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ABSTRACT 

Energy Management Systems (EMS) have become essential in optimizing energy 

consumption in the built environment, particularly in commercial buildings. This 

project presents the development and application of a sophisticated IoT-based EMS, 

aimed at enhancing energy efficiency in air conditioning and lighting systems. At its 

core, a rule-based algorithm is employed to improve decision-making regarding 

energy use intensity and timing. EMS integrates advanced IoT devices and sensors for 

continuous monitoring and intelligent control of energy usage, leading to substantial 

energy savings. The algorithm, designed to optimize energy consumption, takes into 

account parameters like power consumption, illuminance, and room temperature. Its 

effectiveness is evidenced by a comparative analysis based on a 24-hour monitoring 

experiment conducted in two phases. These experiments reveal the algorithm's 

significant impact on energy usage optimization. The report details the IoT 

infrastructure, the design and implementation of the Fuzzy Logic Rule-Based 

algorithm, and the data analytics methodologies used. The automated decision-making 

process of the system efficiently reduces overall consumption, enhances energy 

efficiency, and lowers operational costs in commercial settings. The result of this 

project highlights the successful integration of IoT with a Fuzzy Logic Rule-Based 

approach, significantly improving energy management. The system, characterized by 

its real-time monitoring and automation capabilities, demonstrated a remarkable 

advancement in managing energy consumption. Notably, the lighting system observed 

a 69.41% decrease in energy consumption, while the air conditioning system saw a 

30.6% decrease. These results underscore the algorithm's precision in managing 

energy usage, emphasizing its contribution to sustainable energy practices. Future 

work will focus on developing a predictive model for energy consumption data, using 

the XGBoost framework for enhanced accuracy in forecasting energy needs. This 

advancement is crucial for effective energy management, leading to optimized energy 

distribution and utilization. The predictive model, as an extension of this project, 

marks a significant step towards intelligent, efficient, and proactive energy 

management, aligning with sustainable development goals. 
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ABSTRAK 

Sistem Pengurusan Tenaga (SPT) telah menjadi penting dalam mengoptimumkan 

penggunaan tenaga dalam persekitaran binaan, terutamanya di bangunan komersial. 

Projek ini membentangkan pembangunan dan aplikasi SPT berasaskan IoT yang 

canggih, bertujuan untuk meningkatkan kecekapan tenaga dalam sistem penghawa 

dingin dan pencahayaan. Di terasnya, algoritma berdasarkan peraturan digunakan 

untuk memperbaiki pembuat keputusan mengenai intensiti penggunaan tenaga dan 

waktu. SPT mengintegrasikan peranti dan sensor IoT canggih untuk pemantauan 

berterusan dan kawalan pintar penggunaan tenaga, membawa kepada penjimatan 

tenaga yang ketara. Algoritma yang direka untuk mengoptimumkan penggunaan 

tenaga mengambil kira parameter seperti penggunaan kuasa, kecerahan, dan suhu 

bilik. Keberkesanannya dibuktikan melalui analisis perbandingan berdasarkan 

eksperimen pemantauan 24 jam yang dijalankan dalam dua fasa. Eksperimen ini 

mendedahkan kesan signifikan algoritma terhadap pengoptimuman penggunaan 

tenaga. Laporan ini menjelaskan infrastruktur IoT, reka bentuk dan pelaksanaan 

algoritma Berasaskan Peraturan Logik Kabur, serta metodologi analisis data yang 

digunakan. Proses pembuat keputusan automatik sistem ini berkesan mengurangkan 

penggunaan keseluruhan, meningkatkan kecekapan tenaga, dan menurunkan kos 

operasi dalam tetapan komersial. Hasil projek ini menonjolkan integrasi berjaya IoT 

dengan pendekatan Berasaskan Peraturan Logik Kabur, yang secara signifikan 

memperbaiki pengurusan tenaga. Sistem, yang dicirikan oleh kemampuan pemantauan 

masa nyata dan automatiknya, menunjukkan kemajuan yang luar biasa dalam 

mengurus penggunaan tenaga. Secara khusus, sistem pencahayaan mencatatkan 

penurunan penggunaan tenaga sebanyak 69.41%, manakala sistem penghawa dingin 

mencatatkan penurunan sebanyak 30.6%. Hasil ini menekankan ketepatan algoritma 

dalam mengurus penggunaan tenaga, menekankan sumbangannya kepada amalan 

tenaga yang mampan. Kerja masa depan akan memberi tumpuan kepada 

pengembangan model ramalan untuk data penggunaan tenaga, menggunakan rangka 

kerja XGBoost untuk ketepatan yang lebih baik dalam meramalkan keperluan tenaga. 

Kemajuan ini penting untuk pengurusan tenaga yang berkesan, membawa kepada 

pengedaran dan penggunaan tenaga yang dioptimumkan. Model ramalan, sebagai 

lanjutan projek ini, menandakan langkah penting ke arah pengurusan tenaga yang 

pintar, cekap, dan proaktif, selaras dengan matlamat pembangunan mampan. 
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INTRODUCTION 

1.1 Motivation 

Our world is increasingly grappling with a severe energy crisis, a multifaceted 

problem predominantly fueled by our overreliance on non-renewable resources such 

as coal, oil, and natural gas. According to National Geographic [1], [2], non-renewable 

energy sources such as coal, natural gas, oil, and nuclear energy supply about 80 

percent of the world’s energy. They provide electricity, heat, and transportation while 

feeding the processes that make a huge range of products, from steel to plastics. 

 

 

Figure 1.1 Global Energy Consumption by Source [3] 

Figure 1.1 illustrates that, as of 2019, a staggering 84.3% of global energy is 

derived from fossil fuels, emphasizing the immense dependence on this resource to 

meet global energy demands. Some countries may also be showing signs of 

dependence on nonrenewable energy sources. 

For example, in Korea, there are 60 coal-fired power plants that generate 40% 

of the nation’s electricity [4]. In Malaysia, electricity generation is heavily dependent 

on coal resources. 66% of the electricity generated in the Peninsular was from imported 
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coal fuel [5]. These resources, which have powered our modern civilization for 

centuries, are used extensively in electricity generation. Traditional power plants burn 

these fossil fuels to produce steam, which turns turbines to generate electricity [6]. 

Despite their widespread use and convenience, these energy sources are rapidly 

depleting due to excessive global consumption, and their continued usage exacerbates 

environmental issues like air pollution and climate change.  

The generation of electricity from non-renewable energy sources is also 

characterized by inefficiencies and energy loss, with a significant portion of the energy 

from burned fossil fuels lost as waste heat. Additionally, these fuels' extraction, 

transportation, and burning result in substantial greenhouse gas emissions, which 

contribute to global warming [7]. 

The dwindling supply of non-renewable resources has escalated prices and 

market volatility. Oil, gas, and coal prices are skyrocketing due to Russia's invasion of 

Ukraine and the COVID-19 pandemic outbreak [8]. Even Malaysia, which imports 

coal, was impacted by it as commodity prices rose, resulting in a 45% increase in 

electricity production [8]. This disrupts economies and places a disproportionate 

burden on less economically developed countries and poorer societal segments, who 

devote a larger proportion of their income to energy costs. 

In this scenario, the role of energy management systems (EMS) in buildings 

can be one of the solutions. By efficiently managing energy consumption, these 

systems offer a promising and sustainable solution to the energy crisis. 

In this context, an energy management system (EMS) presents a promising 

solution to this crisis. An EMS is a tool that helps electric utility grid operators keep 

track of, regulate, and improve the performance of the generation and transmission 

systems [9]. These systems encompass various aspects of energy efficiency, including 

demand management, load balancing, peak load reduction, and overall optimization of 

energy usage. By providing real-time information about energy use, an EMS enables 

consumers and companies to make more informed decisions about their energy 

consumption, often leading to significant reductions in energy use [10]. 
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1.2 Problem Statement 

In the contemporary world, energy management is a pressing concern, and the 

efficient utilization of energy resources is paramount. Despite technological advances, 

many residential, commercial, and industrial establishments still struggle with the 

ineffective and inefficient use of energy. This issue is compounded by the fact that 

conventional energy management systems are manual, inflexible, and lack real-time 

monitoring, optimization, and control capabilities. This results in high energy costs, 

wastage of energy, and an unnecessary increase in the carbon footprint. 

The lack of automation in the current systems also causes a lack of predictive 

analysis, which could preemptively identify potential areas of energy wastage or faults 

in the system. Due to the current system's latency, it is challenging for energy managers 

to get accurate, real-time data, make rapid decisions, and promptly execute necessary 

actions. Additionally, clear visibility and granular control over the diverse energy 

consumption points across a facility or multiple sites are missing. 

Further, traditional energy management systems are not equipped with the 

ability to adapt to the ever-changing energy landscape, such as fluctuating energy 

prices and varying demands. This inability makes it difficult for organizations to 

optimize energy usage, resulting in economic losses and increased environmental 

impact. 

Therefore, this project aims to develop an Internet of Things (IoT) based 

energy management system that addresses these challenges. The project seeks to 

integrate automation, real-time monitoring, control capabilities, predictive analytics, 

and adaptability into energy management to enhance efficiency, reduce costs, and 

minimize environmental impact. This innovative solution could provide energy 

managers with the tool they need to make faster and better-informed decisions, 

promote energy conservation, and improve the sustainability of their operations. 
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1.3 Objectives 

• Development and Integration of a Real-Time Monitoring and 

Automation System: To create an IoT-based system that enables real-

time monitoring, reporting, and automated control of energy 

consumption across various points in the facility or facilities. By 

enhancing visibility into energy usage patterns and automatically 

adjusting energy usage based on real-time data, this system will 

efficiently identify and rectify areas of waste or inefficiency, 

optimizing the use of energy resources. 

• Implementation of Rule-Based Techniques Algorithm: To design  a 

Rule-Based Techniques Algorithm within an Energy Management 

System (EMS). This algorithm will serve as the core decision-making 

component of the EMS, enabling it to optimize energy usage while 

maintaining user comfort. 

• Analysis the Efficiency of Algorithm Output in Energy 

Management System: To assess the performance of the developed 

EMS algorithm by simulating its operation in a controlled Python 

environment. This involves using the data captured over a 24-hour 

period, including room vacancy, light intensity, temperature, and 

energy consumption, as inputs for the simulation. The goal is to 

compare the simulated energy consumption patterns, influenced by the 

EMS algorithm, against the baseline data collected without the EMS 

intervention.. 
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1.4 Scope and Limitations 

Limitations of the Project: 

• Technology Infrastructure: The successful implementation of an IoT-

based energy management system will rely on the existing technology 

infrastructure, such as internet connectivity, of the facility or facilities 

in question. Areas with poor connectivity may limit the system's 

effectiveness. 

• Security Concerns: While the project will strive to ensure the system's 

security, IoT devices can be vulnerable to cyber-attacks. Despite the 

best efforts, there might still be a risk of security breaches. 

• Resource Availability: The project's success will depend on the 

availability of resources, including hardware, software, reviewed 

papers, and skilled personnel, for the implementation of the IoT-based 

system. 

The scope of this project focuses on implementing an energy management 

system that will concentrate on the use, optimization, and management of air 

conditioners, and lighting, possibly employing Internet of Things (IoT) technologies. 

1. Air Conditioners: 

• Monitoring and analysis of power consumption patterns. 

• Automating temperature controls based on occupancy and 

weather conditions. 

2. Room Lighting: 

• Monitoring power consumption of room lighting systems. 

• Automation of lighting based on occupancy and natural light 

availability. 

• Optimization of energy consumption through LED or other 

energy-efficient lighting technologies. 
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LITERATURE REVIEW 

2.1 Background Theory 

The rising global energy demand and climate change concerns forced the 

development of sustainable and efficient energy management systems. Internet of 

Things (IoT) technology integration with these systems provides opportunities for 

optimizing energy consumption, reducing energy costs, and mitigating environmental 

impact. This section of the literature review provides an overview of the theoretical 

foundation for the development of Internet of Things-based energy management 

systems. 

IoT refers to the interconnection of uniquely identifiable devices, sensors, and 

actuators, which enables automatic data collection, transmission, and analysis. The 

Internet of Things (IoT) has become an indispensable aspect of modern life, with 

implementations in numerous industries, including healthcare, transportation, and 

agriculture [11]. IoT utilizes an internet connection that provides connectivity between 

physical devices [12]. Key aspects of Internet of Things technology pertinent to energy 

management systems include: 

a. Connectivity and Communication Protocols: IoT devices communicate 

with each other using a variety of communication protocols, including 

ESP8266, Wi-Fi, Bluetooth, and Raspberry PI. 

b. Sensor Technology: a. Sensor Technology: Internet of Things devices 

with integrated sensors are used to collect real-time data on energy 

consumption, temperature, and other relevant parameters. 

c. Data Processing and Analytics: IoT systems frequently employ cloud-

based platforms to process and analyze collected data, facilitating the 

extraction of insightful insights and patterns. 

Energy management systems (EMS) are centralized platforms that monitor, 

regulate, and optimize the production, distribution, and consumption of energy 
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resources [13]. EMS seeks to reduce energy costs, reduce environmental impacts, and 

maintain energy reliability. The elements of energy management systems consist of 

the following:  

a. Energy Monitoring: Real-time monitoring of energy consumption 

patterns that enable the identification of inefficiencies and 

opportunities for optimization. 

b. Demand Response: Dynamic adjustment of energy consumption in 

response to fluctuations in energy supply and demand, which ensures 

grid stability and lowers energy costs. 

c. Energy Forecasting: Predicting prospective energy consumption 

patterns based on historical data and external factors, such as weather 

conditions and occupancy schedules. 

The integration of IoT technology has been studied in various industries, 

including supply chain and logistics [14], construction [11], college campus networks 

[15], IoT device sharing [16], and smart agriculture [17]. The integration of IoT 

technology into energy management systems offers several benefits: 

a. Enhanced Data Collection: IoT-enabled devices provide real-time, 

granular data on energy consumption, enabling more precise energy 

monitoring and optimization. 

b. Improved Decision-Making: The data collected from IoT devices can 

be processed and analyzed to provide actionable insights, allowing for 

enhanced energy management decision-making. 

c. Increased Automation: IoT-based energy management systems can 

automate various energy management tasks, such as load scheduling 

and demand response, reducing the need for manual intervention. 

d. Scalability and Flexibility: IoT technology can be readily scaled to 

accommodate larger energy management systems or adapted to specific 

requirements, thereby enabling customized energy management 

solutions. 

 

While IoT-based energy management systems show great promise, several 

challenges, and research opportunities remain: 
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a. Interoperability: Ensuring seamless communication between IoT 

devices and energy management systems, regardless of the 

manufacturer or communication protocol[18]. 

b. Data Security and Privacy: Addressing concerns related to the 

collection, transmission, and storage of sensitive energy consumption 

data[19]. 

c. Energy Efficiency of IoT Devices: Developing low-power IoT devices 

that do not significantly contribute to energy consumption[20]. 

d. Integration of Renewable Energy Resources: Incorporating renewable 

energy resources, such as solar and wind power, into IoT-based energy 

management systems for a more sustainable energy future. 

 

The development of IoT-based energy management systems is a viable method 

for reducing rising energy consumption while also addressing environmental issues. It 

is feasible to optimize energy use, save expenses, and limit environmental 

consequences by combining the capabilities of IoT technology with energy 

management systems.  
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2.2 Existing Energy Management System Overview 

Several existing developments of home energy management systems proposed 

and created by previous researchers will be studied in this section of the literature 

review. Their features, methodology, and outcomes are compared to get a greater 

understanding of the present art of the state. The existing EMS frameworks, varying 

across diverse platforms and applications, utilize sophisticated technologies to 

monitor, control, and optimize the consumption and utilization of energy. There are 

many abbreviated names for Energy Management Systems, such as Home Energy 

Management System (HEMS or HEM), Intelligent Smart Energy Management System 

(ISEMS), Energy management (EM), Smart Energy Management System (SEMS) and 

many more. All the abbreviations can be considered a subset of a broader Energy 

Management System (EMS) concept, as all of them share the common objectives of 

optimizing energy consumption and reducing cost.  

[12] discusses the integration of IOT with voice recognition applications for 

the Wireless Automation System. This implementation is a component of the EMS 

that allows voice commands to control the ON and OFF states of appliances, unlike 

the author's automated light fixtures. The authors also incorporated a footstep counter 

in which sensors count each person who passes through the front door. This saves 

system processing time.  

[21]–[23] use smart sockets/plugs to capture energy consumption. In [21], the 

authors focus on the EMS design for buildings and define the EMS as HEM, also 

known as home energy management. The HEM system can be mounted wirelessly in 

any residential structure, and the authors mentioned how this system can track how 

much energy is used in every room it is installed in. The system consists of 

programmable air conditioner remote controls, smart sockets for monitoring appliance 

power use, and nodes for monitoring room temperature. These are all referred to as 

modules. All of these modules communicate with one another and collect data from 

sensors embedded into sockets, etc. via the Zigbee communication protocol. The 

proposed Smart-Rule Based HEM algorithm will then receive the energy consumption 

data and use it to plan the appliance energy use appropriately, hence decreasing the 

energy consumption. Based on the authors' proposed experimental methodology, one 
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potential strength is that the modules connected to HEM can monitor and control 

power consumption over 24 hours and can implement another 24-hour period under 

the same conditions without using HEM. The recording of both experiments reveals 

identical outcomes. The only disadvantage is that the methodology used in this setup 

has only been verified in a single household. Other households have varying energy 

consumption, and the results collected by the authors are not generalizable, as the 

usage patterns or appliance types of other households may vary. Additionally, the 

authors do not state the detailed cost-benefit analysis of the proposed system which 

could be useful for decision-makers considering the implementation of such a system. 

In [22], the EMS system incorporates smart sockets for energy monitoring and 

control, cloud infrastructure for data processing and analysis for intelligent energy 

management. Mist hubs are also proposed to address complexities and resource 

demands in data processing. This approach enables energy monitoring, management, 

and efficiency in smart homes. Authors in [23] create IoT-based methodologies, smart 

plugs, wireless gateways, time-series analysis, and energy monitoring to develop a 

smart plug-load energy conservation and management system. The system captures 

energy consumption data through smart plugs, transfers it to a central database via a 

wireless gateway, and enables remote switching of smart plugs. Time-series analysis 

is applied to identify consumer behaviour and forecast total energy consumption. The 

system promotes energy conservation by making users aware of their energy 

consumption and provides data-driven approaches for minimizing energy usage.  

The authors in [24] presented the Intelligent Smart Energy Management 

Systems (ISEMS) where this system handles the energy demand in a smart grid 

environment. The system proposed tested several models to predict the forecasting of 

the energy demand such as ANN (Artificial Neural Network), PSO-ANN (ANN Based 

Particle Swarm Optimization, SVR (Support Vector Regression), PSO-SVR (PSO 

Based Support Vector Regression and ENS (Ensemble Methods). Results show that 

PSO Based Support Vector Regression has better performance than other prediction 

models in terms of accuracy. ISEMS also uses the IOT to monitor the energy 

consumption of the user. The methodology of this paper has a potential strength where 

the prediction models make accurate forecasting of energy availability while the 

integration with the IOT makes the monitoring at the user end much easier. 
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In [25], the authors show that with the integration of IOT and the EMS, the 

system is able to optimize the operation of unbalanced three-phase AC microgrids. 

The system uses a stochastic economic dispatch optimizer (EDO), a database, a web-

based graphical user interface (GUI), and an application programming interface (API). 

All these 5 modules show promising results. Based on the results, the PV energy 

significantly cut down the operating costs of the microgrids. With high PV generation, 

renewable energy resources (RESs) are able to sustain the conventional demand and 

also able to charge up the battery energy storage system (BESS) when an islanded 

operation happens. Furthermore, the advantage of the proposed IOT-based energy 

management system (EMS) for microgrids is the ability of the optimization of the 

distributed energy resources within a microgrid while adhering to grid constraints. 

However, the potential weakness or limitations of this methodology is its reliance on 

accurate data and forecasts for local demand and renewable generation, as well as the 

dependency on the availability of IoT technology. 

The authors in [26] aims are similar to those in [21] where both integrate the 

EMS within residential buildings to achieve energy efficiency improvements. 

However, the authors improve their design by integrating it with renewable energy. 

The authors also use a rule-based strategy and AI-Based (Particle Swarm 

Optimization) optimization algorithm to reduce the energy consumption cost while 

maximizing the end user self-consumption. The proposed algorithm is validated 

through simulations in the MATLAB environment. With the AI-Based algorithm that 

is powering the system, the HEMS (related to the residential building) potential saving 

using the self-consumption is about 30% compared to users without the HEMS. The 

environmental effects also gain positive benefits as the CO2 emission reduced by 30% 

when the HEMS is used in the building. The electricity used in residential buildings 

may be generated from fossil fuel-based power plants, and the emissions associated 

with electricity production are indirectly attributed to the building's CO2 footprint. 

Authors in [27] utilized STM32 microcontrollers and IoT technology to create 

an energy management system. The system incorporates automation to efficiently 

manage energy usage. The data from various sensors are monitored and analyzed using 

AWS IoT Analytics, enabling users to gain insights and control appliances remotely. 
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On the other hand, [28] employed IoT-based technologies, wireless 

communication, IoT-ready power converters, smart meters, smart sensors, and 

actuators to develop an energy management system. The integration of these 

technologies facilitated the implementation of a complete EMS that enables efficient 

control and management of energy generation, storage, and consumption. The 

FIWARE IoT Platform was utilized for device integration, data management, energy 

management algorithms, and data visualization. 

In [29], the author utilized smart home technology, fuzzy logic for decision-

making, IoT for data transmission, and machine-to-machine communication in the 

development of the energy management system. The system integrates a Battery 

Management System (BMS) and a Load Management System (LMS) to make 

intelligent decisions regarding the connection of loads to the grid or battery based on 

parameters such as load type, battery status, and grid availability. The implementation 

of fuzzy logic algorithms and the hardware model evaluation demonstrated significant 

improvements in energy consumption with the proposed Smart Home Energy 

Management System (SHEMS). 

[30] works use the IoT technology, specifically Raspberry Pi, Node-RED, and 

NodeMCU modules, along with the Arithmetic Optimization Algorithm (AOA), to 

develop a multi-objective scheduling system for energy management in smart homes. 

The system optimizes the scheduling of home appliances to reduce electricity costs, 

decrease the peak-to-average ratio (PAR), and increase user comfort (UC). Real-time 

pricing and critical peak pricing signals are considered as energy tariffs. The 

integration of renewable energy sources (RES) is also explored. 

The authors [31] implemented IoT-based devices and linear model algorithms 

to create an energy management system for residential buildings. The system 

accurately categorizes electricity consumption and utilization based on consumer 

behaviour data. Different linear model algorithms are applied for energy consumption 

analysis and intelligent power control. The results demonstrate improved energy 

forecasting efficiency using predictive models, with the RSME performance 

increasing by 35% in the lead time approach. The methodology focuses on using data-
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driven techniques and predictive modelling to optimize energy management in 

residential buildings. 

[32] uses IoT principles and machine learning technologies to develop a self-

learning home management system (SHMS) for efficient energy management in smart 

homes. The SHMS integrates a home energy management system, a demand-side 

management system, and a supply-side management system. Computational and 

machine learning techniques, that is Rule-Based Classifiers Technique are employed 

to enhance the system's capabilities, such as price forecasting, price clustering, and 

power alerts. Real-time power consumption data from a Singapore smart home is 

utilized to validate the system's performance and demonstrate its ability to customize 

the model for different environments compared to traditional smart home models. The 

SHMS is implemented on a Multi-Agent System (MAS) platform, enabling intelligent 

decision-making and adaptive operations. 

The authors in [33] developed an energy management system that provides 

real-time monitoring of electricity use on home appliances using Internet of Things 

(IoT) technologies. The system combines Node-Red for data processing and decision-

making, Message Queuing Telemetry Transport (MQTT) for effective data transfer, 

and cloud computing for data storage and analysis. The suggested system offers a 

simple, transportable, and affordable method for maximizing electricity usage by 

utilizing these technologies. Users can assess their weekly and daily electricity usage, 

and the system also offers Grafana visualization features to improve energy awareness 

and appliance control. 

Another work [34]–[37], mentioned the Smart Grid as a new tech upgrade that 

uses digital tools and improved ways of communication to understand and react to 

changes in how much electricity is used. This is set to completely change how 

electricity is distributed, sent, and created. In a conventional network grid, the energy 

pattern usage is hard to determine, and any energy loss is unnoticeable which results 

in energy waste. Authors [35] use the big data to do the comprehensive data 

management function. On the other side,[36] uses FPGA or Field Programmable Gate 

Arrays (FPGAs) to improve the efficiency and functionality of the energy management 

system. 
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Based on the review papers, [12], [21]–[38] are related to IOT-based system 

where the integration between the energy comes from the grid, or PV system and the 

demand side management are all controlled via the Internet.  

Other paper such as [39] focuses on reducing the electricity bill. The authors 

create a centralized home energy management system that utilizes time-of-use (TOU) 

tariff, demand response, and optimization techniques to minimize electricity bills for 

end-users. The model is developed using the MILP framework and implemented in 

Python, allowing for easy accessibility and utilization of open-source optimization 

tools. 

 

2.2.1 Summarization of the Existing Energy Management System 

 

Through these papers, several trends and common technologies can be 

identified. The reviewed papers emphasize the utilization of IoT (Internet of Things) 

technology, smart plugs, smart grid concepts, and time-of-use (TOU) tariffs. These 

technologies play a crucial role in monitoring, controlling, and optimizing energy 

consumption in diverse settings such as residential buildings, microgrids, and smart 

homes. Table 2-1 summarization on the technologies used in EMS. 

 

Table 2-1 Specific Technologies Implementation used in EMS 

Papers Specific Technologies Implementation 

[12] IoT, voice recognition, wireless automation system 

[21] 
Zigbee communication protocol, smart sockets, 

programmable air conditioner remote controls 

[22] Smart sockets, cloud infrastructure, Mist hubs 

[23] 
IoT-based methodologies, smart plugs, wireless gateways, 

time-series analysis 

[24] 
IoT, artificial neural network (ANN), particle swarm 

optimization (PSO), support vector regression (SVR) 

[25] 
IoT, stochastic economic dispatch optimizer (EDO), web-

based GUI, API 
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[26] AI-based optimization algorithm, MATLAB simulations 

[27] 
STM32 microcontrollers, IoT technology, AWS IoT 

Analytics 

[28] 
IoT-based technologies, wireless communication, smart 

meters, smart sensors, actuators 

[29] 
Smart home technology, fuzzy logic, IoT, machine-to-

machine communication 

[30], [33] 
IoT, Raspberry Pi, Node-RED, NodeMCU, Arithmetic 

Optimization Algorithm (AOA) 

[31] IoT-based devices, linear model algorithms 

[32] 
IoT, machine learning (Rule-Based Classifiers Technique), 

multi-agent system (MAS) 

[34]–[37] 
Smart Grid, big data, Field Programmable Gate Arrays 

(FPGAs) 

[39] 
Time-of-use (TOU) tariff, demand response, optimization 

techniques, MILP framework, Python 

 

The application of algorithm technologies is critical in the design and 

implementation of energy management systems (EMS). The publications that were 

reviewed shed light on numerous algorithmic approaches used to optimize energy 

usage, improve efficiency, and reduce costs in a variety of scenarios including 

residential buildings, microgrids, and smart homes. Table 2-2 is the summary of the 

algorithm used by researchers based on the reviewed paper. 

 

Table 2-2 Algorithm Techniques Implementation  

Papers Algorithm Techniques Implementation 

[12] Simple Automation (Integration of IoT with voice recognition) 

[21], [26], [32] 
Smart-Rule Based Algorithm, Rule-Based Classifiers 

Technique 

[29] Fuzzy logic 

[23] Time-series analysis, data-driven approaches 
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[24] 

Artificial Neural Network (ANN), Particle Swarm Optimization 

(PSO), Support Vector Regression (SVR), Ensemble Methods 

(ENS) 

[25] Stochastic Economic Dispatch Optimizer (EDO) 

[26] 
AI-Based optimization algorithm (Particle Swarm 

Optimization) 

[30] Arithmetic Optimization Algorithm (AOA) 

[31] Linear model algorithms 

[39] MILP (Mixed Integer Linear Programming) framework 

 

The following subtopics of the literature review begins with an exploration of 

the Internet of Things (IoT) and its fundamental role in the technological integration 

of various devices and systems. The advent of IoT has facilitated unprecedented 

connectivity and data exchange across numerous devices, making it a cornerstone of 

modern EMS. 

Part of this discussion will delve into the critical role of protocol 

communication in the Energy Management System (EMS). Protocols form the 

backbone of efficient information transfer across various EMS devices and 

technologies. The key is to provide a comprehensive understanding of these 

communication protocols and their implications for the efficiency and reliability of 

energy management services. 

In the context of IoT, the review will provide an overview of other devices and 

technologies currently influencing the evolution of EMS. Innovative tools like smart 

plugs and advanced monitoring systems, when integrated into the EMS through IoT, 

have the potential to improve energy efficiency and conservation. This section will 

explore these technologies and their impact on EMS development and performance. 

Following the discussion on IoT, the focus then shifts to the algorithms 

embedded in the EMS. These algorithms are at the heart of the massive volumes of 

data processed and interpreted to inform energy distribution and consumption 

decisions. This section of the review delves into the inner workings of these 
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algorithms, emphasizing their pivotal role in facilitating effective energy usage and 

management. 

Another crucial aspect that this review seeks to investigate is machine learning. 

With its inherent ability to identify patterns within large datasets, machine learning 

can dramatically enhance the accuracy of energy consumption projections, refine 

decision-making processes, and improve overall EMS efficiency. This section delves 

deeply into a thorough examination of machine learning models, their applications, 

potential drawbacks, and implications in the context of EMS.  
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2.3 Internet of Things (IoT) on Technology Integration 

The concept of the Internet of Things (IoT) is often traced back to the early 

1980s, with the first practical application generally considered to be a modified Coke 

machine at Carnegie Mellon University [40]. This machine was internet-connected, 

allowing it to report its inventory and whether newly loaded drinks were cold or not. 

This is often considered the first "Internet-connected appliance" or the first instance of 

the Internet of Things. 

However, it's important to note that the term "Internet of Things" wasn't coined 

until much later. In 1999, British technology pioneer Kevin Ashton is credited with 

coining the term while working for Procter & Gamble. He used the term to describe a 

system where the "Internet is connected to the physical world via ubiquitous sensors" 

[41]. 

In the context of technology integration, IoT began to take shape with more 

significance in the early 2000s. With advancements in wireless networking, micro-

electromechanical systems (MEMS), and the Internet, devices began to be designed 

with built-in sensors that could communicate and interact with the external 

environment, enabling technology integration on a new level [42]. 

That said, the use of IoT for technology integration has evolved over time and 

continues to do so, with applications becoming increasingly sophisticated and diverse. 

It's a field that's seen continuous innovation and advancement, with new use cases 

being developed all the time. According to Statista, the total number of installed 

connected devices is expected to be 75.4 billion globally by 2025 [43]. This would be 

the fifth time it has increased since 2015. These numbers indicate that the future of IoT 

promises to be more innovative and revolutionary as compared to the present. The 

rapid growth of IoT has been supported by advancements in three technologies — 

Cloud Computing, big data, and artificial intelligence. Furthermore, as more and more 

data are generated by the IoT systems, product companies would shift towards a 

service ecosystem. 
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2.3.1 Communication Protocol 

Communication protocols are a set of rules that determine how data is 

transmitted and received in a network [44]. In the context of IoT, these protocols 

ensure seamless communication between the different devices and systems integrated 

through IoT. Given that IoT devices often have different hardware configurations and 

operational requirements, choosing the right communication protocol is crucial to 

ensure efficient and reliable data transfer. 

Three commonly used communication protocols in IoT are Zigbee (802.15.4), 

Wi-Fi (802.11), and Bluetooth (802.15.1) [45]. These wireless communications 

consume little power [46]. 

2.3.1.1 Zigbee (802.15.4) 

Zigbee is a high-level communication protocol used to create personal area 

networks with small, low-power digital radios. It's especially suited for systems 

requiring low data rate, long battery life, and secure networking. Zigbee is often used 

in low-rate private area networks (LR-WPANs) and is designed for applications that 

require low power consumption and low data rates. It's a popular choice for home 

automation, medical data collection, and other low-power, low-bandwidth needs. 

As of now, Zigbee 3.0 uses cryptographic algorithms for two levels of 

symmetrical AES-128-CCM encryption: network and APS, which provide both 

authentication and confidentiality. In addition, Zigbee 3.0 R23, the next version of the 

Zigbee PRO standard, is expected to further enhance security. A new feature called 

Zigbee Direct is set to improve consumer experience and simplify automation by 

bringing together Zigbee and Bluetooth Low Energy, enabling users to interact with 

their Zigbee networks using a smartphone, tablet, or other Bluetooth enabled device 

[47]. 
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2.3.1.2 Wi-Fi (802.11) 

Wi-Fi is a wireless networking technology that employs radio frequencies to 

provide high-speed wireless internet and network connections. It supports high data 

rates and operates over a greater distance than Bluetooth and Zigbee. Wi-Fi is most 

commonly used for Internet access in homes and offices. Wi-Fi has a higher power 

consumption than Zigbee and Bluetooth, which can be a problem for battery-powered 

Internet of Things devices.  

Wi-Fi is also becoming a premier option for IoT, with features that improve 

performance in dense environments and reduce battery consumption, making it an 

ideal solution for sensor-based devices. Wi-Fi CERTIFIED HaLow delivers long-

range, low-power Wi-Fi, enabling power-efficient use cases in areas like smart homes, 

healthcare, and smart cities. Furthermore, advancements in network optimization 

technologies have led to Wi-Fi networks reaching new optimization levels, offering 

greater mobility, enhanced network efficiency, and improved network visibility and 

management in home and enterprise networks [48]. 

2.3.1.3 Bluetooth (802.15.1) 

Bluetooth is a wireless technology standard used for short-distance data 

transfer. It is frequently used to attach peripheral devices, such as headphones, mice, 

and keyboards, to computers, smartphones, and other host devices. Bluetooth Low 

Energy (BLE), a power-efficient Bluetooth variant, is gaining popularity for Internet 

of Things (IoT) applications[49]. Bluetooth has a shorter range and slower data rate 

than Wi-Fi, but it consumes less power and is optimal for short-range device 

communication. 

  



33 

2.3.1.4 Comparison Between Zigbee, Wi-Fi and Bluetooth 

 

Table 2-3 Summary of Strength and Weakness between Zigbee, Wi-Fi 

and Bluetooth  

Technology Strengths Weaknesses 

Zigbee 

Low power consumption, 

secure, supports mesh 

networking, ideal for low-

data-rate applications 

Shorter range than Wi-Fi, 

lower data rate 

Wi-Fi 

High data rate, long 

range, supports a large 

number of devices 

Higher power 

consumption, not ideal 

for battery-powered 

devices 

Bluetooth 

Short-range 

communication, low 

power consumption 

(especially BLE), ideal 

for personal area 

networks 

Not suited for long-range 

communication, lower 

data rate compared to Wi-

Fi 

 

There are several communication protocols that can be used for energy 

management systems in residential buildings. ZigBee technology has been shown to 

be effective in energy management systems for residential buildings [45]. [21], [24], 

[26], [28], [34], [36] uses the ZigBee technology to abolish the complexity of wiring. 

Others, such as [12], [22], [27], [29]–[33] use Wi-Fi for communication because they 

carry out energy management using respective algorithms that reduce user power 

consumption as well as load and battery management, which requires large amounts 

of data.  

The selection of an optimal communication protocol for an Energy 

Management System (EMS) is contingent upon several key factors, each of which 
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contributes to the overall efficiency and effectiveness of the system. These factors 

include the range of the network, power consumption of devices, data transmission 

rate, data security, potential interference, and the complexity of the network. 

The range of the network pertains to the distance between devices within the 

system. Should devices be dispersed over a large geographical area, a protocol with a 

longer transmission range may be necessary. In this case, a protocol such as Wi-Fi 

could potentially be the optimal choice due to its extensive range capabilities. 

The power consumption of the devices in the network is another pivotal 

consideration. For devices that are battery-powered and require extended periods of 

operation without recharging, a protocol with lower power consumption is preferred. 

For instance, Zigbee, known for its efficient power usage, could be the suitable choice 

for such scenarios. 

Data transmission rate, or the speed at which data needs to be conveyed, also 

influences the selection of the communication protocol. If the system necessitates the 

rapid transmission of large volumes of data, a high-data-rate protocol, such as Wi-Fi, 

might be the superior choice. 

The security of data transmission is an integral component when choosing a 

communication protocol for an EMS. If the sensitivity of the data being transmitted is 

of high concern, it is imperative to select a protocol with robust security features. Both 

Zigbee and Wi-Fi are equipped with substantial security features, however, the specific 

choice will depend on the unique use case. 

The potential for interference from other wireless devices is another important 

factor. Certain protocols are better equipped to handle interference, thus the selection 

might be influenced by the presence of other wireless devices within the vicinity. 

Lastly, the complexity of the network also plays a role in the selection of the 

communication protocol. For networks comprising a large number of devices, or in 

instances where devices need to communicate in complex ways, a protocol that 
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supports mesh networking might be necessary. Zigbee, for example, supports mesh 

networking and could be a suitable choice for such networks. 

In light of these considerations, Zigbee often emerges as a promising choice 

for EMS. It is designed for low-rate, low-power applications and supports mesh 

networking, making it ideal for connecting a large number of devices in an energy 

management system. Additionally, Zigbee's robust security features could be 

beneficial in contexts where data security is a priority. 

However, Wi-Fi may present itself as a more suitable option if the system needs 

to transmit larger volumes of data over longer distances, or if it needs to integrate with 

existing Wi-Fi networks. 

 

 

2.3.2 Sensor Technology 

Sensor technology refers to the use of devices or systems capable of detecting 

changes in the physical or chemical conditions of an environment and converting these 

changes into signals that can be measured or interpreted. This can include temperature, 

pressure, light, sound, and many other types of sensors. In its broadest sense, the 

concept of sensors dates back to the late 1800s, when the first temperature sensor based 

on a copper resistor was created [50]. Sensors play an important role in a wide range 

of technological applications, from simple everyday items to complex space 

exploration equipment. A sensor, in its most basic form, is a device that detects and 

responds to some type of input from the physical environment. Light, heat, motion, 

moisture, pressure, or any of hundreds of other environmental phenomena could be the 

specific input. In general, the output is a signal that is transformed to a human-readable 

display at the sensor location or electronically transmitted via a network for reading or 

additional processing. 

In terms of construction, sensors can be classified into two broad categories: 

analog and digital sensors. Analog sensors produce a continuous output signal or data 



36 

that is generally proportional to the measure of the physical property. Examples of 

such sensors include thermistors and Light Dependent Resistors (LDRs). On the other 

hand, digital sensors produce a discrete output signal or data which is typically in the 

form of binary language. The output data in this case can only be read by a device or 

viewer designed to interpret the binary data. Examples of digital sensors include digital 

temperature sensors and optical encoders. 

Sensor technology is a critical component of the Internet of Things (IoT). It 

plays a fundamental role in enabling devices to monitor, track, and measure various 

aspects of the physical world and convert this data into meaningful information. 

Traditionally, sensors have been functionally straightforward devices that 

convert physical variables into electrical signals or electrical property changes. While 

this functionality is a necessary starting point, sensors must also possess the following 

characteristics to function as Internet of Things components [51]: 

 

• Low cost, allowing economical deployment in large quantities. 

• Small enough to "disappear" undetected into any environment. 

• In most cases, a wired connection is not feasible. 

• Identification and validation of oneself 

• Very low power consumption, so it can operate for years without a 

battery replacement or with energy harvesting. 

• Robust, to minimize or eradicate maintenance. 

• Self-evaluating and -healing 

• Self-calibrating or wirelessly accepting calibration commands. 

• Data preprocessing to reduce the burden on gateways, PLCs, and cloud 

resources. 

Advancements in sensor technology hold enormous potential to revolutionize 

various applications within the Energy Management System (EMS). The capacity of a 

sensor to detect changes in physical or chemical conditions and convert them into 

measurable signals can be leveraged to optimize energy consumption, enhance the 

efficiency of energy systems, and contribute to sustainable energy management. 
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For example, when integrated with an EMS, sensors can monitor energy usage 

in real-time, providing crucial data to identify inefficiencies and areas for reducing 

energy consumption. With the aid of the Internet of Things (IoT), these sensors can 

connect to a network, enabling remote monitoring and control of energy systems, 

which leads to improved operational efficiency and substantial energy savings. 

One practical application of this technology lies within building energy 

management. In this context, temperature sensors, light sensors, and occupancy 

sensors could be utilized to automatically adjust heating, ventilation, and air 

conditioning (HVAC) systems, as well as lighting, based on occupancy and ambient 

conditions within the building. This automation could drastically reduce energy 

wastage and enhance the overall energy efficiency of the building. 

In the field of renewable energy systems, sensors also play an essential role. 

For instance, in solar photovoltaic systems, sensors can monitor the efficiency of solar 

panels, detect faults, and note decreases in output. This data can be used to optimize 

the performance of the solar system, ensuring it operates at peak efficiency. 
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2.4 Application of Algorithms in IoT-Based Energy Management Systems 

The transformative influence of algorithms on IoT-based Energy Management 

Systems (EMS) cannot be understated. They serve as the foundation for the 

development of systems that exhibit enhanced responsiveness, adaptability, and 

proficiency in energy efficiency. In the ensuing discussion, this literature review will 

dissect the intricacies of three pivotal classes of algorithms that have indelibly 

influenced the landscape of IoT-based EMS - namely, rule-based techniques, 

optimization techniques, and AI-Based Techniques algorithms. 

 

Rule-based algorithms, which provide a preset set of instructions, have greatly 

improved the responsiveness of these systems. They respond immediately to energy 

demands depending on predefined criteria. The following are AI-Based algorithms. 

Their self-learning capabilities have advanced IoT-based EMS to a new level of 

efficiency. By utilizing historical data to understand and predict future energy 

consumption trends, these algorithms drive significant energy savings and enhance the 

overall performance of the system. 

 

Completing the triad are optimization techniques, which include both linear 

and nonlinear programming, have given IoT-based EMS an unprecedented level of 

adaptability. They arrange the efficient use of energy resources by maximizing or 

limiting predetermined objectives. This comprehensive investigation endeavors to 

shed light on the significant role played by the various categories of algorithms in the 

realm of Internet of Things (IoT)-based Energy Management Systems (EMS). 
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2.4.1 Rule-Based Techniques 

Rule-based algorithms and rule-based classifiers are both types of artificial 

intelligence systems that use a set of predefined rules to make decisions. However, 

they are typically used in different contexts and have different characteristics. 

 

2.4.1.1 Rule-Based Algorithm 

These are general algorithms that operate based on a set of predefined rules 

[26]. In this section, the Rule-Based system proposed by the authors [21] will be 

examined in detail. As mentioned in the Existing Energy Management System 

Overview section, The system consists of 3 major modules which are programmable 

air conditioner remote controls, smart sockets for monitoring appliance power use, and 

nodes for monitoring room temperature. 

The 1st module that isthe programmable air conditioner remote control, is 

integrated with the proposed HEM (also known as EMS) system so that the system has 

the flexibility to control the AC units. The air conditioner remote control is able to 

learn the IR digital code patterns transmitted by the original AC units. The patterns are 

stored in the microcontroller's memory as digital commands with the various 

temperature settings. 

The 2nd module, the smart sockets for monitoring appliance power use, is used 

in the EMS system. The smart plug/socket can keep track of how much power a 

connected device up to 13 A uses and turn it on or off using a built-in relay. Single-

phase power line voltage and current are measured by the plug/socket, processed, and 

transmitted to the controller. 

The 3rd and final module consist of temperature monitoring nodes, incorporated 

into the proposed HEM. This module monitors ambient conditions including room 

temperature, humidity, illumination, and CO2 concentration. The circuit is also 
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capable of detecting motion in the room via a motion sensor and can therefore provide 

the inputs required by the decision-making algorithm to the main controller. 

All of these three modules are then actuated through the rule-based algorithm. 

A rule-based system is aimed to reduce energy use on a repeatable basis during a 24-

hour period. The algorithm prioritizes user comfort, making it easier to integrate the 

system into the consumer's daily routine without disrupting their lifestyle. The 

algorithm gathers data from a variety of sources, including smart sockets that monitor 

the amount of energy consumed by connected appliances, room condition monitoring 

circuitry that provides data on ambient conditions such as room temperature, humidity, 

illuminance, and CO2 concentration, and a scheduling terminal that retrieves day-

ahead pricing from the website of the utility service specified by the user. Based on 

information gathered from the module, control commands are created and delivered to 

specified smart plugs to turn on/off linked appliances, Zigbee-connected dimmers to 

reduce/increase light intensity of dimmable LEDs, and Zigbee-connected infrared 

remote controls to set ACs to specific temperatures.  

First the authors developed the algorithm to establish comfort ranges for the 

measured appliance. Before developing the algorithm, the authors conducted a survey 

to determine the user's preferences regarding the room's condition, the appliance's 

on/off status, the brightness of the room's lighting, etc. The preset user comfort ranges 

algorithm equation is as in Equation (2-1(2-1) below: 

 

𝑇𝑅𝐸𝐹_𝑚𝑖𝑛 ≤ 𝑇𝑅𝐸𝐹𝑡
≤ 𝑇𝑅𝐸𝐹_𝑚𝑎𝑥   

(2-1) 

 

𝑇𝑅𝑂𝑂𝑀_𝑚𝑖𝑛 ≤ 𝑇𝑅𝑂𝑂𝑀𝑡
≤ 𝑇𝑅𝑂𝑂𝑀_𝑚𝑎𝑥 

𝐿𝑈𝑋𝑚𝑖𝑛 ≤ 𝐿𝑈𝑋𝑅𝑂𝑂𝑀𝑡
≤ 𝐿𝑈𝑋𝑚𝑎𝑥 

𝑇𝑊_𝑚𝑖𝑛 ≤ 𝑇𝑊𝑡
≤ 𝑇𝑊_𝑚𝑎𝑥 

𝑇𝑅𝐸𝐹 is the refrigerator temperature, 𝑇𝑅𝑂𝑂𝑀 is the room temperature, 𝑇𝑊 is the 

water temperature and 𝐿𝑈𝑋 is the illuminance. The maximum and minimum values of 

the ranges indicate the optimal parameter values. These parameters are based on setup 

appliance of the energy management. The author then creates scheduling rules with 
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new parameters like time-of-use (TOU), power consumption, room occupancy (v), and 

desired appliance performance, where the parameters are acquired from several 

circuitries form the proposed HEM system. Proposed schedule Equations 

(2-2),(2-3),(2-4) and (2-5) are as follows:  

 

 

(2-2) 

 

(2-3) 

  

 

(2-4) 

  

 

(2-5) 

Equations (2-2) until (2-5) shows that the appliances On and Off will be 

controlled by the algorithm as long as parameters value are within the range. For 

example, in equation (2-2), the room's luminance is set to 50 percent when it is vacant 

[21]. The remaining illumination that remains within the comfort range during peak 

pricing hours will reduce energy consumption while maintaining user comfort. 

In conclusion, the rule-based algorithm presented for Energy Management 

Systems (EMS) demonstrates a sophisticated approach to energy management, 

particularly from an integrative standpoint. The success of this algorithm is shown by 

its ability to control energy use without disrupting the everyday life of the user. The 

authors’ work is an important addition to rule-based algorithms for EMS, as it skillfully 

combines technology with the needs for human comfort. Even though it's complex to 

include many different factors, the rule-based system, as described in this review, 
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seems to expertly handle the tricky balance between saving energy and keeping users 

comfortable. This gives a hopeful direction for future progress in the EMS field. 

2.4.1.2 Rule-Based Classifier Techniques 

Rule-based Classifier Techniques generate a comprehensive set of "if-then" 

rules to predict outcomes based on input data [52]. These principles are derived from 

training data and can provide both classification and an explanation for why a 

particular instance was classified in a particular manner. The construction of a rule-

based classifier entails several key steps: rule generation, rule pruning, and rule 

ordering [53]. 

 

• Rule Generation: This involves the creation of rules based on the 

training data. There are various methods to generate these rules, 

including separate-and-conquer algorithms, decision tree induction, 

association rule learning, and genetic algorithms. Each method has its 

strengths and weaknesses, and the choice depends on the specific use 

case. 

• Rule Pruning: This is the process of removing or modifying rules to 

improve the accuracy and simplicity of the model. Overly complex 

rules can lead to overfitting, meaning the model becomes too 

specialized for the training data and performs poorly with unseen data. 

• Rule Ordering: Rules are ordered by their estimated quality. This 

means the most reliable rules are placed at the beginning of the list. 

When classifying a new instance, the system will check each rule in 

order and assign the class specified by the first rule that matches the 

instance. 

 

The utilization of rule-based classifiers may play a significant role within 

Energy Management Systems (EMS), which are responsible for the surveillance, 

regulation, and optimization of electricity generation and/or consumption. 
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Authors in [32] uses the Ruled-Based Classifiers at the Demand Side 

Management (DMS) System. The DSM system collects the total house demand (HD) 

power consumption data from the smart plug and preprocessed the data before initiate 

the calculations in the DSM system as shown in Figure 2.1 

 

 

Figure 2.1 DSM System Flowchart [32] 

 

Figure 2.2 Preprocessing procedure [32] 

The preprocessed procedure is where the data of the power consumption by the 

user is identified through the user’s actions number of ON and OFF of the plugs. Then 

this process will sort it out into different hours, calculate the usage of the smart plugs 
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and generate the historical data through a priority list. The priority list will commence 

with the highest power usage as the top priority and the low usage as the low priority 

on the list. Then the lowest priority on the list will be OFF when the power demand 

exceeds the power supply until the power demand is lower than the power supply. 

2.4.1.3 Refining Rules in Rule-Based System 

If the algorithm is underperforming, several strategies can be implemented 

[54]:  

 

• Refine the Rules: The rules might not accurately reflect the complexity 

of the system. They could be based on outdated or incomplete 

information. In such cases, it would be important to revisit the rule-

generation process. 

• Incorporate More Data: If the rule-based classifier is not providing 

the desired results, it could be that more or different types of data are 

needed. For example, incorporating weather forecasts or building 

occupancy data might improve performance. 

• Combine with Other Methods: Rule-based classifiers can also be 

combined with other machine-learning techniques to form a hybrid 

model. For example, a neural network could be used to generate a set 

of potential rules, which are then pruned and ordered using traditional 

rule-based techniques. 

• Continuous Monitoring and Adjustment: An important aspect of 

using rule-based classifiers, or any machine learning model, in a real-

world application like an EMS, is the need for continuous monitoring 

and adjustment. As the system and environment change over time, so 

should the rules. 

• Fine-tuning: The model parameters can be adjusted to get better 

performance. For example, the threshold of a rule can be adjusted to 

better fit the specific context of the energy management system. 
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2.4.2 AI-Based Techniques in EMS 

AI-based techniques are important in energy management systems because 

they use advanced algorithms and computational models to optimize energy use, 

improve efficiency, and minimize costs. Artificial neural networks (ANNs) and fuzzy 

logic control (FLC) are two popular AI techniques utilized in energy management 

systems. 

2.4.2.1 Artificial Neural Networks 

ANNs (Artificial Neural Networks): ANNs are computer models inspired by 

the form and operation of biological neural networks, such as the human brain. They 

are made up of interconnected nodes termed artificial neurons or perceptrons that are 

arranged in layers. ANNs are trained on a dataset to discover patterns, correlations, 

and linkages. ANNs that have been trained can make predictions or choices based on 

new inputs. 

When it comes to energy management systems, ANNs can be quite beneficial. 

Energy management involves planning and operating energy production and 

consumption units. The goal is to conserve resources, protect the environment, and 

reduce costs. This involves the use of renewable energy resources, demand forecasting, 

optimization of energy use, and more. ANNs can help with energy forecasting, which 

is crucial for efficient energy management. They can learn patterns in energy usage 

and predict future consumption based on historical data. This can be used to optimize 

energy production and distribution. 

Furthermore, ANNs can be used to control and optimize energy usage in 

buildings and industry. For instance, an ANN could learn the energy usage patterns of 

a building and control heating, ventilation, and air conditioning (HVAC) systems to 

minimize energy use while still meeting occupants' needs. 

In [24], an architecture of an Intelligent Smart Energy Management System 

(ISEMS) that capable of hourly and daily accurate renewable energy (solar energy) 

forecasting is proposed. Thus, this section will examine [24] proposed architecture in 
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which the authors tested several machine learning prediction models as a technique for 

forecasting solar energy generation. 

 

Figure 2.3 The flowchart  of the proposed model [24] 

Figure 2.3 shows the flow of the proposed prediction model where the data 

collection is gathered through the ISEMS data collection module. From the data 

collection, the preprocessing is done before goes into the regression model. The 

regression model in the flow chart is used to determine a function that approximates 

the target values accurately using a set of input values. Initial variable, max-depth and 

coefficients are varied to build an accurate model [24]. Then, the prediction model is 

trained with the data given. The prediction model or known as the ANN algorithm, 

will be in the training phase that splits into training and testing sections. The operation 

of the Artificial Neural Network (ANN) model encompasses the analysis of historical 

data, integrating a diverse set of input parameters, including temperature, wind speed, 

time of day, and month. Subsequently, the data is partitioned, with 75% allocated to 

form the training set, and the remaining 25% designated as the testing set. 
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Figure 2.4 Prediction Results using Different Types of Prediction 

Models [24] 

Figure 2.4 illustrates that the ANN models predict solar irradiance less 

accurately than the other models, but better than PSO-ANN. Other models such as 

PSO-ANN, SVM, Ens and PSO-SVM show better performance in predicting when the 

AI Based Techniques are combined with the optimization techniques. In these results, 

the PSO- SVM model outperforms the rest in terms of accuracy. 

In conclusion, Artificial Neural Networks (ANNs), with their ability to analyze 

and interpret complex datasets, provide significant advantages in energy management 

systems. They hold considerable potential for optimizing energy production and 

distribution, controlling energy usage in buildings, and even forecasting future energy 

demands. However, while ANNs can effectively learn and predict based on historical 

data and diverse input parameters, the accuracy of their predictions might still be 

improved. 

The exploration of other machine learning models, as discussed in [24], 

introduces the concept of enhancing ANN performance by integrating it with other 

techniques. The proposed Intelligent Smart Energy Management System (ISEMS) 

architecture includes the application of different prediction models, including the 
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ANN, to forecast solar energy generation. While the ANN model demonstrated 

commendable predictive capability, it was observed that it was not the most accurate 

when compared to other models, such as the PSO-ANN, SVM, Ens, and PSO-SVM. 

Of note is the superior performance of models like the PSO-SVM, which 

combines artificial intelligence techniques with optimization methods, signifying that 

the integration of ANNs with additional strategies can potentially enhance their 

predictive accuracy. Therefore, the incorporation of ANNs with other techniques in 

energy management systems is a promising direction for future research and 

development, with the aim of achieving more accurate and efficient energy forecasting 

and optimization. 

 

2.4.2.2 Fuzzy Logic Control 

Fuzzy logic control systems play a significant role in engineering and are often 

the natural choice for designing control applications. They are popular and appropriate 

for controlling home and industrial appliances, and there's constant research by 

academic and industrial experts to propose innovative and effective fuzzy control 

systems. Applications of these systems can be found in energy and power systems, 

navigation systems, imaging, and industrial engineering [55]. 

A fuzzy control system is based on fuzzy logic, a mathematical system that 

analyzes analog input values in terms of logical variables that can take on continuous 

values between 0 and 1, as opposed to classical or digital logic that operates on discrete 

values of either 1 or 0 (true or false, respectively) [56]. Fuzzy logic allows for the 

handling of concepts that cannot be strictly classified as true or false, but rather as 

partially true, making it easier to mechanize tasks that are already successfully 

performed by humans [56]. 

Fuzzy logic was proposed by Lotfi A. Zadeh in 1965, and its first industrial 

application came in 1975 in a cement kiln in Denmark [57]. Japanese engineers 

subsequently developed a wide range of fuzzy systems for both industrial and 
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consumer applications, such as vacuum cleaners that use microcontrollers running 

fuzzy algorithms to adjust suction power, and washing machines that use fuzzy 

controllers to set the wash cycle for the best use of power, water, and detergent [57]. 

Fuzzy logic control can be used in energy management systems as well. FLC 

can be used in energy management systems for load balancing, improving energy 

distribution, and demand response. Fuzzy logic is capable of dealing with the 

fluctuation and uncertainty associated with energy demand and supply, allowing for 

better control and decision-making. FLC allows the system to adapt and respond to 

changing conditions, ensuring energy efficiency while preserving comfort and 

stability. In the previous section of the literature review, a paper [29] presented their 

Energy Management System (EMS) which utilizes Fuzzy Logic Control (FLC). 

Fuzzy logic control involves three main steps: 

• Fuzzification: The crisp input values are converted into fuzzy sets. In 

this process, the membership function is used to determine the degree 

to which an input belongs to each of the fuzzy sets. 

• Inference: The fuzzy rule base, which is a collection of IF-THEN rules, 

is applied to the fuzzy sets from the fuzzification process. The output 

of the inference step is a fuzzy set. 

• Defuzzification: The fuzzy output set from the inference step is 

converted back into a crisp value, which can be used to control the 

system. 

The main advantage of fuzzy logic control is its ability to handle uncertainty 

and non-linearity. It is also less dependent on precise mathematical models, making it 

suitable for complex systems where the relationships between variables are not well 

understood. 

 

2.4.2.3 XGBoost 

XGBoost, which stands for eXtreme Gradient Boosting, is an ensemble 

learning algorithm based on the Gradient Boosting Decision Tree (GBDT) algorithm 
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[58]. XGBoost is a machine learning framework specialized in tree boosting. It 

facilitates the creation of a group of decision trees that perform either classification or 

regression tasks on the input data. These trees are commonly referred to as CART 

(Classification and Regression Trees) because of their dual capability. In a decision 

tree, the response can be binary (determining whether the input data falls into a specific 

category) or numerical, often expressed through a function. XGBoost employs the 

numerical approach in tree boosting, resulting in an ensemble output that takes a 

particular form. 

�̂�𝑖 =  ∑ 𝑓𝑥(𝑥𝑖)

𝑘

𝑘=1

 (2-6) 

𝑥𝑖 denotes an input pattern to be classified, 𝑓𝑥(𝑥𝑖) is the function representing 

each decision tree's output, K is the total number of trees, and �̂�𝑖 is the collective 

response of the entire tree ensemble. The training process involves using pairs of input 

and desired output (𝑥𝑖, 𝑦𝑖), where 𝑥𝑖 is the pattern to be classified and 𝑦𝑖 is its expected 

result. The goal is to fine-tune the tree structure's parameters by minimizing a cost 

function in a supervised manner. However, this task is more challenging compared to 

learning methods used in other machine learning models, like the gradient descent in 

neural networks, as simultaneously training all trees can be computationally 

demanding. Therefore, a simplified, iterative approach called "boosting" is employed, 

where each tree is trained one step at a time. 

The training procedure begins by setting the initial prediction value to zero. 

�̂�𝑖
0 =  0 (2-7) 

In this formula, the superscript indicates the time step in the process. At this 

point, a first tree, characterized by its defining function, is incorporated into the tree 

ensemble, resulting in the following output: 

�̂�𝑖
1 = �̂�𝑖

0 + 𝑓1(𝑥𝑖) =  𝑓1(𝑥𝑖) (2-8) 

This newly added tree is trained using a portion of the training dataset, after 

which predictions are made for the entire dataset. Since several of these predictions 

might differ from their anticipated values, another tree is introduced and trained 
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specifically with the patterns that were previously misclassified. Consequently, the 

prediction function of the ensemble is updated to: 

�̂�𝑖
2 = �̂�𝑖

1 + 𝑓2(𝑥𝑖) =  𝑓1(𝑥𝑖) + 𝑓2(𝑥𝑖)  (2-9) 

This procedure continues until either a specific level of accuracy is attained, or 

the total number of trees hits a predetermined limit. At this point, the predictive 

function of the tree ensemble will be: 

�̂�𝑖
𝑡 = �̂�𝑖

𝑡−1 + 𝑓𝑡(𝑥𝑖) =  ∑ 𝑓𝑘(𝑥𝑖)

𝑡

𝑘=1

 (2-10) 

The cost function that needs to be minimized during the training of the trees is: 

ℒ = ∑ 𝑙 (�̂�𝑖, 𝑦𝑖)

𝑖

=  ∑ 𝛺(𝑓𝑘)

𝑡

𝑘=1

 (2-11) 

'i' represents the count of training patterns, and 'k' signifies the total number of 

trees. The term (�̂�𝑖, 𝑦𝑖) quantifies the error in each prediction, commonly using the 

Mean Squared Error as the metric. The term 𝛺(𝑓𝑘) is a regularization component that 

assesses the complexity of the tree structures. Its purpose is to encourage the formation 

of as simple a tree structure as possible. 

In the context of energy management systems, especially those integrated with 

IoT, the predictive capability of XGBoost can be leveraged for forecasting energy 

prices, energy consumption patterns, or CO2 emissions, leading to more efficient 

energy use and better environmental policy decisions. [59] paper demonstrates the 

effectiveness of XGBoost in handling time-series data like EUA prices, which are 

critical in the energy sector. By accurately predicting these prices, IoT-based energy 

management systems can optimize energy usage and reduce costs, contributing to 

more sustainable and economically efficient energy practices. 

Machine learning is also good for making energy consumption prediction [60]. 

The XGBoost model is highly applicable for predicting energy consumption in IoT-

based energy management systems. By leveraging its strong predictive capabilities, 
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the XGBoost algorithm can analyze large datasets from various IoT devices to forecast 

energy usage patterns accurately. This is crucial in optimizing energy distribution, 

reducing waste, and managing demand-supply dynamics effectively. In energy 

management systems, such detailed and reliable predictions enable smarter decisions, 

promoting energy efficiency and sustainability. The integration of XGBoost into IoT 

frameworks therefore represents a significant advancement in the field of energy 

management. 
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2.4.3 Optimization Techniques  

Energy management systems (EMS) are complex networks that require 

efficient optimization techniques to ensure optimal energy usage, reduce costs, 

improve resilience and sustainability, and mitigate environmental impacts. 

 

2.4.3.1 Linear model algorithms 

Linear Programming (LP): Linear programming is a method used in 

optimization where the objective function and constraints are all linear. Particularly, 

the Arithmetic Optimization Algorithm (AOA) is a linear programming which is used 

by authors [30]. In other paper, [39] proposed the mix integer linear programming 

(MILP) to be implemented as it is proven that the application able to deceasing the 

daily energy electricity bill by 25%. 

LP is a widely used optimization technique in energy management systems to 

manage energy usage and costs, especially when the system under consideration has 

continuous variables and linear relationships. It's typically used for planning and 

scheduling of resources, optimal power flow, and energy dispatch among others [61]. 

This section will examine two different types of linear model algorithms, 

namely Arithmetic Optimization and mix integer linear programming (MILP) and 

highlight their differences. Authors in [30] shows the arithmetic optimization 

algorithm that authors [62] proposed. 

Arithmetic is a fundamental component of number theory, and AOA derives 

its inspiration from the application of arithmetic operators to solve arithmetic issues. 

Similar to other population-based algorithms, AOA starts its enhancement process 

with a randomly generated initial population within the problem's search area. The 

optimal solution found in each cycle is evaluated against the best solution achieved up 

to that point and will supersede it if found to be better. The matrix below displays the 

initial population: 
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(2-12) 

N signifies the count of available solutions within the initial group, while n 

represents the dimensions or aspects of the problem at hand. During each cycle of the 

AOA optimization procedure, the exploration phase is chosen utilizing the Math 

Optimizer Accelerate (MOA) function. The formulation of the MOA function is given 

by the ensuing equation: 

 
(2-13) 

In this case, MOA (𝐼𝑡𝑒𝑟) symbolizes the function's value at the tth iteration, 

while Iter stands for the present iteration, and 𝑀𝐼𝑡𝑒𝑟 denotes the highest number of 

iterations possible. Furthermore, 𝑀𝑖𝑛 and 𝑀𝑎𝑥 correspond to the lowest and highest 

values, respectively. 

On the other hand, Mixed-integer linear programming (MILP) is a 

mathematical optimization approach that can be used to solve problems that require 

integer solutions. In this case, "mixed" means that some of the variables are required 

to be integer, while others are allowed to be continuous. This type of problem is more 

general than a pure integer linear programming problem, where all variables must be 

integer. The MILP model must have the Decision variables, objective function and 

constraints. In [39], the objective of the authors is to minimize the total electricity bill 

where the equation is: 

𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝐵𝑖𝑙𝑙 = ∑ ∑ 𝑇𝑎𝑟𝑟𝑖𝑓𝑡  ×  𝑃𝑖,𝑡

𝑁𝐴

𝑖=1

𝑁𝑇

𝑡=1

 ×  ∆𝑡   (2-14) 
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2.4.3.2  Particle Swarm Optimization (PSO) 

PSO is a computational method that optimizes a problem by iteratively trying 

to improve a candidate solution. PSO simulates the behaviours of bird flocking and 

fish schooling. In energy management, PSO has been used in optimizing power 

generation, load dispatch, and distributed energy resource management. However, it 

is important to note that PSO performance highly depends on parameter tuning [63]. 

As mentioned in the section titled 2.2.1, ‘the Summarization of the Existing 

Energy Management’, [24] and [26] implemented PSO to predict the solar irradiance 

and schedule optimally the appliance operation respectively. Authors in [24] are more 

on experimenting the prediction models where they integrated the AI-Based 

techniques with PSO to get better accuracy. Thus, this section will examine the 

implementation of PSO algorithm in [26] that benefits the Energy Management 

system. 

 

Figure 2.5 Geometric representation of PSO algorithm [26] 

Figure 2.5 illustrates an algorithm that showcases the optimization process of 

a problem through geometric representation. It uses yellow color to depict a population 

of particles, each of which aims to find the optimal point. As the particles move 

iteratively, the algorithm updates the search area, along with the individual particle's 

position 𝑥𝑖, speed 𝑣𝑖 and its personal experience (𝑃𝑏𝑒𝑠𝑡
𝑖 : representing the best position 

visited by particle i) and social experience (𝑔𝑏𝑒𝑠𝑡: indicating the best position visited 
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by the entire population). After few iterations, the particles converge towards the 

optimal zone. 

{
𝑣𝑖(𝑘 + 1) = 𝑤(𝑘) 𝑣𝑖(𝑘) + 𝑐1𝑟1[𝑝𝑏𝑒𝑠𝑡

𝑖 − 𝑥𝑖(𝑘)] + 𝑐2𝑟2[𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑘)]

𝑥𝑖(𝑘 + 1) = 𝑥𝑖(𝑘) + 𝑣𝑖(𝑘 + 1)
 (2-15) 

 

• 𝑣𝑖(𝑘 + 1) et 𝑣𝑖(𝑘):designated velocities of particle I in iteration k+1 et 

k. 

• 𝑥𝑖(𝑘 + 1) et 𝑥𝑖(𝑘): designated position of particle i in iteration k+1 et 

k. 

• 𝑐1 et 𝑐2: cognitive and social learning factor respectively 

• 𝑟1 et 𝑟2: two stochastic aleatory variables within the interval [0,1] 

• 𝑝𝑏𝑒𝑠𝑡
𝑖  et 𝑔𝑏𝑒𝑠𝑡: best personal position of particle I and best global 

position of the entire position. 

 

Figure 2.6 PSO-Algorithm for solving the optimization problem [26] 

However, the authors proposed the multi objective Particle Swarm 

Optimization (MOPSO) algorithm to be used in the system as depicted in Figure 2.6. 



57 

MOPSO is an extension of PSO that addresses problems with multiple conflicting 

objectives. In MOPSO, the algorithm aims to find a set of solutions that represent a 

trade-off between different objectives, instead of a single optimal solution. These 

solutions are known as the Pareto front or Pareto set. The Pareto front represents a set 

of solutions where no other solution can improve one objective without sacrificing 

another. MOPSO algorithms employ techniques such as dominance comparison, 

crowding distance, or fitness assignment to guide the particles towards the Pareto front 

and maintain a diverse set of non-dominated solutions [64]. PSO is focused on 

optimizing a single objective function, while MOPSO is specifically designed to 

handle problems with multiple conflicting objectives and find a set of solutions that 

represent the trade-off between these objectives. 

2.4.3.3 Stochastic Optimization 

Stochastic optimization is a mathematical optimization technique used to solve 

problems involving randomness or uncertainty. To manage these uncertainties and 

enhance the system's robustness, stochastic optimization techniques can be employed 

[65]. Stochastic optimization can be used to address the Stochastic Economic Dispatch 

(SED) problem in the context of energy management. 

In power systems, the Economic Dispatch (ED) problem is a fundamental 

optimization issue. It entails determining the optimal generation schedule for power 

plants in order to fulfill anticipated demand at the lowest possible cost while adhering 

to multiple operational constraints. In practice, however, there are uncertainties in 

factors such as load demand, renewable energy generation, and fuel prices that can 

have a significant influence on the efficacy of the power system. 

The (SED) problem extends the traditional ED problem by considering these 

uncertainties explicitly. It incorporates probabilistic models for uncertain variables and 

aims to find a generation schedule that minimizes the expected cost or maximizes the 

expected profit, taking into account the stochastic nature of the system. A stochastic 

economic dispatcher optimizer optimizes the operation of the unbalanced three-phase 

AC microgrids [25]. 
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Its primary purpose is to determine the optimal day-ahead scheduling of 

distributed energy resources (DERs) in the microgrid. The EDO employs a mixed-

integer linear programming (MILP) model to guarantee the day-ahead dispatch of 

DERs while adhering to grid constraints such as voltage, current, and power limits. In 

addition, the optimization module considers security constraints for unplanned 

islanded operation and stochastic scenarios of local demand and renewable generation. 

Using an optimal power flow calculation for unbalanced three-phase AC networks, the 

EDO determines the optimal day-ahead dispatch of DERs. 
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METHODOLOGY 

3.1 Introduction to the Project Methodology 

The primary goal of this project is to develop an Internet of Things (IoT) based 

energy management system, with a particular focus on demand-side management 

(DSM) for air conditioners and room lighting. This project was conducted in three 

distinct phases, or experiments, each contributing a specific element to the final 

system. To achieve this goal, three specific objectives were identified, with each 

objective corresponding to a distinct experiment in the project. 

In the first experiment, a commercially available smart socket was utilized to 

develop and integrate a real-time monitoring and automation system for these 

appliances. By capturing real-time power, the system forms a foundation for effective 

DSM. 

In the second experiment, an intelligent algorithm was designed and 

implemented to manage the energy consumption of these appliances, taking into 

account the principles of DSM. Algorithms based on machine learning or optimization 

techniques were considered, aiming to enhance the energy management system's 

decision-making process about when and how intensively to use energy. 

In the third and final experiments, the system's performance was critically 

analyzed and enhanced based on the output from the implemented algorithm. The 

central focus was to compare the power consumption efficiency with and without the 

use of the developed energy management system. Data regarding the energy 

consumption of the air conditioner and lighting under various conditions were 

meticulously captured. The accuracy of these measurements, captured by the smart 

socket, was then evaluated. 
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All collected data were thoroughly analyzed, and results were represented 

visually using graphs for better understanding and comparison. The effectiveness of 

the implemented algorithm in enabling efficient DSM and reducing energy 

consumption was assessed based on these analyses. 

Finally, based on the insights gained from the visual data analysis, 

enhancement strategies were developed. These could include fine-tuning the 

algorithm, adding more variables or factors, or improving the hardware for better data 

accuracy for future research. 

3.2 Development Design 

This section of this methodology chapter outlines the systematic approach 

employed in the creation of an IoT-based energy management system. This system 

aims to enhance energy efficiency by automating the control of air conditioner and 

lighting systems while incorporating a rule-based algorithm. By integrating cutting-

edge technologies and intelligent decision-making processes, this development 

endeavors to optimize energy consumption and improve overall Energy Management 

system. This section delves into understanding of the system's development and its 

potential for achieving significant energy savings. 

In addition, this development will involve conducting several experiments to 

assess the system's performance and identify areas for potential improvement. A 

detailed explanation of these experiments will be provided in the subsequent section, 

"Experimental Setup.". These experiments will be carried out to evaluate the 

effectiveness of various parameters, such as energy consumption, comfort levels, and 

response times, under different scenarios and conditions. By thoroughly analyzing the 

results obtained from these experiments, the design can be refined to ensure optimal 

functionality. This iterative approach will enable the system to evolve and adapt, 

ultimately leading to an enhanced energy management solution that maximizes 

efficiency and user satisfaction. 
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3.2.1 Parameters 

Several parameters investigate the vital variables influencing the Energy 

Management System (EMS) algorithm and the automation of the air conditioning and 

lighting system. These parameters serve as the basis for developing effective 

algorithms and automation strategies. The following parameters were considered: 

Table 3-1 Parameters Involved for the Development of Energy 

Management System 

Parameters Description 

Power Consumption 

(W) 

The energy consumption of appliances, specifically air 

conditioners and room lighting, is a crucial parameter in 

designing an energy management system. By monitoring 

and optimizing power consumption, it is aimed to reduce 

energy waste and promote efficient usage. 

Illuminance (lux) 

Illuminance, measured in lux, plays a significant role in 

the room lighting automation system. The incorporation 

of a light sensor and subsequent adjustment of LED bulb 

brightness facilitate efficient lighting control, contingent 

on the natural lighting conditions of the room. 

Room Temperature 

(°C) 

Room temperature is a critical factor in the automation of 

air conditioner energy consumption. The process of 

monitoring and regulating the temperature, in accordance 

with user preferences and room occupancy, aids in 

optimizing energy usage without sacrificing comfort. 

 

3.2.2 Equipment 

The section outlines the key components and devices utilized in the 

development and implementation of the energy management system. These 

components form an integral part of the experimental setup and enable real-time 

monitoring, automation, and data analysis. The following equipment was employed: 
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Table 3-2 Equipment Involved for the Development of Energy 

Management System 

Tool / Equipment Description 

Smart Socket 

Smart socket served as the central monitoring and 

control device in the experimental setup. It provided 

real-time measurements of power, enabling accurate 

data collection for energy consumption analysis. 

Microcontroller 

A microcontroller was utilized to integrate and control 

the various components of the energy management 

system. It acted as the main controller for receiving 

data, executing algorithms, and sending commands to 

appliances for automation purposes. 

IR Transmitter and 

Receiver 

The IR transmitter and receiver were essential 

components in the air conditioner automation system. 

They facilitated wireless communication between the 

main controller and the air conditioner, enabling remote 

control and temperature adjustment. 

Light Sensor and Passive 

Infrared (PIR) Sensor 

The light sensor and PIR sensor were incorporated into 

the room lighting automation system. The light sensor 

detected ambient illuminance, while the PIR sensor 

detected human motion, allowing for intelligent lighting 

control based on occupancy and lighting requirements. 

Node-RED and Node-

Red Dashboard 

Visualization 

Node-RED, a visual programming tool, was used to 

extract data from the smart socket Cloud API, process 

the energy consumption data, and feed it to the main 

microcontroller. Additionally, Node Red Dashboard 

visualization was employed to enhance energy 

awareness and control applications. 
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3.3 Experimental setup 

In order to comprehensively test and evaluate the proposed IoT-based energy 

management system, a robust experimental setup was designed and implemented. This 

experimental setup consisted of a variety of components, each fulfilling a specific role 

in the system. 

The heart of the experimental setup is the commercially available smart socket. 

This device was selected for its ability to provide real-time monitoring of the power, 

current, and voltage used by the attached appliances, in this case, an air conditioner 

and room lighting. This smart socket also allows for remote control of the connected 

devices, enabling automation and intelligent control, which is a core requirement for 

an effective demand-side management system. Among the many available smart 

sockets, the TP-Link Tapo P110 smart socket is distinguished by its better 

specifications. 

The experimental setup was centered around the TP-Link Tapo P110 smart 

socket. This device was selected due to its remote-control capability, scheduling 

feature, timer function, and its compact design. Most importantly, it allowed for the 

collection of real-time data on power, which is a critical component for the demand-

side management system being developed. 

 

Figure 3.1 TP-Link Tapo P110 Smart Socket [66] 

The specifications of the TP-Link Tapo P110 used in the experimental setup 

are presented in the table below: 
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Table 3-3 Specification of the TP-Link Tapo P110 [66] 

Features Specification 

Network IEEE 802.11b/g/n, Bluetooth 4.2 

Wireless Type 2.4 GHz 

System Requirements 
Android 4.3 or higher, iOS 9.0 or 

higher 

Dimensions 2.0* 2.8* 1.6 in (5172.040 mm) 

Material PC 

Buttons Power Button, Status LED 

Power Requirements AC 220-240 V~50/60 Hz 13 A 

Maximum Load 2990 W, 13 A 

Operating Temperature 0 ºC–35 ºC 

Operating Humidity 10%–90%RH, Non-condensing 

In conducting the project, the well-established model presented by Hussain 

Shareef et.al in his landmark paper, "Wireless Home Energy Management System with 

Smart Rule-Based Controller" was followed [21]. The objective was to validate and 

reinforce Dr. Shareef's pioneering contributions to Energy Management Systems, 

while primarily focusing on evolving these concepts within the context of the Internet 

of Things (IoT). This adaptation involved customizing the original methodology to 

meet the specific requirements of the component specifications under consideration. 

The vision remained, that is, to develop an innovative Energy Management System, 

augmented through the integration of IoT technologies. 

 

3.3.1 Experiment 1: Development and Integration of an IoT-Based Real-Time 

Monitoring and Automation System for Air Conditioners and Room 

Lighting 

Many of the commercial buildings have several air conditioners units and most 

of the rooms in the commercial building require a lighting system even when there are 

windows present. Insufficient natural light, daylight variability, task-specific lighting 

and energy efficiency are influenced the implementation of the lighting system. 
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Commercial buildings often employ centralized control systems for managing air 

conditioning and main area lighting [67]. These systems are crucial for maintaining 

occupant comfort and ensuring energy efficiency. Research has shown that integrated 

automation systems can effectively manage major loads in commercial buildings, 

including cooling, lighting, and plug loads, while maintaining occupant environmental 

preferences. This situation may be inefficient in terms of saving energy consumption. 

The tracking of the energy consumption is also based on the monthly usage of the 

electricity bill. Thus, this makes it hard for the user to keep track of energy 

consumption footprint. Also, some of the energy may be wasted from the overuse of 

these two systems. For example, if the room has high illumination because of the good 

lighting from the windows, the room lighting may not necessarily be turned on. The 

automation system can be implemented to control these two-power eater energy 

consumption. For this experiment, the development, and the integration of the IoT-

based real-time monitoring and automation system for air conditioners and room 

lighting will be breakdown into several mini experiments which are: 

• Development and integration of IOT-based real-time monitoring. 

• Automation of air conditioner system 

• Automation of room lighting System   
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3.3.1.1 Experiment 1 A: Development and Integration of an IoT-Based Real-

Time Monitoring 

 

Smart Socket Wifi Connection

Led Lights

Air Conditioner

Node Red Server

Data Extraction 
and Processing

Dashboard 
Visualization

 

 

 

Figure 3.2 Block Diagram of the Real Monitoring of Energy 

Consumption 

Figure 3.2 shows the solution of monitoring system of the energy consumption. 

The watt (W) energy will be the main parameter that will be monitored in real time. 

The P110 smart socket is employed to measure the actual energy consumption of both 

the lighting system and the air conditioner. In order to enhance accuracy, the lighting 

system exclusively utilizes LED lights, while the number of air conditioners measured 

is limited to a single unit. When the smart socket captures the energy consumption at 

that particular time, the Wi-Fi connection will be used to wirelessly send the data to 

their cloud Api which is Tp-Link cloud. Since the data is sent to their cloud, the data 

needs to be extracted from the cloud in order to get the energy consumption 

measurement. Thus, the Node-Red program will be the program that will get the 

energy data from the TP-Link Cloud Api data.  

Node-RED, an invention of IBM, is a tool for visual programming that utilizes 

a flow-based model. It's specifically designed to interconnect hardware devices, APIs, 

and various online services in innovative ways [68]. Developed on Node.js, a runtime 

environment for JavaScript, it features a web-based editor for creating flows. This 

editor simplifies the process of combining different nodes from a comprehensive 

palette into functional flows. Once the energy in Watts has been extracted by the node-
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Red, the data will be sent to the main microcontroller for the data feeding process to 

the algorithm of the Energy Management system and also the data will be presented in 

a graphical representation on the Node-Red dashboard. The Grafana Visualization 

might as well be considered to improve energy awareness and control applications 

[33]. 

3.3.1.2 Experiment 1 B: Automation of Air Conditioner System 

Start

Receive IR Commands from Original Remote 

Decode the commands into byte arrays

Save the arrays  in the microcontroller 
memory with their corresponding 

functionalities

Wait to receive temperature settings from 
main controller

Received?

Acuate the command through the IR 
transmitter

Yes

No

 

Figure 3.3 Operation of the IR Remote control of Air Conditioner [21] 

This section contains automation that controls the temperature of an air 

conditioner. The air conditioner originally had a remote control that allows the user to 

manually adjust the modes and desired temperature. First, the air conditioner 

automation system's hardware must be incorporated with components such as an IR 

Transmitter, an IR Receiver, a microcontroller (ESP32 or Arduino), and a power 
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supply. These integrated components will autonomously control the room's 

temperature based on settings made wirelessly by the user from either inside or outside 

the room. The controlling parameter is the Celsius (°C) temperature. 

Figure 3.3 depicts the flow of the automation that controls the temperature level 

of the room in order to automate the air conditioner. The processes begin by identifying 

the original air conditioner remote controls by storing the commands within the 

microcontroller. The IR Receiver will capture the command from the remote control. 

The commands will be stored in a microcontroller array along with the corresponding 

functionality command (e.g., Fan Speed, Lowering or Raising Room Temperature, 

etc.). Once the command is saved, the energy management system's main controller 

will prepare to send an order to the air conditioner the user controls from the EMS 

system. The IR Transmitter will be used to actuate the commands received from the 

main controller. 
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3.3.1.3 Experiment 1 C: Automation of Room Lighting System 

Start

Initialize PIR Sensor, Light 
Sensor dan PWM Output

LED Light Off

Human Motion 
Detected?

Set the vacancy 
status to 1 for 3 

minutes

Yes

LUX_ROOM_t 
detects sufficient  

light?

Adjust LED light 
brightness 

(LUX_ROOM_t )

No

LED Light On for 5 
minutes

Yes

Human Motion 
Detected?
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No

Set Vacancy 
Status to 0, LED 

Light Off

No

Command from 
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Execute 
Command from 
Main Controller
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End
 

Figure 3.4 Operation of the Room Lighting Automation System 

This experiment is designed to regulate a room's lighting system through 

automation. To ensure consistency and reduce the potential for variable interference, 

only LED bulbs are utilized throughout the experiment. Traditional lighting systems 

make use of wall-mounted switches to turn lights ON and OFF. However, in scenarios 

where a room's illumination is predominantly sourced from windows, the maximal 

brightness of an LED bulb is deemed unnecessary, leading to an avoidable waste of 

energy. Consequently, a modified LED bulb, capable of dimming and allowing 

brightness control, is introduced. 
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Energy wastage is also recognized in cases where lights remain on in 

unoccupied rooms. The operational structure of this automated system is described in 

Figure 3.4. A Passive Infrared (PIR) Sensor and a Light Sensor are deployed to detect 

environmental changes, producing the appropriate output to regulate room lighting 

accordingly. 

A Pulse Width Modulation (PWM) output, generated from a microcontroller, 

controls the dimming process. The process commences by initializing the PIR Sensor, 

Light Sensor, and PWM Output. In the absence of human detection by the PIR Sensor, 

the LED light remains OFF. Upon detecting human movement, a variable parameter 

'v', signifying room occupancy, transitions from 0 to 1 for a period of three minutes. 

This variable plays a significant role in Experiment 2. 

The parameter LUX_ROOM_t records the value provided by the Light Sensor, 

measuring the room's illuminance. If the sensor detects sufficient light, the LED light 

is activated. If the room's illuminance is deemed insufficient, the PWM output 

modifies the bulb's brightness. As human beings typically move when required and 

stay still when not, the PIR sensor ceases to detect human motion after a span of three 

minutes. If no movement is detected after this interval, the variable 'v' reverts to 0 and 

the LED light is switched OFF. 

The automated system continues to function in this manner until a stop 

command is issued by the main controller. At this point, the automation system ceases 

operations, allowing for the initiation of other processes. 
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3.3.2 Experiment 2: Implementation of Algorithm for Air Conditioner Energy 

Consumption and Room Lighting System (Fuzzy Logic Rule Based) 

Start

Obtain user preferences as constraints

Set temperature and lux limits 

Monitor the power consumption of attached 
loads. T_room_t,V and Lux_room_t

V=1?
Turn off light and 

AC
No

B A

Output Yes
Output Yes

Output No
Output No

Yes

 

Figure 3.5 Flowchart of the Rule-Based Algorithm 
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Figure 3.6 Flowchart A Subfunction Process 
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Figure 3.7 Flowchart B Subfunction process 

Figure 3.5,Figure 3.6 and Figure 3.7 are modified versions of Energy 

Management System in [21]. The system harnesses real-time data from room condition 

monitoring circuits, which are instrumental in tracking variations in key environmental 

parameters such as illuminance, room temperature and vacancy. [21]emphasized using 

the rule-based algorithm to reduce the energy consumption where all the rules are listed 

according to the preference of the user on how they wanted to use their electrical 

appliances without affecting the performance. Crucially, this system also incorporates 

the measurement of energy consumption, thus offering a holistic view of the energy 

efficiency landscape within a given environment.  

This IOT based system for energy management system adapts Fuzzy Logic 

Rule-Based (FLRB) approach. Unlike conventional binary logic systems, the FLRB 

approach manages the inherent uncertainty and variability in environmental 

parameters. For instance, room temperature and illuminance do not adhere to binary 

states but rather exist on a continuum. The FLRB, with its ability to process varying 

degrees of truth, aligns seamlessly with this reality, thereby enhancing decision-

making accuracy. The modified flowchart will be the framework to construct the fuzzy 

logic base rule algorithm. 
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The system integrates three key inputs, that are temperature, vacancy 

(alternatively known as occupancy), and light intensity. The outputs, derived through 

a fuzzy logic-based decision process, manage two systems,: the air conditioning and 

the lighting. The fuzzy logic's rule base is initially established not based on customer 

preferences, but as a test configuration to evaluate daily energy consumption. This test 

setup considers hypothetical user preferences, including desired light intensity, 

preferred temperature settings, and specific requirements for a confined space. These 

test preferences are then utilized to construct the fuzzy sets for each category, enabling 

the examination of the fuzzy logic system's effectiveness in a controlled environment. 

 

Table 3-4 Fuzzy Logic Input and User Preference 

Inputs Description (Linguistic Variables) 

Temperature Continuous range from 15 to 31 degrees 

Celsius. Categorized into three sets: 

• Low (15 to 22 °C) 

• Moderate (21 to 27 °C) 

• High (26 to 31 °C) 

Light Intensity Measured in Digital Units ranging from 

0 (brightest) to 4095 (darkest). 

Categorized into three sets: 

• Low (3000 to 4095) 

• Moderate (1500 to 3500) 

• High (0 to 2000) 

Vacancy Binary Input indicating room 

occupancy. 

• Vacant 

• Occupy 

 

For the light intensity, the decision to use digital units instead of lumen or lux 

for measuring light intensity with an LDR (Light-Dependent Resistor) is primarily due 

to the inherent characteristics of LDRs and the practical challenges associated with 

calibrating them for accurate light measurements. First is LDR is known for the 
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nonlinear response to light intensity. Also, to accurately measure light intensity in lux 

or lumens using an LDR, a detailed calibration process is necessary. This involves 

using a known light source and precisely measuring the LDR's response to different 

light levels. Given that LDRs can vary significantly in their characteristics. For this 

project, having the understanding of light intensity whether it is low, moderate, or high 

is sufficient. Also, the use of digital units provides a simple and effective means to 

monitor and respond to changes in light condition without the need for calibrated lux 

or lumen measurement. 

Table 3-5 Fuzzy Logic Output and User Preference 

Output Description (Linguistic Variables) 

Air Conditioning Output Ranging from 0 to 5: 

• Off (0 to 1) 

• Low (1 to 3) 

• High (3 to 5) 

Lighting Output Range from 0 to 5, classified 

into: 

• Low (0 to 1) 

• Dim (1 to 3) 

• Bright (3 to 5) 

 

Based on Table 3-5, the air conditioning output ranges from 0 to 5 and is 

categorized into 3 states which are “Off”, “Low” and “High”. When the air 

conditioning is in “Off” state, the system is turned off. There is no cooling action taking 

place, and the system remains inactive. This state is typically selected when the room 

is either adequately cool or not in use. When the system is in the “Low” state, it 

operates at a reduced capacity. This means that the air conditioning will not be 

intensely used, and the air temperature will not be as low as in the “High” state. It 

provides a moderate cooling effect, suitable for maintaining a comfortable 

environment without excessive energy consumption. This state is ideal for conditions 

where a mild cooling effect is sufficient or where energy efficiency is a priority. For 

“High” state, the air conditioning operates at full power. This leads to more intense 

cooling and a lower air temperature. The system works at its maximum capacity to 
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provide significant cooling, which is particularly useful in situations where the room 

temperature is considerably high, or rapid cooling is desired. However, this state also 

corresponds to higher energy consumption. The lighting system also has a range from 

0 to 5. When the Lighting is in “Off” state, The lighting is completely turned off. This 

is typically used when the room is not in use or sufficient natural light is available. 

When the lighting is set to dim level (“Dim State”), it provides moderate illumination. 

This setting is suitable for when full brightness is not necessary. Lastly, when the 

lighting system is in “Bright” state, the lighting is at its brightest level. It is used when 

maximum illumination is required, such as for work or reading purposes. The Fuzzy 

Logic rules are then tailored to satisfy the input as well as the output. 
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Table 3-6 Fuzzy Logic Rules for Air Conditioning System 

No Rules Condition 

1 If temperature is high and vacancy is occupied, then air conditioning is high. 

2 If temperature is moderate and vacancy is occupied, then air conditioning is low. 

3 If temperature is low, light intensity is low, and vacancy is occupied, then air conditioning is off. 

4 If temperature is low, light intensity is moderate, and vacancy is occupied, then air conditioning is off. 

5 If temperature is low, light intensity is high, and vacancy is occupied, then air conditioning is off. 

6 If temperature is moderate, light intensity is high, and vacancy is occupied, then air conditioning is low. 

7 If temperature is high, light intensity is moderate, and vacancy is occupied, then air conditioning is high. 

8 If temperature is high, light intensity is high, and vacancy is occupied, then air conditioning is high. 

9 If vacancy is vacant, temperature is low, and light intensity is low, then air conditioning is off. 

10 If vacancy is vacant, temperature is moderate, and light intensity is low, then air conditioning is off. 

11 If vacancy is vacant, temperature is high, and light intensity is low, then air conditioning is off. 

12 If vacancy is vacant, temperature is low, and light intensity is moderate, then air conditioning is off. 

13 If vacancy is vacant, temperature is moderate, and light intensity is moderate, then air conditioning is off. 

14 If vacancy is vacant, temperature is high, and light intensity is moderate, then air conditioning is off. 

15 If vacancy is vacant, temperature is low, and light intensity is high, then air conditioning is off. 

16 If vacancy is vacant, temperature is moderate, and light intensity is high, then air conditioning is off. 

17 If vacancy is vacant, temperature is high, and light intensity is high, then air conditioning is off. 

18 If temperature is moderate, light intensity is moderate, and vacancy is occupied, then air conditioning is low. 

19 If temperature is moderate, light intensity is low, and vacancy is occupied, then air conditioning is low. 

20 If temperature is high, light intensity is low, and vacancy is occupied, then air conditioning is high. 
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Table 3-7 Fuzzy Logic Rules for Lighting System 

No Rules Condition 

1 If temperature is low, light intensity is low, and vacancy is occupied, then lighting is bright. 

2 If temperature is moderate, light intensity is low, and vacancy is occupied, then lighting is bright. 

3 If temperature is high, light intensity is low, and vacancy is occupied, then lighting is bright. 

4 If temperature is low, light intensity is moderate, and vacancy is occupied, then lighting is dim. 

5 If temperature is moderate, light intensity is moderate, and vacancy is occupied, then lighting is dim. 

6 If temperature is high, light intensity is moderate, and vacancy is occupied, then lighting is dim. 

7 If temperature is low, light intensity is high, and vacancy is occupied, then lighting is off. 

8 If temperature is moderate, light intensity is high, and vacancy is occupied, then lighting is off. 

9 If temperature is high, light intensity is high, and vacancy is occupied, then lighting is off. 

10 If temperature is low, light intensity is low, and vacancy is vacant, then lighting is off. 

11 If temperature is moderate, light intensity is low, and vacancy is vacant, then lighting is off. 

12 If temperature is high, light intensity is low, and vacancy is vacant, then lighting is off. 

13 If temperature is low, light intensity is moderate, and vacancy is vacant, then lighting is off. 

14 If temperature is moderate, light intensity is moderate, and vacancy is vacant, then lighting is off. 

15 If temperature is high, light intensity is moderate, and vacancy is vacant, then lighting is off. 

16 If temperature is low, light intensity is high, and vacancy is vacant, then lighting is off. 

17 If temperature is moderate, light intensity is high, and vacancy is vacant, then lighting is off. 

18 If temperature is high, light intensity is high, and vacancy is vacant, then lighting is off. 
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The EMS employs Mamdani fuzzy rule-based approach to control the output 

of two systems: air conditioning and lighting. The table below shows the process of 

how the Fuzzy Rules Algorithm will work.  

 

Process Process Explained 

Fuzzification of Inputs 

• Inputs such as temperature, light intensity, 

and vacancy are first converted into fuzzy 

values using membership functions. These 

functions categorize each input into fuzzy 

sets (like 'low', 'moderate', 'high' for 

temperature). 

Applying Mamdani Fuzzy 

Rules 

• The system then applies the Mamdani fuzzy 

rules[69]. These rules are "IF-THEN" 

statements that dictate how the output should 

be adjusted based on the input conditions. 

• For example, a rule like "IF temperature is 

high AND vacancy is occupied, THEN set 

air conditioning to high" dictates that when 

the room is occupied and the temperature is 

high, the air conditioning should work at a 

high setting. 

Inference 

• The inference engine processes these rules 

collectively and determines what the outputs 

should be in fuzzy terms. It considers all the 

relevant rules based on the current input 

conditions and combines their effects. 

Defuzzification 

• Finally, the fuzzy output for air conditioning 

and lighting is converted into a crisp value. 

This is the actual, actionable output that the 

system will implement. For instance, it will 

determine the exact setting level for the air 

conditioning and lighting. 
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During the implementation of the Fuzzy Logic Rule-based system, fine-tuning 

is carried out to ensure that the rule conditions align with user preferences according 

to the specified settings. The Fuzzy Logic Rule Based system is implemented in 

Python Environment and connected to the central hardware where the computation of 

the algorithm will take place. Raspberry Pi is the main choice for the system as it is as 

powerful as a laptop. Due to its small and compact design, it is ideal for this project. 

The Wi-Fi capabilities offered by the Raspberry Pi are essential for IoT applications 

and for updating fuzzy logic parameters or algorithms remotely. 

 

3.3.3 Experiment 3: Analysis the Efficiency of Algorithm Output for the 

Developed Energy Management System 

Experiment 3 in the project is meticulously designed to analyze the efficiency 

of a Fuzzy Logic Rule-Based of Energy Management System (EMS). This experiment 

is structured to provide a comprehensive understanding of how the EMS algorithm 

behaves in a real-world scenario and its potential impact on energy consumption 

patterns. The first phase of the experiment involves a detailed 24-hour data capture of 

energy consumption under normal conditions. During this period, crucial data 

parameters such as room vacancy (occupancy status), light intensity, temperature, and 

the energy consumption of various appliances are meticulously recorded. This phase 

is vital as it establishes a baseline of typical energy usage and power consumption 

patterns in the absence of the EMS. This data capture provides a realistic view of how 

appliances typically consume power in a standard environment, serving as a critical 

reference point for later stages of the experiment. 

Following the initial data capture, the experiment transitions into a simulation 

phase. In this phase, the raw data collected - encompassing temperature, light intensity, 

vacancy, and energy consumption - are used as inputs in a Python-based simulation 

environment. This is where the core of the experiment takes place. The Fuzzy Logic 

Rule-Based EMS algorithm is applied to these inputs, replicating the conditions of the 

24-hour monitoring period. The focus of this simulation is to observe and analyze the 

behavior of the fuzzy logic system throughout the same 24-hour period. This involves 

assessing how the system interprets and responds to changes in the environmental 

conditions and how these responses impact the overall energy consumption. 
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The simulation results are then thoroughly analyzed to gauge the effectiveness 

of the Fuzzy Logic Rule-Based EMS. By comparing the simulated energy 

consumption with the actual data captured during the initial monitoring, the 

experiment aims to ascertain the potential of the EMS in optimizing energy usage. This 

comparative analysis is critical as it highlights the efficiency of the EMS in real-world 

settings and its responsiveness to varying environmental conditions. 

The ultimate goal of this experiment is to evaluate whether the implementation 

of a Fuzzy Logic Rule-Based system can lead to more efficient energy management 

practices. It seeks to determine if such a system can significantly reduce energy waste 

and optimize energy usage, thereby contributing to more sustainable energy 

consumption patterns. Through this experiment, the project aims to provide a clearer 

understanding of the practical applicability and benefits of employing a Fuzzy Logic 

Rule-Based EMS in real-world scenarios, bridging the gap between theoretical 

algorithms and their actual impact on energy management. 

For the simulation, it is important to recognize that energy consumption varies 

depending on the settings of the lighting and air conditioning systems. Therefore, 

before commencing the simulation, it is crucial to understand these varying power 

values. The first step in the simulation process involves mapping the outputs of the 

fuzzy logic system to specific energy consumption values. This mapping correlates the 

brightness levels of lighting and the operational modes of the air conditioning system 

to their respective energy consumption figures, which have been predetermined. By 

doing so, we can accurately simulate and estimate the energy usage based on the 

different settings of these systems. 

 

 

Table 3-8 Energy Usage of Lighting System based on Brightness. 

For Lighting 

Brightness 

(%) 

Power 

(W) 

Mean 

(W) 

100 
12.9000 

12.9123 
12.9170 



81 

12.9200 

75 

10.1500 

10.2527 10.4830 

10.1250 

50 

7.2500 

7.2777 7.2840 

7.2990 

30 

5.0000 

5.0050 5.0660 

4.9490 

10 

2.8390 

2.7633 2.7320 

2.7190 

Off 

1.3290 

1.3743 1.3690 

1.4250 

 

Table 3-9 Energy Usage of Air Conditioning based on Brightness. 

For Air Conditioner 

Mode 
Power (W) Mean(W) 

Cold Mode OFF Cold Mode On Cold Mode OFF Cold Mode On 

High 

59.1170 62.5050 

59.0827 62.6360 59.1220 62.6460 

59.0090 62.7570 

Med 

53.6800 57.7330 

53.7267 57.4893 53.7850 57.5860 

53.7150 57.1490 

Low 

47.2330 51.0200 

47.6710 51.1773 48.1480 50.7690 

47.6320 51.7430 

Off 0.7190 0.6887 



82 

0.6670 

0.6800 

 

In order to ensure the accuracy and reliability of the simulation, the energy 

consumption for each mode of the air conditioning and lighting systems was 

meticulously recorded three times, with a 10-second interval between each 

measurement. This methodical approach was employed to ascertain the average power 

consumption for each setting, thereby providing a robust and representative dataset for 

the simulation. 

The energy consumption values for different brightness levels of the lighting 

system and operational modes of the air conditioning system are detailed in Table 3-8 

and Table 3-9. These tables present the power usage in watts for each setting, providing 

an average figure that encapsulates the typical energy consumption for each state. For 

instance, the lighting system's energy usage varies from a low of 1.3743W when off to 

a high of 12.9123W at 100% brightness. Similarly, the air conditioning system's 

energy consumption ranges from 0.6887W when off to 62.6360W in high mode with 

the cold feature activated. 

With this comprehensive dataset, functions were developed in Python to 

translate the fuzzy logic system's output values into corresponding energy 

consumption figures. These functions play a pivotal role in the simulation, allowing 

for a dynamic and accurate estimation of energy usage based on the varying settings 

of the lighting and air conditioning systems. By employing this approach, the 

simulation can effectively mirror the real-world energy consumption patterns, 

facilitating a more accurate assessment of the fuzzy logic system's efficiency in 

managing energy usage. This method not only provides a quantitative measure of 

energy savings but also highlights the potential of fuzzy logic in optimizing energy 

consumption in various operational scenarios. Then, the energy consumption value is 

taken to create functions in Python to take the output value from the fuzzy logic system 

and return the corresponding energy consumption values. 
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Figure 3.8 Assigned Energy Consumption Values Corresponding to 

Each Range of Fuzzy Logic Output 

3.4 Limitation of the proposed methodology 

The proposed methodology for developing an IoT-based energy management 

system has several limitations that should be taken into consideration. Firstly, the 

scope and generalizability of the methodology are limited. It focuses specifically on 

the development of an energy management system for air conditioners and room 

lighting. While the methodology proves effective within this specific context, its 
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applicability to other types of energy management systems or different appliances may 

be constrained. 

The experimental setup used in the methodology is another factor that 

introduces limitations. The setup employed in the experiments may not fully replicate 

real-world conditions. Factors such as room size, environmental conditions, and the 

specific models of appliances and equipment utilized may differ in practical 

applications. These variations could potentially impact the performance and outcomes 

of the energy management system when deployed in real-world scenarios. Therefore, 

the results obtained from the experiments should be interpreted with caution and 

validated in diverse settings to assess their generalizability. 

The selection of the algorithm for energy consumption management is also a 

limitation of the methodology. While a rule-based algorithm has been chosen based on 

previous research, there may be alternative algorithms or optimization techniques that 

could yield different results. The choice of algorithm introduces a subjective element 

into the methodology and may affect the overall performance of the energy 

management system. Further research and exploration of alternative algorithms could 

enhance the system's efficiency and effectiveness. 

Data accuracy and reliability are critical aspects to consider when interpreting 

the results of the methodology. The accuracy and reliability of the data collected during 

the experiments are essential for drawing valid conclusions. However, limitations in 

data collection methods, sensor precision, and potential measurement errors may 

impact the reliability and accuracy of the collected data. These limitations can 

introduce uncertainties and potential biases into the analysis and subsequent 

refinement of the system. It is crucial to address these challenges and ensure the data 

used for analysis is as accurate and reliable as possible. 

Practical implementation challenges pose additional limitations to the 

proposed methodology. While the methodology demonstrates success within a 

controlled experimental environment, real-world implementation may present 

practical challenges. Interoperability with existing infrastructure, compatibility with 

different appliances and building systems, and user acceptance are factors that need to 
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be considered. These challenges may affect the feasibility and effectiveness of 

deploying the energy management system on a larger scale. A comprehensive 

evaluation of these practical implementation challenges is necessary to ensure the 

system's successful integration into real-world settings. 

Lastly, cost and complexity are important limitations to consider. 

Implementing an IoT-based energy management system can involve significant costs 

associated with acquiring and integrating the necessary equipment and technologies. 

Additionally, the complexity of the system and its associated algorithms may require 

expertise in IoT, data analysis, and programming. These factors can limit the 

accessibility and affordability of implementing the proposed methodology in certain 

contexts. Cost-effective solutions and simplified implementation approaches should 

be explored to make the system more feasible and widely applicable. 

3.5 Summary 

The development of an IoT-based Energy Management System (EMS) with a 

focus on demand-side management for air conditioners and lighting is structured into 

three distinct experiments, each contributing uniquely to the system’s overall 

functionality. 

Experiment 1 centers on the development and integration of a real-time 

monitoring and automation system. A commercially available smart socket is used to 

capture real-time power consumption data, laying the groundwork for effective 

demand-side management. This initial phase establishes a baseline of energy usage for 

air conditioners and lighting systems under typical conditions. 

Experiment 2 involves the design and implementation of an intelligent 

algorithm for energy consumption management. This phase explores machine learning 

or optimization techniques to refine the EMS's decision-making process. The goal is 

to enhance the system's ability to regulate energy use efficiently, balancing 

consumption with user needs. 
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Experiment 3 is dedicated to analyzing and enhancing the system's 

performance based on the algorithm's output. This involves a detailed 24-hour energy 

consumption capture to establish a baseline, followed by a simulation phase in a 

Python environment. The simulation uses the collected data to replicate real-world 

conditions and applies the Fuzzy Logic Rule-Based EMS algorithm to assess its 

behavior and impact on energy consumption. The focus here is on comparing the 

simulated energy consumption patterns against the actual data to evaluate the EMS's 

efficiency in optimizing energy usage. 

However, the methodology has certain limitations. It is limited in scope to air 

conditioners and room lighting, and its applicability to other energy management 

systems or appliances may be constrained. The experimental setup may not fully 

replicate real-world conditions, impacting the system's performance in practical 

applications. The choice of the algorithm is subjective, and alternative algorithms 

could yield different results. Data accuracy and reliability, as well as practical 

implementation challenges, should be considered. The cost and complexity of 

implementing the system may also limit its feasibility in certain contexts. 

Key parameters such as power consumption, illuminance, and room 

temperature are carefully considered in the system's development. Equipment like 

smart sockets, microcontrollers, IR transmitters and receivers, light and PIR sensors, 

and Node-RED for data visualization play crucial roles in the experimental setup. This 

experimental setup involves various tests to evaluate the system’s performance, 

focusing on energy consumption, comfort levels, and response times, guiding an 

iterative design process for an enhanced energy management solution. 
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RESULTS AND DISCUSSIONS 

4.1 Results and Discussions Introduction 

This section delves into the results of the study on the IoT-based Energy 

Management System (EMS), with a particular focus on air conditioners and lighting. 

Several experiments were conducted to evaluate the effectiveness of the EMS, 

especially its Fuzzy Logic Rule-Based approach in controlling energy usage. The 

findings from these experiments are examined to gauge how well the EMS conserves 

energy and manages the operation of air conditioners and lights. The discussion 

includes an analysis of how the EMS influences energy usage patterns, the system's 

accuracy, and the implications for smarter and more sustainable energy use. This 

analysis is crucial for appreciating the advantages of smart energy management 

systems and their contribution to energy conservation. 

4.2 Experimental Results 

4.2.1 Development and Integration of an IoT-Based Real-Time Monitoring 

and Automation System for Air Conditioners and Room Lighting 

The development and integration of an IoT-Based Real-Time Monitoring and 

Automation System for air conditioners and room lighting marks a significant 

advancement in the field of energy management. This section provides an in-depth 

exploration of the system's architecture, designed to enable seamless interaction 

between various components for optimal control of environmental conditions within a 

room. 

Breaking down the system's setup into focused sections, first the development 

of the User Interface using Node-Red, a visual tool for wiring together hardware 

devices, APIs, and online services. This interface is pivotal in providing users with an 

engaging and easy-to-navigate control panel for managing the room's temperature and 



88 

lighting settings. Following this, the implementation of specific subsystems, the Air 

Conditioner Automation System, and the Room Lighting Automation System. Each of 

these subsystems is engineered to not only respond intelligently to environmental 

changes and occupancy but also to allow for user customization, thereby striking a 

balance between automated efficiency and personal preference. 

 

Figure 4.1 Energy Management System Setup 

 

 

4.2.1.1 Development and Integration of an IoT-Based Real-Time Monitoring 

 

Figure 4.2 Node-Red Dashboard User Interface Tab 1 – Energy 

Monitoring 
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Figure 4.3 Node-Red Dashboard User Interface Tab 2 – Control 

Centre 

 

 

Figure 4.4 Node-Red Dashboard User Interface Tab 3 – Control 

Centre (Main Power) 

 

 

Figure 4.5 Node-Red Dashboard User Interface Tab 4 – Energy 

Analysis 

Figure 4.2,Figure 4.3,Figure 4.4 and Figure 4.5 showcase the User Interface 

developed using the Node-Red Dashboard. The interface is organized into four distinct 

tabs to prevent cluttering of information and controls in a single space. The first tab, 

the 'Energy Monitoring Tab,' offers insights into the energy consumption of both the 

Air Conditioning and Lighting systems. It also displays information on Temperature, 

Vacancy, and Light Intensity. This tab features a linguistic vacancy indicator which 
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promptly shows the room's occupancy status. Additionally, there is a countdown timer 

that informs users when the lights will turn off if no motion is detected within 3 

minutes. More detailed visuals of the UI can be found in the appendix section. 

The second tab, named 'Control Section,' is designed for manual adjustments 

of the air conditioner and lighting. Users can easily operate the air conditioning using 

the provided buttons. As the lighting brightness is adjustable, there are five brightness 

levels to choose from, catering to user preferences. The third tab, also a part of the 

Control Centre, primarily focuses on Main Power. This refers to the Smart Socket, 

which is the primary gateway for electricity from the grid to the appliances like the air 

conditioner and lighting system. Users can shut off the main electricity source using a 

toggle button in this tab. 

The fourth tab is dedicated to energy analysis. Here, users can alter the display 

of the graph plots through various options. They can switch from viewing three plots 

simultaneously to focusing on a single plot for a more detailed analysis of energy 

usage. The interface also allows for the comparison of two different graph plots by 

selecting the respective buttons. 

The results demonstrate that the user interface significantly enhances user 

awareness of energy consumption. It also enables wireless control of the air 

conditioner and lighting systems, eliminating the need to physically interact with 

appliance switches or remotes. 
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4.2.1.2 Air Conditioner Automation System 

 

Figure 4.6 IR Transmitter 

 

Figure 4.7 Hardware Connection ESP 32 with several sensors 

The Air Conditioning System is operated through an ESP 32 microcontroller, 

which stores all the remote-control commands for the air conditioner. Upon receiving 

a command from Node Red, the IR Transmitter wirelessly transmits the signal to 

activate or modify the air conditioner's mode. Additionally, the system integrates a PIR 

Sensor, along with temperature and light intensity sensors (LDR), all of which are 

housed within a dedicated box. These sensors are essential for capturing ambient 

temperature and light intensity data, enabling the system to make informed decisions 

about air conditioning adjustments based on the current room conditions. 
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4.2.1.3 Room Lighting Automation System 

 

Figure 4.8 Lighting System Setup 

The Lighting System depicted in the figure demonstrates successful 

illumination and dimming capabilities of the bulbs, controlled via the Node Red 

Dashboard. At its brightest setting, the system draws a maximum power of 13W for 

both bulbs, while at its dimmest (10% brightness), the power consumption is 

minimized to approximately 2.76W. This system is adept at providing artificial 

lighting in rooms or confined spaces, particularly useful when natural light is 

insufficient. Furthermore, the Lighting System offers the flexibility of manual 

adjustments. Users can wirelessly control the brightness levels and switch the bulbs on 

or off through the Node Red Dashboard User Interface, ensuring convenience and 

user-centric operation. 

In essence, this development represents a significant enhancement in lighting 

control, offering both energy efficiency and user-friendly interaction. The ability to 

adjust lighting conditions in response to the room's ambiance not only contributes to 

energy savings but also enhances the overall comfort of the space. 
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4.2.2 Implementation of Algorithm for Air Conditioner Energy Consumption 

and Room Lighting System 

 

Figure 4.9 Successful Computation and Transmission of Data by the 

Fuzzy Logic Rule-Based Algorithm to Node-Red 

Figure 4.9 illustrates the successful computation performed on the Raspberry 

Pi, where the output from the fuzzy logic algorithm is transferred to Node-Red. Given 

Node-Red's adoption of flow-based visual programming, the detailed flow and nodes 

are presented in the Appendix section. Additionally, the Figure 4.10 includes a specific 

node flow that displays how the fuzzy logic output controls the air conditioning 

settings. 
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Figure 4.10 The Fuzzy Logic Output Goes to Function Node, to the 

Input Air Conditioner Button Settings 

During the development of the fuzzy logic algorithm using Python coding, 

multiple tests were conducted to observe the behavior of the fuzzy rules when specific 

values for primary inputs were inputted. The first test involved examining the shapes 

of the fuzzy sets. The chosen shapes for the fuzzy sets were Triangular and 

Trapezoidal. While Singleton Membership Functions were also considered, it could 

not be directly implemented in Python as the library lacked the necessary module. 

Therefore, sigmoid functions were utilized as an alternative to represent the singletons. 

After implementing and fine-tuning these shapes, Figure 4.11, Figure 4.12, Figure 

4.13, Figure 4.14 and Figure 4.15 show the membership function that successful  met 

the conditions outlined by the user preferences. 

 

 

Figure 4.11 Temperature Membership Functions Fuzzy Sets - Input 
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Figure 4.12 Ambient Light Membership Function Fuzzy Sets - Input 

 

 

Figure 4.13 Vacancy Membership Functions Fuzzy Sets - Input 
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Figure 4.14 Air Conditioning Membership Functions Fuzzy Sets - 

Output 

 

 

Figure 4.15 Lighting System Membership Functions Fuzzy Sets - 

Output 

To assess the effectiveness and adaptability of the Fuzzy Logic Rule-Based 

Algorithm, three distinct input conditions were tested. This was done to observe how 

the algorithm responds and adjusts its output based on varying environmental 

parameters. The conditions tested are as follows: 
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• 1st Condition: Temperature at 30.3°C, Light Intensity at 1608, and Vacancy at 

0 (unoccupied). 

• 2nd Condition: Temperature at 25°C, Light Intensity at 1000, and Vacancy at 

1 (occupied). 

• 3rd Condition: Temperature at 30.3°C, Light Intensity at 3200, and Vacancy 

at 1 (occupied). 

 

 

Figure 4.16 1st Condition Test Results 

 
Figure 4.17 2nd Condition Test Results 
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Figure 4.18 3rd Condition Test Results 

The corresponding results are illustrated in Figure 4.16, Figure 4.17 and Figure 

4.18. These figures demonstrate the algorithm's accurate and context-sensitive 

responses to the input values. For instance, in 1st Condition, the environment is 

characterized by a high temperature and bright light, with the room being unoccupied. 

The algorithm intelligently turns off both the air conditioning and lighting systems, 

acknowledging their redundancy in the absence of people. This decision not only 

ensures energy efficiency but also demonstrates the system’s ability to recognize and 

react to the lack of human presence. Next, the 2nd Condition presents a slightly cooler 

environment at 25°C and bright light conditions, with the room being occupied. Here, 

the air conditioning is set to a low level, a decision that aligns well with the already 

comfortable ambient temperature. The lighting system is switched off, recognizing that 

the natural light suffices for the occupied space. This scenario exemplifies the 

algorithm’s nuanced understanding of occupant comfort and natural lighting 

conditions. Lastly, in the 3rd Condition, the room's temperature remains high at 

30.3°C, but with a significant decrease in light intensity (3200), indicating a darker 

environment. The algorithm responds by activating both the air conditioning and 

artificial lighting. This adjustment is crucial for maintaining a comfortable temperature 

and adequate lighting in the room, particularly important in an occupied setting. 

These observations collectively affirm the algorithm's proficiency in 

intelligently adapting its outputs to diverse environmental states. This adaptability 

ensures the maintenance of comfort and energy efficiency within a room, highlighting 

the practical utility of the Fuzzy Logic Rule-Based Algorithm in real-world 

applications. 
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4.2.3 Analysis the Efficiency of Algorithm Output for the Developed Energy 

Management System 

 

 

 

Figure 4.19 Energy Usage Over Time 

Figure 4.19 illustrates the energy consumption of both the air conditioning and 

lighting systems as recorded by the developed hardware of the Energy Management 

System. This data represents a successful 24-hour period of energy monitoring. The 

graph reveals that the air conditioning system accounts for the majority of the energy 

consumption, while the lighting system utilizes approximately 13W. When operating 

the air conditioning at its highest capacity in conjunction with the lighting system at 

its brightest setting, the combined energy consumption can reach up to approximately 

70.5W. This demonstrates the effectiveness of the system in capturing and quantifying 

energy usage across different modes and intensities of these utilities. 
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Figure 4.20 Daily Behavioral Pattern in Energy Usage – Room 

Temperature, Occupancy and Light Intensity 

Not only the energy consumption is recorded but also the behavioral pattern in 

energy usage is also taken into account. The Figure 4.20 provides a comprehensive 
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visualization of the daily patterns in a room's environment, crucial for understanding 

energy usage. This graph displays data over a 24-hour period, capturing fluctuations 

in room temperature, occupancy status, and light intensity. 

The importance of this data lies in its role as a foundational input for the 

subsequent fuzzy logic simulation. By analyzing these parameters, we gain insights 

into how environmental conditions and human presence interact and influence energy 

consumption within space. 

The room temperature graph displayed on Figure 4.20 recorded over a full 24-

hour period, illustrating how the temperature is influenced by both the air conditioning 

system and the day's weather conditions. Notably, there is a minor fluctuation in the 

data on December 30, 2023, between 20:00. and 21:00., which can be attributed to a 

temporary disruption in Wi-Fi connectivity. Despite this brief anomaly, the integrity 

of the temperature readings remains unaffected for the remainder of the period, 

ensuring a consistent and reliable dataset. 

The light intensity graph depicts the daily variation of intensity, measured in 

digital units rather than Lux or Lumen, as outlined in the methodology section. For the 

purposes of this project, categorizing light intensity into low, moderate, or high levels 

suffices. The use of digital units offers a straightforward and efficient method to 

monitor and adapt to changes in light conditions. This approach bypasses the 

complexity of calibration required for precise Lux or Lumen measurements, focusing 

instead on the practicality of understanding relative light intensity. The graph thus 

reflects the simplicity and effectiveness of using digital units to gauge environmental 

lighting, aligning with the project's requirements for assessing light intensity without 

the intricacies of calibrated measurements. 

Next, the recorded occupancy data effectively indicates the presence of people 

within the room. Typically, when individuals are present, they exhibit movement, 

especially during interactions with one another. In this context, the PIR (Passive 

Infrared) Sensor proves to be an ideal component for detecting motion within the room. 

The sensor's output is binary: a value of 1 signifies that the room is occupied, while 0 

indicates it is vacant. This parameter plays a crucial role in managing energy 
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consumption. For instance, when the room or building is no longer in use, the 

information about its vacancy is vital. It can influence the fuzzy logic algorithm to 

issue commands to both the air conditioner and lighting system to power down, thereby 

conserving energy. This mechanism ensures that energy usage is optimized based on 

actual occupancy, leading to more efficient and sustainable operations. 

 

 

Figure 4.21 Daily Behavioral Pattern in Energy Usage – Room 

Occupancy from 9:35 to 10:10 on 30 Dec 2023 

Given the challenges in discerning the 24-hour Room Occupancy data due to 

its rapidly fluctuating values between 0 and 1, Figure 4.21 provides a zoomed-in view 

of the graph covering the period from 9:35 to 10:10 on 30th December 2023. This 

specific timeframe captures data related to the movement of people entering and 

exiting the room, without focusing on the duration of their stay. This particular set of 

data offers valuable insights into the behavior of the Fuzzy Logic Rule-Based 

Algorithm under such conditions. It allows for a clearer observation of how the 

algorithm responds to frequent changes in room occupancy, highlighting its 

adaptability and effectiveness in managing energy consumption in response to real-

time human presence. 
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Figure 4.22 Daily Behavioral Pattern in Energy Usage – Humidity 

As for the Humidity, the graph presents the humidity data over a 24-hour 

period. While humidity levels do not directly influence the fuzzy logic output of the 

energy management system, they provide useful contextual information. 

Understanding humidity trends is beneficial for a comprehensive analysis of 

environmental conditions, although this aspect is not a primary factor in the system's 

operational context. As such, the graph serves an informative purpose and is not 

integral to the core functionality of the energy management system development. 

 

4.2.3.1 Fuzzy Logic Rule Based Algorithm Output Results 

This section delves into the Output Results of the Fuzzy Logic Based 

Algorithm, focusing on how the algorithm's outputs are simulated within a Python 

Environment. The simulation is designed to showcase the effectiveness of the 

algorithm in optimizing energy consumption under various conditions. By analyzing 

both raw data and the results post-simulation, this section offers a comprehensive view 

of the algorithm’s performance in real-world scenarios. 

The graphs presented here provide a visual representation of energy 

consumption patterns, both before and after the application of the fuzzy logic system. 

The initial data reflects the daily energy usage under standard operating conditions, 

serving as a baseline for comparison. Subsequently, the simulated results demonstrate 
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the impact of the fuzzy logic algorithm, highlighting its potential in reducing energy 

consumption and enhancing efficiency. 

 
Figure 4.23 Energy Consumption – Real Data Vs Fuzzy Logic Results 

The graph compares two distinct data sets, the real data, representing energy 

usage without any algorithmic intervention, and the output from the fuzzy logic 

algorithm. The fuzzy logic consists of cumulative energy consumption of both the air 

conditioning and lighting systems over a 24-hour period. In the initial phase of the 

simulation, specifically at the 3-hour mark, the fuzzy logic algorithm actively 

modulates both the air conditioning and lighting. At this point, the energy consumption 

is observed to be higher than that recorded in the real data. From the 4-hour to the 8-

hour mark, although the energy usage remains consistent, it is still slightly above the 

real data levels. However, a significant change is observed between the 8-hour and 12-

hour marks. During this period, the fuzzy logic simulation yields a notably lower 

energy consumption compared to the real data, indicating effective energy 

management by the algorithm. This trend of reduced energy usage continues from the 

12-hour mark onwards, showcasing notable energy conservation. The simulated 

energy consumption is substantially lower than the actual energy usage, aligning with 

the observed behavioral patterns in energy usage. A particularly striking result is seen 

on 31 December 2023, from 1:00 to 7:00., where the energy consumption in the 

simulation reaches its lowest point. This reduction is attributed to the lack of motion 
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detected in the room during these hours, implying an absence of occupants. It can be 

the seen the Figure 4.20 showing no presence of people in the room during these times. 

 

 

Figure 4.24 Energy Consumption Real Data vs Fuzzy Logic Result 

9:35 to 10:00 on 30 Dec 2023 

Figure 4.24 focuses on the timeframe from 9:35 to 10:00 on 30 December 

2023, it becomes evident that the results from the fuzzy logic exhibit a modulating 

shape. This pattern is attributed to the Behavioral Pattern indicating that the 

Temperature, Light Intensity, and Vacancy levels are sufficient to meet user 

preferences without the need for air conditioning or lighting systems, leading to their 

deactivation. This is observable through the transition from high power consumption 

to a lower level, as depicted in the graph. Additionally, the occupancy input 

significantly influences the results. 
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Figure 4.25 Average Energy Consumption of Real Data and Fuzzy 

Logic Results 9:35 to 10:00 on 30 Dec 2023 

The average energy consumption without the fuzzy logic algorithm is 38.64W, 

in contrast with the implementation of fuzzy logic of 34.94 W, as shown in Figure 

4.28. This demonstrates the effectiveness of Fuzzy Logic in reducing energy 

consumption while still preserving user comfort. The Fuzzy Logic algorithm operates 

by controlling both the air conditioning and lighting systems, ensuring that these 

appliances are turned off when the room conditions fall within the 'comfort zone' 

region.  

 

Figure 4.26 Average Energy Consumption of Total Energy: Real Data 

vs Fuzzy Logic Results 
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The data presented in Figure 4.26, underscores the significant benefits of 

employing a fuzzy logic-based rule algorithm in energy management. The graph 

compares the average total energy consumption captured in the real data with that of 

the fuzzy logic results. Notably, the total energy consumption without the fuzzy logic 

algorithm stands at 51.66W, whereas it drops to 33.93W when the fuzzy logic 

algorithm is implemented. This equates to a substantial 34.32% reduction in energy 

usage. Such a notable decrease in energy consumption highlights the efficiency of the 

fuzzy logic algorithm in optimizing energy use. The algorithm's ability to dynamically 

adjust to varying conditions and requirements allows for more precise control of 

energy-consuming devices, such as air conditioning and lighting systems. By 

intelligently modulating these systems based on real-time data, the algorithm ensures 

that energy is used only, when necessary, thereby preventing wastage. The fuzzy logic 

approach adds a layer of sophistication to traditional rule-based systems. It allows for 

more nuanced decisions that take into account the complexity and variability of real-

world scenarios. This adaptability is key to achieving significant energy savings. 

 

 

Figure 4.27 Average Energy Consumption of Air Conditioner: Real 

Data vs Fuzzy Logic Results 
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Figure 4.28 Average Energy Consumption of Lighting System: Real 

Data vs Fuzzy Logic Results 

Figure 4.27 and Figure 4.28 provide a detailed analysis of the average energy 

consumption specifically for the air conditioning and lighting systems, respectively. 

The results not only delineate the energy usage patterns but also highlight the 

significant reductions achieved through the implementation of the fuzzy logic 

algorithm. In Figure 4.27, which focuses on the air conditioning system, the data 

reveals a 30.6% reduction in energy consumption when the fuzzy logic algorithm is 

applied. This reduction is indicative of the algorithm's ability to intelligently control 

the air conditioning system, optimizing its operation based on real-time environmental 

conditions and occupancy patterns. By adjusting the cooling output in response to 

actual need, the system avoids unnecessary energy expenditure, leading to this notable 

decrease in usage. Similarly, Figure 4.28, dedicated to the lighting system, shows an 

even more striking reduction of 69.41% in energy consumption. This substantial 

decrease underscores the efficiency of the fuzzy logic algorithm in managing lighting 

needs. The system dynamically adjusts the lighting intensity and operation, 

capitalizing on natural light when available and reducing artificial lighting to the 

minimum necessary level. This approach not only conserves energy but also adapts to 

the varying light requirements throughout the day. 

Together, these figures illustrate the profound impact that intelligent, fuzzy 

logic-based control systems can have on energy consumption in key areas of a 

building's operation. The reductions of 30.6% and 69.41% in the air conditioning and 



109 

lighting systems, respectively, demonstrate the potential of such technology to 

significantly lower energy usage, thereby contributing to operational costs. These 

findings reinforce the importance of integrating advanced algorithms in building 

management systems to achieve greater energy efficiency. 

Table 4-1 Tabulated Average Energy Consumption: Real Data vs 

Fuzzy Logic Results 

  

Average Power (W) Percentage 

Reduction 

(%) Real Data  
Fuzzy Logic Rule 

Based 

Total Energy 55.66 33.93 34.32 

Air Conditioning  46.73 32.43 30.6 

Lighting System 4.92 1.5 69.41 

 

4.2.3.2 Prediction Model 

This section is dedicated to developing a prediction model for energy 

consumption data, leveraging the principles and techniques outlined in [70]. Utilizing 

the advanced capabilities of the XGBoost framework, known for its powerful 

performance in complex time-series analysis, the model aims to predict future trends 

in energy usage [70]. The development of a prediction model for energy consumption 

data is crucial for optimizing energy distribution, reducing costs, and promoting 

sustainable energy utilization. Leveraging the advanced capabilities of the XGBoost 

framework, known for its powerful performance in complex time-series analysis, the 

model aims to predict future trends in energy usage. This predictive analysis is key to 

improving energy management, providing insights for forward-thinking and strategic 

planning. The ability to accurately project future energy needs is vital for the reliability 

and effectiveness of any energy management system. 

The use of advanced techniques such as XGBoost for time-series analysis is 

well supported in the literature. For instance, [60] discuss a feature-based prediction 

method for energy consumption and its application, demonstrating the relevance of 
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advanced prediction methods in energy consumption [60]. Additionally, highlight the 

accuracy and reliability of artificial intelligence forecasting models, including 

XGBoost, for time series forecasting of economic and energetic variables, further 

supporting the use of advanced techniques in energy consumption prediction [59]. 

 

Figure 4.29 Train Test Split Total Energy Consumption Data 

 

Figure 4.30 Train Test Split Total Energy Consumption Data Results 

From the final plot, it can be seen that the model performance is quite good as 

the differences between the actual data and the predictor are quite accurate. The close 

correlation between the model's predictions and the actual data, as seen in the final 

plot, indicates a high degree of accuracy. This precision is crucial for the reliability 

and effectiveness of any energy management system. 
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CONCLUSION AND RECOMMENDATIONS  

5.1 Conclusion 

This project focused on the development of an IoT-based Energy Management 

System (EMS) for air conditioners and lighting systems. It has been successfully 

demonstrated the potential of integrating IoT with a Fuzzy Logic Rule-Based approach 

to optimize energy consumption. The EMS, characterized by its advanced real-time 

monitoring and automation capabilities, has shown a significant advancement in 

energy management. The implementation of the system encompasses a user-friendly 

interface developed using Node-Red, enabling effective control over room temperature 

and lighting settings. The Air Conditioner Automation System, operated through an 

ESP 32 microcontroller, and the Room Lighting Automation System both exhibited 

responsive adjustments based on environmental variables and occupancy, highlighting 

the system's adaptability and user-centric design. Crucially, the application of the 

Fuzzy Logic Rule-Based Algorithm has been a cornerstone of this study. It has proven 

to be highly effective in adapting to various environmental conditions, thereby 

ensuring optimal comfort and energy efficiency. The experimental results underscore 

the algorithm's precision in managing energy usage, as evidenced by a notable 

reduction in energy consumption, particularly in the lighting system which observed a 

69.41% decrease, and a 30.6% decrease in the air conditioning system. These findings 

firmly establish the efficacy of the IoT-based EMS in not only enhancing energy 

efficiency but also in contributing to sustainable energy management practices. The 

project paves the way for further exploration and implementation of such technologies 

in the realm of energy conservation, marking a significant step towards achieving 

sustainable development goals. 

5.2 Future Works  

In the realm of energy management, the advancement of predictive models 

represents a crucial frontier. Building on the foundation laid by this project, future 
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work should focus on the development and refinement of a prediction model for energy 

consumption data. This model, inspired by the principles in the article "Leveraging 

XGBoost for Time-Series Forecasting" from KDnuggets, should utilize the XGBoost 

framework. Renowned for its robustness in complex time-series analysis, XGBoost 

can significantly enhance the predictive capabilities of the energy management system. 

The primary objective for future endeavors will be to refine and validate the 

model, ensuring it can accurately predict future trends in energy usage. This accuracy 

is not just a technical achievement but a cornerstone for effective energy management. 

It allows for forward-thinking strategies and informed decision-making, ultimately 

leading to optimized energy distribution, cost reduction, and efficient energy 

utilization. 

Figures like 4.29 and 4.30, depicting the Train Test Split for Total Energy 

Consumption Data, demonstrate the model's promising performance, with a high 

correlation between the model's predictions and actual data. Future work should aim 

to further improve this accuracy, making the model an invaluable tool for both short-

term and long-term energy management planning. 

In conclusion, the development of this predictive model is not just an extension 

of the current project but a significant leap towards a more intelligent, efficient, and 

proactive approach to energy management. By accurately forecasting energy needs, 

we can ensure more sustainable energy practices, ultimately leading to a better balance 

between energy consumption and environmental impact. The future work will be 

pivotal in elevating the efficacy of IoT-based Energy Management Systems to new 

heights, ensuring they remain at the forefront of technological innovation in energy 

conservation and management. 
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APPENDICES 

APPENDIX A: Close Up Detailed Design of the Energy Management System 

Hardware  

 

Figure 5.1 Close Up Detailed View on Lighting System and the IOT Based 

System Component 
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APPENDIX B: Close Up Detailed Design of the Energy Management System User 

Interface  
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APPENDIX C: Full Node Red Flow  
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APPENDIX D: Developing ESP32 Firmware with the Arduino IDE for Integration 

with Node-RED 

#include <WiFi.h>   

#include <PubSubClient.h> 

#include <DHTesp.h> 

#include <IRremoteESP8266.h> 

#include <IRsend.h> 

// Calibration time for the sensor (10-60 secs according to the datasheet) 

int calibrationTime = 30;         

// DHT Sensor 

const int DHT_PIN = 25;   

DHTesp dht;  

// LDR and PIR Sensor 

const int LDR_PIN = 32; 

const int pirPin = 26; // PIR sensor pin 

const int ledPin = 27; // LED pin for physical notification 

unsigned long lastMsg = 0; 

boolean motionDetected = false; 

unsigned long motionTimer = 0; 

const unsigned long motionDelay = 10000; // 10 seconds delay for motion detection 

 

// WiFi and MQTT settings 

const char* ssid = "XXXXXXXXX"; // WiFi SSID  

const char* password = "XXXXXXXX"; // WiFi Password 

const char* mqtt_server = "test.mosquitto.org"; // Mosquitto server URL 

 

WiFiClient espClient; 

PubSubClient client(espClient); 

 

// IR Transmitter setup 

const uint16_t IrPin = 18;  // GPIO pin for the IR transmitter 

IRsend irsend(IrPin); 

uint16_t powerOn[] = {8930, 4550,  632, 1618,  634, 522,  586, 544,  608, 520,  610, 520,  

588, 544,  610, 522,   

                      610, 520,  588, 544,  610, 1622,  608, 1644,  608, 1644,  634, 1622,  626, 

1628,  608, 1644,  610, 1640,   

                      634, 1622,  612, 542,  586, 1644,  632, 1620,  632, 1622,  608, 546,  608, 

522,  608, 522,  584, 546,  590, 1638,   

                      632, 522,  586, 546,  608, 522,  594, 1636,  608, 1646,  628, 1626,  606};  // 

NEC 807FB847 

 

uint16_t Swing[] = {8950, 4512,  558, 1714,  516, 594,  552, 580,  536, 596,  538, 590,  

562, 568,  562, 570,  538, 594,  558, 572, 

                      552, 1722,  526, 1726,  538, 1714,  518, 1736,  528, 1724,  516, 1740,  520, 

1732,  534, 578,  536, 594,  558, 574, 

                        558, 1714,  518, 1736,  540, 574,  546, 582,  560, 570,  560, 1714,  540, 

1714,  522, 1732,  538, 570,  560, 570, 
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                          560, 1714,  528, 1724,  540, 1714,  538, 40128,  8972, 2284,  522};  // 

NEC 807F18E7 

 

uint16_t Speed[] = {8966, 4510,  560, 1714,  538, 570,  556, 574,  560, 570,  562, 570,  

560, 570,  560, 570,  560, 570,  562, 570,  560, 

                     1714,  524, 1730,  540, 1714,  538, 1716,  538, 1714,  520, 1732,  522, 1730,  

518, 592,  562, 1712,  540, 570,  564, 

                      1712,  540, 1714,  540, 572,  544, 588,  560, 568,  562, 1710,  542, 572,  558, 

1714,  538, 572,  560, 570,  560, 1714, 

                        540, 1714,  538, 1714,  518};  // NEC 807F58A7 

 

uint16_t Mode[] = {8940, 4542,  538, 1714,  538, 574,  556, 574,  536, 596,  534, 596,  

558, 574,  558, 574,  534, 596,  560, 572,  558, 1716, 

                    538, 1714,  538, 1718,  538, 1714,  540, 1714,  514, 1738,  540, 1716,  538, 

572,  560, 572,  546, 586,  560, 1714,  538, 572, 

                      540, 592,  550, 582,  560, 570,  556, 1718,  516, 1736,  514, 1738,  540, 572,  

558, 1716,  538, 1714,  540, 1714,  520, 1734, 

                        538, 40142,  8930, 2312,  512};  // NEC 807F10EF 

 

uint16_t Cool[] = {8974, 4512,  560, 1712,  530, 582,  548, 582,  548, 582,  538, 594,  560, 

570,  562, 570,  542, 588,  560, 570,  548, 1726, 

                    518, 1738,  538, 1712,  540, 1714,  538, 1712,  516, 1738,  538, 1714,  538, 

572,  558, 1714,  540, 570,  560, 1714,  540, 572, 

                      560, 570,  538, 594,  558, 574,  562, 1712,  518, 594,  560, 1712,  540, 572,  

544, 1730,  528, 1726,  520, 1730,  542, 1714, 

                        516, 40182,  8952, 2308,  518};  // NEC 807F50AF 

 

uint16_t Breeze[] = {8962, 4518,  540, 1732,  522, 586,  560, 570,  552, 578,  558, 572,  

538, 592,  560, 570,  536, 594,  538, 594,  558, 1716, 

                    538, 1714,  538, 1716,  532, 1720,  538, 1714,  518, 1738,  516, 1736,  540, 

1714,  538, 570,  538, 1736,  534, 578,  546, 586, 

                      558, 574,  536, 594,  536, 596,  538, 594,  536, 1738,  516, 594,  538, 1734,  

520, 1734,  542, 1712,  542, 1710,  520, 1734, 

                        518, 40162,  8928, 2290,  538};  // NEC 807FA05F 

 

 

 

 

void setup_wifi() {  

  delay(10); 

  Serial.println(); 

  Serial.print("Connecting to "); 

  Serial.println(ssid); 

 

  WiFi.mode(WIFI_STA);  

  WiFi.begin(ssid, password); 

 

  while (WiFi.status() != WL_CONNECTED) {  

    delay(500); 

    Serial.print("."); 
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  } 

 

  randomSeed(micros()); 

  Serial.println(""); 

  Serial.println("WiFi connected"); 

  Serial.println("IP address: "); 

  Serial.println(WiFi.localIP()); 

} 

void callback(String topic, byte* message, unsigned int length) { 

  Serial.print("Message arrived on topic: "); 

  Serial.print(topic); 

  Serial.print(". Message: "); 

  String messageInfo; 

   

  for (int i = 0; i < length; i++) { 

    Serial.print((char)message[i]); 

    messageInfo += (char)message[i]; 

  } 

  Serial.println(); 

 

  // If a message is received on the topic room/lamp, you check if the message is either on 

or off. Turns the lamp GPIO according to the message 

  if(topic=="/ThinkIOT/Aricond/control"){ 

      Serial.print("Aircond Command"); 

      if(messageInfo == "on&off"){ 

        Serial.print("On"); 

         irsend.sendRaw(powerOn, sizeof(powerOn) / sizeof(powerOn[0]), 38); 

      } 

      else if(messageInfo == "swing"){ 

        Serial.print("Swing"); 

        irsend.sendRaw(Swing, sizeof(Swing) / sizeof(Swing[0]), 38); 

      } 

       else if(messageInfo == "speed"){ 

        Serial.print("Speed"); 

        irsend.sendRaw(Speed, sizeof(Speed) / sizeof(Speed[0]), 38); 

      } 

       else if(messageInfo == "cool"){ 

        Serial.print("Cool"); 

        irsend.sendRaw(Cool, sizeof(Cool) / sizeof(Cool[0]), 38); 

      } 

  } 

  Serial.println(); 

} 

 

 

void reconnect() {  

  while (!client.connected()) { 

    Serial.print("Attempting MQTT connection..."); 

    String clientId = "ESP32Client-"; 

    clientId += String(random(0xffff), HEX); 
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    if (client.connect(clientId.c_str())) { 

      Serial.println("Connected"); 

      client.publish("/ThinkIOT/Publish", "Welcome"); 

      client.subscribe("/ThinkIOT/Aricond/control");  

    } else { 

      Serial.print("failed, rc="); 

      Serial.print(client.state()); 

      Serial.println(" try again in 5 seconds"); 

      delay(5000); 

    }} 

} 

 

// Setup function 

void setup() { 

  Serial.begin(115200); 

  irsend.begin();  // Initialize IR transmitter 

  setup_wifi(); 

  client.setServer(mqtt_server, 1883); 

  client.setCallback(callback); 

  dht.setup(DHT_PIN, DHTesp::DHT22); 

 

  pinMode(LDR_PIN, INPUT);  // Set LDR_PIN as an input 

  pinMode(pirPin, INPUT);   // Set pirPin as an input 

  pinMode(ledPin, OUTPUT);  // Set ledPin as an output 

  digitalWrite(pirPin, LOW); 

 

 /*  // Give the sensor some time to calibrate 

  Serial.print("Calibrating sensor"); 

  for (int i = 0; i < calibrationTime; i++) { 

    Serial.print("."); 

    delay(1000); 

  } 

  Serial.println(" done"); 

  Serial.println("SENSOR ACTIVE"); 

  delay(50); */ 

} 

 

 

int getLightIntensity(int analogValue) { 

  // Inverting the mapping as 0 is bright light and 4500 is darkness 

  // Mapping these to a scale of 0 to 1000 lux 

  return map(analogValue, 0, 4095,0, 4095); //return map(analogValue, 0, 4095, ##tukar 

sini untuk dptkn actual measurement, 0); 

} 

 

 

 

// Main loop 

void loop() { 

  if (!client.connected()) { 
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    reconnect(); 

  } 

  client.loop(); 

 

 // Handle motion detection 

  boolean currentMotion = digitalRead(pirPin) == HIGH; 

 

  if (currentMotion) { 

    if (!motionDetected) { 

      // Motion detected for the first time 

      client.publish("/ThinkIOT/motion", "1"); // Publish motion detected 

      digitalWrite(ledPin, HIGH); // Turn on the LED 

    } 

    motionDetected = true; 

    motionTimer = millis(); // Reset timer whenever motion is detected 

  } else if (motionDetected && millis() - motionTimer > motionDelay) { 

    // Motion has stopped for more than 10 seconds 

    motionDetected = false; 

    client.publish("/ThinkIOT/motion", "0"); // Publish motion ended 

    digitalWrite(ledPin, LOW); // Turn off the LED 

  } 

  unsigned long now = millis(); 

  if (now - lastMsg > 2000) { // Publish data every 2 seconds 

    lastMsg = now; 

 

    TempAndHumidity data = dht.getTempAndHumidity(); 

 

    // Publish temperature and humidity 

    String temp = String(data.temperature, 2); 

    client.publish("/ThinkIOT/temp", temp.c_str()); 

    String hum = String(data.humidity, 1);  

    client.publish("/ThinkIOT/hum", hum.c_str()); 

 

    // Read LDR value and convert to light intensity 

    int ldrValue = analogRead(LDR_PIN); 

    int lightIntensity = getLightIntensity(ldrValue); 

    String lightIntensityString = String(lightIntensity); 

    client.publish("/ThinkIOT/lightIntensity", lightIntensityString.c_str()); 

    // Print sensor values to the serial monitor 

    Serial.print("Temperature: "); 

    Serial.println(temp); 

    Serial.print("Humidity: "); 

    Serial.println(hum); 

    Serial.print("Light Intensity: "); 

    Serial.println(lightIntensityString); 

  } 

} 
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APPENDIX E: Developing Fuzzy Logic Rule-Based System in Python for Raspberry 

Pi Integration with Node-RED 

import sys 

import json 

import numpy as np 

import skfuzzy as fuzz 

from skfuzzy import control as ctrl 

 

#THE ANTECEDENT 

temperature = ctrl.Antecedent(np.arange(15, 32, 1), 'temperature') 

temperature['low'] = fuzz.trapmf(temperature.universe, [15, 15, 19, 22]) 

temperature['moderate'] = fuzz.trapmf(temperature.universe, [21, 23, 25, 27]) 

temperature['high'] = fuzz.trapmf(temperature.universe, [26, 28, 31, 31]) 

 

 

 

# 2. Light Intensity (Lux) - In LDR mode (4095 is darkest, 0 is brightest) 

light_intensity = ctrl.Antecedent(np.arange(0, 4096, 1), 'light_intensity') 

light_intensity['low'] = fuzz.trapmf(light_intensity.universe, [3000, 3500, 4095, 4095]) 

light_intensity['moderate'] = fuzz.trimf(light_intensity.universe, [1500, 2500, 3500]) 

light_intensity['high'] = fuzz.trapmf(light_intensity.universe, [0, 0, 200, 2000]) 

 

 

# 3. Vacancy 

vacancy = ctrl.Antecedent(np.arange(0, 2, 1), 'vacancy') 

vacancy['vacant'] = fuzz.sigmf(vacancy.universe, 0.5, -10)  # Sigmoidal shape 

vacancy['occupied'] = fuzz.sigmf(vacancy.universe, 0.5, 10)  # Sigmoidal shape 

 

 

# 4. Air Conditioning 

air_conditioning = ctrl.Consequent(np.arange(0, 6, 1), 'air_conditioning') 

air_conditioning['off'] = fuzz.trimf(air_conditioning.universe, [0, 0, 1]) 

air_conditioning['low'] = fuzz.trimf(air_conditioning.universe, [1, 2, 3]) 

air_conditioning['high'] = fuzz.trimf(air_conditioning.universe, [3, 4, 5]) 

 

 

# 5. Lighting 

lighting = ctrl.Consequent(np.arange(0, 5, 1), 'lighting') 

lighting['off'] = fuzz.trapmf(lighting.universe, [0, 0, 0, 1]) 

lighting['dim'] = fuzz.trimf(lighting.universe, [1, 2, 3]) 

lighting['bright'] = fuzz.trimf(lighting.universe, [3, 4, 5]) 

 

 

##########THE FUZZY LOGIC RULES#################### 

#DEFINING RULES FOR THE AIRCONDITIONING 

Rule_1 = ctrl.Rule(temperature['high'] & vacancy['occupied'], air_conditioning['high']) 

Rule_2 = ctrl.Rule(temperature['moderate'] & vacancy['occupied'], air_conditioning['low']) 
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Rule_3 = ctrl.Rule(temperature['low'] & light_intensity['low'] & vacancy['occupied'], 

air_conditioning['off']) 

Rule_4 = ctrl.Rule(temperature['low'] & light_intensity['moderate'] & vacancy['occupied'], 

air_conditioning['off']) 

Rule_5 = ctrl.Rule(temperature['low'] & light_intensity['high'] & vacancy['occupied'], 

air_conditioning['off']) 

Rule_6 = ctrl.Rule(temperature['moderate'] & light_intensity['high'] & vacancy['occupied'], 

air_conditioning['low']) 

Rule_7 = ctrl.Rule(temperature['high'] & light_intensity['moderate'] & vacancy['occupied'], 

air_conditioning['high']) 

Rule_8 = ctrl.Rule(temperature['high'] & light_intensity['high'] & vacancy['occupied'], 

air_conditioning['high']) 

Rule_9 = ctrl.Rule(vacancy['vacant'] & temperature['low'] & light_intensity['low'] , 

air_conditioning['off']) 

Rule_10= ctrl.Rule(vacancy['vacant'] & temperature['moderate'] & light_intensity['low'] , 

air_conditioning['off']) 

Rule_11= ctrl.Rule(vacancy['vacant'] & temperature['high'] & light_intensity['low'] , 

air_conditioning['off']) 

Rule_12 = ctrl.Rule(vacancy['vacant'] & temperature['low'] & light_intensity['moderate'] , 

air_conditioning['off']) 

Rule_13= ctrl.Rule(vacancy['vacant'] & temperature['moderate'] & 

light_intensity['moderate'] , air_conditioning['off']) 

Rule_14= ctrl.Rule(vacancy['vacant'] & temperature['high'] & light_intensity['moderate'] , 

air_conditioning['off']) 

Rule_15 = ctrl.Rule(vacancy['vacant'] & temperature['low'] & light_intensity['high'] , 

air_conditioning['off']) 

Rule_16= ctrl.Rule(vacancy['vacant'] & temperature['moderate'] & light_intensity['high'] , 

air_conditioning['off']) 

Rule_17= ctrl.Rule(vacancy['vacant'] & temperature['high'] & light_intensity['high'] , 

air_conditioning['off']) 

Rule_18 = ctrl.Rule(temperature['moderate'] & light_intensity['moderate'] & 

vacancy['occupied'], air_conditioning['low']) 

Rule_19 = ctrl.Rule(temperature['moderate'] & light_intensity['low'] & 

vacancy['occupied'], air_conditioning['low']) 

Rule_20 = ctrl.Rule(temperature['high'] & light_intensity['low'] & vacancy['occupied'], 

air_conditioning['high']) 

 

Rule_aircond= [Rule_1, Rule_2, Rule_3, Rule_4, Rule_5, Rule_6, Rule_7, Rule_8, 

Rule_9, 

               Rule_10, Rule_11, Rule_12, Rule_13, Rule_14, Rule_15, Rule_16, 

Rule_17,Rule_18,Rule_19,Rule_20] 

a_aircond = ctrl.ControlSystem(Rule_aircond)         #Base class to contain a Fuzzy Control 

System. 

b_aircond= ctrl.ControlSystemSimulation(a_aircond)  #Calculate results from a 

ControlSystem. 

                    

 

#DEFINING RULES FOR THE LIGHTING 

Rule_1_1 = ctrl.Rule(temperature['low'] & light_intensity['low'] & vacancy['occupied'], 

lighting['bright']) 
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Rule_1_2 = ctrl.Rule(temperature['moderate'] & light_intensity['low'] & 

vacancy['occupied'], lighting['bright']) 

Rule_1_3 = ctrl.Rule(temperature['high'] & light_intensity['low'] & vacancy['occupied'], 

lighting['bright']) 

 

Rule_1_4 = ctrl.Rule(temperature['low'] & light_intensity['moderate'] & 

vacancy['occupied'], lighting['dim']) 

Rule_1_5 = ctrl.Rule(temperature['moderate'] & light_intensity['moderate'] & 

vacancy['occupied'], lighting['dim']) 

Rule_1_6 = ctrl.Rule(temperature['high'] & light_intensity['moderate'] & 

vacancy['occupied'], lighting['dim']) 

 

Rule_1_7 = ctrl.Rule(temperature['low'] & light_intensity['high'] & vacancy['occupied'], 

lighting['off']) 

Rule_1_8 = ctrl.Rule(temperature['moderate'] & light_intensity['high'] & 

vacancy['occupied'], lighting['off']) 

Rule_1_9 = ctrl.Rule(temperature['high'] & light_intensity['high'] & vacancy['occupied'], 

lighting['off']) 

 

Rule_1_10 = ctrl.Rule(temperature['low'] & light_intensity['low'] & vacancy['vacant'], 

lighting['off']) 

Rule_1_11 = ctrl.Rule(temperature['moderate'] & light_intensity['low'] & 

vacancy['vacant'], lighting['off']) 

Rule_1_12 = ctrl.Rule(temperature['high'] & light_intensity['low'] & vacancy['vacant'], 

lighting['off']) 

 

Rule_1_13 = ctrl.Rule(temperature['low'] & light_intensity['moderate'] & 

vacancy['vacant'], lighting['off']) 

Rule_1_14 = ctrl.Rule(temperature['moderate'] & light_intensity['moderate'] & 

vacancy['vacant'], lighting['off']) 

Rule_1_15 = ctrl.Rule(temperature['high'] & light_intensity['moderate'] & 

vacancy['vacant'], lighting['off']) 

 

Rule_1_16 = ctrl.Rule(temperature['low'] & light_intensity['high'] & vacancy['vacant'], 

lighting['off']) 

Rule_1_17 = ctrl.Rule(temperature['moderate'] & light_intensity['high'] & 

vacancy['vacant'], lighting['off']) 

Rule_1_18 = ctrl.Rule(temperature['high'] & light_intensity['high'] & vacancy['vacant'], 

lighting['off']) 

 

 

 

# Add more rules as needed 

 

# Combine all rules into a list 

Rule_lighting = [Rule_1_1, Rule_1_2, Rule_1_3, Rule_1_4, Rule_1_5, Rule_1_6, 

Rule_1_7, Rule_1_8, Rule_1_9, Rule_1_10, 

                 Rule_1_11, Rule_1_12, Rule_1_13, Rule_1_14, Rule_1_15, Rule_1_16, 

Rule_1_17, Rule_1_18] 
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# Create the control system and simulation object 

a_lighting = ctrl.ControlSystem(Rule_lighting) 

b_lighting = ctrl.ControlSystemSimulation(a_lighting) 

 

 

 

line = sys.stdin.readline().strip() 

if line: 

    try: 

        data = json.loads(line)  # Attempt to parse the JSON string 

    except json.JSONDecodeError: 

        print("Error: Invalid JSON format") 

    else: 

        # Extract and set the fuzzy inputs using the exact key names from the JSON 

        temperature_value = data.get('temperature', 0) 

        light_intensity_value = data.get('lightIntensity', 0)  # Changed to match JSON key 

        vacancy_value = data.get('vacancy', 0) 

 

        # Set inputs for air conditioning system 

        b_aircond.input['temperature'] = temperature_value 

        b_aircond.input['light_intensity'] = light_intensity_value 

        b_aircond.input['vacancy'] = vacancy_value 

        b_aircond.compute()  # Compute the fuzzy system 

 

        # Output for air conditioning 

        output_aircond = b_aircond.output['air_conditioning'] 

        print(f"The Air Conditioning will adjust to: {output_aircond:.4f}") 

 

        # Set inputs for lighting system 

        b_lighting.input['temperature'] = temperature_value 

        b_lighting.input['light_intensity'] = light_intensity_value 

        b_lighting.input['vacancy'] = vacancy_value 

        b_lighting.compute()  # Compute the fuzzy system 

 

        # Output for lighting 

        output_lighting = b_lighting.output['lighting'] 

        print(f"The Lighting Brightness will adjust to: {output_lighting:.4f}") 
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APPENDIX F: Simulating Fuzzy Logic Rule-Based System in Python by mapping the 

Fuzzy Logic Outputs to Energy Consumption Values  

import pandas as pd 

 

# Define the functions for calculating energy consumption 

def lighting_energy_consumption(brightness): 

    if 0 <= brightness < 0.5: 

        return 1.3743  # Off 

    elif 0.5 <= brightness < 1: 

        return 2.7633  # 10% 

    elif 1 <= brightness < 2: 

        return 5.0050  # 30% 

    elif 2 <= brightness < 3: 

        return 7.2777  # 50% 

    elif 3 <= brightness < 4: 

        return 10.2527  # 75% 

    else: 

        return 12.9123  # 100% 

 

def air_conditioning_energy_consumption(mode): 

    if 0 <= mode < 1: 

        return 0.6887  # Off 

    elif 1 <= mode < (5/3): 

        return 47.6710  # Low 

    elif (5/3) <= mode < (7/3): 

        return 51.1773  # Low (Cold Mode On) 

    elif (7/3) <= mode < 3: 

        return 53.7267  # Med 

    elif 3 <= mode < (11/3): 

        return 57.4893  # Med (Cold Mode On) 

    elif (11/3) <= mode < (13/3): 

        return 59.0827  # High  

    else: 

        return 62.6360  # High (Cold Mode On) 

 

# Load the existing data 

file_path = 'C:/Users/User/Documents/UTEM IWAAAANNNNNN/File Laptop 

UteM/YEAR 4 SEM 2 SESSION 2023 2024/FINAL YEAR PROJECT II 

BEKU4894/CODING FUZZY LOGIC IWAN/Results Fuzzy 

Logic/energy_management_results.csv' 

data = pd.read_csv(file_path) 

 

# Apply the energy consumption calculations 

data['lighting_energy'] = data['lighting_output'].apply(lighting_energy_consumption) 

data['ac_energy'] = 

data['air_conditioning_output'].apply(air_conditioning_energy_consumption) 
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# Calculate the total energy consumption 

data['total_energy'] = data['lighting_energy'] + data['ac_energy'] 

 

# Save the updated data to a new CSV file 

output_file_path = 'C:/Users/User/Documents/UTEM IWAAAANNNNNN/File Laptop 

UteM/YEAR 4 SEM 2 SESSION 2023 2024/FINAL YEAR PROJECT II 

BEKU4894/CODING FUZZY LOGIC IWAN/Results Fuzzy 

Logic/updated_energy_management_results.csv' 

data.to_csv(output_file_path, index=False) 

 

 

 


