA Microarray Analysis for Cancer

Classification.

Dumais, S., 1996. A Bayesian Approach to Filtering Junk E-Mail. , (Cohen).

Erbacher, R.F. et al., 2008. A Multi-Layered Approach to Botnet Detection. Journal of

Security and Management, pp.301–308.

Eslahi, M., Hashim, H. & Tahir, N.M., 2013. An efficient false alarm reduction

approach in HTTP-based botnet detection. IEEE Symposium on Computers and

Informatics, ISCI 2013, pp.201–205.

Fedynyshyn, G., Chuah, M.C. & Tan, G., 2011. Detection and classification of different

botnet C&C channels. Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6906

LNCS, pp.228–242.

Fielding, R., Irvine, U.C. & Gettys, J., 1999. Hypertext Transfer Protocol -- HTTP / 1 . 1

Status of this Memo. , pp.1–114.

Gao, H. et al., 2010. Detecting and characterizing social spam campaigns. Proceedings

of the 10th ACM SIGCOMM conference on Internet measurement, pp.35–47.

Available at: http://delivery.acm.org/10.1145/1880000/1879147/p35-

gao.pdf?ip=137.166.81.123&id=1879147&acc=ACTIVE

SERVICE&key=65D80644F295BC0D.C3714298A2589389.4D4702B0C3E38B35

.4D4702B0C3E38B35&CFID=484687663&CFTOKEN=14116697&__acm__=14

25715693_438e8d4865ac243f46.

Giroire, F. et al., 2009. Exploiting temporal persistence to detect covert botnet channels.

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 5758 LNCS, pp.326–345.

77

Goebel, J. & Holz, T., 2007. Rishi: identify bot contaminated hosts by IRC nickname

evaluation. HotBots‟07 Proceedings of the first conference on First Workshop on

Hot Topics in Understanding Botnets, p.8. Available at:

http://dl.acm.org/citation.cfm?id=1323128.1323136.

Gu, G., Zhang, J. & Lee, W., 2008. BotSniffer : Detecting Botnet Command and Control

Channels in Network Traffic. Proceedings of the 15th Annual Network and

Distributed System Security Symposium., 53(1), pp.1–13. Available at:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.110.8092&rep=rep1

&type=pdf.

Kapratwar, A., 2016. Static and Dynamic Analysis for Android Malware Detection.

Karasaridis, A., Rexroad, B. & Hoeflin, D., 2007. Wide-scale botnet detection and

characterization. HotBots‟07 Proceedings of the first conference on First Workshop

on Hot Topics in Understanding Botnets, p.7. Available at:

http://dl.acm.org/citation.cfm?id=1323128.1323135.

Kolter, J.Z. & Maloof, M. a, 2006. Learning to Detect and Classify Malicious

Executables in the Wild. Journal of Machine Learning Research, 7, pp.2721–2744.

Available at: http://portal.acm.org/citation.cfm?id=1248646.

Kotsiantis, S.B., 2007. Supervised machine learning: A review of classification

techniques. … Applications in Computer Engineering: Real Word …, 31, pp.249–

268. Available at:

http://books.google.com/books?hl=en&lr=&id=vLiTXDHr_sYC&oi=fnd&pg=PA3

&dq=survey+machine+learning&ots=CVsyuwYHjo&sig=A6wYWvywU8XTc7Dz

p8ZdKJaW7rc\npapers://5e3e5e59-48a2-47c1-b6b1-a778137d3ec1/Paper/p800.

Lee, J. et al., 2008. The Activity Analysis of Malicious HTTP-based Botnets using

Degree of Periodic Repeatability *. , pp.83–86.

Lu, W., Tavallaee, M. & Ghorbani, A.A., 2009. Automatic Discovery of Botnet

Communities on Large-Scale Communication Networks.

Mah, B.A., 1997. An Empirical Model of HTTP Network Traffic. , pp.592–600.

78

Maron, M.E. & Kuhns, J.L., 1960. On Relevance, Probabilistic Indexing and

Information Retrieval. Journal of the ACM, 7(3), pp.216–244.

Ming-Syan Chen, Jiawei Han, P.S.Y., 1996. Data Mining: An Overview from a

Database Perspective.pdf. , p.18.

Problem, P.I. & Li, Y., 2013. Application of Machine Learning Techniques to. , pp.1–21.

Puerta, D. et al., 2013. A Supervised Classification Approach for Detecting Packets

Originated in a HTTP-based Botnet. , 16(03), pp.1–13.

Roughan, M. & Sen, S., 2004. Class-of-service mapping for QoS: a statistical signature-

based approach to IP traffic classification. Proceedings of the 4th …, pp.135–148.

Available at: http://dl.acm.org/citation.cfm?id=1028805.

Saad, S. et al., 2011. Detecting P2P botnets through network behavior analysis and

machine learning. 2011 9th Annual International Conference on Privacy, Security

and Trust, PST 2011, (February 2016), pp.174–180.

Settles, B., 2010. Active Learning Literature Survey. Machine Learning, 15(2), pp.201–

221.

Strayer, W.T. et al., 2006. Detecting botnets with tight command and control.

Proceedings - Conference on Local Computer Networks, LCN, (February 2016),

pp.195–202.

Tan, E. et al., 2013. UNIK: unsupervised social network spam detection. Proceedings of

the 22nd ACM international conference on Conference on information &

knowledge management, pp.479–488. Available at:

http://dl.acm.org/citation.cfm?id=2505581.

Zaki, M. et al., 2014. ANALYSIS OF FEATURES SELECTION AND MACHINE

LEARNING CLASSIFIER IN ANDROID MALWARE DETECTION.

Zanero, S. & Savaresi, S.M., 2004. Unsupervised learning techniques for an intrusion

detection system. Proceedings of the 2004 ACM symposium on Applied computing

- SAC ‟04, (DECEMBER 2003), p.412. Available at:

79

http://portal.acm.org/citation.cfm?doid=967900.967988.

Zeidanloo, H.R., Zadeh, M.J. & Zamani, M.S., 2010. A Taxonomy of Botnet Detection

Techniques. Journal of Computer Science, 7(3), pp.158–162.

Zhao, D. et al., 2013. Botnet detection based on traffic behavior analysis and flow

intervals. Computers & Security, 39(March 2016), pp.2–16. Available at:

http://www.sciencedirect.com/science/article/pii/S0167404813000837.

80

APPENDIX

A. Gantt Chart

Task Name Week

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Deciding title

of Proposal

PSM

Proposal

PSM

Submission

and

Presentation

Chapter 1:

Introduction

Submission

of Chapter 1

Chapter 2:

Literature

Review

Submission

of Chapter 2

Chapter 3:

Methodology

Submission

of Chapter 3

Chapter 4:

Design

Submission

of chapter 4

Prepare PSM

1 Report

Final

Presentation

(Pa)

Submission

overall marks

to PSM/PD

committee.

81

B. Network Parameter

Parameter Description

conn Unique identifier for each connection in the relation

host_a The IP address of the „a‟ machine involved in the

connection. This is usually the machine that initiated

the connection.

host_b The IP address of the 'b' machine in the connection.

This is usually the machine that was contacted by the

host a machine.

port_a The port number used by the application on the „a‟ host

machine for this connection. Port numbers can be

associated with services and applications by relating

them to the Services table in the database. If this is a

low number (e.g. less than 1024), it corresponds to a

well-known service. This is more likely to be the case

for the port_b field below as clients connect to servers

on their well-known ports.

port_b The port number for the „b‟ host machine in the

connection. If this is a server machine, the port will

indicate what the application is that created the

connection. This is found by relating the port number

to the Services table.

first_packet The time of the first packet sent in the connection, i.e.

the SYN packet establishing the connection. This time

is UNIX time, i.e. the number seconds since midnight

on January 1st, 1970.

last_packet The time of the last packet in the connection, again in

UNIX time.

total_packets_a2b The total number of packets sent from host a to host b

in this connection.

82

total_packets_b2a The total number of packets sent from host b to host a

in this connection.

resets_sent_a2b The number of communications from host a to host b

within the connection that requested that the

connection be reset. These are packets with the RST

flag set.

resets_sent_b2a The number of packets with the RST flag set sent from

host b to host a.

ack_pkts_sent_a2b The number of packets that had the Acknowledgement

flag set, i.e. providing feedback to host b from host a

that it had seen certain packets.

ack_pkts_sent_b2a The number of Acknowledgement packets sent from

host b to host a.

pure_acks_sent_a2b The number of packets from host a to host b that only

had the Acknowledgement flag set and not any of the

DATA, SYN, FIN or RST flags set.

pure_acks_sent_b2a The number of packets from host b to host a that only

had the Acknowledgement flag set and not any of the

DATA, SYN, FIN or RST flags set.

sack_pkts_sent_a2b The number of packets from host a to host b containing

an Acknowledgement and a Selective

Acknowledgement flag.

sack_pkts_sent_b2a The number of packets from host b to host a containing

an Acknowledgement and a Selective

Acknowledgement flag.

dsack_pkts_sent_a2b The number of packets containing a Delayed

Acknowledgement flag sent from host a to host b.

dsack_pkts_sent_b2a The number of packets containing a Delayed

Acknowledgement flag sent from host b to host a.

max_sack_blks_ack_a2b Most SACKnowledgement blocks in a single

Acknowledgement from host a to host b.

83

max_sack_blks_ack_b2a Most SACKnowledgement blocks in a single

Acknowledgement from host b to host a.

unique_bytes_sent_a2b The total number of non-retransmitted bytes sent from

host a to host b. This can be used along with the total

number of transmitted bytes to determine how many

bytes were re-transmitted and hence "lost".

unique_bytes_sent_b2a The total number of non-retransmitted bytes sent from

host b to host a. This can be used along with the total

number of transmitted bytes to determine how many

bytes were re-transmitted and hence "lost".

actual_data_pkts_a2b The number of segments of data sent from host a to

host b.

actual_data_pkts_b2a The number of segments of data sent from host b to

host a.

actual_data_bytes_a2b The number of bytes of data sent from host a to host b.

actual_data_bytes_b2a The number of bytes of data sent from host b to host a.

rexmt_data_pkts_a2b The number of retransmitted packets from host a to

host b.

rexmt_data_pkts_b2a The number of retransmitted packets from host b to

host a.

rexmt_data_bytes_a2b The number of retransmitted bytes from host a to host

b.

rexmt_data_bytes_b2a The number of retransmitted bytes from host b to host

a.

zwnd_probe_pkts_a2b The number of zero window probe packets sent from

host a to host b. These are packets inquiring about the

buffer size on the other machine

zwnd_probe_pkts_b2a The number of zero window probe packets sent from

host b to host a. These are packets inquiring about the

buffer size on the other machine

zwnd_probe_bytes_a2b The number of zero window probe bytes sent from host

84

a to host b. These are packets inquiring about the

buffer size on the other machine.

zwnd_probe_bytes_b2a The number of zero window probe bytes sent from host

b to host a. These are packets inquiring about the

buffer size on the other machine.

outoforder_pkts_a2b The number of out of order packets that were sent from

host a to host b, i.e. received out of order by host b.

outoforder_pkts_b2a The number of out of order packets that were sent from

host b to host a, i.e. received out of order by host a.

pushed_data_pkts_a2b The number of packets sent from host a to host b with

the PUSH bit set, i.e. basic transfer of data rather than

transmission control.

pushed_data_pkts_b2a The number of packets sent from host b to host a with

the PUSH bit set, i.e. basic transfer of data rather than

transmission control.

SYN_pkts_sent_a2b The number of Synchronization packets sent from host

a to host b.

FIN_pkts_sent_a2b The number of Finish packets sent from host a to host

b.

SYN_pkts_sent_b2a The number of Synchronization packets sent from host

b to host a.

FIN_pkts_sent_b2a The number of Finish packets sent from host b to host

a.

req_1323_ws_a2b Logical value indicating whether the '1323' window

scaling was requested by host a.

req_1323_ts_a2b Logical value indicating whether the '1323' time stamp

was requested by host a.

req_1323_ws_b2a Logical value indicating whether the '1323' window

scaling was requested by host b.

req_1323_ts_b2a Logical value indicating whether the '1323' time stamp

was requested by host b.

85

adv_wind_scale_a2b Window scale factor for host a to host b.

adv_wind_scale_b2a Window scale factor for host b to host a.

req_sack_a2b Logical value indicating whether host a requested

Synchronized Acknowledgements

req_sack_b2a Logical value indicating whether host b requested

Synchronized Acknowledgements

sacks_sent_a2b The number of SACKs sent from host a to host b.

sacks_sent_b2a The number of SACKs sent from host b to host a.

urgent_data_pkts_a2b Number of packets sent from a to host b with the

URGENT bit set.

urgent_data_pkts_b2a Number of packets sent from b to host a with the

URGENT bit set.

urgent_data_bytes_a2b Number of bytes sent from a to host b in packets with

the URGENT bit set.

urgent_data_bytes_b2a Number of bytes sent from b to host a in packets with

the URGENT bit set.

mss_requested_a2b Maximum segment size in communication from host a

to host b.

mss_requested_b2a Maximum segment size in communication from host b

to host a.

max_segm_size_a2b Largest amount of data in a segment sent from host a to

host b.

max_segm_size_b2a Largest amount of data in a segment sent from host b to

host a.

min_segm_size_a2b Smallest amount of data in a segment sent from host a

to host b.

min_segm_size_b2a Smallest amount of data in a segment sent from host b

to host a.

avg_segm_size_a2b Average segment size sent from host a to host b, given

by the number of data bytes sent divided by the number

of packets.

86

avg_segm_size_b2a Average segment size sent from host b to host a, given

by the number of data bytes sent divided by the number

of packets.

max_win_adv_a2b The maximum window size advertised by host a to host

b in this connection.

max_win_adv_b2a The maximum window size advertised by host b to

host a in this connection.

min_win_adv_a2b The minimum window size advertised by host a to host

b in this connection.

min_win_adv_b2a The minimum window size advertised by host b to host

a in this connection.

zero_win_adv_a2b The number of ZERO windows advertised by host a to

host b.

zero_win_adv_b2a The number of ZERO windows advertised by host b to

host a.

avg_win_adv_a2b Average window advertisement by host a to host b.

avg_win_adv_b2a Average window advertisement by host b to host a.

initial_window_bytes_a2b The number of bytes in the initial window from host a

to host b.

initial_window_bytes_b2a The number of bytes in the initial window from host b

to host a.

initial_window_pkts_a2b The number of segments in initial window from host a

to host b.

initial_window_pkts_b2a The number of segments in initial window from host b

to host a.

ttl_stream_length_a2b Not used.

ttl_stream_length_b2a Not used.

missed_data_a2b The number of bytes that were dropped by host b. This

is the total stream length from host a to host b - number

of unique bytes sent.

missed_data_b2a The number of bytes that were dropped by host a. This

87

is the total stream length from b to a - number of

unique bytes sent.

truncated_data_a2b Not used.

truncated_data_b2a Not used.

truncated_packets_a2b Not used.

truncated_packets_b2a Not used.

data_xmit_time_a2b Number of seconds from first to last transmission from

host a to host b.

data_xmit_time_b2a Number of seconds from first to last transmission from

host b to host a.

idletime_max_a2b Maximum idle time for host a in communicating with

host b on this connection.

idletime_max_b2a Maximum idle time for host b in communicating with

host a on this connection.

hardware_dups_a2b Not used.

hardware_dups_b2a Not used.

throughput_a2b The throughput for this side of the connection. This is

the number of bytes divided by connection duration

from host a to host b.

throughput_b2a The throughput for this side of the connection. This is

the number of bytes divided by connection duration

from host b to host a.

class To differentiate or label both malicious and non-

malicious dataset while 1 represented as malicious

dataset and 0 represented as non-malicious dataset.

