

ANDROID MALWARE TRACEABILITY MATRIX FOR DIGITAL FORENSIC

INVESTIGATION

A’AISYAH MARDHIYYAH BINTI MOHAMMAD SHAHINI

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS

JUDUL: ANDROID MALWARE TRACEABILITY MATRIX FOR DIGITAL FORENSIC

INVESTIGATION

SESI PENGAJIAN: 2016/2017

Saya A’AISYAH MARDHIYYAH BINTI MOHAMMAD SHAHINI mengaku membenarkan

tesis Projek Sarjana Muda ini disimpan di Perpustakaan Fakulti Teknologi Maklumat dan

Komunikasi dengan syarat-syarat kegunaan seperti berikut:

Tesis dan projek adalah hakmilik Universiti Teknikal Malaysia Melaka.

Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dibenarkan membuat salinan untuk

tujuan pengajian sahaja.

Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dibenarkan membuat salinan tesis

ini sebagai bahan pertukaran antara institusi pengajian tinggi.

** Sila tandakan (/)

____________ SULIT (Mengandungi maklumat yang berdarjah keselamatan atau

kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)

____________ TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh

organisasi/badan di mana penyelidikan dijalankan)

____________ TIDAK TERHAD

(TANDATANGAN PENULIS) (TANDATANGAN PENYELIA)

Alamat tetap 265A, KM 10, ENCIK MOHD ZAKI MAS’UD

Jalan Simpang Empat, NAMA PENYELIA

06650 Alor Setar, Kedah

Tarikh: 21/8/2017 Tarikh: 21/8/2017

ANDROID MALWARE TRACEABILITY MATRIX FOR DIGITAL FORENSIC

INVESTIGATION

A’AISYAH MARDHIYYAH BINTI MOHAMMAD SHAHINI

This report is submitted in partial fulfillment of the requirements for the

Bachelor of Computer Science (Computer Security)

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2017

i

DECLARATION

I hereby declare that this project report entitled

ANDROID MALWARE TRACEABILITY MATRIX FOR DIGITAL

FORENSIC INVESTIGATION

is written by me and is my own effort and that no part has been plagiarized

without citations.

STUDENT:

A’AISYAH MARDHIYYAH BINTI MOHAMMAD SHAHINI

Date: 21/8/2017

SUPERVISOR:

ENCIK MOHD. ZAKI BIN MAS’UD

Date: 21/8/2017

ii

DEDICATION

To my beloved parents, Ir. Mohammad Shahini Puteh and Puan Bushra Abd Rahman,

who are my greatest inspiration in education.

iii

ACKNOWLEDGEMENTS

Firstly, I would like to thank to my super supportive supervisor of this project,

Encik Mohd. Zaki Bin Mas’ud for the valuable guidance and advice. He inspired me

greatly to work in this project. His willingness to motivate us contributed tremendously to

my project. I also would like to thank him for showing me some example that related to

the topic of this project. Besides, I would like to thank the authority of Technical Malaysia

University (UTeM) for providing me with a good environment and facilities to complete

this project. Finally, an honorable mention goes to my family and friends for their

understandings and supports towards me in completing this project.

iv

ABSTRACT

The objective of digital forensic investigation process in a cybercrime is to

preserve any evidence in its most original form while performing a structured

investigation by collecting, identifying and validating the digital information for the

purpose of reconstructing past events while maintaining the chain of custody. With the

current scenario, mobile technology has also exposes to cybercrime, this has make the

investigation process more complex. The traceability process has become a crucial part of

the digital investigation process because it is capable to map the events of an incident from

different sources in collecting evidence of an incident to be used for other additional

investigation aspects. The need of finding and mapping evidence in Android platform has

also becoming more important. Thus, this project proposes the adaptability of the

traceability matrix to represent the relationship in the digital forensic investigation process

by assimilating the traceability features in the mobile technology environment especially

on Android. The objective of this project is to identify, analyze and construct Android

malware traces for forensic investigation and show the link between the evidence, the

entities and the sources related in the process. Besides, the proposed project is expected

to assist the forensic investigator in gaining accurate and complete evidence that can be

further used in a court of law. To make it real, there are four phases that had been

conducted. The first phase was a literature review where a detailed study of the traceability

issues that involved to mobile forensic. The second phase was analyzing data set while

the third phase was a construction of the traceability matrix and the last phase was

completing the documentation.

v

ABSTRAK

Objektif proses penyiasatan forensik digital dalam jenayah siber adalah untuk

memelihara mana-mana bukti dalam bentuk yang paling asal semasa menjalankan

penyiasatan yang tersusun dengan mengumpul, mengenal pasti dan mengesahkan

maklumat yang digital untuk tujuan membina semula kejadian yang lepas di samping

mengekalkan rantaian jagaan. Dengan senario semasa, teknologi mudah alih juga telah

memberi pendedahan kepada jenayah siber, hal ini menjadikan proses siasatan lebih

kompleks. Proses pengesanan telah menjadi sebahagian yang penting dalam proses

siasatan digital kerana ia mampu untuk memetakan peristiwa kejadian daripada pelbagai

sumber dalam mengumpul bukti kejadian yang akan digunakan untuk lain aspek siasatan

tambahan. Keperluan untuk mencari dan memeta bukti dalam platform Android juga telah

menjadi lebih penting. Oleh itu, projek ini mencadangkan penyesuaian matriks

pengesanan untuk mewakili hubungan dalam proses siasatan forensik digital dengan

menerapkan ciri-ciri pengesanan dalam persekitaran teknologi mudah alih terutamanya

pada Android. Objektif projek ini adalah untuk mengenal pasti, menganalisis dan

membina jejak malware Android untuk siasatan forensik dan menunjukkan hubungan

antara bukti, entiti dan sumber yang berkaitan dalam proses. Selain itu, projek yang

dicadangkan itu dijangka membantu penyiasat forensik dalam mendapatkan bukti yang

tepat dan lengkap yang boleh terus digunakan dalam mahkamah undang-undang. Untuk

membuatkannya berhasil, terdapat empat fasa yang telah dijalankan. Fasa pertama adalah

kajian yang lebih dalam di mana satu kajian terperinci mengenai isu-isu kebolehkesanan

yang terlibat untuk forensik mudah alih. Fasa kedua telah menganalisis data yang

ditetapkan manakala fasa ketiga adalah pembinaan matriks pengesanan dan fasa terakhir

melengkapkan dokumentasi.

vi

TABLE OF CONTENTS

CHAPTER SUBJECT PAGE

 DECLARATION i

 DEDICATION ii

 ACKNOWLEDGEMENT iii

 ABSTRACT iv

 ABSTRAK v

 TABLE OF CONTENTS vi

 LIST OF TABLES ix

 LIST OF FIGURES X

CHAPTER 1 INTRODUCTION

 1.1 Introduction 1

 1.2 Problem Statement 3

 1.3 Project Question 4

 1.4 Project Objective 4

 1.5 Project Scope 6

 1.6 Project Contribution 6

 1.7 Thesis Organization 7

 1.8 Conclusion 8

CHAPTER II LITERATURE REVIEW

 2.1 Introduction 9

 2.2 Related Work 11

 2.3 Critical Review 22

 2.4 Proposed Solution 25

 2.5 Conclusion 25

vii

CHAPTER III METHODOLOGY

 3.1 Introduction 26

 3.2 Methodology 27

 3.3 Project Milestone 29

 3.4 Conclusion 32

CHAPTER IV DESIGN

 4.1 Introduction 33

 4.2 Requirements 34

 4.3 Analysis Approach 36

 4.4 Network Design 38

 4.5 Traceability Matrix

Design

 39

 4.6 Conclusion 40

CHAPTER V IMPLEMENTATION AND

ANALYSIS

 5.1 Introduction 41

 5.2 Environment Set Up 42

 5.3 Process of Collecting

Traces

 43

 5.4 Conclusion 62

CHAPTER VI TESTING

 6.1 Introduction 63

 6.2 Test Organization 64

 6.3 Test Design 64

 6.4 Test Result 65

 6.5 Conclusion 68

CHAPTER VII PROJECT CONCLUSION

 7.1 Introduction 69

 7.2 Project Summarization 69

viii

 7.3 Project Contribution 70

 7.4 Project Limitation 71

 7.5 Future Works 71

 7.6 Conclusion 71

 REFERENCES 72

 APPENDICES 73

ix

LIST OF TABLES

TABLE TITLE PAGE

1.1 Summary of Research Problem 3

1.2 Summary of Research Question 4

1.3 Summary of Project Objective 5

1.4 Summary of Research Contribution 6

2.1 List of Existing Research

(Traceability Matrix)

 11

2.2 List of “Traceability” Definition 14

2.3 List of Android Behaviour 15

2.4 Android Malware and Their

Definition and Behaviour

 17

2.5 List of Type of Malware 18

2.6 List of network traffic features 21

2.7 List of System Call 21

2.8 List of Existing Research

(Traceability Matrix)

 22

3.1 Project Milestones 29

4.1 Details of Hardware Requirement 36

4.2 Home Page 40

5.1 List of Traces in Network Traffic 48

5.2 List of Parameter in System Call 59

5.3 Digit and Type of File Permission 53

5.4 List of Traces in Logcat 59

6.1 Result from Network Traffic 66

6.2 Result from System Call 67

6.3 Result from Logcat 68

x

LIST OF FIGURES

FIGURE TITLE PAGE

1.1(a) Worldwide Smartphone OS

Market Share (Share in Unit

Shipments)

 2

1.1(b) Worldwide Smartphone OS

Market Share (Share in Unit

Shipments) (IDC, 2016)

 2

1.2 The growth of android mobile

malware variants. (Symantec

Corp, 2016)

 2

2.1 Outline of Android Malware

Traceability Matrix for Digital

Forensic Investigation.

 10

3.1 Project Methodology 27

3.2 Literature Review 27

3.3 Analysis and Design 28

4.1 Specification of The

Workstation

 34

4.2 Genymotion Interface (i) 35

4.3 Genymotion Interface (ii) 36

4.4 Analysis Design 37

4.5 Physical Design 38

4.6 Logical Design 39

xi

5.1 Steps on Environment Set Up 42

5.2 Steps of Collecting Data from

Network Traffic

 44

5.3 Request Method 44

5.4 Follow TCP Stream 44

5.5 Domain Name 45

5.6 (a) Domain Name (AnserverBot) 46

5.6 (b) Domain Name (DroidKungfu) 46

5.6 (c) Domain Name (DroidDream) 47

5.7 Steps of Collecting Data from

System Call

 49

5.8 (a) Gain Access to a File

(AnserverBot)

 49

5.8 (b) Gain Access to a File

(DroidKungfu)

 50

5.8 (c) Gain Access to a File

(DroidDream)

 50

5.9 (a) Open a File (AnserverBot) 50

5.9 (b) Open a File (DroidKungfu) 51

5.9 (c) Open a File (DroidDream) 51

5.10(a) Get Information of a File

(AnserverBot)

 51

5.10(b) Get Information of a File

(Droid Kungfu)

 52

5.10(c) Get Information of a File

(DroidDream)

 52

xii

5.11(a) Change Mode of the System

(AnserverBot)

 53

5.11(b) Change Mode of the System

(Droid Kungfu)

 53

5.11(c) Change Mode of the

System(DroidDream)

 54

5.12(a) Write to the File

(AnserverBot)

 54

5.12(b) Write to the File

(DroidKungfu)

 55

5.12(c) Write to the File(DroidDream) 55

5.13(a) Rename the file (AnserverBot) 55

5.13(b) Rename the file (DroidDream) 56

5.14(a) Read the file (AnserverBot) 56

5.14(b) Figure 5.14(b) Read the file

(DroidDream)

 56

5.15(a) Receive a message from a

socket (AnserverBot)

 57

5.15(b) Receive a message from a

socket (DroidKungfu)

 57

5.15(c) Receive a message from a

socket (DroidDream)

 57

5.16 Execute the File 57

5.17(a) Delete the File (AnserverBot) 58

xiii

5.17(b) Delete the File (DroidDream) 58

5.17(c) Delete the File (DroidKungfu) 58

5.18 Steps of Collecting Data from

Logcat

 60

5.19(a) Priority, Message and PID

(DroidDream)

 60

5.19(b) Priority, Message and PID

(AnserverBot)

 60

5.19(c) Priority, Message and PID

(DroidKungfu)

 61

5.20 Tracing procedures for tracing

evidence of malware incident.

 61

5.21 Mapping procedure for

incident traces

 62

1

CHAPTER I

INTRODUCTION

1.1 Introduction

Previously, malware has infected PCs for many years. Due to the fast growth of

smartphone industry, it has made mobile platforms a prime target for malware developers

to perform attacks. According to a study made by International Data Corporation in third

quarter of 2016, Android dominated the smartphone market with a share of 86.8% as

shown in Figure 1.1(a) and Figure 1.1(b). Besides, according to an internet security threat

report made by Symantec Corporation, from 2013 until 2015, the number of android

mobile malware variant increases as shown in Figure 1.2.

2

Figure 1.1 (a) Worldwide Smartphone OS Market Share (Share in Unit Shipments)

Figure 1.1 (b) Worldwide Smartphone OS Market Share (Share in Unit Shipments)

(IDC, 2016)

Figure 1.2: The growth of android mobile malware variants. (Symantec Corp,

2016)

3

Unfortunately, Android application developers can upload their applications

without any verification or validation of their trustworthiness. Unauthorized repositories

also exist, where developers can upload applications, including cracked applications. This

has allowed attackers to upload malware to the market and also to spread malware through

the unauthorized repositories. A number of applications have been modified and the

malware have been bind, packed and spread through unauthorized repositories. Therefore,

detection of Android malware efficiently has great significance and definitely Android

malware analysis becomes more and more common task during mobile forensic

investigations. Every month thousands of new malware types are created, so it becomes

critical for any digital forensic investigator to have accurate and complete evidence. The

traceability process has become a crucial part of the digital investigation process because

it is capable to map the events of an incident from different sources in collecting evidence

of an incident to be used for other additional investigation aspects. The need of finding

and mapping evidence in mobile platform has also becoming more important. Thus, this

project proposes the adaptability of the traceability matrix to represent the relationship in

the digital forensic investigation process by assimilating the traceability features in the

mobile technology environment especially on Android.

1.2 Problem Statement

The rapid growth of Android malware is posing challenges to malware detection

technology. The Research Problem (RP) is summarized into Table 1.1.

Table 1.1 Summary of Research Problem

RP Research Problem

RP1 Difficulty to investigate the android malware incidence.

4

1.3 Project Question

Therefore, two Research Questions (RQ) are constructed to identify the research

problem as discussed in previous section is depicted in Table 1.2.

Table 1.2 Summary of Research Question

RQ1: What is the parameter used to trace android malware activity?

This research question is to find out the suitable parameter to be used to trace

android malware activity. It is important to determine which parameter to be used as each

type of malware infect on different parameter.

RQ2: Where the traces of android malware activity can be found?

This research question is to find out where the traces of android malware activity

can be found and the steps used to find the malicious activities.

1.4 Project Objective

From the research problem and question, the project objective has been

determined. The project objective is depicted in Table 1.3.

RP RQ Research Question

RP1 RQ1 What is the parameter used to trace android

malware activity?

 RQ2 Where the traces of android malware

activity can be found?

5

Table 1.3 Summary of Project Objective

RO1: To investigate traces of android malware activity.

It is important to study on traces of android malware activity first before generating

the android malware traceability matrix. To start an analysis, identifying parameter

becomes a crucial part. As android malware might behave in different way due to its

purpose, thus, a lot parameter might involve in the analysis.

RO2: To generate the android malware traceability matrix for digital forensic

investigation.

After the parameter used to analyze the malware is determined, thus the next step

is to collect data and analyze the data to generate the android malware traceability matrix.

RP RQ RO Project Objective

RP1 RQ1 RO1 To investigate traces of android

malware activity.

 RQ2 RO2 To generate the android

malware traceability matrix for

digital forensic investigation.

6

1.5 Project Scope

The scopes of this project are as follow:

a. This project only investigates on android malware.

b. This project only focuses on investigating the log cat, network traffic and system

call on data sources to trace android malware malicious activity.

1.6 Project Contribution

The research contributions of this project are summarized in Table 1.4.

Table 1.4 Summary of Research Contribution

By using the finding and result in this project, a forensic investigator will be able

to gain accurate and complete evidence that can be further used in a court of law.

RP RQ RO RC Project

Contribution

RP1 RQ1 RO1 RC1 Proposed the

parameter used to

trace the android

malware activity.

 RQ2 RO2 RC2 Proposed the android

malware traceability

matrix for digital

forensic investigation.

7

1.7 Thesis Organization

This report consists of six chapter namely Chapter I: Introduction, Chapter 2:

Literature Review, Chapter 3: Methodology, Chapter 4: Design and Implementation,

Chapter 5: Testing and Result Analysis and Chapter 6: Conclusion.

Chapter 1: Introduction.

 This chapter will discuss about introduction, project background, research problem,

research question, research objective, scope, project significant and report organization.

Chapter 2: Literature Review.

This chapter will explain related work of this project, such system parameter and

traceability.

Chapter 3: Methodology.

 This chapter will explain the method used to analyze the android malware and organize

the sequence of project work in phase by phase.

Chapter 4: Design and Implementation.

This chapter will introduce the software and hardware use in this project, environment

setup, implementation of malware as well as the data collected.

Chapter 5: Testing and Result Analysis.

This chapter will analyze the collected data.

Chapter 6: Conclusion.

This chapter will be summarized all chapters as a conclusion.

8

1.8 Conclusion

In this chapter, problem statement, project questions and project objective of the

projects have been clearly identified as well as the plan to conduct the analysis. The next

chapter, Chapter 2 will be discussed on the types of android, malware, techniques and

parameter used to conduct the analysis of android malware activity.

9

CHAPTER II

LITERATURE REVIEW

2.1 Introduction

In this chapter, a literature review about Android malware will be discussed as

shown in Figure 2.1.

10

Figure 2.1 Outline of Android Malware Traceability Matrix for Digital Forensic

Investigation

11

2.2 Related Work

 Analysis and forensics of malware behavior is an essential technology that extracts

the runtime behavior of malware and supplies signatures to detection systems and provides

evidence for recovery, cleanup and forensics (Wu et al., 2016.). The objective of digital

forensic investigation process in a cybercrime is to preserve any evidence in its most

original form while performing a structured investigation by collecting, identifying and

validating the digital information for the purpose of reconstructing past events while

maintaining the chain of custody. With the current scenario, mobile technology has also

exposes to cybercrime, this has make the investigation process more complex. The

traceability process has become a crucial part of the digital investigation process because

it is capable to map the events of an incident from different sources in collecting evidence

of an incident to be used for other additional investigation aspects. The need of finding

and mapping evidence in Android platform has also becoming more important.

In recent years, traceability matrix had been widely used in food industry, software

testing, military hardware, aerospace and automotive industry as summarized in Table

2.1.

Table 2.1 List of Existing Research (Traceability Matrix)

No Field Author Approach

1 Military

hardware

 (Department Of

Defense

Handbook

System

Requirements

Document

Guidance, 2011)

Defines system or subsystem

level functional and

performance requirements derived

from warfighter capabilities

documents, Concept of

Operations (CONOPS), Concept

of Employment (CoE), Analysis

of Alternatives (AoA), system

level performance metrics,

mission threads or use cases, and

usage environment, which are

12

captured in a program’s System

Requirement Document. These

aggregate requirements are also

now known as attributes.

Attributes are further broken out

and prioritized as Key

Performance Parameters (KPPs)

and Key System Attributes

(KSAs). Traceability matrix

traces System Requirement

Development requirements up to

warfighter ability documents and

down to the lowest level hardware

or software component that

implements the requirement.

2 Software

testing

 (Sachdeva,2013) Defines use case ID or

requirement ID, use case or

requirement description and one

column for each test case.

3 Food

Ordering

 (Austin, 2013) Defines system, subsystem level

functional,

component level and verification

requirement derived from static

and time-based structure. Static

structure consists of component-

based and people-based while

time-based consists of activity-

based and parameter-based

structure.

13

4 Animal

Health

 Defines the system chosen for

animal identification and

traceability include outcomes of

risk assessment,

the animal and public health

situation,

animal population parameters (for

example, species, numbers, and

distribution), types of production,

animal movement patterns,

available technologies, trade in

animals and animal products,

cost/benefit analysis and other

economic, geographical and

environmental considerations, and

cultural aspects.

5 Aerospace (Grogan, et al,

2005)

These need to be balanced with

other typical parameters for

instrument

accommodation such as data rate

and volume requirements,

pointing and stability

requirements, mounting and

structure requirements and

thermal, power, mass and volume

constraints.

Table 2.1 shows several field used traceability matrix as a medium to track and

map the origin. Since digital forensic investigation requires a lot of evidences to identify

the offender or the origin of the crime, traceability matrix can ensure that all the evidence

is fully covered.

14

 Technically, traceability was defined and discovered as shown in Table 2.2:

Table 2.2 List of “Traceability” Definition

Author Definition

(Oghazi, P., B. et al.,

2007)

The means to identify and follow real or imaginary objects

through a process chain.

ISO 8402:1995 The ability to trace the history, application or location of an

entity, by means of recorded identifications.

(Golan, E., et al., 2004) The definition of traceability can be broad, because in most

of the time the processes are very complex.

(Clayton, R, 2005) The ability to map events in cyberspace, particularly on the

Internet, back to real-world instigators, often with a view to

holding them accountable for their actions.

(Lázaro, P.G.-C., 2004) How difficult it is to establish the source and destination of

communications on computers and communication

networks, such as the Internet.

(Selamat, Yusof, et al.,

2011)

The ability to trace and map the events of an incident from

difference sources in order to obtain evidence of an incident

for further process of investigation.

2.2.1 Android Malware

a) Definition

In recent years, Android-based mobile devices are undoubtedly the most popular

operating system for smartphones and tablets. Meantime, the dramatic increasing of the

number of Android malware being more sophisticated as reported in F-secure Threat

Report 2015(Rover, 2015). According to Malware Fighting Malicious Code (Skoudis, Ed

Zeltser, 2004), malware is defined as a set of instruction that run on your computer and

make your system do something that an attacker wants it to do. On the other hand, Android

15

malware basically means a set of instructions that run on your Android-based mobile

devices and make your system do something that an attacker wants it to do.

b) Behaviour

According to a survey of Android Malware (Jiang and Zhou, 2013), Android

malware was categorized into four behaviours as shown in Table 2.3:

Table 2.3 List of Android Behaviour

Android

Behaviour

Attack Techniques

Malware

Installation

1. Repackaging

- One of the most common techniques

malware authors use to piggyback malicious

payloads into popular apps.

2. Update Attack

- It may still repackage popular apps but it

only includes an update component that will

fetch or download the malicious payloads at

runtime.

3. Drive-by-download

- Enticing users to download “interesting” of

“feature-rich” apps.

4. Spyware

- It intends to be installed to victim’s phones

on purpose.

5. Fake apps

- Send SMS messages to premium-rate

numbers without user awareness.

16

6. Apps that also intentionally include malicious

functionality.

- Provide the functionality they claimed but

unknown to users, they also include certain

malicious functionality.

7. Apps that rely on the root privilege to function

well.

- Grant the root privilege to these apps without

asking the user.

Activation The application activates itself for doing malicious

activities. The authors found in their analysis

that the malicious applications activate themselves

during

boot completion events, package removing or package

installation events, SMS received events, call phone,

during

network connectivity events, during system events

and during the launch of some popular host applications

main activity.

Malicious Payloads 1. Privilege Escalation

- Malicious application tries to take root

access to exploit the root privilege.

2. Remote Control

- Controlling it from a remote device.

3. Financial Charges

- The malicious application uses victim’s

device for sending premium messages

17

without user’s knowledge in order to harm

him with financial loss.

4. Personal Information

- Collecting user’s information like SMS

received, phone call log, and device

information

Permission Usage Android requires applications to declare all the required

permissions, and Android will prompt declared

permissions to users at the beginning of an installation

process (Xu, Zhang, et al., n.d.).

c) Type of Android Malware

Basically, there are four types of most popular Android malware as summarized

in Table 2.4.

Table 2.4 Android Malware and Their Definition and Behaviour

Android Malware Definition and Behaviour

Spyware Software that reveals private information

about the user or computer system to

eavesdroppers (Hypponen, 2006). A

malware that spies the user’s activities

(Abualola, Alhawai, et al., 2016).

18

Adware Advertising a product or a website that

are harmless but annoying (Feizollah,

Anuar, et al., 2015).

Botnet Collection of several bots connected with

each other’s with the help of networks.

Mobile botnets provide botmaster with

root permissions over the compromised

mobile device, enabling botmaster to send

mails or text messages, make phone calls,

access contacts and photos (Joshi,

Khanna, et al., n.d.).

Trojan A software that appears to provide some

functionalities but, instead, contains a

malicious program (Polla, Martinelli, et

al., 2013).

According to the current attack trends and analysis of the present literatures,

(Raveendranath, Venkiteswaran, n.d.) described the types of malwares as shown in Table

2.5 :

Table 2.5 List of Type of Malware

Type of Malware Description

Information Extraction Compromises the devices and steals

personal information such as personal

information, IMEI number, etc.

Automatic Calls and SMS User’s phone bill is increased by making

calls and sending SMS to some premium

numbers.

19

Root Exploits The malware will gain system root

privileges and takes control of the system

and modifies the information.

Search Engine Optimizations Artificially search for a term and

simulates clicks on targeted websites in

order to increase the revenue of a search

engine or increase the traffic on a

website.

Dynamically Downloaded code An installed benign application

downloads a malicious code and deploy

sit in the mobile devices.

Covert Channel A vulnerability in the devices that

facilitates the information leak between

the processes that are not supposed to

share the information.

Botnets A network of compromised mobile

devices with a BotMaster which is

controlled by Command and Control

servers (C&C). Carry out Spam delivery,

DDos attacks on the host devices

d) Android Malware Family

According to (Zaki, Sahib, et al., 2013.), AnserverBot, DroidDream and

DroidKungfu were defined as follow:

• AnserverBot

The AnserverBot have the potentiality to repackage itself by contacting the

C&C server. The malicious application is embedded to a legitimate application

then sending device information by connecting automatically to a C&C server and

downloading a new malicious repackage application without the user consent. The

repackage application contents malicious payloads, namely, anserverb.db and

anservera.db (Trendmicro, Zhou and Jiang).

20

• DroidDream

DroidDream have the capability to steal device’s information, connect to

the internet, access device’s SD card, modify system files, attempt to gain

root/admin access, connect to C&C server and download another malicious

package.

• DroidKungfu

The goals of DroidKungfu malware family are to gain a root access to the

android OS, capturing device information and connecting itself to a C&C server

for sending captured information and receiving command (Eset antivirus, F-secure

and Microtrend report).

e) Traces of Data Source

• Network Traffic

Nowadays, smart phones, especially Android based, have attracted the users

community for their feature rich apps to use with various applications like browsing,

chatting, mailing, maps, GPS, mobile payment applications, image editing and video

processing. Meanwhile the popularity of these devices attracted the malicious attackers as

well. Thus, mobile network traffic analysis has been used to identify the malware by

monitoring for any malicious communication activity through the network. Some of the

features or parameter used in this project based upon the behavior of different malware

are summarized in Table 2.6 (Jeong et al., 2016).

21

Table 2.6 List of network traffic features

Parameter

IP number

Port number

Time

Packet Size

Protocol

Packet Count

• System Call

 The system call tracing is one of the effective dynamic analysis technique for

detecting malware as it can analyze the malware at the run time. Besides, this technique

does not require the application code for malware detection. Therefore, this can detect that

android malware also which are difficult to detect with static analysis of code

(Malik and Khatter, 2016). Some of the parameter used in this project based upon the

behavior of different malware are summarized in Table 2.7 (Zovi et al., n.d.).

Table 2.7 List of System Call

Function

CREATEFILE

READFILE

WRITEFILE

CREATE FILE MAPPING

MAPVIEWOFFILE

RegOpenKeyEx

RegSetValueEx.

RegGetValue

22

• Logcat

The main objective of logcat in this project is to gather evidence that SMS or MMS

messages are sent. For example, malware that sends SMS in the background and deletes

the messages in the SMS application, can be spotted.

2.3 Critical Review

Currently, there is a lot of research was made due to the development of malware

itself as shown in Table 2.8.

Table 2.8 List of Existing Research(Traces)

No Authors/

Years

Analysis

Approach

Parameter Software/

Hardware

1 (Hsieh,Wan

-Chen, et

al., 2015)

Static, dynamic

and hybrid

analysis.

APP XmanDroid : Privilege

escalation detection tool

2 (Baskaran

and

Ralescu,

2016)

Static,

dynamic and

hybrid

analysis.

API, network

traffic, battery

usage, CPU

usage,

permission call

and number of

running process

Strace : Monitoring tool.

Logger : Extracting the sum

of Internet traffic, percentage

of battery used and battery

temperature for every

minute.

Linux based features :

Monitoring memory, CPU

and network.

Web crawler : Extracting

tool

23

3 (Gascon,

Yamaguchi,

et al., n.d.)

Static analysis. Structure of the

underlying code.

Support Vector Machine

(SVM), Androguard

framework.

4 (Hsiao and

Chen,

2016)

Dynamic

analysis.

API Virtual Machine, QEMU

Machine Protocol, virtual

Android device, Android

Debug Bridge.

5 (Qin, Xu, et

al., 2012)

Static analysis. APK Windows 7

6 (Huang,

Zheng, et

al., 2016)

Static and

dynamic

analysis.

APK VirusTotal, Spark, Apache

Cassandra, emulator.

7 (Zaki,

Sahib, et

al., 2013.)

Hybrid

analysis.

API, network

traffic, event

handler

VMware

8 (Mas'ud,

Sahib, et

al., 2016)

Dynamic

analysis.

System call Strace : Capturing system

call in a log files.

9 (Dash et al.,

2016)

Dynamic

analysis.

System call Binder, sandbox.

10 (Peng,

Zhao, et al.,

2016)

Dynamic

analysis.

API Apktool, dex2jar.

11 (Data,

2016)

Dynamic

analysis.

API and

permissions

Monkey tool

12 (Shibahara,

Yagi, et al.,

2016)

Dynamic

analysis.

Network

behaviour

BotnetWatcher

13 (Saxena,

Shrivastava,

et al., 2016)

Dynamic and

static analysis.

API, system call Androguard, VirusTotal,

Strace

Monkey tool

24

14 (Zhenyu,

Ming,

Zhen, et al.,

2016)

Dynamic

analysis.

network, file

system and

registry.

Virtual machine, Virusshare

15 (S. Wu,

Wang, et

al., 2016)

Static analysis. API Dex2jar, Java static analysis

tool: Soot or WALA.

16 (Suarez-

tangil,

Tapiador, et

al., 2014)

Dynamic and

static analysis.

Code structure. Androguard

17 (Huda,

Abawajy,

and et al.,

2016)

Hybrid

analysis.

API IDA Pro, Phython, SQlite

18 (Shabtai,

Mimran, et

al., 2014)

Dynamic

analysis

Network traffic Android Software

Development Kit

19 (Abdullah,

Ibrahim, et

al., 2015)

Static analysis. System call APIfy: web service that

provides .apk archives of

Android application.

20 (Shaikh

Bushra and

Madhumita,

2015)

Dynamic

analysis.

System call Java programming, Eclipse

IDE, BlueStacks Apps

Player, Android SQlite,

Android Development Tools.

Based on Table 2.8, even most of the research is about malware detection, the

parameter can be used for this project as well. Majority of the research have used system

call as the source but it is important to have more than one source in order to get complete

25

and accurate evidences. For example, network traffic and logcat are also contributing to

accuracy of the evidences.

2.4 Proposed Solution

 In this project, the focus is only on four type of Android malware family which is

AnserverBot, DroidKungfu, and DroidDream. The traceability matrix of malware

behaviour is based on network traffic, system call and logcat. Malicious activity can be

identified by monitoring the network traffic while malicious code also can be identified

by tracing system call as well as logcat.

2.5 Conclusion

 As a conclusion, this chapter had discussed in-depth on a literature review of this

project. All related study about android, malware, definition, behaviour and traces of data

sources have done. This chapter presented the differences on how they analyse behaviour

of Android malware between the other research.

26

CHAPTER III

METHODOLOGY

3.1 Introduction

 In this chapter, the scopes of this project were defined. Some suitable and

reasonable methods were discussed in more details as to make sure this project is in

progress and working well.

27

3.2 Methodology

In this section, a few phases that involved in this chapter were described as shown in

Figure 3.1:

Figure 3.1 Project Methodology

Generally, there are five phases in this project. These phases are discussed in the

following subsection.

3.2.1 Phase I: Literature Review

In this phase, a study of android malware specifically on malware behaviour was

conducted as shown in Figure 3.2. After all, the information was used as reference for

next phases.

Figure 3.2 Literature Review

Literature
Review

Establishment
of Environment

and Data
Analysis

Construction of
The

Traceability
Matrix

Validation of
Traceability

Matrix

Report and
Documentation

Understanding
Android Malware

•Define Android
Malware

•Discuss Android
Malware
Behaviour

Understanding
Type Android

Malware

Understanding
Android
Malware
Family

Understandi
ng Trace of
Data Source

28

3.2.2 Phase II: Establishment of Environment and Data Analysis

This phase discussed on how data was collected as shown in Figure 3.3. An

experimental environment will be established by activating the android malware. The

environment is set up with hardware and software requirements of proposed project and

will be used to simulate the incident of android malware propagation and behaviour. An

isolated environment is needed in order to prevent the malware outbreak the network.

Thus, this project used Genymotion as the virtualization platform. The data then collected

and analysed.

Figure 3.3 Analysis and Design

3.2.3 Phase III: Construction of The Traceability Matrix

 In this phase, the attributes are determined by discovering and extracting the

android malware incident events. Then, the correlations or relationships of the events will

be identified based on the android malwares involve in this project. These attributes and

their relationship will be used in constructing the traceability matrix. This matrix will

facilitate the forensic investigator in tracing and linking the incident events in order to

identify the origin of the incident.

3.2.4 Phase IV: Validation of Traceability Matrix

Hence, it is important to check the usability of the traceability matrix whether the

data were accurate or not after all the data have been collected, gathered and tabulated.

Several sets of android incident data will be used during implementation.

Understanding
Dynamic
Analysis

• Identify the
requirement of
analysis.

Set Up
Experimental
Environment

• Set up a
workstation

• Install required
tools.

Collecting
Data

• Run Android
malware

• Capture network
traffic and system
call

Analysis of
Collected Data

• Comparing latest
data with base
line.

29

3.2.5 Phase V: Report and Documentation

Finally, the traceability matrix and the results from analysis will be documented.

3.3 Project Milestone

 The milestone of this project was stated in Table 3.1.

Table 3.1: Project Milestones

Week Activity Note

1

13 – 17 February 2017

Proposal Submission Topic research.

2

20 – 24 February 2017

Proposal Enhancement Topic research.

3

27 Feb – 3 Mar 2017

Chapter 1 Topic research.

4

6 – 10 Mar 2017

Chapter 2 Topic research.

5

13 – 17 Mar 2017

Chapter 3 Network environment set

up.

6

20 – 24 Mar 2017

Chapter 3 Installation of operating

system, virtual machine

and android emulator.

7

27 – 31 Mar 2017

Chapter 4 Collecting normal

behaviour of the

application.

8

1 – 9 April 2017

Mid Semester Break Research

9

10 – 14 April 2017

Chapter 4 Collecting normal

behaviour of the

application

30

10

17 – 21 April 2017

Chapter 4 Collecting normal

behaviour of the

application

11

24 – 28 April 2017

Chapter 4 Collecting normal

behaviour of the

application

12

1 – 5 May 2017

Chapter 5 Collecting information of

the application after the

infection of the malware

13

8 – 12 May 2017

Chapter 5 Collecting information of

the application after the

infection of the malware

14

15 – 19 May 2017

Chapter 5 Collecting information of

the application after the

infection of the malware

15

22 – 26 May 2017

Chapter 5 Collecting information of

the application after the

infection of the malware

16

29 May – 2 June 2017

Chapter 5 Collecting information of

the application after the

infection of the malware

3 – 11 June 2017 Semester Break Research

12 – 16 June 2017 Chapter 6 Finding the malware

signature command and

function in the application

source code

19 – 23 June 2017 Chapter 6 Finding the malware

signature command and

function in the application

source code

31

26 – 30 June 2017 Chapter 6 Finding the malware

signature command and

function in the application

source code

3 – 7 July 2017 Chapter 7 Finding the malware

signature command and

function in the application

source code

10 – 14 July 2017 Chapter 7 Finding the malware

signature command and

function in the application

source code

17 – 21 July 2017 Chapter 7 Finding the malware

signature command and

function in the application

source code

24 – 28 July 2017 Documenting Result Documenting the project

findings

31 July – 4 August 2017 Documenting Result Documenting the project

findings

7 – 11 August 2017 Documenting Result Documenting the project

findings

14 – 18 August 2017 Final Presentation Presenting the project result

to the supervisor and

evaluator

32

3.4 Conclusion

Therefore, every project has different methodologies that is being used to make

the project complete and working well. Generally, the methodology is divided into two

parts, there are theoretical study and exploratory study. Next chapter, details explanation

of project design will be discussed.

33

CHAPTER IV

DESIGN

4.1 Introduction

This chapter is focused on the design and implementation of the proposed project.

Generally, this chapter discussed about requirements of software and hardware for

environment set up, experimental design including physical and logical design as well as

how traceability matrix of Android malware is constructed. In addition, the details of

every phases are described in this chapter.

34

4.2 Requirement

In this section, the requirements of hardware and software of the proposed

project are discussed.

4.2.1 Software Requirement

i. Windows 7

- A Microsoft operating system that had been used as basic platform to install

the other software. Figure 4.1 shows the specification of the workstation.

Figure 4.1 Specification of The Workstation

ii. Genymotion Android Emulator

- An Android emulation platform as well as virtualization platform that can

develop and test Android applications without using a physical device.

Besides, this emulator provides some Android version which is from 4.1.1

until 7.1.0 and device model such as Google, HTC, Motorola, Samsung and

Sony. Figure 4.2 and Figure 4.3 show the interface of Genymotion Android

Emulator.

35

Figure 4.2 Genymotion Interface (i)

Figure 4.3 Genymotion Interface (ii)

36

iii. Terminal Emulator

- A terminal window allows the user access to a text terminal and all its

applications such as command-line interfaces (CLI) and text user interface

(TUI) applications.

iv. Wireshark

- An open source tool for profiling network traffic and analyzing packets in real

time and display the packet data in detailed and human-readable format.

v. Strace

- A diagnostic, debugging and instructional user space. It is used to print a list

of system calls made by the program.

4.2.2 Hardware Requirements

Table 4.1 shows the details of hardware requirement.

Table 4.1 Details of Hardware Requirement

Feature Specification

Manufacturer Dell Inc.

Model Dell OptiPlex 7010

Processor Intel Core i5 (3rd Gen) 3470 / 3.2 GHz

Memory (RAM) 2GB

Storage 250GB

4.3 Analysis Approach

In this section, both experimental and analysis design will be described as

follows:

37

Clarify Research Question

Theoretical Study Exploratory Study

Qualitative Approach Quantitative Approach

Literature Review
Experimental Approach

(Android Malware

Behaviour)

Install tools

Record baseline

of system

Execute Android

Malware

Data Collection

Data Analysis

Construct

Traceability Matrix

Set up

environment

Monitor Process

Testing

Documentation

Figure 4.4 Analysis Approach

38

Figure 4.4 shows analysis approach to carry out the process of constructing

traceability matrix. Generally, this project implemented two type of study which is

theoretical and exploratory study. In theoretical study, a qualitative approach is applied

which is literature review while in exploratory study, a quantitative approach is applied

which is experimental approach. The details of the experimental approach will be

explained in Chapter 5 and Chapter 6.

4.4 Network Design

The experimental environment is designed for collecting and analyzing data.

4.3.1 Physical Design

Figure 4.5 shows the physical design of this project. This design consists of a

workstation and malware remote server as well as the internet is connected. Android

malware will be activated in workstation while malware remote server is located in

attacker site.

Figure 4.5 Physical Design

4.3.2 Logical Design

Figure 4.6 shows the logical design of this project. This design consists of a

workstation, a virtual device (Android emulator) and malware remote server as well as the

internet is connected. Then, the workstation will capture the network traffic and system

39

call on Android malware. The comparison between baseline of the system and the infected

system is carried out as to construct traceability matrix of Android malware.

Figure 4.6 Logical Design

4.5 Traceability Matrix Design

Generally, the proposed traceability matrix is to identify the relationship between

the components of forensic investigation and the incident event discovered. As to make it

real, first of all, “artifact types” are identified. For this project, artifact types are defined

as sources of evidences which are network traffic, system call and logcat. The next step is

the relation between those artifacts is defined. For this project, every source of evidences

is mapped between each other. For example, network traffic is mapped to system call and

system call is mapped to logcat. Lastly, a traceability matrix for each link between artifact

types is constructed. In addition, the information from multiple matrices is combined into

40

a single one in order to make important information more accessible as drafted in Table

4.2.

Table 4.2 Home Page

DATA

NAME

Source 1: Network

Traffic

Source 2:

System Call Source 3: Logcat

TEST

CASE

ID N1 S1 L1

4.6 Conclusion

This chapter had covered experimental design of this project and how this project

is carried out in details. In chapter 5, the implementation of traceability matrix will be

discussed.

file:///K:/TRACEABILITY%20MATRIX.xlsx%23'NETWORK%20TRAFFIC'!A1
file:///K:/TRACEABILITY%20MATRIX.xlsx%23'SYSTEM%20CALL'!A1
file:///K:/TRACEABILITY%20MATRIX.xlsx%23LOGCAT!A1

41

CHAPTER V

IMPLEMENTATION AND ANALYSIS

5.1. Introduction

This chapter has been discussed about the experimental setup and the process of

collecting traces from three different sources of evidences. The implementation that had

been done is based on the previous chapter.

42

5.2 Environment Set Up

Based on the design that had mentioned in Chapter 4, the actual environment will

be set up as Figure 5.1. Firstly, Windows 7 is installed as the platform because most of

the programs are able to run successfully on Windows 7. Secondly, since this project is

using Android malware, Genymotion Android Emulator is the most suitable application

as to activate Android malware on it instead of using real device. Lastly, Wireshark is

installed as it has sorting and filtering option so the packets can be easily read as well as

Busybox is installed as to read and capture the system call. The setting up of a controlled

and sterile environment is undeniably essential for analyzing malware.

Figure 5.1 Steps on Environment Set Up

An isolated environment is needed as to prevent the malware outbreak the network

connection when performing malware analysis. After that, this project will proceed with

collecting traces in network traffic, system call and logcat.

Step 1

• Install operating system (Windows 7) in the workstation.

Step 2

• Download and install Genymotion Android Emulator which is a virtual
mobile device as to activate Android malware in it.

Step 3

• Download Wireshark to capture and read packets of network traffic.

• Download Busybox to capture and read system call.

43

5.3 Process of Collecting Traces

In this section, the process of collecting traces from network traffic, system call

and logcat will be explained. This analysis is based on three malware which are

AnserverBot, DroidKungfu and DroidDream. Based on these three malwares, common

traces will be selected to construct the traceability matrix.

5.3.1 Process of Collecting Traces from Network Traffic

Firstly, baselining the environment. "Baselining" means taking a snapshot of the

existing environment. The elements of the environment that have to be baselined is

network traffic. Sniffing software is used for this project. Any sniffing software running

in lavish mode is sufficient for this project. Nevertheless, it is recommended to use a

protocol analyzer like Wireshark to make this project easier. After activating the

malware, the network traffic is captured and the differences between the new snapshot

and the baseline snapshot are determined. In this project, only malicious URL is

considered as malicious packet. To get the details of the URL, simply right click and

select TCP stream. An appropriate display filter and pop up a dialog box with all the data

from the TCP stream laid out in order, as shown in Figure 5.4. If there is no any

malicious packets data, repeat Step 1 to Step 4 until the malicious packets are found. The

process of collecting network traffic data is summarized as shown in Figure 5.2:

44

Figure 5.2 Steps of Collecting Data from Network Traffic

Figure 5.3 Request Method

Step 1
•Record base line by capturing network traffic before activating the malware.

Step 2
•Activate the malware and immediately capture network traffic.

Step 3
•After 10 minutes, terminate the capture process and save the collected data.

Step 4
•Find the suspicious packets of network as Figure 5.3 shows.

Step 5
•Malicious URL is obtained from following TCP Stream as shown in Figure 5.4.

Step 6

•If there is no any suspicious packets data, redo Step 1 to Step 4 until the
suspicious packets are found.

45

Figure 5.4 Follow TCP stream

Figure 5.5 Domain Name

46

AnserverBot:

Figure 5.6(a) Domain Name (AnserverBot)

Based on AnserverBot, the malware attempts to request from

b4.ccokier.co.cc:8080 as shown in Figure 5.6(a). From this TCP stream, malicious file

named com.keji.danti623 as can be seen in Figure 5.6(a). As to make sure what the

malicious file is actually did, it can be found in system call and logcat too by finding the

malicious file name.

DroidKungfu:

Figure 5.6(b) Domain Name (DroidKungfu)

Device information is

send to external server

47

Based on DroidKungfu, the malware attempts to request from r2.adwo.com as

shown in Figure 5.6(b). From this TCP stream, malicious file named

com.evilsunflower.farmer as can be seen in Figure 5.6(b). The information send to the

C&C server are the IMEI number of the device 358843040915366, the device product’s

model Samsung GT-P6800 and the device phone number 60129031056. As to make sure

what the malicious file is actually did, it can be found in system call and logcat too by

finding the malicious file name.

DroidDream:

Figure 5.6(c) Domain Name (Droid Dream)

Based on DroidKungfu, the malware attempts to request from www. umeng.com

as shown in Figure 5.6(c). The information send to the C&C server are the IMEI number

of the device 358843040915325, the device product’s model Samsung GT P6800,

Android version 4.1.2 and the device phone carrier MY MAXIS. As to make sure what

Device information is

send to external server

48

the malicious file is actually did, it can be found in system call and logcat too by finding

the domain name.

It can be concluded that malicious traffic is identified when the malware did some

http request since most of the malware do http request when performing malicious

activities. Thus, the common traces from network traffic are shown in Table 5.1.

Table 5.1 List of Traces in Network Traffic

Traces

IP address

Port number

Method

URL

5.3.2 Process of Collecting Traces from System Call

 First, malware apk file is installed and launched in Genymotion Android Emulator.

Some activities such as phone call, texting and browsing had made. Next, application is

terminated and the data is collected. The data is opened with NotePad ++ as shown in

Figure 5.8(a) and read line by line to identify the traces. The malicious activities such as

access directory file, execute system file and change mode are identified. If there is no

any malicious activity, repeat Step 1 to Step 4 until the malicious activity is found. The

process of collecting system call data is simplified as shown in Figure 5.7:

49

Figure 5.7 Steps of Collecting Data from System Call

i. Determine File Accessibility

The access() checks for the process whether would be allowed to read, write or

test for existence of the file whose name is pathname. All the malicious file names was

retrieved from network analysis as discussed in 5.3.1.

AnserverBot:

Figure 5.8(a) Gain Access to a File (AnserverBot)

The access() checks for the process whether would be allowed to read, write or

test for existence of the file named com.keji.danti623 as shown in Figure 5.8(a).

Step 1

• Install malware apk file into Genymotion Android Emulator and launch the
application.

Step 2
• Make phone call, texting, browsing and other activities.

Step 3
• After 10 minutes, terminate the capture process and save the collected data.

Step 4

• Find the process application that contains malware and record the malicious
content.

Step 5

• If there is no any malicious activity, redo Step 1 to Step 4 until the malicious
activity is found.

50

DroidKungfu:

 Figure 5.8(b) Gain Access to a File (DroidKungfu)

The access() checks for the process whether would be allowed to read, write or

test for existence of the file named com.evilsunflower.farmer as shown in Figure 5.8(b).

DroidDream:

Figure 5.8(c) Gain Access to a File (DroidDream)

The access() checks for the process whether would be allowed to read, write or

test for existence of the file named com.beauty.leg as shown in Figure 5.8(c).

ii. Open the File

The open() function modifies pathname into a file descriptor. O_CREAT will

create file if the file does not exist while O_LARGEFILE will support 32 bits when the

files cannot be represented in 31 bits to be opened.

AnserverBot:

Figure 5.9(a) Open a File (AnserverBot)

51

Based on Figure 5.9 (a), the open() function is trying to open database in file

named com.keji.danti623.

Droid Kungfu:

Figure 5.9(b) Open a File (Droid Kungfu)

Based on Figure 5.9 (b), the open() function is trying to open database in file

named com.evilsunflower.farmer.

DroidDream:

Figure 5.9(c) Open a File (DroidDream)

Based on Figure 5.9 (c), the open() function is trying to open database in file

named com.droiddream.sex.

iii. Get the Information of File

The fstat64()or stat64() returns information about the specified file. The st_size

indicates the size of the file.

AnserverBot:

Figure 5.10(a) Get Information of a File (AnserverBot)

52

Based on Figure 5.10 (a), the fstat64() function is trying to get information of the

file named com.keji.danti623 and the file size is 20480.

Droid Kungfu:

Figure 5.10(b) Get Information of a File (Droid Kungfu)

Based on Figure 5.10 (b), the stat64() function is trying to get information of the

file named com.glu.android.dinercn and the file size is 35014.

DroidDream:

Figure 5.10(c) Get Information of a File (DroidDream)

Based on Figure 5.10 (c), the stat64() function is trying to get information of the

file named com.droiddream.sex and the file size is 437.

iv. Change Permission Mode

The chmod() is defined as the mode of the file given by path or referenced by file

is modified. Table 5.2 shows the digit and the type of permission.

53

Table 5.2 Digit and Type of File Permission

Digit Permission

0 None

1 Execute Only

2 Write Only

3 Write and Execute

4 Read Only

5 Read and Execute

6 Read and Write

7 Full

AnserverBot:

Figure 5.11(a) Change Mode of the System (AnserverBot)

Based on Figure 5.11(a), 0660 is a permission of a file. First digit is 0 specifies

none permission, the second digit is 6 indicates that the file is set read and write permission

to owner, the third digit is 6 indicates that the file is set read and write permission only to

group and the fourth digit is 0 indicates that file is set none permission to all other.

Droid Kungfu:

Figure 5.11(b) Change Mode of the System (Droid Kungfu)

54

Based on Figure 5.11(b), 0664 is a permission of a file. First digit is 0 specifies

none permission, the second digit is 6 indicates that the file is set read and write permission

to owner, the third digit is 6 indicates that the file is set read and write permission to group

and the fourth digit is 4 indicates that file is set read only permission to all other.

DroidDream:

Figure 5.11(c) Change Mode of the System(DroidDream)

Based on Figure 5.11(c), 0660 is a permission of a file. First digit is 0 specifies

none permission, the second digit is 6 indicates that the file is set read and write permission

to owner, the third digit is 6 indicates that the file is set read and write permission only to

group and the fourth digit is 0 indicates that file is set none permission to all other.

v. Write to the File

The write() writes up to count bytes from the buffer pointed buf to the file referred

to by the file descriptor fd.

AnserverBot:

Figure 5.12(a) Write to the File (AnserverBot)

 Figure 5.12 (a) shows write() is trying to write up getaddrinfo

b4.cookier.co.cc^1024 to the file referenced by the file descriptor which is 71 and the size

of content is 42.

55

Droid Kungfu:

Figure 5.12(b) Write to the File (DroidKungfu)

Figure 5.12 (b) shows write() is trying to write up getaddrinfo r2.adwo^1024 to

the file referenced by the file descriptor which is 65 and the size of content is 37.

DroidDream:

 Figure 5.12(c) Write to the File(DroidDream)

Figure 5.12 (c) shows write() is trying to write up getaddrinfo www.umeng.com

^1024 to the file referenced by the file descriptor which is 45 and the size of content is 39.

vi. Rename the File

The rename() changes the name or location of a file ,renames a file, moving it

between directories if required. This activity only occurred in AnserverBot and

DroidDream as shown in Figure 5.13(a) and Figure 5.13(b).

AnserverBot

Figure 5.13(a) Rename the file (AnserverBot)

http://www.umeng.com/

56

DroidDream

Figure 5.13(b) Rename the file (DroidDream)

vii. Read the file

 The read() attempts to read up to count bytes from file descriptor fd into the buffer

starting at buf. This activity only occurred in AnserverBot and DroidDream as shown in

Figure 5.14(a) and Figure 5.14(b).

AnserverBot

Figure 5.14(a) Read the file (AnserverBot)

DroidDream

Figure 5.14(b) Read the file (DroidDream)

viii. Receive a message from a socket

The recv() are used to receive messages from a socket. They may be used to

receive data on both connectionless and connection-oriented sockets. Figure 5.15 (a),

Figure 5.15 (b) and Figure 5.15 (c) show recv() is trying to receive message from a

socket.

57

AnserverBot

Figure 5.15(a) Receive a message from a socket (AnserverBot)

DroidKungfu

Figure 5.15(b) Receive a message from a socket (DroidKungfu)

DroidDream

Figure 5.15(c) Receive a message from a socket (DroidDream)

ix. Execute the file

The execve() executes the program pointed to by filename. Figure 5.16 shows

execve() is trying to execute a program.

DroidKungfu

Figure 5.16 Execute the File

58

x. Delete File

The unlink() deletes a name from the filesystem. Figure 5.17(a), Figure 5.17(b)

and Figure 5.17(c) show the function in the malware.

AnserverBot

Figure 5.17(a) Delete the File

DroidDream

Figure 5.17(b) Delete the File

DroidKungfu

Figure 5.17(c) Delete the File

It can be concluded that malicious activities is identified when the malware was

trying to accessing file, accessing database, change file properties and others. Thus, the

common traces from system call are shown in Table 5.2.

59

Table 5.2 List of Traces in System Call

Traces

Determine file accessibility

Open the file

Get the information of file

Change permission mode

Execute the file

Write to the file

Read the file

Rename the file

Receive a message from a socket

Delete file

5.3.3 Process of Collecting Traces from Logcat

The logcat shows messages in real time and also keeps a history thus it can be

viewed anytime. In this logcat, malicious activity is identified as shown in Table 5.4:

 Table 5.4 List of Traces in Logcat

Parameter

PID

Priority

Message

 First, malware apk file is installed and launched in Genymotion Android Emulator.

Some activities such as phone call, texting and browsing had made. Next, application is

terminated and the data is collected. The data is opened with NotePad ++ and read line by

line as to identify the attribute(traces) of the malware. The malicious activities are

determined based on priority, message and PID. If there is no any malicious activity,

60

repeat Step 1 to Step 4 until the malicious activity is found. The process of collecting

logcat data is simplified as shown in Figure 5.18.

Figure 5.18 Steps of Collecting Data from Logcat

 Based on Figure 5.19(a), Figure 5.19(b) and Figure 5.19(c), there are several

priorities that include in this project which are I, W and D. I is info while W is warning

and D is debug.

Figure 5.19(a) Priority, Message and PID (DroidDream)

Figure 5.19(b) Priority, Message and PID (AnserverBot)

Step 1

• Install malware apk file into Genymotion Android Emulator and launch the
application.

Step 2
• Make phone call, texting, browsing and other activities.

Step 3
• After 10 minutes, terminate the capture process and save the collected data.

Step 4

• Find the process application that contains malware and record the malicious
content based on priority, message and PID.

Step 5

• If there is no any malicious activity, redo Step 1 to Step 4 until the malicious
activity is found.

61

Figure 5.19(b) Priority, Message and PID (DroidKungfu)

The tracing processes begin at network traffic followed by system call and logcat.

This procedure is to identify the traces left in the sources. The tracing procedure for tracing

the incident traces from network traffic begins with tracing the traces attributes mentioned

in the proposed traceability matrix. The traces attributes are IP address (destination IP

address and source IP address), port number (destination port and source port), time,

protocol as well as domain name.

To show the correlation or relationship of the evidence of the incident discovered

during the investigation process, the incident traces found from the tracing procedures are

mapped.

Figure 5.20 Tracing procedures for tracing evidence of malware incident.

62

As shown in Figure 5.20, the mapping procedures of the incident traces discovered

from the tracing process. At first, the traces that are discovered from the tracing process

are mapped within sources. The traces discovered in network traffic are mapped with the

traces discovered in the same log. Second, the traces that are mapped from network traffic

are mapped to the traces discovered in system call. Finally, the traces mapped from

network traffic and system call are further mapped to logcat as summarized in Figure

5.21.

Figure 5.21 Mapping procedure for incident traces

5.4 Conclusion

Generally, this chapter discussed on experimental set up and process of collecting

data in network traffic and system call. Besides, the malicious activities in both sources

are identified. The result on this project will be discussed in the next chapter which is

Chapter 6.

63

CHAPTER VI

TESTING AND ANALYSIS

6.1 Introduction

In previous chapter, process of collecting data from system call, network traffic

and logcat in this project had been described. For this chapter, a discussion on conducting

analysis and testing will be explained.

64

6.2 Test Organization

The testing plan is organized to make sure the testing of the data set can be done

in ordered way and able to achieve the objective of testing. The function of the traceability

matrix is to map and trace the origin of digital crime. The purpose of testing phase is to

test the usability of the traceability matrix by using another set of data. If the analysis

result in Chapter 5 is similar as the output of traceability matrix, it means that the data had

successfully tested.

6.3 Test Design

As mentioned earlier, the goal for testing phase is to test the usability and

effectiveness of the traceability matrix. The effectiveness of this project is defined as the

accuracy and the completeness whether this project achieves objectives or not while the

usability is defined as the ease of use of the proposed traceability matrix as it compiled all

the sources of the evidences in a file.

Firstly, network traffic is analysed and http request is filtered as shown in Figure

6.1. Next, TCP Stream is followed as displayed in Figure 6.2. From Figure 6.2, domain

name is b4 cookier.co.cc:8080 and malicious file is com.keji.danti623. After that,

malicious file is searched in system call as shown in Figure 6.3 and it can be seen that the

malicious is trying to access first_app_preferences.xml and the PID is 6667. Based on PID

(6667)in logcat as displayed in Figure 6.4, the malicious file was debugged and the

process named DebugListener.

Figure 6.1 Filter HTTP Request

65

Figure 6.2 TCP Stream Result

Figure 6.3 System Call Result

Figure 6.4 Logcat Result

6.4 Test Result

The test is done using GoldDream Android Malware. Basically, GoldDream has

the capability to logs all incoming and outgoing phone calls and received SMS. The log

captured is then sent to an external server. Device’s information such as IMEI number,

phone number and device’s model are also captured and send to an external server. Table

6.1 shows result from network traffic. It is proven that the device’s information are

captured and send to an external server which is ade.wooboo.com.cn. Table 6.2 shows the

result from system call. It is proven that the malware is associating with sms logging and

accessing file. Table 6.3 shows the result from logcat. There are warning message and

debug activity.

66

Table 6.1 Result from Network Traffic

NO
IP ADDRESS PORT

METHOD URL

Description

SOURCE DESTINATION SOURCE DESTINATION

N1 192.168.1.111 122.11.61.106 35979 80 POST ade.wooboo.com.cn

Device

model: GT

9600

IMEI:

Phone

number:

60126731249

N2 192.168.1.111 122.11.61.106 54663 80 POST ade.wooboo.com.cn

67

Table 6.2 Result from System Call

NO A
cc

es
s(

)

O
p
en

()

fs
ta

t(
)

C
h

m
o
d
()

W
ri

te
()

E
x
ec

ve
()

R
en

a
m

e(
)

U
n

li
n

k
()

R
ea

d
()

R
ec

v(
)

M
a
li

ci
o
u

s
fi

le

P
ID

S1 com.GoldDream.pg03
5489

68

Table 6.3 Result from Logcat

NO PID PRIORITY MESSAGE

L1 5489 I WebClipBoard

L2 5489 I Ads

L3 5489 W webview_proxy

L4 5489 D WebCore

6.5 Conclusion

As a conclusion, this chapter had discussed in-depth on result and analysis of this

project. This chapter presented the proposed traceability matrix. Next chapter which is the

last chapter in this project, a holistic conclusion will be discussed.

69

CHAPTER VII

PROJECT CONCLUSION

7.1 Introduction

The whole analysis of this project will be summarized in this chapter. Besides,

this chapter also included project contribution, limitation and future works.

7.2 Project Summarization

Nowadays, Android is replacing the need for a personal computer because it has

same capabilities of traditional computer particularly when it offers the connectivity to

various universal service. Furthermore, people tend to store as well as organize a vast

range of business and personal, also make them constantly connected to the Internet.

Even though the amount of data stored in Android is less than the amount of data stored

in computer, the small amount of data can be a useful, crucial and beneficial

70

information. Thus, all of this information inside Android phone can be used as a source

of evidence in digital forensic investigations.

 Nevertheless, the ongoing increment of popularity of Android phone has cause a

problem in discovering complex and enormous volume of evidence. Consequently, this

bring to the difficulty in cross referencing and linking meaningful correlation between

the incident events. In the past, only the scope of an attack became the main idea of the

study rather than the actual attacker and assessing the liability of an organization without

dealing with issue of origin identification and cross referencing in investigation process.

 As a consequence, this project will construct the traceability matrix in android

forensic investigation to identify the correlation between the components of forensic

investigation and the incident event discovered. As to make it real, this project began

with conducting an experiment, collecting and analysing the data that affected with

android malware attack. The traceability matrix is constructed after the attributes and

the correlation of the attack are identified. The construction of the traceability matrix is

important to ensure the sources of evidences are fully covered and to understand the

relationships of incident evidence in android forensic investigation process to fulfil the

needs of defense industries and the law enforcer in identifying the sources of evidence.

7.3 Project Contribution

As to establish the relationship between the sources and evidence traced, this

new traceability matrix for digital forensic investigation will assist the practices (Digital

forensic investigator, PDRM, CyberSecurity Malaysia). Hence, this traceability matrix

helps the pratices in forwarding and present the evidence in the court of law in order to

identify the offender of the crime.

71

7.4 Project Limitation

As we know every project has its limitation and constraint, for this project, the

limitation and constraint are additional effort required to create and maintain the

traceability matrix and update it regularly. Besides, capturing requirements traceability

becomes complex and expensive as the source of evidence grows in size and

complexity. In addition, manual traceability methods can lead to incorrect requirements

traceability data.

7.5 Future Works

In future, the effectiveness of the evidence tracing is evaluated through calculation or

algorithm to make the result more accurate. Besides, the number of sources also can

increase the effectiveness of the traceability matrix.

7.6 Conclusion

As a conclusion, the traces have been identified and the traceability matrix has been

constructed. Thus, the objectives of this project have been achieved.

72

REFERENCES

Aquilina, J. M., Casey, E., & Malin, C. H. (2008). Malware forensics: Investigating and

analyzing malicious code. Burlington, MA: Syngress Pub.

Nelson, B. (2006). Guide to computer forensics and investigations (2nd ed.). Boston,

MA: Thomson Course Technology.

Graham, J., & Howard, R. (2009). Cyber fraud: Tactics, techniques, and procedures.

Boca Raton, FL: Taylor & Francis.

Sammons, J., & Safari Technical Books. (2012). The basics of digital forensics: The

primer for getting started in digital forensics. Amsterdam: Elsevier/Syngress.

Skoudis, E., & Zeltser, L. (2004). Malware: Fighting malicious code. Upper Saddle

River, NJ: Prentice Hall PTR.

2016 Internet Security Threat Report. Retrieved from Symantec Corporation 2016

Website: https://www.symantec.com/content/dam/symantec/docs/reports/istr-21-2016-

en.pdf

Rover, R. (2015). Threat Report 2015. Retrieved from F-Secure Corporation 2016

Website: https://www.f-

secure.com/documents/996508/1030743/Threat_Report_2015.pdf

Arora, A. (2014). Malware Detection Using Network Traffic Analysis in Android Based

Mobile Devices, 66–71. https://doi.org/10.1109/NGMAST.2014.57

Yuhui, F., & Ning, X. (2015). The analysis of android malware behaviors. International

Journal of Security and Its Applications, 9(3), 335–346.

https://doi.org/10.14257/ijseia.2015.9.3.26

Zaki, M., Sahib, S., Abdollah, M. F., Selamat, S. R., & Ahmad, R. (2013). Profiling

Mobile Malware behaviour through Hybrid Malware analysis Approach 2013

9th International Conference on Information Assurance and Security (lAS), 78–

84.

https://doi.org/10.1109/NGMAST.2014.57

73

APPENDICES

1. HOME

2. NETWORK TRAFFIC

SOURCE 1: NETWORK TRAFFIC

HOME

NO
IP ADDRESS PORT

METHOD URL
SOURCE DESTINATION SOURCE DESTINATION

N1

N2

N3

N4

N5

N6

N7

N8

N9

file:///K:/TRACEABILITY%20MATRIX.xlsx%23'TRACEABILITY%20MATRIX'!A1

74

3. SYSTEM CALL

SOURCE 3: SYSTEM
CALL

HOME

N
O

A
cc

es
s(

)

O
p

en
()

fs
ta

t(
)

C
h

m
o

d
()

W
ri

te
()

C
lo

se
()

R
en

a
m

e(
)

U
n

lin
k(

)

R
ea

d
()

R
ec

v(
)

M
al

ic
io

u
s

fi
le

P
ID

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

file:///K:/TRACEABILITY%20MATRIX.xlsx%23'TRACEABILITY%20MATRIX'!A1

75

4. LOGCAT

SOURCE 3: LOGCAT

HOME

NO PID PRIORITY MESSAGE

L1
L2
L3
L4
L5
L6
L7
L8
L9
L10

file:///K:/TRACEABILITY%20MATRIX.xlsx%23'TRACEABILITY%20MATRIX'!A1

