

ANALYSIS ON WORMHOLE ATTACK IN AD HOC NETWORK

SYAZWANI BT MOHD SOBRI

This report is submitted in partial fulfilment of the requirements for the Bachelor of

Computer Science (Networking)

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2016

ANALYSIS ON WORMHOLE ATTACK IN AD HOC NETWORK

SYAZWANI BT MOHD SOBRI

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

i

ii

DEDICATION

First of all I thank to Allah for His guidance at a time when I get stuck, need help and

solve the problem. Thanks to Allah because He smooth all the works for this project.

I also dedicate my dissertation work to my family and all my friends who’s always

support me. A special feeling of gratitude to my loving parents who always give me

encouragement whenever I have depressed.

I also dedicate this dissertation to my friends who supported me throughout the process

that always give an idea to make this project more relevant. I would like to thank my

supervisor Pn Haniza Bt Nahar for her help and support through this project and always

support all my idea and give guidance to complete this project.

Thank you very much.

iii

ACKNOWLEGMENT

First of all, I would like to thanks to my parents Mohd Sobri Bt Ali and Zubaidah Bt

Harun for their support and give me more motivation to me during this research. I’m

very appreciating for all the support from my parents and family.

For my supervisor, Pn Haniza Bt Nahar many thanks for your guidance and sharing

the knowledge step by step through this research. Besides, that always spent your time

to improve my research from time to time.

Finally, I would like to thanks to my entire member that always support me and sharing

the idea in my research and also being co-operative and helpful.

iv

ABSTRACT

The recent development in the wireless technology have made remarkable

enhancement in productivity in the corporate and industrials sector. However, these

development also introduced new security threats. Wormhole attack is one of the

security threats in wireless. In this project AODV has been chosen for implementation

of this attack for mobile ad hoc network. The effect of wormhole attack on AODV

routing protocols is analysed on behalf of parameters like throughput, end to end delay

and normalized routing load.

v

ABSTRAK

Pembangunan dalam teknologi tanpa wayar merupakan suatu peningkatan produktiviti

dalam sektor industri dan korporat. Walaubagaimanapun, pembangunan ini juga telah

memperkenalkan banyak ancaman sekuriti dalam teknologi tanpa wayar. Serangan

“Wormhole ” merupakan salah satu daripada ancaman sekuriti tersebut. Untuk projek

ini, AODV telah dipilih untuk melaksanakan serangan “wormhole”. Kesan serangan

tersebut akan dianalisis dalam tiga parameter iaitu “throughput”, “end to end delay”

dan “normalised routing load”.

vi

TABLE OF CONTENTS

CHAPTER SUBJECT PAGE

 DECLARATION i

 DEDICATION ii

 ACKNOWLEGMENT iii

 ABSTRACT iv

 ABSTRAK v

 TABLE OF CONTENTS vi

 LIST OF TABLES x

 LIST OF FIGURES xi

CHAPTER 1 INTRODUCTION 1

1.1 Introduction 1

1.2 Research Problem 2

1.3 Project Question 3

1.4 Research Objectives 3

1.5 Project Scope 4

1.6 Research Contribution 5

1.7 Project Organisation 5

1.8 Expected Output 6

1.9 Conclusion 7

CHAPTER II LITERATURE REVIEW 8

2.1 Introduction 8

vii

2.2 Ad hoc wireless network. 9

2.3 Classification of wireless networks. 11

2.3.1 Cellular network 12

2.3.2 Wireless Mesh Networks 12

2.3.3 Wireless Sensor Networks 12

2.4 Classification of routing protocols. 13

2.5 Ad hoc On Demand Routing (AODV) 14

2.5.1 Route Discovery 14

2.5.2 Route Maintenance 16

2.6 Security Attacks in Ad Hoc Networks 17

2.6.1 Passive Attack 17

2.6.2 Active Attack 17

2.7 Wormhole Attack 20

2.8 Implication of wormhole attack to Ad hoc network. 21

2.9 Related Work 22

2.10 Summarization 23

2.11 Conclusion 23

CHAPTER III METHODOLOGY 24

3.1 Introduction 24

3.3 Project Tool and Requirement 27

3.4 Project Gant Chart and Milestone. 28

3.5 Conclusion 30

CHAPTER IV DESIGN 31

4.1 Introduction 31

4.2 Network System Architecture 31

4.2.1 Logical design 32

4.2.1 Simulation parameter from previous work 32

viii

4.2.2 Project simulation parameter 34

4.3 Possible Scenarios 35

4.5 Metric Measurement 35

4.6 Conclusion 36

CHAPTER V IMPLEMENTATION 37

5.1 Introduction 37

5.2 Simulation Setup 38

5.2.1 Simulation Overview 38

5.2.2 Simulation Parameter 38

5.2.3 Wormhole Attack Implementation 39

5.2.4 Recompilation of NS-2 41

5.2.5 Generate NAM Network Animator 42

5.3 Conclusion 44

CHAPTER VI TESTING AND ANALYSIS 45

6.1 Introduction 45

6.2 Result and Analysis 46

6.2.1 Metric measurement 1: Throughput (bits per second) 46

6.2.2 Metric measurement 2: End To End Delay (second) 49

6.2.3 Metric measurement 3: Normalised Routing Load 51

6.3: Conclusion 52

CHAPTER VII CONCLUSION 53

7.1 Introduction 53

7.2 Project Summarization 53

7.3 Project Contribution 54

7.4 Project Limitation 55

7.5 Future Work 55

7.6 Conclusion 55

ix

REFERENCES 56

APPENDICES 57

x

LIST OF TABLES

TABLES TITLE PAGE

1.1 Project Question 3

1.2 Project Objectives 4

2.1 RREQ Field 15

2.2 RREP Field 15

2.3 Types of attacks in ad hoc 19

2.4 Justification from previous works 22

3.1 Hardware and software requirements 27

4.1 previous work of simulation parameter 33

4.2 Simulation parameter 34

5.1 AODV Parameter for 20 nodes 39

6.1 Data collected for throughput 47

6.2 Data collected for delay 49

6.3 Data collected for Normalised Routing Load 51

xi

LIST OF FIGURES

DIAGRAM TITLE PAGE

2.1 Ad hoc Network 10

2.2 Taxonomy of wireless network 11

2.3 Taxonomy of routing protocol 14

2.4 Route Discovery in AODV 15

2.5 Route Maintenance in AODV 16

2.6 Taxonomy of attacks in ad hoc 18

2.7 Network affected by wormhole attack 20

3.1 Waterfall model 25

3.2 Project Gant Chart 29

4.1 Ad hoc topology 32

4.2 process in NS2 simulator 35

5.1 NS2 Overview 38

5.2 Mobile node schematic diagram 40

5.3 Wormhole attack implementation on Tcl script 40

5.4 NS2 recompilation command 41

5.5 NAM animator without wormhole attack 42

5.6 Path discovered 42

5.7 NAM animator with wormhole attack 43

5.8 Path discovery with wormhole attack 43

6.2 Graph of throughput 48

6.3 AWK Script for delay 49

6.4 Graph of delay 50

xii

6.5 AWK Script for Normalised Routing Load 51

6.6 Graph of Normalised Routing Load 52

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

Mobile ad hoc networks is one of the set of wireless network. They have

particular characteristics which are high mobility, multi-hop routing and the absence

of fix infrastructure. However, they have disadvantage compared with classic

network: vulnerability. Ad hoc it have disadvantage characteristics which are

dynamic topologies, infrastructure absence, limited bandwidth, reduced autonomy

and auto-configuration. Because of these particular characteristics, ad hoc networks

are much more vulnerable to attacks and naturally offer more faults than other types

of network when faced with a potential attacker.

The term “attack” specifies an action that negotiate the reliability and

confidentiality of the network’s information. In ad-hoc, generally distinguish two

categories which are passive attacks where the attacker only listens the traffic

without effecting the overall process of routing while active attacks is effecting the

overall process of routing in the network

In this research, will concentrate on wormhole attack which is categorised as

active attack. Wormhole attack is one of the Denial-of-Service attack effective on the

2

network layer (layer 3 of OSI model). In wormhole attack, the nodes of attacker

creates the illusion tunnel to transmit and replies data packet through the network.

This attack give huge effects against routing of network.

The wormhole attack that consists of two malicious node shorter than the

other route within the network so the network will choose the shortest path to

transfer data from source to destination.

In the end of this project, the results of with and without wormhole attack will

be presented in graph. The expression by combining the result of three metrics which

are throughput, end-to-end delay and normalised routing load also will be created.

1.2 Research Problem

Wormhole attack put severe threats to the ad hoc networks. This attack is

very dangerous because it can also still be performed even if the network

communication provides authentication and confidentiality. The wormhole attack is

able to confuse the clustering procedure and lead to a wrong topology and it can

partition the network through control links between two cluster heads of the routing

hierarchy. Many previous works proposed or implemented various techniques but it

is still very severe attack

1.3 Project Question

3

In fact what are the properties of wormhole attack? An initial study must be

done before any deployment takes place. Once the environment of ad hoc network is

understood then what are activities of wormhole attack do in ad hoc network? Last

but not least what is the purpose of analysing the wormhole attack behaviour in ad

hoc network?

Table 1.1: Project Question

1.4 Research Objectives

According to the research question, this project will focus on three objectives

so that the expected output can be achieved. The initial study about impact of

wormhole attack on Ad hoc network will be understood. After that the stimulation of

wormhole attack in ad hoc using NS-2 will be completed. Last but not least, the

discussion will be covered by comparing the results with and without wormhole

attack based on metric packet loss, end-to-end delay and throughput.

Table 1.2: Project Objectives

4

RO 1: To study wormhole attack on Ad hoc network.

Depth study will be performed to completely understand the behaviour of wormhole

attack in ad hoc network

RO2: To analyse the wormhole attack behaviour in ad hoc network by using NS2

simulator.

The existence of wormhole attack in ad hoc will be detected by using NS-2.

RO3: To discuss the impact on Ad hoc network by comparing the results with and

without wormhole attack.

In the end of this project, the discussion will be cover the comparing result of with

and without wormhole attack.

1.5 Project Scope

Scope of the project will be conducted as follow:

i. Thoroughly research on active attack which is wormhole attack on wireless

ad hoc network.

ii. Focusing on the metrics used to measure the performance of the network

which are delay, throughput, normalised routing load.

iii. Analysis of the wormhole attack is evaluated using NS-2

5

1.6 Research Contribution

As the wormhole attack can have serious impact. This paper contributes in

the study of the behaviour of the wormhole attack in depth so that better prevention

mechanisms can be employed against this attack. Also, in the end of this research

will present a graph theoretic model for characterising the wormhole attack by using

network simulation-2 (NS-2).

1.7 Project Organisation

This project report consists of seven chapter which are Chapter 1:

Introduction, Chapter 2: Literature review, Chapter 3: methodology, Chapter 4:

design, Chapter 5: implementation, Chapter 6: result and finding and lastly Chapter

7: conclusion

Chapter I: Introduction

This chapter will concentrate on introduction, project background, research

problem, research question, research objectives, scopes, project contribution and

report organisation.

Chapter II: Literature Review

This chapter will focus on details about this project. It will supported by

studying previous research paper and other reading materials.

Chapter III: Methodology

This chapter will focus on method that will be handle this project. Waterfall

method will be used in this project so that this project can be organised smoothly.

6

Chapter IV: Design

This chapter will describe about the design that will be handle this project.

This chapter also will focus on possible scenario and metric measurement used for

this project.

Chapter V: Implementation

This chapter will explain and focus about the environment setup. It will

explain briefly for every phase that need to be done in this project.

Chapter VI: Result and Finding

This chapter will concentrate and explain all the result from the project. This

chapter also include the recommendation for the project.

Chapter VII: Conclusion

This chapter will explain and summarize about the project summarization, project

contribution, project limitation and future work of this project.

1.8 Expected Output

In the end of this project, the graphs will be presented using NS-2 by

comparing the results with and without wormhole attack on ad hoc network.

Discussion will be made by comparing the performance of Ad hoc network based on

three metric which are throughput, end-to-end delay and normalised routing load.

7

1.9 Conclusion

As conclusion, through this chapter research objectives and scopes have been

determined based on research question. Project contribution for in the end of this

project also has been determined based on expected output. The next chapter will

concentrate on literature review which will be covered on materials reading.

8

CHAPTER II

LITERATURE REVIEW

2.1 Introduction

This chapter mainly will concentrate on the previous work related to

wormhole attack on ad hoc network. This chapter will answer the objectives stated in

chapter 1. This chapter will come out with several issues related to this research such

as ad hoc wireless network, security, wormhole attacks and routing protocols. It also

include the analysis techniques, pattern, simulation and scenario from previous

research.

This chapter will help to understand in-depth the behaviour of wormhole

attacks in ad hoc networks. It also will help in determine the techniques, pattern and

simulation that will be used in this project by comparing several research from

previous works.

9

2.2 Ad hoc wireless network.

For a past few decades, wireless communication is one of the fastest

communication technology that has been developing exponentially. We have seen so

many advance wireless devices such as laptops, cell phones and PDA (Goldsmith,

2004). Until today, wireless network in planned and sized infrastructure and its

operations especially for personal and local networks in order to full fill the need of

self-organisation, adaptability, cost reduction and independence.

For the next generation of wireless communication system, the fast

implementation is needed for the independent mobile users. This is because there are

some network scenario that cannot depends on centralised and organised

connectivity such as military networks, disaster recovery and communication foe

emergency operations (Goldsmith, 2004).

Wireless mobile networks is categorised into two types. The first one “one-

hop” wireless network which are wired gateways and infrastructure networks with

fixed. Wireless local area networks (WLANs) is one of the application for this type.

The second one is Ad hoc wireless network where the infrastructure is less mobile

network.

Ad hoc wireless network is one of the wireless mobile node that form a

network without established infrastructure as shown in Figure 2.1 (Goldsmith, 2004).

Ad hoc wireless network handle all the essential control and networking task by

themselves.

10

Figure 2.1: Ad hoc Network

Ad hoc is characterise as being inherent to bandwidth, reduced autonomy and

auto-configuration. Because of these characteristics, ad hoc network is exposed to

attack. So, when faced with attacker, those characteristics makes ad hoc network

exposed to attack and offer more faults than other types of network.

11

2.3 Classification of wireless networks.

This section will briefly explains the types of wireless networks to show the

difference between ad hoc networks and the others existing networks.

Figure 2.2: Taxonomy of wireless network

12

2.3.1 Cellular network

Cellular network is a combination of ratio cells. Each cells consists of base

station that acts as fixed location transceiver. These combination of cells offer radio

coverage over larger geographical areas. So, we can say that cellular network works

with existing of base station. In conclusion, cellular network is infrastructure based

network while ad hoc network is not infrastructure based network.

2.3.2 Wireless Mesh Networks

A wireless mesh network is a communications networks that combines ratio

nodes organizes in a mesh topology. Wireless mesh networks usually contains of

gateways, mesh clients and mesh routers.

2.3.3 Wireless Sensor Networks

Wireless sensor networks consist of thousands distributed autonomous

sensors where each of it capable to perform some limited computation,

communication and sensing. These sensors are used to answer any queries number

about environment.

13

2.4 Classification of routing protocols.

In ad hoc networks routing act as transferring data from source to destination.

Basically, there are two activities involved in routing concept which are determining

the best routing path and transferring the data through ad hoc network (Otmani &

Ezzati, 2014).

Routing protocols of MANETs can be categorised into three categories:

 Proactive protocols

In this type of routing protocol, each node in a network maintains one

or more routing tables which are updated regularly. Each node sends a

broadcast message to the entire network if there is a change in the network

topology. The example of proactive protocols are Distance vector (DV)

protocol, Destination Sequenced Distance Vector (DSDV) protocol, and

Optimized link state routing protocol (OLSR) protocol.

 Reactive protocols

In this type of routing protocol, each node in a network discovers and

maintains a route based on-demand. It broadcast control message during

discovering a route and bandwidth is used for data transmission once route is

discovered. Dynamic Source Routing (DSR), Ad-hoc On Demand Routing

(AODV) and Associativity Based Routing (ABR) protocols are examples for

this type protocol.

 Hybrid Protocols

Combination of proactive protocols and reactive protocols.

14

Figure 2.3: Taxonomy of routing protocol

2.5 Ad hoc On Demand Routing (AODV)

2.5.1 Route Discovery

AODV is an environment where any source node wants to send packet to

destination node. Source node will broadcast route request packets to all its

accessible neighbours. During the process the intermediate node will check the

receiving request (RREQ) whether the destination is for intermediate node or not. If

the destination meant to him it will send route reply message (RREP). If not, the

request will be forward to another node. Before the packet is forward, each node

15

stores the broadcast identifier and the node number from request node. The broadcast

identifier, source ID used to prevent the redundant request receives the same nodes

by detecting whether the node already received the previous route request message or

not. The source node will determine which message will be selected from many

received reply by using hop counts (Gupta, Priyanka, & Upadhyay, 2012).

Table 2.1: RREQ Field

Table 2.2: RREP Field

Figure 2.4: Route Discovery in AODV

16

2.5.2 Route Maintenance

Route maintenance is happened when any link breaks down due to the node

mobility, the node will invalidate the routing table. Loss of the link can cause the all

destination become unreachable. A route error (RERR) message will be created.

Then the node will send RERR upstream to the source node. Source node will

reinitiate route discovery when it receives route reply message if it still requires the

route (Gupta et al., 2012) .

Figure 2.5: Route Maintenance in AODV

17

2.6 Security Attacks in Ad Hoc Networks

Generally, attack is defined as an attempt to destroy or disrupt the normal

functionality of the network and disrupt the basic security goals such as integrity,

availability confidentiality, non-repudiation and authentication (Shrivastava &

Dubey, 2015). Attacks in ad hoc networks can be categorised into two categories

which are passive attack and active attack.

2.6.1 Passive Attack

Passive attacks are the attack that does not destroy a normal operation of

network so the id of attacks cannot be detected (Otmani & Ezzati, 2014).

2.6.2 Active Attack

An active attacks are the attack that disrupt the data transmission in network

by interrupting the normal functionality of network (Otmani & Ezzati, 2014)

18

Figure 2.6: Taxonomy of attacks in ad hoc

19

Table 2.3: Types of attacks in ad hoc

20

2.7 Wormhole Attack

Akansha Shrivastava and Rajni Dubey said that wormhole attack is an attack

where two nodes of attacker are connected to each other through the link known as

tunnel (Shrivastava & Dubey, 2015). The attacker node at one side captures the

packet from the normal node and transferring the packet through the tunnel then

transmit it to the other attacker node or malicious node present in the network. It

creates the illusion tunnel between two malicious nodes.

Figure 2.7: Network affected by wormhole attack

21

 In Figure 2.7 shows the tunnel created by attacker. It is where the routing packet

being encapsulated. The tunnel can be represented by wired link, wireless out-of-

bank link and logical link (Upadhyay & Chaurasia, 2011). In AODV protocol,

wormhole attack can implied by transferring each route request (RREQ) packet

directly to the destination target node of the request by using the tunnel. When the

destination node’s neighbours hear this request packet, they will follow normal

routing protocol processing to rebroadcast that copy of the request and then discard

without processing all other received route request packets originating from the same

route discovery.

2.8 Implication of wormhole attack to Ad hoc network.

 The impact of wormhole on the network is very serious. It will affect the whole

performance of the network by decreasing throughput of network by dropping the

data packets. Not only that, this attack also affect the other parameters of network

(Shrivastava & Dubey, 2015).

 In wormhole, the attacker at one end records the incoming traffic and tunnels

packets to the other end. If routing control messages like RREQ are tunnelled, this

will result in disrupt routing tables in the network. If fast transmission path exist

between two nodes of wormhole, it will tunnel the data at higher speed than the

normal mode of wireless multi-hop communication. Thus, they will attract more

traffic from their neighbours (Upadhyay & Chaurasia, 2011).

22

2.9 Related Work

Table 2.4: Justification from previous works

23

2.10 Summarization

 For this project, the performance of ad hoc network with and without wormhole

attack will be tested based on parameter end to end delay, throughput and normalised

routing load.

For end to end delay the average time taken for packet to reach the destination

from source is calculated. For throughput, the number of data packet that

successfully delivered from source to destination will be calculated. For a normalised

routing load, the number of routing packets and number of data packet will be

calculated.

2.11 Conclusion

Based on the literature review, the important issues that considered when

studying the previous works is the behaviour of wormhole attack, how the attack

does effects the routing protocol. In this chapter also, had justified the parameter that

have been used from previous works .In conclude, this project research will cover on

the analysis of wormhole attack in ad hoc networks. Next chapter will cover about

methodology used for this project. It includes the Gantt chart and milestone for PSM

1.

24

CHAPTER III

METHODOLOGY

3.1 Introduction

On this chapter, will be cover about methodology and the analysis phase.

Methodology itself is a guideline to solve the problem when doing a project with

specific method and phase when the project is start and end. In analysis it break

through to a specific category such as experimental, testing, simulation and

surveying. A few techniques will be used in order to complete this project. All this

technique is followed the project requirement.

25

3.2 Project Methodology

This section will discuss about methods and principles that will be used to

complete this project. It will define every phase that will be taken to complete this

project. Waterfall methodology approach which contains five phases will be used to

conduct this project. This approach will define the problem statement and objective

of the research project, initial study and literature review on the research problem,

data collection based on perimeters will be used, analysis reporting module of the

problem, and last but not least documentation and publication.

Figure 3.1: Waterfall model

26

Phase 1: Identify problem statement and objective of the research project

In this phase, problem statement, objectives, scope, and project expectation

that conduct this project already explained in Chapter 1. All collection of required

data and source for this project are organised and presented as shown in Chapter II.

In order to complete this project as planned a Gant Chart and Milestone are created.

All activities need to be done and period taken for each activities are stated in this

tools.

Phase 2: Initial study.

 In this phase, in-depth study are conducted in order to gain detailed

information about wormhole attack in ad hoc networks. The output for this activities

is explained in Chapter II, literature review. All the information is gained from the

previous works.

Phase 3: Data collection

 In this phase, data collected from previous work will be used to design ad

hoc topology in network simulation. Data collection also involve the data based on

perimeters throughput, delay and packet loss that need to perform the result to

achieve the objectives that has been stated.

Phase 4: Analysis result.

 For this phase, the collected data will be analyse to perform the result. Both

of the normal flow packet and with wormhole attack flow packet will be analyse to

get the pattern of behaviour for both flow packet based on perimeters stated in phase

3. From the result both of behaviour, the differentiation can be seen between with

and without wormhole attack packet flow.

27

Phase 5: Documentation

 This is the last phase where all the activities in this projects will be

documented and published in order to help future researcher to gain some additional

information about wormhole attack in ad hoc networks.

3.3 Project Tool and Requirement

This section will define the project tools and requirement used for this project

which are:

Table 3.1: Hardware and software requirements

28

3.4 Project Gant Chart and Milestone.

 In this project, Gantt chart has been constructed to show all the activities that

involved in this project. This tool will display the activities against time. The purpose

of Gantt chart had been constructed is to make sure this project is handled efficiently

according to the time given. Each activities has their own period. Once one activity is

done it will proceed to another activities. This tool is created based on weeks which

is started from the first week until the presentation week which is the last week. In

addition, each chapter will past through the phase that has been define in Waterfall

methodology approach.

29

Figure 3.2: Project Gant Chart

30

3.5 Conclusion

Overall this chapter describe the Waterfall methodology used to complete this

project. This methodology is chose because the step is suitable for this project that

based on simulation. Gantt chart and milestone also are created based on plan of the

whole PSM 1 activities and their period. Next, chapter IV will describe about the

design of ad hoc topology in NS2 and the metric measurement used for this project.

31

CHAPTER IV

DESIGN

4.1 Introduction

This chapter will define the initial design of this project that will be applied.

The design will cover on the network design, results of the analysis of the initial

design and project implementation flow.

4.2 Network System Architecture

Network system architecture is an initial design that used before other stage

in designing takes place. It is important to avoid any mistake during implementing

the network.

32

4.2.1 Logical design

Basically, logical design is conducted by modelling of the actual system. Logical

design is a graphical diagram that shows the flows of traffic between nodes. It able to

present the task of system without specify the system.

Figure 4.1: Ad hoc topology

4.2 Simulation Parameter

4.2.1 Simulation parameter from previous work

This section will discuss about the simulation parameter used from previous work. It

can be guider for simulation parameter for this project.

33

Table 4.1: previous work of simulation parameter

Paper Protocol Simulation

time

Simulation

area

Number of

nodes

Network

traffic

(Gupta et

al., 2012)

AODV 2000 sec 100*100m 16 CBR

(Kaur,

Sandeep, &

Dhanda,

2013)

AODV,DSR,

ZRP,ANODR

150 sec 1500*1500m 10,20,30 CBR

(Lu & Lu,

2003)

AODV, DSR 1000 sec 1000*1000m 30 CBR

(Otmani &

Ezzati, 2014)

AODV, DSR 1000 sec 1500*1500m 20 CBR

(Upadhyay

&

Chaurasia,

2011)

AODV,DSR 2000 sec 1500*1500m 50 CBR

(Win,

Physics, &

Gyi, 2008)

DaW, LF 900 sec 200*200m 16, 24, 32,

40, 48, 56

CBR

34

4.2.2 Project simulation parameter

Some constant values will be used for this simulation parameter of project so that the

result will be equivalent.

Table 4.2: Simulation parameter

2 (15, 9)

35

4.3 Possible Scenarios

The possible scenario for this project is comparison between normal packets

flows in ad hoc and with existing wormhole attack in ad hoc network. By comparing

this, the result based on perimeter throughput, end to end delay and normalised

routing load (NRL) will be show in graph.

.

Figure 4.2: process in NS2 simulator

4.5 Metric Measurement

In this stage, the performance metrics will be used to calculate the ad hoc

network performance. A programming script using AWK is created. In order to

achieve the required results the programming script will be analysed to the NS-2

traced files. The performance metrics will be used are:

TCL Script

.tcl extension

file

Execute use

NS2

Ns file.tcl

Network Animator

View nam files

Parsing trace

file into awk

script

Get the analysis

data file and use the

file plot the graph

Output nam,

trace file

36

Throughput

Throughput is defined as measurement number of units’ information that a

system can process in a set amount of time.

Normalised Routing Load

Normalised Routing Load is defined as ratio of the total packet size of control

packets (include RREQ, RREP, RERR and Hello) to the total packet size of data

packets transferred to the destinations.

Packet end to end delay

Delay of packet is defined as the time taken to reach the destination after the

packet is generated by source.

4.6 Conclusion

In this chapter, the early design phase have been discussed. Based on the

design that have been decided the network environment for this project is created.

For the next chapter, it will cover on the implementation of collected dataset based

on perimeter used to the NS-2 simulator.

37

CHAPTER V

IMPLEMENTATION

5.1 Introduction

Relevant design that required for this project already explained in chapter 4.

After all this chapter will describe about implementation phase. This phase includes

collecting data for analysing the performance of Ad hoc networks with and without

wormhole attack.

38

5.2 Simulation Setup

5.2.1 Simulation Overview

Figure 5.1: NS2 Overview

5.2.2 Simulation Parameter

The basic parameters for analysis activities are presented in Table 5.1

relevant to the simulation environment. For implementation phase, NS2 simulator

and the Microsoft Excel 2013 is used as the tool for the analysis. The mobile Ad hoc

network of 20 nodes is constructed in the NS2 with the area of 1000m x 1000m by

using Tcl script. AODV routing protocol is used for this project as the protocol for

the analysis.

The performance of Ad hoc network is analysed on parameter like

throughput, end to end delay and normalised routing load.

39

Table 5.1: AODV Parameter for 20 nodes.

5.2.3 Wormhole Attack Implementation

In order to stimulate the wormhole attack, the wormhole attack simulation

developed for NS2. The module is implemented as part of the NS2 Link Layer (LL)

object which likes directly above the MAC layer. The modified LL files which are

ll.cc and ll.h have several commands that allow it to be configured from the

simulation TCL setup script.

2 (15, 9)

7

40

 Figure 5.2: Mobile node schematic diagram

Figure 5.3: Wormhole attack implementation on Tcl script

41

5.2.4 Recompilation of NS-2

After changes in the AODV directory recompilation is needed. First change the path

to ~/ns-allinone-2.35/ns-2.35 and do $./configure (the Makefile will be replaced with

modified one).

Figure 5.4: NS2 recompilation command

42

5.2.5 Generate NAM Network Animator

NAM animator is an animation tool based on Tcl script for viewing network

simulation traces and real packet traces. It provides packet level animation, various

data inspection tools and topology layout.

Figure 5.5: NAM animator without wormhole attack

 Figure 5.5 shows the NAM animator without wormhole attack. Node (0) acts as a

sender while node (18) acts as a receiver. When the sender want to sends packet to

receiver, the node of sender will look the available path to the receiver in its local

routing table. If there no path exists then it will broadcasts a RREQ message to its

neighbourhood nodes. The discovered routes is node (0) > node (15) > node (17) >

node (19) > node (9).>node (18).

Figure 5.6: Path discovered

43

Figure 5.7 NAM animator with wormhole attack

Figure 5.6 shows the figure NAM animator with wormhole attack that

interrupts the usual routing packet flow. Basically, this attack can be done by two

nodes that connected via link called “wormhole link”. In this project, these two nodes

are located near the source node and near to the destination which are node (15) and

node (9) respectively and disrupting proper routing.

Figure 5.8: Path discovery with wormhole attack

44

5.3 Conclusion

This chapter explained in detail about the implementation of wormhole attack

as one of the malicious attack. This chapter helps to understand how the attack is

working. In chapter 6, a further research about analysing and testing between normal

packet flow and packet flow with wormhole attack.

45

CHAPTER VI

TESTING AND ANALYSIS

6.1 Introduction

Previous chapter was disscuss about the implementation for this project. Its

included the creating of Ad Hoc network using Tcl script and implementation of

wormhole attack. In this chapter, will be focus on the testing and analysis phase. The

data had been collected in two different situation which are normal packet flow and

packet flow with existing of wormhole attack. This phase is very important because

it will determine the achievement for this research project. All the data will be

presented in the graph form.

46

6.2 Result and Analysis

The data was collected based on different scenarios which are normal packet

flows and packet flow with attack. The data was collected by using AWK tool. AWK

tool will trace all the data in tracefile from both scenarios. After compile the AWK,

all the data will be collected and generated by using Microsoft Office Excel 2013.

6.2.1 Metric measurement 1: Throughput (bits per second)

Throughput is described as the rate of total CBR packet received to the total

number of CBR packet sent by source per unit time. The high throughput leads to the

better performance of network.

Figure 6.1 : AWK Script for Throughput

47

AWK Scriting tool is used in order to analyze the parameter of network with

presence and absent of wormhole attack. The Figure 6.1 shows the AWK script that

will trace data from trace file in order to calculate the throughput of network. From

throughput AWK scripting it shows that information is collected from specific data

in trace file which is receiving event in AGT layer. The total throughput will be

calculated at the time of CBR traffic stop which is at 150 seconds.

Table 6.1 below shows the data collected for throughput after the AWK script is

running

Table 6.1: Data collected for throughput

Time (seconds) Throughput

Without Attack With Attack

30 0 0

40 8475.866324 6411.313616

50 13752.80704 10425.60773

60 17238.81738 12871.01778

70 19849.29246 14838.59742

80 21701.61575 16172.0535

90 23134.20568 17427.69691

100 24323.32919 18427.70355

110 25266.04816 19038.00357

120 26084.63524 19783.5081

130 26708.40292 20151.95718

140 27305.36571 20681.52354

150 27832.71594 20948.34066

48

Figure 6.2: Graph of throughput

Based on Figure 6.2, it shows the throughput for network for bothwith and

without wormhole attack keep increasing start from 30 seconds until 150 seconds.

However, the value of throughput obtained from network with wormhole attack is

lower than without attack.

 This is happened when the traffic is routed through wormhole node, the

attacker will gain full control over the traffic. The wormhole node transfer the data

through the tunnel. Thus in this process it put large number of the data packet in its

queue to process the large number data and while processing all the data it reduces

the number of packet which will decrease the throughput of network.

0

5000

10000

15000

20000

25000

30000

30 40 50 60 70 80 90 100 110 120 130 140 150

Th
ro

u
g

h
p

u
t

(b
it

s
p

e
r

se
co

n
d

)

Time(second)

Throughput

attack

normal

49

6.2.2 Metric measurement 2: End To End Delay (second)

Delay is defined as the average time taken by a data packet to arrive at

destination from the source. Only the data packets that are successfully delivered to

destination are counted. Low value of delay leads to the better performance of

network.

Figure 6.3 : AWK Script for delay

In order to analyze the effect of wormhole attack on delay, the AWK script is

used as shown on Figure 6.3. From the AWK script it will trace information from

specific data which are from sender event in AGT layer while receive event at cbr

traffic and drop event.

Table 6.2: Data collected for delay

50

Type End To End Delay (seconds)

Without Attack 6.347991

With Attack 7.593173

Figure 6.4: Graph of delay

The effect on delay of network with and without wormhole attack are

evaluated from the trace files and graph plotted using Microsoft Excel 2013 clearly

shows that the delay increased to approximately 7.593173 seconds for one packet

transmission from sender to the receiver. While for the delay without wormhole

attack is approximately 6.347991 seconds. The reason for this situation is because

the wormhole nodes drop the packet in the network and these kind of malicious

activites degrade the network routing services and the packet processing become

slow.

5.6

5.8

6

6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

7.8

type

En
d

 T
o

 E
n

d
 D

e
la

y
(s

ec
o

n
d

)

End To End Delay

without attack

with attack

51

6.2.3 Metric measurement 3: Normalised Routing Load

Normalized Routing Load is defined as the ratio of number routing packets to

the number of data packets delivered to the destination. Low normalized routing

overhead leads to the better performance of protocol

Figure 6.5: AWK Script for Normalised Routing Load

From the AWK script the specific data is collected based on event, payload

type and trace level. For data packet, the specific data is collected which are receiver

event, cbr traffic and AGT level. While routing packet, the specific data collected

which are sender event, RTR level, AODV payload type.

Table 6.3: Data collected for Normalised Routing Load

Type

Normalised Routing

Load

(bits per second)

Without Attack 0.006

With Attack 0.008

52

Figure 6.6: Graph of Normalised Routing Load

The effect on Normalised Routing Load of network with present of wormhole

attack is increase to approximately 0.008 as shown in Figure 6.6 while without

wormhole attack the NRL is approximately 0.006. Clearly, the NRL for network with

wormhole attack is increase. With existing of wormhole attack the number of

received packets decreases which in turn decreases the control packet.

6.3: Conclusion

In this testing and analysis phase, performance of ad hoc routing which is

AODV under present and absent wormhole attack is compared. The performance

parameters taken into throughput, delay and normalised routing load (NRL). The

results shown that wormhole attack is active attack that can totally disrupt routing

protocol.

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

type

N
R

L
 (

b
it

s
p

er
 s

ec
o
n

d
)

Normalised Routing Load

Without Attack

With Attack

53

CHAPTER VII

CONCLUSION

7.1 Introduction

This chapter will conclude this project with project summarization, project

contribution, project limitation and improvement that can be done in future works.

7.2 Project Summarization

As been stated in chapter 1, this project is done based on these objectives

which are to study attack on Ad hoc network, to observe the wormhole attack

behaviour on Ad hoc network and to discuss the performance of Ad hoc network by

comparing the results without and with wormhole attack.

First objective have been achieved by studying and understand about Ad hoc

network and its security.

54

Second objective have been achieved by implementing wormhole attack in

Ad hoc network using NS2.35 simulator.

After implementing wormhole attack on Ad hoc network, the third objective

have been achieved by generating graph without and with wormhole attack on Ad

hoc network based on metric measured which are throughput, end to end delay and

normalised routing load.

7.3 Project Contribution

Wormhole attack can be considered as the most complicated attack in Ad hoc

network. This project contributes the depth study about effect of wormhole attack in

Ad hoc network. Analysing about performance on Ad hoc without and with existing

wormhole attack also have been carried out so that better prevention mechanism can

be implement against this attack. This project give information to other researcher to

study about wormhole attack and ad hoc network.

55

7.4 Project Limitation

This project only create one node that act as wormhole attack. This project

did not specify the behaviour of wormhole attack that create virtual “tunnel” or

illusion of shortest path for packet travel from source to destination. Hence, it only

act common behaviour as malicious attack that drop the packet.

7.5 Future Work

In this project, only focus on common behaviour of wormhole attack that able

to drop packet. However it actually can do more than that. Hence, for more advance

for the future project the implementation behaviour of wormhole network need to be

specified so that advanced analysis can be done.

7.6 Conclusion

From this project it can be conclude that this project successfully met the

three of objectives. This project able to give some information to other researcher to

study about the wormhole attack and Ad hoc network.

56

REFERENCES

(Aur et alOtmani & Ezzati, 2014; Safwani, Hassan, & Kadhum, 2011Shrivastava &

Dubey, 2015; Upadhyay & Chaurasia, 2011; Win et al., 2008)

Arfaat, P. G. (2011). The Impact of Wormhole Attack on the Performance of Wireless

Ad-Hoc Networks, 8491, 421–425.

Bakİler, H., & Şafak, A. (2015). Applied Mathematics , Electronics and Computers

Analysis of Current Routing Attacks in Mobile Ad Hoc Networks.

Goldsmith, A. (2004). WIRELESS COMMUNICATIONS.

Gupta, A., Priyanka, V. J., & Upadhyay, S. (2012). Analysis of Wormhole Attack in

AODV based MANET Using OPNET Simulator, C(2), 63–67.

Kaur, G., Sandeep, E., & Dhanda, K. (2013). Analysing the effect of Wormhole Attack

on Routing Protocol in Wireless Sensor Network, 2(8).

Lu, Y., & Lu, Y. (2003). Packet Loss in Mobile Ada Hoc Networks, 3–9.

Moudni, H., Er-rouidi, M., Mouncif, H., & Hadadi, B. El. (2016). Attacks against

AODV Routing Protocol in Mobile Ad-Hoc Networks.

http://doi.org/10.1109/CGiV.2016.81

Otmani, M., & Ezzati, A. (2014). Effects Of Wormhole Attack On AODV And DSR

Routing Protocol Through The Using NS2 Simulator, 16(2), 101–107.

Safwani, N. M. A. Al, Hassan, S., & Kadhum, M. M. (2011). MOBILE AD HOC

NETWORKS UNDER WORMHOLE ATTACK : A SIMULATION STUDY,

(091), 8–9.

Shrivastava, A., & Dubey, R. (2015). Wormhole Attack in Mobile Ad-hoc Network :

A Survey, 9(7), 293–298.

Upadhyay, S., & Chaurasia, B. K. (2011). Impact of Wormhole Attacks on MANETs,

2(1), 77–82.

Win, K. S., Physics, E., & Gyi, P. (2008). Analysis of Detecting Wormhole Attack in

Wireless Networks, 2(12), 2704–2710.

57

APPENDICES

Awk Script

End To End Delay.awk

BEGIN{

startTime = 0;

count = 0;

}

{

event = $1;

time = $2;

node_id = $3;

layer = $4;

flags = $5;

seqno = $6;

type = $7;

size = $8;

a = $9;

b = $10;

c = $11;

d = $12;

energy = $14;

58

if(layer == "AGT" && event == "s" && seqno<$6){

seqno = $6;

}

if(layer == "AGT" && event == "s" && type == "cbr"){

start_Time[$6] = $2;

}

else if((type == "cbr") && (event == "r") && (layer == "AGT")){

end_time[$6]= $2;

}

else if(event == "D" && type == "cbr" && layer == "IFQ"){

end_time[$6]= -1;

}

}

END{

for(i=0; i<=seqno; i++){

if(end_time[i] > 0){

delay[i] = end_time[i]-start_Time[i];

count++;

}

else

{

delay[i] = -1;

}

}

59

for(i=0; i<=seqno; i++){

if(delay[i] > 0){

n_to_n_delay = n_to_n_delay + delay[i];

}

}

n_to_n_delay = n_to_n_delay/count;

startTime = time;

printf("%f\t%f\n",startTime,n_to_n_delay);

}

Throughput.awk

BEGIN {

recvdSize = 0;

startTime = 0;

stopTime = 0;

sent=0;

receive=0;

count0 = 0;

}

{

event = $1;

time = $2;

node_id = $3;

60

layer = $4;

flags = $5;

seqno = $6;

type = $7;

pkt_size = $8;

a = $9;

b = $10;

c = $11;

d = $12;

energy = $14;

for(seqno = 0; seqno < 2; seqno++) {

if (event == "r" && layer == "AGT") {

 count0++

 if (!startTime || (time < startTime)) {

 startTime = time;

 }

 if (time > stopTime) {

 stopTime = time;

 }

 recvdSize += pkt_size;

 throughput= recvdSize/(stopTime-startTime*0.008);

 }}

61

startTime = time;

printf("%f\t%2f\n",startTime,throughput);

}

END {}

Normalised Routing Load.awk

BEGIN{

recvd = 0;#################### to calculate total number of data packets received

rt_pkts = 0;################## to calculate total number of routing packets

received

}

{

for(seqno = 0; seqno < 2; seqno++) {

Check if it is a data packet

if (($1 == "r") && ($7 == "cbr" || $7 =="tcp") && ($4=="AGT")) recvd++;

Check if it is a routing packet

if (($1 == "s" || $1 == "f") && ($4=="RTR") && ($7 =="AODV")) rt_pkts++;

if (!startTime || (time < startTime)) {

 startTime = $2;}

NRL=rt_pkts/recvd;

startTime = $2;

printf("%f\t%2f\n",startTime,NRL);

}}END{}

62

Tcl Script

A 20-nodes for ad-hoc simulation with AODV

Define options

set val(chan) Channel/WirelessChannel ;# channel type

set val(prop) Propagation/TwoRayGround ;# radio-propagation model

set val(netif) Phy/WirelessPhy ;# network interface type

set val(mac) Mac/802_11 ;# MAC type

set val(ifq) Queue/DropTail/PriQueue ;# interface queue type

set val(ll) LL ;# link layer type

set val(ant) Antenna/OmniAntenna ;# antenna model

set val(ifqlen) 150 ;# max packet in ifq

set val(nn) 20 ;# number of mobilenodes

set val(rp) AODV ;# routing protocol

set val(x) 1000 ;# X dimension of topography

set val(y) 1000 ;# Y dimension of topography

#set val(cstop) 90

set val(stop) 150 ;# time of simulation end

set val(connect) 1;

#set val(wp1) 15; #wormhole node 1

#set val(wp2) 9; #wormhole node 2

initialize Global Variables

set ns_ [new Simulator]

#$ns_ use-newtrace

set tracefd [open attack.tr w]

$ns_ trace-all $tracefd

set namtrace [open attack.nam w]

$ns_ namtrace-all-wireless $namtrace $val(x) $val(y)

63

set up topography object

set topo [new Topography]

$topo load_flatgrid $val(x) $val(y)

#create Good

create-god $val(nn)

#create channel #1 and #2

set chan_1_ [new $val(chan)]

set chan_2_ [new $val(chan)]

configure the nodes

$ns_ node-config -adhocRouting $val(rp) \

 -llType $val(ll) \

 -macType $val(mac) \

 -ifqType $val(ifq) \

 -ifqLen $val(ifqlen) \

 -antType $val(ant) \

 -propType $val(prop) \

 -phyType $val(netif) \

 -topoInstance $topo \

 -agentTrace ON \

 -routerTrace ON \

 -macTrace ON \

 -movementTrace ON \

 -channel $chan_1_

#creating mobile AODV nodes for simulation

puts "creating nodes....."

for {set i 0} {$i < $val(nn) } { incr i } {

 set node_($i) [$ns_ node]

 $node_($i) random-motion 0; #disable random motion

64

 }

#===

Provide initial location of mobile nodes

#===

$node_(0) set X_ 110.666

$node_(0) set Y_ 385.43

$node_(0) set Z_ 0.0

$node_(1) set X_ 526.075

$node_(1) set Y_ 742.198

$node_(1) set Z_ 0.0

$node_(2) set X_ 286.405

$node_(2) set Y_ 680.553

$node_(2) set Z_ 0.0

$node_(3) set X_ 372.892

$node_(3) set Y_ 455.324

$node_(3) set Z_ 0.0

$node_(4) set X_ 503.224

$node_(4) set Y_ 331.549

$node_(4) set Z_ 0.0

$node_(5) set X_ 652.712

$node_(5) set Y_ 422.823

$node_(5) set Z_ 0.0

$node_(6) set X_ 493.261

$node_(6) set Y_ 601.608

$node_(6) set Z_ 0.0

65

$node_(7) set X_ 265.405

$node_(7) set Y_ 714.219

$node_(7) set Z_ 0.0

$node_(8) set X_ 198.061

$node_(8) set Y_ 624.927

$node_(8) set Z_ 0.0

$node_(9) set X_ 611.437

$node_(9) set Y_ 552.154

$node_(9) set Z_ 0.0

$node_(10) set X_ 62.9053

$node_(10) set Y_ 519.543

$node_(10) set Z_ 0.0

$node_(11) set X_ 373.502

$node_(11) set Y_ 575.66

$node_(11) set Z_ 0.0

$node_(12) set X_ 210.938

$node_(12) set Y_ 269.301

$node_(12) set Z_ 0.0

$node_(13) set X_ 241.325

$node_(13) set Y_ 525.078

$node_(13) set Z_ 0.0

$node_(14) set X_ 106.508

$node_(14) set Y_ 660.878

$node_(14) set Z_ 0.0

66

$node_(15) set X_ 254.379

$node_(15) set Y_ 367.516

$node_(15) set Z_ 0.0

$node_(16) set X_ 641.404

$node_(16) set Y_ 680.265

$node_(16) set Z_ 0.0

$node_(17) set X_ 373.267

$node_(17) set Y_ 272.287

$node_(17) set Z_ 0.0

$node_(18) set X_ 745.384

$node_(18) set Y_ 568.295

$node_(18) set Z_ 0.0

$node_(19) set X_ 508.734

$node_(19) set Y_ 467.827

$node_(19) set Z_ 0.0

#===

set a UDP connection between nodes

#===

set udp [new Agent/UDP]

$ns_ attach-agent $node_(0) $udp

set null [new Agent/Null]

$ns_ attach-agent $node_(18) $null

set cbr [new Application/Traffic/CBR]

$cbr set packetSize_ 512

$cbr set rate_ 100Kb

$cbr set interval_ 0.005

#$cbr set maxpkts_ 10000

67

$cbr attach-agent $udp

$ns_ connect $udp $null

$ns_ at 30.0 "$cbr start"

$ns_ at 150.0 "$cbr stop"

$ns_ at 0.1 "$node_(0) label \"Send1\""

$ns_ at 0.1 "$node_(18) label \"Receive1\""

#==

CREATING WORMHOLE NODES FOR SIMULATION

#==

$ns_ at 70.0 "[$node_(15) set ragent_] wormhole"

$ns_ at 70.0 "[$node_(9) set ragent_] wormhole"

[$node_(15) set ll_(0)] wormhole-peer [$node_(9) set ll_(0)]

[$node_(9) set ll_(0)] wormhole-peer [$node_(15) set ll_(0)]

#$ns_ duplex-link $node_(15) $node_(9) 512Mb 155ms DropTail

$ns_ at 0.1 "$node_(15) label \"wormhole\""

$ns_ at 0.1 "$node_(9) label \"wormhole\""

#=================

End wormhole

#=================

for {set i 0} {$i < $val(nn) } {incr i} {

 $ns_ initial_node_pos $node_($i) 40

}

ending nam and the simulation

$ns_ at $val(stop) "$ns_ nam-end-wireless $val(stop)"

$ns_ at $val(stop) "stop"

$ns_ at 150.0 "puts \"end simulation\" ; $ns_ halt"

proc stop {} {

 global ns_ tracefd namtrace

 $ns_ flush-trace

 close $tracefd

 close $namtrace

exec nam attack.nam &

68

exit 0

}

$ns_ run

ll.cc

#ifndef lint

static const char rcsid[] =

 "@(#) $Header: /cvsroot/nsnam/ns-2/mac/ll.cc,v 1.47 2010/03/08 05:54:51

tom_henderson Exp $ (UCB)";

#endif

#include <errmodel.h>

#include <mac.h>

#include <ll.h>

#include <address.h>

#include <dsr/hdr_sr.h>

#define TRACE_DROP 0

int hdr_ll::offset_;

static class LLHeaderClass : public PacketHeaderClass {

public:

 LLHeaderClass() : PacketHeaderClass("PacketHeader/LL",

 sizeof(hdr_ll)) {

 bind_offset(&hdr_ll::offset_);

 }

} class_hdr_ll;

69

static class LLClass : public TclClass {

public:

 LLClass() : TclClass("LL") {}

 TclObject* create(int, const char*const*) {

 return (new LL);

 }

} class_ll;

LL::LL() : LinkDelay(), seqno_(0), ackno_(0), macDA_(0), ifq_(0),

 mac_(0), lanrouter_(0), arptable_(0), varp_(0),

 downtarget_(0), uptarget_(0), drop_on_send(0), drop_on_recv(0),

routing_packet_count(0), routing_byte_count(0), data_packet_count(0),

data_byte_count(0)

{

 bind("macDA_", &macDA_);

 wormhole_head.ll = NULL;

 wormhole_head.id = -1;

 wormhole_head.next = NULL;

}

int LL::command(int argc, const char*const* argv)

{

Tcl& tcl = Tcl::instance();

 if (argc == 3) {

 if (strcmp(argv[1], "ifq") == 0) {

 ifq_ = (Queue*) TclObject::lookup(argv[2]);

 return (TCL_OK);

70

 }

 if(strcmp(argv[1], "arptable") == 0) {

 arptable_ = (ARPTable*)TclObject::lookup(argv[2]);

 assert(arptable_);

 return TCL_OK;

 }

 if(strcmp(argv[1], "varp") == 0) {

 varp_ = (VARPTable*)TclObject::lookup(argv[2]);

 assert(varp_);

 return TCL_OK;

 }

 if (strcmp(argv[1], "mac") == 0) {

 mac_ = (Mac*) TclObject::lookup(argv[2]);

 assert(mac_);

 return (TCL_OK);

 }

 if (strcmp(argv[1], "down-target") == 0) {

 downtarget_ = (NsObject*) TclObject::lookup(argv[2]);

 return (TCL_OK);

 }

 if (strcmp(argv[1], "up-target") == 0) {

 uptarget_ = (NsObject*) TclObject::lookup(argv[2]);

 return (TCL_OK);

 }

71

 if (strcmp(argv[1], "lanrouter") == 0) {

 lanrouter_ = (LanRouter*) TclObject::lookup(argv[2]);

 return (TCL_OK);

 }

 else if(strcmp(argv[1], "wormhole-peer") == 0) {

 wormhole_peer* wp = (wormhole_peer*)malloc(sizeof(

wormhole_peer));

 if(!wp) {

fprintf(stderr, "(%03d) - LL::command - error allocating memory for new wormhole

peer!");

 exit(-1);

 }

 // init fields

 wp->ll = (LL *) TclObject::lookup(argv[2]);

 wp->id = wp->ll->mac_->addr();

// insert at head of list

 wp->next = wormhole_head.next;

 wormhole_head.next = wp;

 printf("(%03d) - LL::command - added %d to wormhole peer

list\n", mac_->addr(), wp->id);

 return TCL_OK;

 }

 }

72

 else if (argc == 2) {

 if (strcmp(argv[1], "ifq") == 0) {

 tcl.resultf("%s", ifq_->name());

 return (TCL_OK);

 }

 if (strcmp(argv[1], "mac") == 0) {

 tcl.resultf("%s", mac_->name());

 return (TCL_OK);

 }

 if (strcmp(argv[1], "down-target") == 0) {

 tcl.resultf("%s", downtarget_->name());

 return (TCL_OK);

 }

 if (strcmp(argv[1], "up-target") == 0) {

 tcl.resultf("%s", uptarget_->name());

 return (TCL_OK);

 }

 if (strcmp(argv[1], "drop-on-send") == 0) {

 drop_on_send = 1;

 return TCL_OK;

 }

 if (strcmp(argv[1], "drop-on-recv") == 0) {

 drop_on_recv = 1;

73

 return TCL_OK;

 }

 if (strcmp(argv[1], "routing_packet_count") == 0) {

 tcl.resultf("%d", routing_packet_count);

 return (TCL_OK);

 }

 if (strcmp(argv[1], "routing_byte_count") == 0) {

 tcl.resultf("%d", routing_byte_count);

 return (TCL_OK);

 }

 if (strcmp(argv[1], "data_packet_count") == 0) {

 tcl.resultf("%d", data_packet_count);

 return (TCL_OK);

 }

 if (strcmp(argv[1], "data_byte_count") == 0) {

 tcl.resultf("%d", data_byte_count);

 return (TCL_OK);

}

}

 return LinkDelay::command(argc, argv);

}

void LL::recv(Packet* p, Handler* /*h*/)

{

74

 hdr_cmn *ch = HDR_CMN(p);

 //char *mh = (char*) HDR_MAC(p);

 //struct hdr_sr *hsr = HDR_SR(p);

/*

 * Sanity Check

 */

 assert(initialized());

//if(p->incoming) {

 //p->incoming = 0;

 //}

 // XXXXX NOTE: use of incoming flag has been depracated; In order to track

direction of pkt flow, direction_ in hdr_cmn is used instead. see packet.h for details.

 // If direction = UP, then pass it up the stack

 // Otherwise, set direction to DOWN and pass it down the stack

 if(ch->direction() == hdr_cmn::UP) {

 //if(mac_->hdr_type(mh) == ETHERTYPE_ARP)

 if(ch->ptype_ == PT_ARP) {

//printf("%010.6f - (%03d) - LL::recv - got ARP packet\n",

Scheduler::instance().clock(), mac_->addr());

arptable_->arpinput(p, this);

 }

else{

 switch(ch->ptype()) {

75

 //case PT_AODVUU:

 case PT_MAC:

 case PT_DSR:

 case PT_ARP:

case PT_CBR:

 // let routing and control packets through

 break;

case PT_AODV:

 if(drop_on_recv) {

 static int corrupt_count = 1;

 if(TRACE_DROP) printf("%010.6f -

(%03d) - LL::recv - dropping data packet (%d)\n", Scheduler::instance().clock(),

mac_->addr(), corrupt_count++);

free(p);

 return;

 }

 break;

default:

 fprintf(stderr, "%010.6f - (%03d) - LL::recv -

ERROR - unknown packet type (%d = %s)!\n", NOW, mac_->addr(), ch->ptype(),

packet_info.name(ch->ptype()));

 exit(-1);

 }

 uptarget_ ? sendUp(p) : drop(p);

 }

76

 return;

 }

 ch->direction() = hdr_cmn::DOWN;

 sendDown(p);

}

void LL::sendDown(Packet* p)

{

 hdr_cmn *ch = HDR_CMN(p);

 hdr_ip *ih = HDR_IP(p);

 int is_broadcast = 0;

 int unicast_addr = -1;

 int is_routing = 0;

switch(ch->ptype()) {

 //case PT_AODVUU:

 case PT_DSR:

 case PT_ARP:

 case PT_MAC:

 //case PT_SEC_RT:

 case PT_CBR:

 // let routing and control packets through

77

 is_routing = 1;

 break;

case PT_AODV:

 if(drop_on_send) {

 static int corrupt_count = 1;

if(TRACE_DROP) printf("%010.6f - (%03d) - LL::sendDown - dropping data

packet (%d)\n", Scheduler::instance().clock(), mac_->addr(), corrupt_count++);

 free(p);

 return;

 }

 break;

 default:

 fprintf(stderr, "%010.6f - (%03d) - LL::sendDown - ERROR -

unknown packet type (%d = %s)!\n", NOW, mac_->addr(), ch->ptype(),

packet_info.name(ch->ptype()));

 exit(-1);

 }

nsaddr_t dst = (nsaddr_t)Address::instance().get_nodeaddr(ih->daddr());

 //nsaddr_t dst = ih->dst();

 hdr_ll *llh = HDR_LL(p);

 char *mh = (char*)p->access(hdr_mac::offset_);

 llh->seqno_ = ++seqno_;

78

 llh->lltype() = LL_DATA;

 mac_->hdr_src(mh, mac_->addr());

 mac_->hdr_type(mh, ETHERTYPE_IP);

 int tx = 0;

 switch(ch->addr_type()) {

case NS_AF_ILINK:

 mac_->hdr_dst((char*) HDR_MAC(p), ch->next_hop());

 // check next hop for wormhole peer / broadcast

 if(ch->next_hop() == MAC_BROADCAST) {

 //printf("%010.6f - (%03d) - LL::sendDown - sending a

broadcast - ILINK\n", NOW, mac_->addr());

 is_broadcast = 1;

 }

 else {

 //printf("%010.6f - (%03d) - LL::sendDown - sending a unicast

- ILINK \n", NOW, mac_->addr());

 unicast_addr = ch->next_hop();

 }

 //else {

 // printf("%010.6f - (%03d) - LL::sendDown - sending a

unicast - ILINK\n", NOW, mac_->addr());

 //}

break;

case NS_AF_INET:

79

 dst = ch->next_hop();

 /* FALL THROUGH */

case NS_AF_NONE:

 if (IP_BROADCAST == (u_int32_t) dst)

 {

 mac_->hdr_dst((char*) HDR_MAC(p),

MAC_BROADCAST);

 //printf("%010.6f - (%03d) - LL::sendDown - sending a

broadcast - NONE\n", NOW, mac_->addr());

 is_broadcast = 1;

 break;

 }

 else {

 //printf("%010.6f - (%03d) - LL::sendDown - sending a unicast

(wormhole) - NONE\n", NOW, mac_->addr());

 unicast_addr = dst;

 }

 //else {

 // printf("%010.6f - (%03d) - LL::sendDown - sending a unicast

- NONE\n", NOW, mac_->addr());

 //}

 /* Assuming arptable is present, send query */

 if (arptable_) {

 tx = arptable_->arpresolve(dst, p, this);

 break;

80

 }

 //if (varp_) {

 //tx = varp_->arpresolve(dst, p);

 //break;

 //}

 /* FALL THROUGH */

default:

 int IPnh = (lanrouter_) ? lanrouter_->next_hop(p) : -1;

 if (IPnh < 0)

 mac_->hdr_dst((char*) HDR_MAC(p),macDA_);

 else if (varp_)

 tx = varp_->arpresolve(IPnh, p);

 else

 mac_->hdr_dst((char*) HDR_MAC(p), IPnh);

 break;

 }

 if (tx == 0) {

 Scheduler& s = Scheduler::instance();

 // wormhole decision point (decide if this packet is going throught the

wormhole or not)

 if(wormhole_head.next) {

 if(is_broadcast) {

81

//printf("%010.6f - (%03d) - LL::sendDown - broadcast split\n", NOW, mac_->addr()

);

 // send a copy to each wormhole peer

 wormhole_peer *wp = &wormhole_head;

 while(wp->next) {

 wp = wp->next;

 Packet *p_copy = p->copy();

 hdr_cmn::access(p_copy)->direction() = hdr_cmn::UP;

 s.schedule(wp->ll, p_copy, delay_);

 }

 // AND send it out our "real" interface (and gather stats)

 if(is_routing) {

 routing_packet_count++;

 routing_byte_count += ch->size_;

 }

 else {

 data_packet_count++;

 data_byte_count += ch->size_;

 }

 s.schedule(downtarget_, p, delay_);

 return;

 }

 else {

// scan through the list to see if it is for a wormhole peer

82

 wormhole_peer *wp_curr = wormhole_head.next;

 wormhole_peer *wp_prev = &wormhole_head;

 while(wp_curr) {

 if(wp_curr->id == unicast_addr) {

// if we found a match then send the packet too this wormhole peer only

 hdr_cmn::access(p)->direction() = hdr_cmn::UP;

 s.schedule(wp_curr->ll, p, delay_);

// move this wormhole peer to the front of the list

// (optimizes many unicasts to the same peers)

 wp_prev->next = wp_curr->next;

 wp_curr->next = wormhole_head.next;

 wormhole_head.next = wp_curr;

 return;

 }

 // otherwise keep looking through list

 wp_prev = wp_curr;

 wp_curr = wp_curr->next;

 }

 // fall through if we don't find a matching wormhole peer

 }

 }

83

 //printf("%010.6f - (%03d) - LL::sendDown - normal only\n", NOW, mac_-

>addr());

 // let mac decide when to take a new packet from the queue.

 if(is_routing) {

 routing_packet_count++;

 routing_byte_count += ch->size_;

 }

 else {

 data_packet_count++;

 data_byte_count += ch->size_;

 }

 s.schedule(downtarget_, p, delay_);

 }

}

void LL::sendUp(Packet* p)

{

Scheduler& s = Scheduler::instance();

 if (hdr_cmn::access(p)->error() > 0)

 drop(p);

 else

 s.schedule(uptarget_, p, delay_);

}

inline void LL::hdr_dst(Packet *, int)

{}

84

ll.h

#ifndef ns_ll_h

#define ns_ll_h

#include <delay.h>

#include <queue.h>

#include <arp.h>

#include <classifier.h>

#include <lanRouter.h>

#include <varp.h>

enum LLFrameType {

 LL_DATA = 0x0001,

 LL_ACK = 0x0010

};

struct hdr_ll {

 LLFrameType lltype_; // link-layer frame type

 int seqno_; // sequence number

 int ackno_; // acknowledgement number

 int bopno_; // begin of packet seqno

 int eopno_; // end of packet seqno

 int psize_; // size of packet

 double sendtime_; // time the packet is sent

static int offset_;

 inline int& offset() { return offset_; }

 static hdr_ll* access(const Packet* p) {

85

 return (hdr_ll*) p->access(offset_);

 }

 inline LLFrameType& lltype() { return lltype_; }

 inline int& seqno() { return seqno_; }

 inline int& ackno() { return ackno_; }

 inline int& bopno() { return bopno_; }

 inline int& eopno() { return eopno_; }

 inline int& psize() { return psize_; }

 inline double& sendtime() { return sendtime_; }

};

// define elements for the wormhole peer list

class LL;

typedef struct wormhole_peer_struct {

 LL* ll;

 int id;

 struct wormhole_peer_struct* next;

} wormhole_peer;

class LL : public LinkDelay {

public:

 friend void ARPTable::arpinput(Packet *p, LL* ll);

 friend void ARPTable::arprequest(nsaddr_t src, nsaddr_t dst, LL* ll);

 LL();

86

 virtual void recv(Packet* p, Handler* h);

 void handle(Event* e) { recv((Packet*)e, 0); }

 inline int initialized() {

 return (mac_ && uptarget_ && downtarget_);

 }

virtual void sendUp(Packet* p);

 virtual void sendDown(Packet* p);

 inline int seqno() { return seqno_; }

 inline int ackno() { return ackno_; }

 inline int macDA() { return macDA_; }

 virtual void hdr_dst(Packet *p, int macDA);

 inline Queue *ifq() { return ifq_; }

 inline NsObject* downtarget() { return downtarget_; }

 inline NsObject* uptarget() { return uptarget_; }

 inline ARPTable *arp_table() { return arptable_; }

 protected:

 int command(int argc, const char*const* argv);

 int seqno_; // link-layer sequence number

 int ackno_; // ACK received so far

 int macDA_; // destination MAC address

 Queue* ifq_; // interface queue

 Mac* mac_; // MAC object

 LanRouter* lanrouter_; // for lookups of the next hop

87

 ARPTable* arptable_; // ARP table object

 VARPTable* varp_; // Virtual ARP object

 NsObject* downtarget_; // for outgoing packet

 NsObject* uptarget_; // for incoming packet

float drop_on_send;

 float drop_on_recv;

 wormhole_peer wormhole_head;

 // statistics variables for tracking routing overhead

 int routing_packet_count;

 int routing_byte_count;

 int data_packet_count;

 int data_byte_count;

};

#endif

