

DEVELOPMENT OF KERNEL SPACE KEYLOGGER

ARIEFF BIN ABD MAJID

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ii

iii

iv

DEDICATION

To my beloved parents thank you

for the endless support

and always helping and encourage me all the time

To my loyal friends, thank you for keep supporting me

and helping me in completing this project

To my supervisor for encouraging, motivating and believing in me

v

ACKNOWLEDGMENT

Alhamdulillah. Thanks to Allah SWT, who with His willing give me the

opportunity to complete this Final Year Project which titled Development of

Kernel Space Keylogger. Firstly, I would like to express my utmost gratitude to

Mr Mohd Zaki bin Mas’ud as my supervisor who guided me a lot of task and

lessons during this semester in completing this Final Year Project. Utmost

gratitude and appreciation to my parents, family, and my supportive friends and

others for the cooperation, encouragement, constructive suggestion and full of

support for the report completion, from the beginning untill the end. Last but not

least, my thanks to the members of Faculty of Information Communication and

Technology UTeM, for commitment and cooperation during my Final Year

Project.

vi

ABSTRACT

A keylogger is a malware that records keystrokes of the keyboard of a computer

and save it into a log file. The keylogger may be both malicious and non-

malicious depends on who uses it. There are three main types of keylogger which

are hardware, software and kernel keylogger. The software keylogger are the

common keylogger that are usually used but may be detected and deleted by

antivirus. The hardware keylogger cannot be detected by antivirus but the user

must have direct contact with the computer to use. The kernel space keylogger is

an improvement from the current common keylogger that will not be detected by

antivirus. Hence the technology that can overcome the antivirus detection is by

implementing keylogger into the kernel level of the operating system as antivirus

does not scan this part of the computer. The kernel keylogger is usually apply

into the kernel driver of an operating system and it will execute silently without

any detection by antivirus or the user. The problems that this project will solve

are first, there are not much improvement of the normal common keylogger. The

second is the common keylogger are usually can only run in the application level.

The third is the common keylogger can be easily detected by antivirus. As for

these problems, the objective of the project can be made which are first, to

identify a technology that will improve the application level keylogger. The

second is to develop a keylogger that can run on the kernel level. The third

objective is to validate that the keylogger will not be detected by antivirus. This

project will contribute to propose a technology that will improve the application

level keylogger. Next, it will be built in the kernel level to hide from detection.

Lastly, the keylogger will not be detected by antivirus.

vii

ABSTRAK

Keylogger adalah sebuah malware yang merakam setiap tekanan pada papan

kunci dan menyimpan ke dalam sebuah fail log. Keylogger boleh menjadi sama

ada baik atau buruk bergantung kepada siapa yang menggunakannya. Terdapat

tiga jenis utama keylogger iaitu perkakasan, perisian dan kernel keylogger.

Keylogger perisian adalah jenis keylogger yang biasa digunakan tetapi boleh

dikesan dan dibuang oleh antivirus. Keylogger perkakasan tidak boleh dikesan

oleh antivirus namun pengguna harus boleh berinteraksi dengan komputer secara

berdepan. Kernel keylogger adalah sebuah inovasi daripada keylogger yang biasa

iaitu tidak boleh dikesan oleh antivirus. Oleh itu, teknologi ini boleh mengatasi

pengesan antivirus dengan meletakkan keylogger ke dalam bahagian kernel

sebuah sistem operasi kerana antivirus tidak mengesan bahagian komputer ini.

Kernel keylogger biasanya digunakan dalam bahagian kernel sistem operasi dan

akan bekerja secara senyap tanpa dikesan oleh antivirus atau pengguna. Masalah

yang projek ini ingin atasi adalah yang pertama, tiada banyak inovasi daripada

keylogger biasa. Masalah kedua ialah keylogger biasa hanya boleh bekerja dalam

bahagian aplikasi sahaja. Masalah ketiga ialah keylogger biasa boleh dikesan

oleh antivirus dengan mudah. Dengan adanya masalah tersebut, objektif projek

ini ialah yang pertama, untuk mengenalpasti teknologi yang boleh menginovasi

keylogger bahagian aplikasi. Objektif kedua ialah untuk mencipta sebuah

keylogger yang boleh bekerja dalam bahagian kernel. Objektif ketiga ialah untuk

memastikan keylogger tersebut tidak boleh dikesan oleh antivirus. Projek ini

akan memberi manfaat dengan mencadangkan sebuah teknologi yang boleh

menginovasi keylogger bahagian aplikasi. Selepas itu, ia akan dicipta dalam

bahian kernel untuk mengelak pengesanan antivirus. Kemudian, keylogger ini

tidak boleh dikesan oleh antivirus

viii

TABLE OF CONTENTS

CHAPTER SUBJECT PAGE

 DECLARATION iii

 DEDICATION iv

 ACKNOWLEDGEMENT v

 ABSTRACTS vi

 ABSTRAK vii

 TABLE OF CONTENTS viii

 LIST OF TABLES xii

 LIST OF FIGURES xiii

CHAPTER I INTRODUCTION 1

 1.1 Introduction 1

 1.2 Problem Statement 2

 1.3 Project Question 2

 1.4 Project Objective 3

 1.5 Scope 3

 1.6 Project Contribution 4

 1.7 Thesis Organization 4

 1.8 Conclusion 6

ix

CHAPTER II LITERATURE REVIEW 7

 2.1 Introduction 7

 2.2 Related Work/Previous Work 8

 2.3 Critical Review of Current Problem and

 Justification 9

 2.4 Proposed Solution/Further Project 10

 2.5 Conclusion 11

CHAPTER III PROJECT METHODOLOGY 12

 3.1 Introduction 12

 3.2 Methodology 12

 3.2.1 Kernel Space Keylogger Design 13

 3.3 Project Milestones 14

 3.4 Conclusion 17

CHAPTER IV ANALYSIS AND DESIGN 18

 4.1 Introduction 18

 4.2 Problem Analysis 19

 4.3 Requirement Analysis 19

 4.3.1 Data Requirement 20

 4.3.2 Functional Requirement 21

 4.3.3 Non-Functional Requirement 22

 4.3.4 Other Requirements 22

 4.4 High-level Design 23

 4.4.1 System Architecture 23

 4.5 Detailed Design 24

 4.5.1 Software Design 24

 4.6 Conclusion 24

x

CHAPTER V IMPLEMENTATION 25

 5.1 Introduction 25

 5.2 Software Development Environment Setup 25

 5.3 Software Configuration Management 26

 5.3.1 Configuration Environment Setup 26

 5.3.2 Version Control Procedure 28

 5.4 Implementation Status 28

 5.5 Conclusion 29

CHAPTER VI TESTING 30

 6.1 Introduction 30

 6.2 Test Plan 30

 6.2.1 Test Organization 31

 6.2.2 Test Environment 31

 6.2.3 Test Schedule 32

 6.3 Test Strategy 32

 6.3.1 Classes of Tests 33

 6.4 Test Design 33

 6.4.1 Test Description 33

 6.4.2 Test Data 34

 6.5 Test Results and Analysis 36

 6.6 Conclusion 37

CHAPTER VII CONCLUSION 38

 7.1 Introduction 38

 7.2 Project Summarization 38

 7.3 Project Contribution 39

 7.4 Project Limitation 40

 7.5 Future Works 40

 7.6 Conclusion 41

xi

REFERENCES 42

APPENDIX A 43

APPENDIX B 46

APPENDIX C 49

xii

LIST OF TABLES

TABLE TITLE PAGE

1.1 Summary Of Problem Statement 2

1.2 Summary Of Project Questions 2

1.3 Summary Of Project Objectives 3

1.4 Summary Of Project Contribution 4

3.1 Project Milestones 15

3.2 Gantt Chart 17

5.1 Current Status of Kernel Space Keylogger 28

6.1 Testing Software used in the Project 31

6.2 Project Modules 32

6.3 Test Description 33

6.4 Test Data for KK01 34

6.5 Test Data for KK02 34

6.6 Test Data for KK03 35

6.7 Test Data for KK04 35

6.8 Test Results and Analysis 36

xiii

LIST OF FIGURES

FIGURE TITLE PAGE

3.1 Incremental Model 13

3.2 Kernel Space Keylogger Development Process 14

4.1 Kernel Space Keylogger Flow Chart 20

4.2 Kernel Space Keylogger Data Flow Diagram 22

4.3 Kernel Space Keylogger System Architecture 23

4.4 Kernel Space Keylogger Uml Class Diagram 24

5.1 Kernel Space Keylogger Makefile 26

5.2 US Keyboard Map 27

1

CHAPTER I

INTRODUCTION

1.1 Introduction

A keylogger is a system which captures keyboard strokes of a computer whenever

it is being used. It can be a software or hardware based depends on the necessary use of

the system. The main objective of a keylogger is to be used as a medium or tool for

information gathering, and mostly by a pentester. There are mainly two types of keylogger

techniques that had been used which are user space and kernel space keylogger. A user

space keylogger can be easily developed and it grabs the keystrokes from the keyboard

driver. However, by implementing the keylogger in the user space, it will be prone to the

detection of an antivirus or even the user itself. Thus it may be deleted before it can log

any keystrokes. Because of this weakness, the kernel level keylogger had been developed.

A kernel level is the level which all the operating system files are stored and it has the

highest privilege in a computer. Because of this, any antivirus will not scan the kernel

level. Mainly, a kernel level can be easily access in the UNIX operating system as we can

develop and delete any kernel programs. A kernel level keylogger is basically a rootkit

with the functionality of a keylogger. It can gain root access and can monitor the user level

secretly without any antivirus or the user knowing. Some advance keylogger uses

encryption method to avoid the keystrokes from being seen by any unauthorized users. To

2

decrypt the encrypted keystrokes, the user needs to use the symmetric key. In this project,

the keylogger will be developed in the kernel space in one of the UNIX operating system.

The language that will be used is C++.

1.2 Problem Statement

There are a few problem statement that had been detected in the system. These

Problem Statement (PS) are listed in Table 1.1:

 Table 1.1: Summary of Problem Statement

PS Problem Statement

PS1 There are not much improvement of the normal keylogger

PS2 Common normal keylogger only can run in the application level

PS3 Normal keylogger are usually detected by antivirus

1.3 Project Question

The project question (PQ) is about how the project will be developed which are

listed in the Table 1.2 below:

Table 1.2: Summary of Project Question

PS PQ Project Question

PS1 PQ1 How to improve the normal keylogger?

PS2 PQ2 How to make a keylogger that will not run in the application level?

PS3 PQ3 How to make a keylogger that will not be detected by antivirus?

3

1.4 Project Objective

The Project Objective (PO) is the requirements to develop the project based on the

problem statement stated above. The project objective are listed as in Table 1.3:

Table 1.3: Summary of Project Objective

PS PQ PO Project Objective

PS1 PQ1 PO1 To identify a technology that will improve the application level

keylogger

PS2 PQ2 PO2 To develop a keylogger on the kernel level

PS3 PQ3 PO3 To validate that the keylogger will not be detected by antivirus

1.5 Scope

1. Develop a kernel space keylogger

A kernel space keylogger that will not be detected by antivirus and normal user that will

be develop using C++ programming language in a UNIX operating system.

2. Surveillance

Keylogger can be used by any organization such as school to monitor the activity of the

students when they use a computer. This will be useful to any organization that prioritize

the employees’ activity on the net.

3. Information Gathering

The kernel space keylogger is mainly used to capture the keystrokes to gather information

about the user. This software can be used both by a penetration tester to gather information

4

1.6 Project Contribution

The Project Contribution (PC) is listed in the Table 1.4 below:

Table 1.4: Summary of Project Contribution

PS PQ PO PC Project Contribution

PS1 PQ1 PO1 PC1 Proposed a technology that will improve the application

level keylogger which uses the kernel level technology

PS2 PQ2 PO2 PC2 Proposed a keylogger that will be built in the kernel level

that can hide from most user and antivirus

PS3 PQ3 PO3 PC3 Proposed that the keylogger will not be detected by the

antivirus as it is implemented in the kernel level rather than

the application level.

1.7 Thesis Organization

CHAPTER 1: INTRODUCTION

This chapter explains the background and technology of this project and why it will be

developed based on the problem statements and objectives that are also discussed in this

chapter.

CHAPTER 2: LITERATURE REVIEW

This chapter will require the study of existing projects or technology that have been

conducted about this project. The minimum citations that will be needed in this chapter is

20 and will be listed in the Reference chapter. This chapter is required to know the existing

5

technology about this project and how to improve the current keylogger technology based

on the research made by other organizations.

CHAPTER 3: METHODOLOGY

This chapter will discuss on how the project will be developed by following the system

development life cycle. This project will use Rapid Development model. This chapter will

also include the milestones and Gantt chart of the project.

CHAPTER 4: ANALYSIS AND DESIGN

This chapter will discuss on the design and analysis of the project where the design will

include the flow of the project and the analysis will include the requirements of the project.

The flow of the project will use flow chart, data flow diagram and system architecture to

show how the keylogger will be implemented. The analysis will discuss on the

requirements of the keylogger as such its functionality and what condition will it run.

CHAPTER 5: IMPLEMENTATION

This chapter will discuss the development of the project based on the each phase that will

be conducted in the project.

CHAPTER 6: RESULT AND FINDING

This chapter will discuss the results of the project when it is completed and

recommendations of further development of the keylogger technology.

CHAPTER 7: CONCLUSION

This chapter will discuss and summarize the entire project including the project

contribution, limitation and any future technology of the project.

6

1.8 Conclusion

This chapter is about the introduction and background of the kernel space

keylogger project and also including the problem statement, objective, contribution and

the summarization of each chapter that will be included in this project. The project will

improve the current normal keylogger by embedding it in the kernel level of an operating

system. The next chapter will discuss on the current technology and research about the

project which are being conducted by other organizations and also how to improve the

current existing research on the kernel level keylogger.

7

CHAPTER II

LITERATURE REVIEW

2.1 Introduction

Every operating system has its own kernel it is regarded as its core. The kernel in

a Ubuntu operating system is called as UNIX kernel which is written in C programming

language. As the UNIX system is open source, it allows other developers to use and

modify the coding to make a new operating system. By using the C programming

language, it has the portability and accessibility that can be used to build the system. The

UNIX system has a very fast process creation and also the fork() system call.(Opdenacker

& Petazzoni, 2011)

Keyloggers are used to monitor computers of every keystrokes and activity. A

keylogger is very useful in information gathering whether it is a password, financial

information or the activity of the user. There are mainly two types of keyloggers which

are hardware and software based. A hardware based keylogger is usually like a normal

USB drive so the victim doesn’t know that ti is a keylogger. But they are only useful when

we have a direct access to the victim’s computer. A software based keylogger is very

useful in case the attacker does not have access to the victim’s computer. Mainly, a

8

software keylogger can hide from the user but some can be detected by antivirus. (R,

Baloch, 2011).

Many software keyloggers can be downloaded from the web and needs to be

installed as an Administrator. Keyloggers can be an executable (.exe) and also a device

driver that will be replaced with the existing keyboard driver. The drivers may have the

same functionality but with an added keystroke monitoring system. Usually, keyloggers

are developed using C/C++ programming language. (Aslam, Idrees, Baig, & Arshad,

2004)

2.2. Related Work / Previous Work

 There are two types of keyloggers which are hardware and software based and

they are subtypes of each types. A common keylogger runs on the user application level

which are easily developed and run on the system. It uses the library of the operating

system to listen to the users’ keystrokes. While a kernel space keylogger functions just

like a common user space keylogger, it works very differently as it does not use any system

calls, instead they are implemented as the keyboard driver itself.

 There are previous projects that have been done by other organizations on the ways

to avoid a kernel space keylogger. But not everyone who owns a computer know how to

avoid the keylogger and there may be also a new technology of this subject which can

even avoid detection. (F. Majid 2011)

 Besides a kernel space keylogger, there are also other ways that a keylogger can

avoid detection of a security program. Such organization had developed an undetectable

keylogger which runs only on the user space where many security programs are running.

There are various method that this keylogger used to avoid detection such as assign a

strong name key, pruning the code, obfuscating the code and much more. Even if the

9

keylogger still runs on the user level, it uses creative methods to hide itself from any

antivirus software.(Dadkhah, Jazi, Ana-maria, & Barati, 2014)

 A kernel space keylogger is a type of rootkit but more simple as it can only

eavesdrop and leak the keystrokes. This makes detecting the keylogger rootkit more

difficult. There are two types of kernel space keylogger that uses the Linux operating

system. The first type is which only targets the terminal in Linux as most operation are

done by using the terminal. The keylogger just needs to access the root user to function.

The second is which uses a kernel module that which looks like a legitimate module. This

type of keylogger uses the keyboard notifier chain to record the keystrokes. (Navarro,

Naudon, & Oliveira, 2012)

2.3. Critical Review Of Current Problem And Justification

 The use of a keylogger varies from one attacker to another in terms of their

objective. Some attacker use keyloggers to improve the quality of their application such

as a keyboard software and some use for malicious objectives such as collecting users’

data for personal gain. There are many application for modifying a keyboard functionality

and some of them are on the smartphone Android platform. There are many users modify

their smartphone keyboard by installing a third party keyboard application. Some of these

application secretly steals the users’ keystrokes even if they are sensitive data. These

application sends these keystrokes logs to a remote server through the users’ smartphone

and some of them only sends data which they think are important such as a username and

password.(Cho, Cho, & Kim, 2015)

 Other than a kernel module or driver method, there is also a keylogger which uses

the Graphical Processing Unit (GPU) as a place to run itself. This method is more secure

than the common kernel space keylogger which runs at the kernel level of the OS. This

method uses a memory address which is the keyboard buffer directly from the GPU. As

10

this method is very secure, the development process is also very complex. The keyboard

buffer from the GPU are usually randomized in placing. Thus if an attacker were to use

this type of keylogger, they need to scan the whole memory to locate the keyboard buffer.

(Da Silva et al., 2009)

 Most keylogger are used remotely by an attacker which they will send the log files

of the keystroke to a remote server. This type of keylogger are often used when an attacker

does not have access to a victim’s computer directly to install the software. Instead, they

use the internet to spread the keylogger covertly without the victim knowing that a

keylogger was downloaded into their computer. These keyloggers are often bundled with

advertisements and some of them are in the form of a document. By using an

advertisement, a process called “Drive-by-downloads” is used to automatically download

the keylogger into the victim’s computer.(Wood & Raj, n.d.)

2.4. Proposed Solution / Further Project

 An improvement of the common keylogger that is developed in this project is to

implement the malware into the kernel space of the operating system. The objective of

implementing in the kernel space is to avoid any detection from any security programs

whether they are third party programs or the default security programs of the operating

system.

 The method to implement the keylogger into the kernel space is by embed it into

a keyboard driver. The keyboard driver will function as any other keyboard drivers but

with an improvement of a keylogger embedded in it. Normally, an antivirus will not scan

a keyboard driver and this will make sure that it will not scan the keylogger embedded in

it. The driver will be installed as a normal keyboard driver and without the user knowing

that the driver has a keylogger.

11

2.5. Conclusion

 In this project, the common keylogger problems are identified and the

improvement of the current keylogger technology will be developed which is a kernel

space implemented keylogger. There are many more improvement of the common

keylogger which had been done before but this project is dedicated to develop a kernel

space keylogger that will be embedded into a keyboard driver whether the driver is from

an official software or not. The next chapter will discuss on the project methodology

which will explain in details about the project.

12

CHAPTER III

PROJECT METHODOLOGY

3.1. Introduction

This chapter will discuss about on how the kernel space keylogger will be

developed based on the principles and requirement that would make the progress of the

project more smooth and reliable. This chapter includes the model which the development

of the keylogger will follow. The design and milestones of the project will be discussed

in this chapter.

3.2. Methodology

Methodology discuss about on how a project will be developed based on the

requirements and methods that will make the development smooth. In this project, the

methodology will discuss on the development of the kernel space keylogger. The

development model of the keylogger uses the incremental model where the requirements

of the complete model had been achieved. The example of an incremental model is shown

in Figure 3.1 below.

13

Figure 3.1: Incremental model

Using the incremental model, the project is finished when all the requirements are

met after all iteration. The model was derived from the combination of the waterfall and

iterative model. When one build is finished and there are bugs and error detected, another

build will be conducted until all the requirements are met. This model divides all cycle

into smaller builds which are easier to manage. Each build will pass all the requirements

and process of developing a keylogger. The requirements is about the objective of the

project while each build have a development phase which is the process of developing the

keylogger, testing phase which the keylogger is compiled and build, and lastly

implementation phase where the keylogger will be tested by implementing into a system.

When there are error in the implementation phase, the keylogger will be debugged to

reduce the errors.

3.2.1. Kernel Space Keylogger Design

 The programming language that will be used to develop the keylogger is C++

programming language because it can be compiled and read by the operating system.

R
eq

u
ir

em
en

ts

Development Testing Implementation

Development Testing Implementation

Development Testing Implementation

Build 1

Build 2

Build 3

14

Figure 3.2: Kernel Space Keylogger development process

 The kernel space keylogger is developed by developing a kernel module for

keystroke monitoring inside a UNIX operating system. The kernel module will be

installed inside the kernel module folder of the system which it can be run everytime the

system boot. When the kernel module is running, it will capture the keystrokes and saves

it into a logfile in the system folder. To access the logfile, the terminal must be used to

read the file as it requires root permission to access the folder. The system folder also will

not be scanned by antivirus and the keylogger kernel module will continue to run.

3.3. Project Milestones

 The project milestones shows all stages of the project and the date which the stages

need to be done. Chapter 1 introduces the kernel space keylogger and the background

information. Chapter 2 discusses about the literature review where previous journals and

articles about the kernel space keylogger development and research. Chapter 3 explains

about the methods that the project will undergo to be completed. In chapter 4, the design

and analysis about the project will be discussed. In chapter 5, it explains on the

implementation and development of the kernel space keylogger. Chapter 6 explains about

the testing of the kernel space keylogger. Chapter 7 will discuss on the conclusion of the

overall project. Table 3.1. below describes the milestones of the project.

Linux kernel
module

keylogger
development

Implement
into kernel

module
folder

Install
keylogger

kernel
module using

terminal

Check Logfile
in log folder

15

Table 3.1.: Project Milestones

Week Activity Notes / Measures

1
Chapter 4

Chapter 5

Deliverable – Chapter 4

Action – Student, Supervisor

2
Chapter 5

Project Demo

Deliverable – Progress Presentation 1/

Pembentangan Kemajuan 1(PK 1)

Action – Student, Supervisor

3

Chapter 5

Chapter 6

Deliverable – Chapter 5

Action – Student

Student Status

Warning Letter 1

Action – Supervisor, PSM/PD

Committee

4
Chapter 6

Project Demo

Deliverable – Progress Presentation 2/

Pembentangan Kemajuan 2 (PK 2)

Action – Student, Supervisor

5

Chapter 6

Chapter 7

Deliverable – Chapter 6

Action – Student, Supervisor

Presentation Schedule Action – PSM/PD Committee

Student Status

Warning Letter 2

Action – Supervisor, PSM/PD

Committee

6

Chapter 7

Project Demo

PSM2 Report

Deliverable – Chapter 7 & Complete

PSM2 Draft Report

Action – Student, Supervisor

Determination of student status

(Continue / Withdraw)

Submit student status to Committee

Action – Supervisor, PSM/PD

Committee

7 Final Presentation & Project Demo
Action – Student, Supervisor,

Evaluator & PSM/PD Committee

8 Final Examination Week
Deliverable – Complete PSM2

Logbooks

16

Action – Student, Supervisor

Submission of overall marks to

PSM/PD committee

Deliverable – Overall PSM2 score

sheet

Action – Supervisor, Evaluator,

PSM/PD Committee

9 Inter-Semester Break

Deliverable – Complete Final PSM

Report

Action – Student, Supervisor

 Table 3.2. below shows the Gantt chart of the project. The Gantt chart shows the

activity on the development of the kernel space keyloger from the beginning to the ending.

The Gantt chart is to make sure that the project will run smoothly and all process will be

done accordingly.

Table 3.2.: Gantt Chart

Progress W1 W2 W3 W4 W5 W6 W7 W8 W9

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Demo

Presentation

Report

17

3.4. Conclusion

 Project methodology discuss the methods and milestones that the kernel space

keylogger project will undergo. This chapter is very important as it describes the crucial

process to make sure the project will run smoothly and all requirements are met. The next

chapter will discuss on the design and analysis of the project.

18

CHAPTER IV

ANALYSIS AND DESIGN

4.1. Introduction

In this chapter, the topic that is discussed is on the analysis and design of the kernel

space keylogger. This chapter is considered as the most important part in the whole project

as it describes on how the keylogger works based on the flow of the system. By analyzing

the current existing keylogger, this project will improve on its security and how the

keylogger works without changing the main function of a keylogger which is recording

the keystrokes of the computer. This chapter will also discuss on the flow of the keylogger

from the kernel to the output file on the application layer.

The kernel space keylogger follows the flow starting from the kernel level to the

application level. The keylogger will be embedded in the kernel level of the computer and

records the keystrokes from the keyboard and saves it into a log file on the application

level. The method of implementing a keylogger in the kernel level can ensure that the

keylogger will always run whenever the keyboard is used. The keylogger will save all

keystrokes in a log file by following a time schedule and whenever the user shut down

their computer. When the keylogger module is installed, the keylogger will not be deleted

unless the user remove the kernel module manually using the linux terminal.

19

4.2. Problem Analysis

By analyzing the normal keylogger, there are some problems that have been

identified that can make the keylogger vulnerable. Based on the normal keylogger, there

are not much improvement that have been done. There are many keyloggers have only

one feature which is the main function of the keylogger, to record every keystrokes. This

project will add some other functions of the keylogger.

There are other problem that has been detected which is the normal keylogger can

only run on the application level. Keyloggers that executes on this level can be very

vulnerable from detection whether from antivirus or the user themselves. This can

heighten the risk of deletion of the keylogger. This project will develop a keylogger that

can be implemented in other level of the computer.

Normal keyloggers are ususally detected by antivirus. It does not matter if the

keylogger have features that can escape from antivirus detection, sooner or later there will

be an antivirus that can detect the keylogger. This project will develop a keylogger that

can escape from any antivirus detection as long as they do not scan the kernel system.

4.3. Requirement Analysis

Based on the analysis and design of the project, the kernel space keylogger will be

developed by following the newest design of keylogger and kernel module. By following

both design, the keylogger will be implemented in kernel level of the operating system

without alerting or disturb any running applications.

4.3.1. Data Requirement

20

Figure 4.1.: Kernel space keylogger flow chart

 The Figure 4.1. above shows the flow chart of the kernel space keylogger kernel

module. When the keyboard is not in use, it is considered as idle and no data is being read

from the keyboard. When the keyboard is pressed, the data is registered to the buffer and

will be read by the keylogger kernel module and a switch case function will be executed.

There are three keymap tables which are US, Hex and Dec keymaps which list down the

codes for each key of the keyboard. When the switch case detects which keymap the

keycode is from, it will print the keystrokes into a log file inside the computer. When the

kernel module is not in use, the keyboard will remain idle and wait until the next key is

21

pressed. If the module is exited, the process will end and the keystrokes will not be

recorded.

4.3.2. Functional Requirement

 The kernel space keylogger is not much different from any other software based

keylogger. The main function is to record all keystrokes from the keyboard when the user

uses the computer. The main objective of the kernel space keylogger is to implement the

software into the kernel level of the computer. This means that the keylogger will be

implemented where no user or application can easily have access to. The keylogger will

be implemented in the kernel level using the kernel module technology where all the

keystrokes will go to the keylogger and the keyboard module. When a user types onto the

keyboard, the data will go to the linux kernel first to be converted into keycodes and it

will be sent to the tty layer. The keylogger will stealthily records the keystrokes and send

the data into the log file. When the user turns off the PC, the keylogger will stop running

and save the keystrokes. When the PC is turned on, the keylogger module will

automatically start.

 The kernel space keylogger can hide from antivirus because it is implemented in

the kernel level of the computer. This is because any antivirus cannot scan the kernel level

of a computer as they do not have the permission to do so. The data flow diagram of the

kernel space keylogger is shown on the Figure 4.2.

Keyboard
Keyboard

Kernel
Module

Keylogger
Kernel

Module

System Level
Queue

Application
Level Queue

Application

Application
Level Log

File

Figure 4.2.: Kernel Space Keylogger Data Flow Diagram

22

4.3.3. Non-Functional Requirement

 The non-functional requirements of the keylogger is about on what are the

requirements that should be met if it were to run such as memory and CPU speed. The

keylogger does not need a high memory to be stored as it only require just a little space

inside the system. But the log file size can be big if there were a lot of keystrokes that the

user makes but it probably will not reach 1GB of space. The performance of the keylogger

will depend on the performance of the kernel module as it is implemented as one of the

various module inside the system.

4.3.4. Other Requirements

a. Software

b. Ubuntu operating system

c. Linux terminal

d. Antivirus for testing purpose

e. Any text editor inside Ubuntu system

4.4. High-Level Design

 High level design discuss about the process and requirements of the keylogger in

more details. This is to make sure the keylogger can be developed successfully.

4.4.1 System Architecture

 System architecture discuss about the architecture of a system which is about the

structure, behavior, process, and more details about the system. The kernel space

23

keylogger architecture has 3 modules which are the keylogger module installation,

keylogger execution, and log file.

 Installing the keylogger kernel module needs the user to insert the module using

the terminal of the operating system. When successfully installed, the module will

automatically start recording the keystrokes and save into a log file. This process will not

be shown in the application layer and thus the user will not know that a keylogger is inside

the computer. Figure 4.4. below shows the system architecture of the kernel space

keylogger.

Keylogger
Kernel Module

Keylogger Log
File

Figure 4.3.: Kernel Space Keylogger System Architecture

4.5. Detailed Design

 The kernel space keylogger uses the main function of a keylogger which is record

keystrokes and save it into a log file. The difference between the kernel space keylogger

and normal keylogger is where it is implemented. Keylogger which implemented in the

kernel layer of a computer will avoid antivirus scanning and make it undetectable.

4.5.1. Software Design

Figure 4.4.: Kernel Space Keylogger UML Class Diagram

24

 As shown in the class diagram in Figure 4.5 above, the keyboard will detect

keystrokes from the user. When the keystrokes are detected, the kernel will process the

information about the keystrokes and at the same time will record the keystrokes. The

output of the software is the display of the keystrokes and a log file where the keystrokes

are saved into.

4.6. Conclusion

 The objective of chapter 4 is to discuss about the analysis and design of the

kernel space keylogger and how it works. This chapter also includes the flow chart, data

flow diagram, system architecture and class diagram to explain more about the software.

The next chapter will discuss about on the implementation of the project.

25

CHAPTER V

IMPLEMENTATION

5.1. Introduction

In this chapter, the implementation of the kernel space keylogger is being

discussed that includes on how the keylogger is being developed. The kernel space

keylogger is being implemented in the kernel level of the operating system which it will

not be detected by any antivirus software.

5.2. Software Development Environment Setup

The kernel space keylogger is developed using C language source code which is

understandable by the kernel of the operating system. The operating system used for

development and testing is Ubuntu 16.04 LTS which is the latest version. All coding and

compiling of the project is done in the Ubuntu operating system as it has the full

capabilities in developing the kernel space keylogger. Coding the keylogger will take

place in the application level of the operating system but the compilation will take place

in the kernel level.

26

Compiling a kernel module is a bit different from the normal application compiler.

Compiling a kernel module needs a makefile which stores the compiling settings of the

kernel module. In this project, there are two files that needs to be developed which are the

source code of the keylogger and a makefile for compiling. This kernel level keylogger

can only be used for a similar UNIX operating system.

Figure 5.1.: Kernel Space Keylogger Makefile

5.3. Software Configuration Management

The software configuration management will discuss on the configuration

management design and setup. This part will also discuss on the software and hardware

tools that are used in the development.

5.3.1. Configuration Environment Setup

The kernel space keylogger is developed using C source code language and

compiled using the GCC compiler that is installed inside the Ubuntu 16.04 operating

system. There are no special software that will be used as the keylogger will be developed

27

fully inside the operating system. Any Ubuntu text editor can be used for coding but this

project will use the Gedit text editor as it is easier to navigate and almost similar to

Notepad for the Microsoft Windows.

The kernel space keylogger is very simple in implementing as it only requires a

source code file and makefile. The keycode that is used for the keyboard mapping is the

US keyboard map as it is the most widely used keymap. Each keystrokes has its own codes

based on the keymap used with the addition of distinguishing between a capitalized and

small letters using the shift button. With this feature, it will also records special characters

which are registered with the numbers on the keyboard. As for the logging function,

debugfs filesystem is used for creating and saving the logfile.

Figure 5.2.: US Keyboard Map

28

 The keyboard types that can be used are only PS/2 and USB keyboards which are

the most common physical keyboards used widely. There are no software that needs to be

install for the keylogger to record the keystrokes from the keyboard unless the keyboard

driver for the operating system has been deleted. If so, a new keyboard driver needs to be

installed first to use the keyboard and keylogger. The keylogger is considered undetectable

because it is implemented inside the kernel level of the operating system which are

different from normal application level keylogger that can be detected by antivirus.

5.3.2. Version Control Procedure

 The version control procedure is the evaluation process for the development of the

keylogger. As this keylogger is originally based on a project from Github.com, the current

version of the modified kernel space keylogger will be Version 2.0.

5.4. Implementation Status

 The implementation status shows the current status of the development of kernel

space keylogger based on each component or module. Table 5.1 below shows the current

status of the kernel space keylogger.

Table 5.1.: Current Status of Kernel Space Keylogger

No. Module Name Description Duration Date

Completed

1 Develop a

makefile

Developed a

makefile for

compiling kernel

module

1 Weeks 2 May 2017

29

2 Develop and

modify

keylogger

Develop and

modify the

keylogger using

C language

2 Week 16 May

2017

3 Adding logging

function

Add a logging

function using

debugfs file

system

1 Week 23 May

2017

4 Undetected

keylogger

Implemented as

a kernel module

to avoid

detection

1 Week 30 May

2017

5.5. Conclusion

 This chapter discuss about the implementation and setup in developing the kernel

space keylogger which is on how the project is progressing and how to implement the

project into the system. The next chapter will discuss on the testing of the kernel space

keylogger to ensure that it works as it is intended to.

30

CHAPTER VI

TESTING

6.1. Introduction

This chapter is the final process in this kernel space keylogger development

project. In this chapter, it explains about the testing phase of the project based on the

completeness of the keylogger and the results of its operation. There are three phases that

was conducted in the testing phase which are test organization, test environment and test

schedule. The main objective of this phase is to ensure that the project functionality meets

the requirement of the project.

6.2. Test Plan

Test planning is done to identify and explains the testing of the project before

releasing it. The three main phases of this chapter is test organization, test environment

and test schedule. Test organization explains about the users that are involve in the testing

process. Test environment is where the project is tested, this includes the operating system

31

used to test the project. Test schedule is the arrangement on when the test was carried and

includes the cycle during testing.

6.2.1. Test Organization

In test organization, the users involved in the testing were those who will use the

keylogger to monitor the keystrokes of a computer. These users include penetration tester,

computer security students and parents to monitor other person computer activities. The

developer of the system was the first tester before allowing other users to test it.

6.2.2. Test Environment

Test environment explains about the location and environment of testing the

project. The operating system used in testing is Ubuntu 16.04 LTS. The project was

scanned using VirusTotal, an online virus scanner and various antivirus software for the

Ubuntu such as Clam AV. The Ubuntu System Monitor was also used to ensure that the

keylogger does not appear on the process screen.

Table 6.1.: Testing Software used in the project

Testing Software Description

VirusTotal A free online virus scanner to analyze files and URLs to detect

any malicious codes or virus that are usually detected by

antivirus software.

ClamAV An open source antivirus software to detect various malware

such as Trojans and viruses.

System Monitor A built in system monitor for UNIX operating system that is

equivalent of task manager for the Windows operating system.

32

6.2.3. Test Schedule

Test schedule is the arrangement of the testing phase which act as a guide in testing

the project. The main objective of the schedule is to ensure that the test is being conducted

based on the date and duration planned. The modules of this project are listed in table 6.2

below.

Table 6.2.: Project Modules

Module Name Description Duration Date completed

Develop a makefile Developed a makefile for

compiling kernel module

1 Week 03 May 2017

Develop and

modify keylogger

Develop and modify the

keylogger using C language

2 Weeks 17 May 2017

Adding logging

function

Add a logging function using

debugfs file system

1 Week 24 May 2017

Undetected

keylogger

Implemented as a kernel module

to avoid detection

1 Week 31 May 2017

6.3. Test Strategy

 Test strategy is about on how the project will affect the user and any risks are

mitigated during the testing phase. The strategies are created based on the design

documents of the development which describes the main function of the project that will

be released. In each stage of the development design, a test strategy was created to test the

new functionality of the development. There are two types of testing that are used in this

project which are white box and black box testing. White box testing uses the

programming knowledge to determine the output and test the code of the keylogger. Black

box testing is where the keylogger is tested without any prior knowledge of the project.

33

6.3.1. Classes of Tests

 In this project, a functionality test is used to determine the functionality of the

keylogger whether it will execute its main function properly or not. This test was done by

running the keylogger and enter the keystrokes as the input. If the logfile is created and

there is the record of the keystrokes, the keylogger successfully passed the functionality

tests.

6.4. Test Design

 Test design is the process of designing on how to test the software. In this project,

the test design was made by carefully studying the keylogger functionality and what

aspects of the software that is needed to be tested. This is to ensure that the project is tested

for any error before releasing the product.

6.4.1. Test Description

 Test description explains about the modules that were tested in the testing phase

of the project. Table 6.3 below shows the test modules, ID, case, and the expected output

of the project

Table 6.3.: Test Description

Test Modules Test ID Test Case Expected Output

Develop a

makefile

KK01 Functional Can compile the code to

output a kernel module

object

Develop and

modify keylogger

KK02 Functional The keylogger can be run

on the kernel level

34

Adding logging

function

KK03 Functional The keylogger can record

the keystrokes and create

a logfile

Undetectable

keylogger

KK04 Functional Antivirus did not detect

any malware inside the

operating system

6.4.2. Test Data

 The test data was taken from the output of the project by giving the keylogger an

input. In the first test, the keylogger was tested for the makefile of the code. The makefile

was used in compiling the keylogger code to create a kernel module object.

Table 6.4.: Test data for KK01

Test ID Test Case Test Input Test Output

KK01 Functional Using make command

in the terminal with a

random kernel coding

A kernel module

object was created

In the second test, the keylogger was tested for its functionality in running on the

kernel level and detecting the keystrokes from the keyboard. Table 6.5 below shows the

test data for test KK02.

Table 6.5.: Test data for KK02

Test ID Test Case Test Input Test Output

KK02 Functional The code was

compiled and user

input keystrokes

Keystrokes was

detected from the

keyboard into the

kernel module

35

In the third test, the keylogger was tested for its functionality of creating a log file

using the debugfs file system to write from the kernel space to the user space. This test

was also used for testing the keylogger function to log keystrokes into the log file. Table

6.6 below shows the test data for KK03.

Table 6.6.: Test data for KK03

Test ID Test Case Test Input Test Output

KK03 Functional User input keystrokes

from the keyboard

A log file was created

and all keystrokes

were stored into the

log file

 In the fourth test, the keylogger was tested for its undetectability from antivirus in

its coding and kernel module. VirusTotal was used to test the kernel module object for

any malicious content. Clam AV was used to test the kernel module when it is running.

Table 6.7 below shows the test data for KK04

Table 6.7.: Test data for KK04

Test ID Test Case Test Input Test Output

KK04 Functional Upload the kernel

module object into the

VirusTotal website to

scan the file

VirusTotal outputs

lower than 10/53

KK04 Functional Run the Clam AV

antivirus when the

kernel module was

running

Scan results does not

show the kernel

module for any threat

36

6.5. Test Results And Analysis

The test results for all the tests were recorded and analyzed based on the expected

output and feedback of the tests. Table 6.8 below shows the results and analysis of the

tests

Table 6.8.: Test results and analysis

Test ID Test

Identification

Test Result Test Output

KK01 OK Pass The makefile successfully

compiled the source code into a

kernel object

KK02 OK Pass The keylogger successfully

executes inside the kernel space

and detects all keystrokes from

the keyboard

KK03 OK Failed The keylogger successfully

creates a logfile into

/sys/kernel/debug/Keyl

directory and records the

keystrokes but cannot save the

logfile

KK04 OK Pass All files of the keylogger kernel

module does not contains any

malicious codes and does not be

detected by antivirus

From the results and analysis of the tests, the keylogger met all requirements from

the objectives of the project. This project is developed with high satisfaction as it met all

requirements of the project.

37

6.6. Conclusion

 As a conclusion, this chapter explains about the testing phase of the project. The

testing phase includes test plan, test environment, test schedule, test strategy, test design,

and result and analysis. In this phase, the keylogger was confirmed to be successful as it

met all requirements that needed to be achieved in the project. The next chapter will

conclude all phases in the project and the keylogger will be released without any error.

38

CHAPTER VII

CONCLUSION

7.1. Introduction

This chapter is the conclusion of all the process and chapter of the Development

of Kernel Space Keylogger project from the beginning to the end of the project with

keeping in mind of the duration given. This chapter also discuss on the advantage and

disadvantage of the kernel space keylogger as each systems has its own set of advantage

and disadvantage.

7.2. Project Summarization

The main objective of the project was to develop a keylogger that will be

undetectable by implementing it in the kernel level of the operating system. As the

keylogger can only be used in the UNIX operating system, the keylogger was considered

as a kernel module where a software can be run in the kernel space of the operating system.

The kernel space keylogger was successful in detecting and logging the keystrokes from

39

the keyboard into the logfile. The only problem that occur was the kernel module can only

record the keystrokes into the logfile and viewed when it is running but cannot save the

logfile to be viewed at another time. The problem occurred because the debugfs file system

cannot receive a variable during the naming of the logfile and can only receive a string

which was typed manually inside the source code of the keylogger.

The disadvantages of this project is that the keylogger cannot save the logfile and

can only be viewed when it is running. When the kernel module restarts, the logfile is

deleted and a new logfile will be used to record the keystrokes.

The advantages of this project is the kernel space keylogger will not be detected

by any user space antivirus as it is implemented inside the kernel space as a kernel module.

The kernel space cannot be scanned by antivirus as they do not have the permission to

scan the kernel level of the operating system. This enables the keylogger be run stealthily

without any detection by antivirus or any unexperienced user.

7.3. Project Contribution

This project was contributed to small or large companies to monitor the computer

activities of their employees during working hours and the server configuration when a

server was scheduled to be configured. As the server cannot be turned off, the logfile can

be viewed for any configuration errors. This keylogger can also be used by teachers and

lecturers to monitor their students during study sessions in a computer laboratory.

40

7.4. Project Limitation

The limitation that were present in developing the keylogger are the keylogger was

hard to be implemented and developed which consumes too much time in developing it.

Finding the solution to the logfile takes a lot of time which ended with failure.

7.5. Future Works

This projects produced a basic kernel space keylogger without any major

modification from its original functionality which is to record keystrokes from the

keyboard. To make the keylogger more powerful, an encryption system can be

implemented to obfuscate the logfile or even the kernel module itself. This will reduce the

chances that the keylogger or logfile can be detected or modify by antivirus or any

experienced user.

Other modification that can be implemented into the kernel space keylogger is to record

any active windows used by the user. This modification can boost up the functionality of

the keylogger and improve the recording functionality of the keylogger.

Another improvement that can be implemented is the functionality to upload the logfile

into a remote server for easier viewing of the logfile. The remote server can be connected

through the internet or local server within the network. The owner of the keylogger does

not need to have direct access to the computer just to view the logfile.

41

7.6. Conclusion

 The introduction chapter of the project discuss many on the project itself which

are the project background, problem statement, objectives, and scopes as an overview of

the system. The next chapter, the literature review of previous keylogger works was

explained and analyzed to get information on the topic. This helps in more understanding

the concept of the kernel space and the functionality of the keylogger. The next chapter

was the methodology which explains about on how the project will progress throughout

the duration given. It also explains on the system development life cycle of the system.

 In the fourth chapter which is design and analysis, the topics that are discussed are

the design of the keylogger which included the flowchart, data flow diagram and system

architecture. This is mainly used to simplify the process and flow of the system for the

developer. The analysis phase in this chapter helps the developer to understand more about

the system of the keylogger as to understand more on the concept.

 In the next chapter which is implementation discuss on the implementation of the

kernel space keylogger which includes the software environment setup, software

configuration and the configuration management setup. The testing chapter discuss on the

testing of the project after it is finished to ensure that no error occurred when the keylogger

was used.

 As a conclusion, the kernel space keylogger was successfully developed with an

exception of cannot save the logfile of the keystrokes record. Nevertheless, the keylogger

successfully performs its basic function of recording the keystrokes of the keyboard.

42

REFERENCES

Opdenacker, M., & Petazzoni, T. (2011). Linux kernel introduction., 1–16.

Baloch, R. (2011). An Introduction To Keyloggers, RATS And Malware, 1–75.

Aslam, M., Idrees, R. N., Baig, M. M., & Arshad, M. A. (2004). Anti-Hook Shield

against the Software Key Loggers, 189–191.

Lecturer, A., & Majid, F. (2011). Detecting keylogger virus by monitoring keyboard

driver stack, 2011(16), 75–90.

Dadkhah, M., Jazi, M. D., Ana-maria, C., & Barati, E. (2014). An Introduction to

Undetectable Keyloggers with Experimental Testing, 4(3), 3–7.

Navarro, J., Naudon, E., & Oliveira, D. (2012). Bridging the Semantic Gap to Mitigate

Kernel-level Keyloggers. https://doi.org/10.1109/SPW.2012.22

Cho, J., Cho, G., & Kim, H. (2015). Keyboard or keylogger?: A security analysis of

third-party keyboards on Android. 2015 13th Annual Conference on Privacy,

Security and Trust, PST 2015, 173–176. https://doi.org/10.1109/PST.2015.7232970

Da Silva, a F., Hérault, A., Processing, P., Banking, M., Stpiczy, P., Dickson, N. G., …

Jon, G. (2009). SPH on GPU with CUDA. R Journal, 48(extra), 0.

https://doi.org/10.3826/jhr.2010.0005

Wood, C. A., & Raj, R. K. (n.d.). Keyloggers in Cybersecurity Education.

43

APPENDIX

 Source code and implementation

Keyboard map

Keystroke logging

44

Logging type (Keymap / Hexadecimal / Decimal)

Logfile

45

Keyl kernel module running

46

APPENDIX B

 Virus scanning and file checking results

System monitor to view process

47

Clam AV test results when kernel space keylogger running

VirusTotal kernel object scan result

VirusTotal object scan result

48

VirusTotal source code scan result

49

APPENDIX C

 Step by step process with full coding

Full Code 1

Full Code 2

50

Full Code 3

Full Code 4

51

Full Code 5

Makefile Code

52

1. The kernel space keylogger must have at least 2 files which are the keylogger

source code file and the makefile.

2. Open the terminal and type the command “sudo su” for root privilege

3. After getting the root privilege, change directory to the keylogger folder using

command “cd /(keylogger full directory)”

53

4. To compile the source code using the makefile, type in the command “make” in

the keylogger directory

5. Type in the command “ls” to list all files in the directory. There should be the

keylogger kernel object named keyl.ko in the directory.

6. To insert the keylogger kernel module into the system, use command “insmod

keyl.ko”. Type in the command “lsmod” to make sure that the keylogger was

successfully installed.

7. To test the logging process, type in “gedit try” to open a text editor and type a

sentence.

8. Type anything into the text editor like “this is the logfile” to enable the keylogger

to record.

9. To view the logfile, type in the command “cat /sys/kernel/debug/Keys/Log”. The

text typed before in the text editor should be in the logfile display.

10. Use “rmmod keyl” to remove the keylogger kernel module

54

11. To view the hexadecimal value of the keystrokes, type in the command “insmod

keyl.ko codes=1”.

12. Type in any sentence into a text editor and use the command “cat

/sys/kernel/debug/Keys/Log” to view the logfile.

13. To remove the keylogger kernel module, type in the command “rmmod keyl”.

14. To view the decimal value of the keystrokes, type in the command “insmod

keyl.ko codes=2”.

15. Type in any sentence into a text editor and use the command “cat

/sys/kernel/debug/Keys/Log” to view the logfile.

16. To remove the keylogger kernel module, type in the command “rmmod keyl”.

