raf

TJ223.P76 .M77 2008.

0000062695

Design a multi-detect surface algorithm for home vacuum application / Mohamad Sahran Kamilan.

DESIGN A MULTI-DETECT SURFACE ALGORITHM FOR HOME VACUUM APPLICATION

MOHAMAD SAHRAN BIN KAMILAN

MAY 2008

DESIGN OF MULTI- DETECT SURFACE ALGORITHM FOR HOME VACUUM APLICATION

MOHAMAD SAHRAN BIN KAMILAN (B010410130)

This Report Is Submitted In Partial Fulfillment of Requirements for the Degree of Bachelor in Electrical Engineering

(Power Electronic & Drive)

Fakulti Kejuruteraan Elektrik Universiti Teknikal Malaysia (UTeM)

May 2008

"I hereby declared that I have read through this report and found that it has comply the partial fulfillment for awarding the degree of Bachelor of Electrical Engineering

(Power Electronic & Drive)"

Supervisor's Name : Mr. Hyreil Anuar Bin Kasdirin

Date : ... 7/5/08

"I hereby declared that this report is a result of my own work except for the excerpts that have been cited clearly in the references."

Signature

Name Mohamad Sahran Bin Kamilan

B010410130 Matrix Number: 7/05/2008 Date

For my beloved father and mother

Kamilan Bin Supian and Norlia Binti Mahzan

For all supported and understanding.

ACKNOWLEDGEMENTS

In the name of Allah, The Beneficent, The Merciful.

Alhamdulillah, all praise is to Allah that I have been able to complete my report for my "Projek Sarjana Muda 2" that is design of multi-detect surface algorithm for home vacuum application.

Highest appreciation and sincere gratitude regarded to Mr. Hyreil Anuar Bin Kasdirin as my supervisor, for his invaluable help, support and ideas to me through achieving my "Projek Sarjana Muda 2" goals. His entire guide during doing this project will remind forever in my heart.

During the completion, I had collaborated with many colleagues and friends, for whom I have great regards and I want to extend my warmest thanks to all those who helped me with my work.

Finally, I would like to honor my lovely parent, for supporting me steadfastly and their appreciated advice through my project completion.

Thank you to all of you.

ABSTRACT

The main objective of this project is to design and develop a multi-detect surface algorithm for home vacuum application. In this paper, vacuum controller, (advance controller for multi detect surface) will be explained and studied. Advance controller describes the discipline where control method are developed that attempt to emulate important characteristics of human intelligence. These characteristics include adaptation and learning, planning under large uncertainty and copying with large amount of data. This project concerned about the vacuum controller motor speed that installed an advance controller. The sensor will detect the surface of the variety floor and give the signal to the controller for determine the speed of the motor. The key point of this project is that this controller can function and could interface with sensor, and finally its own actuator that is rotation of the motor. For this project used PIC 16F873A, sensor and other components. This project is focusing on the automatics function system and control system that bases on a PIC 16F873A microcontroller. The usage of the vacuum controller motor speed is to present such items as the user's real environment. It can make our job easier and simple to use.

ABSTRAK

Tujuan utama projek ini adalah untuk mencipta dan memajukan satu alat yang boleh mengesan atau membezakan pelbagai jenis permukaan dan seterusnya diaplikasikan pengunaannya dalam vakum di rumah. Oleh itu, dalam laporan ini pengawal vakum "vacuum controller for-multi detect surface" akan diterangkan. "Advance controller" merupakan satu displin dimana satu kawalan dimajukan dan ianya diadaptasikan atau dicontohi dari kepintaran manusia. Ciri- ciri ini ternasuklah adaptasi dan pembelajaran, merancang sesuatu yang tidak ditentukan dan menyalin serta membaca pelbagai data. Justeru itu, projek ini adalah mencipta sejenis vakum yang boleh mengawal kelajuan motor untuk menyedut sampah mengikut jenis permukaan yang dikesan oleh "sensor" dan ianya diadaptasikan dari "advance controller" teori. Kunci utama untuk menghasilkan alat ini adalah, alat pengawal yang boleh membaca dan menghantar isyarat dari "sensor"dan seterusnya motor pada vakum berputar mengikut arahan yang diberi oleh alat pengawal. Sebagai contoh, untuk permukaan permaidani, vakum memerlukan kelajuan yang tinggi pada motor untuk menyedut sampah dan sebaliknya untuk permukaan lantai licin. Untuk projek ini, PIC 16F873A dan IR sensor digunakan berserta komponen elektronik lain. Keseluruhan dari projek ini boleh diringkaskan ialah aplikasi dari sistem fungsi automatik. Hal ini kerana, kelajuan motor berubah dengan sendiri dan bersesuaian mengikut jenis permukaan yang dikesan. Akhir sekali, penghasilan yakum ini amatlah praktikal dan sesuai digunakan dalam kehidupan sebenar kerana ia adalah satu alat yang mudah digunakan dan menyenangkan kerja.

TABLE OF CONTENTS

Chapter	Desc	Description			
AC	ACKNOWLEDGEM ABSTRACT LIST OF FIGURE 1.0 INTRODUC 1.1 Proble 1.2 Projec 1.3 Scope 2.0 LITERATU 2.1 Introd 2.2 Micro	MENTS		iii	
AI	BSTRAC7	Γ			iv
LI	ST OF FI	GURE			vii
1.0) INT	RODUC	CTION		
	1.1	Proble	em Stateme	ent	2
	1.2	Projec	ct Objective	es	2
	1.3	Scope	e of Project		3
2.0) LITI	ERATU	RE REVII	ŒW	
	2.1	Introd	luction		5
	2.2	Micro	controller		5
	2.3	PIC 1	6 F873A		7
		2.3.1	Program	Memory Organization	10
		2.3.2	I/O Ports		10
			2.3.2.1	PORTA and the TRISA Register	11
			2.3.2.2	PORTB and the TRISB Register	13
			2.3.2.3	PORTC and the TRISC Register	15
	2.4	IRF 5	30N		16
	2.5	Infrar	ed Sensor		17
	2.6	LM 3	58- Low Po	ower Dual Operational Amplifier	19
	2.7	Softw	are Part		20
		2.7.1	MikroC I	Programming	20
		2.7.2	Proteus P	rofesional6	21

3.0	ME	[HODO]	LOGY			
	3.1	Metho	odology of the Project	24		
	3.2	The O	peration of Vacuum Controller	26		
	3.3	Hardw	vare Design	27		
		3.3.1	Vacuum Controller for Multi-Detect			
			Surface Circuit.	27		
		3.3.2	PIC Burner Circuit	29		
	3.4	Softwa	are Development	29		
		3.4.1	Program of Multi-Detect Surface Algorithm			
			for Home Vacuum Application	30		
		3.4.2	Flow Chart of the Program	34		
		3.4.3	Flow Chart Description	35		
		3.4.4	The Hexadecimal File	36		
	3.5	Firmw	vare Development	36		
	3.6	Projec	t Planning Schedule (Gantt chart)	39		
4.0	HAR	HARDWARE VERIFICATION AND EXPERIMENTAL				
	RES	RESULT				
	4.1	Result Achievement 4				
	4.2	Expected Result 4				
	4.3	Hardw	41			
		4.3.1	Power Supply	41		
		4.3.2	IR sensor	42		
		4.3.3	Controller (PIC 16F873A)	42		
		4.3.4	Dc Motor (Vacuum)	43		
	4.4	Experi	mental Result	44		
		4.4.1	IR Sensors Analysis	44		
		4.4.2	Vacuum Controller Operation Analysis	45		
	4.5	An Ab	ility of the Hardware	55		
		4.5.1	Test 1 (Ability to Suck the Dirt)	55		
		4.5.2	Test 2 (Ability to Suck the Sand)	56		

5.0	DIS	CUSSION	57
6.0	CO	NCLUSION AND RECOMMENDATION	
	6.1	Conclusion	59
	6.2	Recommendations	60
7.0	REF	FERENCES	61
APPENDI	2X		62

LIST OF FIGURE

No	Title	Pages
2.1	Basic Building Blocks of a Computer	6
2.2	A Microcontroller Based System	6
2.3	PIC 16F873A	8
2.4	The Pin Diagram of PIC 16F873A .	9
2.5	Program Memory Map and Stack of PIC 16F873A	10
2.6	Block Diagram of RA3- RA0 Pins	11
2.7	Block Diagram of RA4/TOCKI Pin	12
2.8	Block Diagram of RA5 Pin	12
2.9	Block Diagram of RB3-RB0 Pins	13
2.10	Block Diagram of RB7-RB4 Pins	14
2.11	PORTC Block Diagram (Peripheral Output Override) RC<2-0>,	
	RC<7-5>	15
2.12	PORTC Block Diagram (Peripheral Output Override) RC<4-3>	15
2.13	IRF 530N Terminal	17
2.14	IRF 530N Internal Schematic Diagram	17
2.15	Transmitter and Receiver IR Sensor Signal	18
2.16	IR TX-RX Pair Sensor	18
2.17	The Pair of Infrared Sensor	18
2.18	Circuit Diagram for IR Sensor Module	19
2.19	LM 358 Pin Function	20
2.20	The MikroC Software	21
2.21	The Proteus Professional 6 Software	22
3.1	Basic Block Diagram for DC Motor Speed Control	23
3.2	Flow Chart Methodology of the Project	25

3.3	Block Diagram of the Operation	
	(Vacuum Controller for Multi Detect Surface)	16
3.4	Schematic Diagram for the Vacuum Controller	27
3.5	PCB Layout of the Controller	28
3.6	Top View of the PCB Controller	28
3.7	Circuit Diagram of PIC Burner	29
3.8	The Flow Chart for the Program Process	34
3.9	Hardware Development Process	37
3.10	PIC Burner Hardware	38
3.11	Vacuum Controller for Multi-Detect Surface Hardware	38
3.12	Gantt chart Schedule	39
4.0	Voltage Regulator Development	41
4.1	IR Sensor Development	42
4.2	PIC 16F873A Development	42
4.3	Dc Motor (Vacuum)	43
4.4	Switching Component for DC Motor	44
4.5	IR Sensor Characterization	45
4.6	Input Regulator =12Vdc	47
4.7	Output Regulator =5Vdc	47
4.8	Tx IR Sensor = 4.96 Vdc	48
4.9	Rx IR Sensor = 600 mVdc	49
4.10	Output PIC 16F873A = 5Vdc	49
4.11	Tx IR Sensor = 4.60 Vdc	50
4.12	Rx IR Sensor = 2.60Vdc	51
4.13	Input PIC 16F 873A =2.23Vdc	51
4.14	Output PIC 16F 873A= 5.12Vdc (max), 0Vdc (min)	52
4.15	Tx IR Sensor = 4.60 Vdc	53
4.16	Rx IR Sensor = 1.12Vdc	53
4.17	Input PIC 16F 873A =1.0Vdc	54
4.18	Output PIC 16F 873A= 0Vdc	54
4.19	Test for Carpet Surface	55
4.20	Test for Floor Surface	55

4.21	Test for Carpet Surface	56
4.22	Test for Floor Surface	56
6.0	IR Proximity Detector Sensor	60

LIST OF TABLE

No	Title	Pages
2.0	PORTA Functions	13
2.1	PORTB Functions	14
2.2	PORTC Functions	16
3.0	Analog Signal Convert to Digital Signal	35
4.0	Functionality of the IR Sensor	44
4.1	Analysis of Vacuum Controller Operation for Different Situation	46

CHAPTER 1.0

INTRODUCTION

Advance controller describes where control method are developed that attempt to emulate of human intelligence. Advances in sensors, actuators, computation technology and communication networks help provide the necessary for implementation this control hardware.

Advance control methodologies are being applied to robotics and automation, communications, manufacturing, traffic control, to mention but a few application areas. Neural networks, fuzzy control, genetic algorithms, planning systems, expert systems, and hybrid systems are all areas where related work is taking place.

For this project, the design of multi-detect surface algorithm for home vacuum application will be build to implement the advance controller. This project are bases on used PIC 16F873A, LM358 and infrared sensor as a main component for hardware development.

The success of vacuum controller for multi detect surface operation will be used or implement for home vacuum application. This vacuum controller with automatic function is mainly to make human job more easily and convenient.

1.1 Problem Statement

Nowadays, there are many type of vacuum, but not many vacuums that have an advance or intelligent function. So, vacuum controller for multi detect surface is build. This vacuum controller is easy to use with an automatic function to make our work more convenient in a life day.

Otherwise, this vacuum is also low cost designing with low power uses. So, this vacuum construction is highly practical to develop for human uses.

For this vacuum controller motor speed, it is difficult to design and upgrade from the type of vacuum that have a basic function. Besides, the controller is hard to design and have difficult construction.

1.2 Project Objectives

The following objective will be based on PIC 16F873A programming:

- 1. To design and develop an intelligent controller of the basic type of vacuum.
- 2. To make the controller can function and could interface with sensor.
- 3. To develop a system that can control the speed of the rotation motor.
- 4. To develop a system that has an automatic mode and function controlling.
- 5. To build and upgrade the function of the basic vacuum that already has.

3

1.3 Scope of project

The project final results;

The vacuum controller will be able to control the speed of motor follow suit the surface of the floor. Based on the PIC 16F873A microcontroller as the heart of the system.

Approach used in this project;

 To control the speed of motor in vacuum, firstly, the sensor will detect the variety of surface on floor. The sensors that will be used are transmitter and receiver IR sensor. This sensor emits infrared radiation or signal. Then send or transmit the signal to the controller that is PIC 16F873A.

 The controller will function and the systems will immediately response to determine the applicable speed of motor.

 Finally, the speed of rotation motor follow suits the type of surface floor to suck the rubbish.

The project involved;

#Hardware;

The hardware development consists of the design, redesigns, testing and troubleshoots all the circuit involved. It contains of infrared sensor and PIC controller as a control element. Proteus Professional 6 has been used for all design of the circuit.

#Software;

The software part will base on the simulations for all the system parts and the program development used MikroC program. This program is important because it give the instruction all the journey of the hardware.

#Firmware;

This project consists of hardware development & software application and improvement for the existing system. The complete design and development hardware and software will combine to make vacuum controller for multi-detect surface. This combination as the final test for the firmware and to ensure this project is successful follow the planning.

CHAPTER 2.0

LITERATURE REVIEW

2.1 Introduction

This chapter includes the study of hardware and software development. There are two aspects in process to be proceeding while doing this project that are software part and electrical part. For the electrical part, contain part on programmer for microcontroller PIC16F873A, LM358, IRF 530N control circuit and sensor. For software part, the MikroC programming C and the Proteus Professional will be used to simulate the circuit.

2.2 Microcontroller

All microcomputer systems, irrespective of their complexity, are based on similar building blocks. A microcontroller (or MCU) is a computer-on-a-chip used to control electronic devices.

These are shown in Figure 1 and consist of the following:

- CPU the part that does all logic and arithmetic functions
- RAM storage for programs and/or program variables
- ROM read-only parts of programs
- I/O connection to external devices

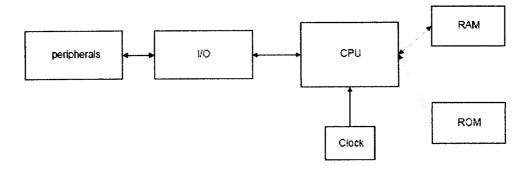


Figure 2.1: Basic Building Blocks of a Computer

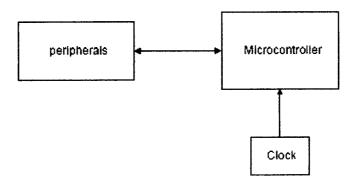


Figure 2.2: A Microcontroller Based System

Most microcontrollers contain circuitry to generate the system clock. This square wave is the heart beat of the microcontroller and all operations are synchronized to it. Obviously, it controls the speed at which the microcontroller functions. All that needed to complete the clock circuit would be the crystal or RC components. We can, therefore precisely select the operating speed critical to many applications.

To summarize, a microcontroller contains (in one chip) two or more of the following elements in order of importance:

- i. Instruction set
- ii, RAM
- iii. ROM, PROM or EPROM
- iv. I/O ports
- v. Clock generator
- vi. Reset function
- vii. Watchdog timer
- viii. Serial port
- ix. Interrupts
- x. Timers
- xi. Analog-to-digital converters
- xii. Digital-to-analog converters

The CPU or microprocessor is the core component of any microcomputer and it requires the external components such as the ROM, RAM, I/O to accomplish its purpose. The difference between the microprocessor and the microcontroller arises because of their different end-usage. The microcontroller that will be investigated is the PIC16F873A.

2.3 PIC 16F873A

Basically, we are using programmable IC (PIC) microcontroller to design of such circuit easier since it allows the programming of specific behaviors in software. PIC microcontrollers are among the cheapest possible microcontrollers, they are considered relatively low-level microcontrollers and low power consumption which need some external parts to function.

The PIC 16F873A (Programmable Interface Controller) devices are available only in 28-pin packages. The PIC 16F873A have one-half of the total on-chip memory of the PIC 16F876A and PIC 16F877A. This 28 pin devices have three I/O ports, five channels of A/D converter input channels, fourteen interrupts, PWM

output, capture and compare registers, power on reset, watchdog timer, power saving sleep mode, brown-out detection circuitry, in-circuit programming support, USART, and timers.

28-Pin PDIP, SOIC, SSOP

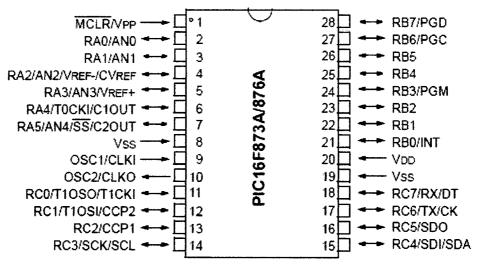


Figure 2.3: PIC 16F873A. [8]

The microcontroller acts like the brain of the control system. Microcontroller chip that has been selected for the purpose of controlling the speed of DC motor is PIC 16F873A manufactured by Microchip. A typical microcontroller contains all the memory and interfaces needed for a simple application, whereas a general purpose microprocessor requires additional chips to provide these functions.

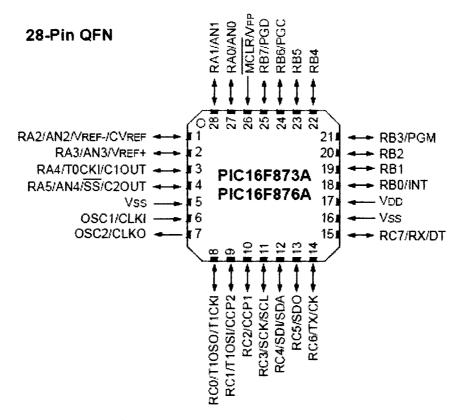


Figure 2.4: The Pin Diagram of PIC 16F873A. [8]

This chip is selected based on several reasons:

- Its size is small and equipped with sufficient output ports without having to use a decoder or multiplexer.
- Its portability and low current consumption.
- It has PWM inside the chip itself which allow us to vary the duty cycle of DC motor drive.
- It is a very simple but powerful microcontroller. Users would only need to learn 35 single word instructions in order to program the chip.
- It can be programmed and reprogrammed easily (up to 10,000,000 cycles) using the universal programmer in robotics lab.