

VISUALIZATION OF MALWARE BEHAVIOR USING MATRIX

MUHAMMAD HAFIZUL HELMI BIN MOHD ZURIN

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

VISUALIZATION OF MALWARE BEHAVIOR USING MATRIX

MUHAMMAD HAFIZUL HELMI BIN MOHD ZURIN

This report is submitted in partial fulfilment of the requirement for the

Bachelor of Computer Science (Computer Networking)

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2017

i

D ECLARATION

l hen:by dcclnre chat thi:c ptujecl "-'P<1" i:nti11cd

VlSl 'ALtZATION OF MALWARJo: BEHAVIOR USING MATRIX

is wrillen by mi: and is my own effort t1nd lhul no part has bcc:n plagilU'i7.ed

STUnF.NT

1J11re:

SUPERVISOR

Date:

with1)Ul c it11rio ns.

(MU>!Mt~:-L-:-H-:-t:-.L....,.M_l_R_N-. :MOHD ZURIN)

:l.S/ 'r I~ v-r··,

~

ii

DEDICATION

To my beloved parents thank you very much and a alot

for always supporting me

and being there when I am feeling down

To my loyal friend thank you

for sharing your knowledge, motivate me and helping me

in completing this project

To my supervisor thank you

for encouraging, motivating and believing

in me

iii

ACKNOWLEDGEMENTS

 I would like to show my gratefulness to Allah SWT, who with His willing give

me the opportunity to complete this Final Year Project which titled Visualisation of

Malware Behavior Using Matrix. Next, I would like to express how thankful I am to Dr

Siti Rahayu Selamat as my supervisor who had guided a lot of task during this semester

in completing this Final Year Project. Deepest thanks to my mother give motivation and

appreciation to my father, family and my supportive friends and others for their

assistance, encouragement, constructive suggestion and full support for the report

completion, from the beginning till the end. Last but not least, my thanks to the members

of Faculty of Information Communication and Technology UTeM, for commitment and

cooperation during my Final Year project.

iv

ABSTRACT

 Malware is a type of malicious program that replicate from host machine and

propagate through network. It can take form of executable code, scripts, active content

and other software. The development of new malware is increases every year. We need

to analyze the malware behavior in order to detect their attack pattern. However,

malware behavior is hard to understand by non-technical viewers. This research will

perform analysis for malware behavior and construct matrix for malware behavior to

provide better understanding. The method used in this research consists of five

approaches. First, the network environment will be set up in this research. After that, the

malware attack is activated. The network traffic data will be collected. Then, all network

traffic data will be analyzed. Finally, matrix will be constructed in order to visualize the

malware behavior. The expectation by the end of this project is to represent the malware

behavior by visualize it using matrix. Hence, this will facilitate an administrator to

identify the behavior of malware during the threat analysis. Besides that, it can provide

better view for others to understand malware behavior in visual form.

v

ABSTRAK

 Malware adalah sejenis program yang boleh memberi kesan buruk kepada

komputer mangsa dan ia boleh disebarkan melalui rangkaian. Ia juga boleh disebarkan

dalam bentuk kod, skrip, kandungan aktif dan perisian lain. Perkembangan malware

baru meningkat setiap tahun. Kita perlu mengenalpasti tingkah laku malware untuk

mengesan cara ia menyerang. Walau bagaimanapun, tingkah laku malware sukar

difahami. Kajian ini akan menjalankan analisis untuk tingkah laku malware dan

membina jadual matriks untuk memberikan pemahaman yang lebih baik. Kaedah yang

digunakan dalam kajian ini terdiri daripada lima pendekatan. Pertama, menyediakan

persekitaran rangkaian. Selepas itu, serangan malware akan diaktifkan. Data trafik

rangkaian akan dikumpulkan. Kemudian, semua data trafik rangkaian akan dianalisis.

Akhir sekali, jadual matriks akan dibina untuk menggambarkan tingkah laku malware.

Harapan pada akhir projek ini adalah memberikan pemahaman tentang tingkah laku

malware dengan menggunakan jadual matriks. Oleh itu, ia memudahkan dalam

mengenal pasti tingkah laku malware semasa proses menganalisis. Selain itu, ia dapat

memberikan pandangan yang lebih baik untuk orang lain memahami tingkah laku

malware dalam bentuk visual.

vi

TABLE OF CONTENTS

CHAPTER SUBJECT PAGE

 DECLARATION i

 DEDICATION iii

 ACKNOWLEDGEMENTS iv

 ABSTRACT v

 ABSTRAK vi

 TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES

 vii

xi

xiii

CHAPTER I INTRODUCTION

 1.1 Background Study

1.2 Problem Statement

1.3 Project Question

1.4 Project Objective

1.5 Project Scope

1.6 Expected Output

1.7 Report Organization

1.8 Summary

 1

2

2

3

3

3

3

4

CHAPTER II LITERATURE REVIEW

 2.1 Introduction

2.2 Malware

 2.2.1 Definition of Malware

 6

7

7

vii

 2.2.2 Issues on Malware

 2.2.3 Malware Behavior

 2.2.4 Types of Malware

 2.2.5 Analysis on Malware

2.3 Visualization

 2.3.1 Definition of Visualization

 2.3.2 Categories of Visualization

Technique

 2.3.3 Visualization Technique

2.4 Proposed Solution

2.5 Summary

8

9

10

11

13

13

14

16

17

18

CHAPTER III METHODOLOGY

 3.1 Introduction

3.2 Methodology

 3.2.1 Literature Review Phase

 3.2.2 Data Collection Phase

 3.2.3 Data Analysis Phase

 3.2.4 Design Phase

 3.2.5 Algorithm Development

Phase

 3.2.6 Testing Phase

 3.2.7 Documentation Phase

3.3 Software and Hardware

Requirement

 3.3.1 Microsoft Windows XP

 3.3.2 Network Traffic Capturing

and Analyzing Tool

 3.3.3 Java

 3.3.4 Computer

 3.3.5 Router

 19

19

20

20

21

21

21

 21

 22

 22

 22

 22

 23

 23

 23

viii

 3.3.6 Switch

3.4 Project Milestone

3.5 Summary

 23

 24

 24

CHAPTER IV DESIGN

 4.1 Introduction

4.2 Experiment Approach

4.2.1 Network Environment

Setup

4.2.2 Attack Activation

4.2.3 Network Traffic Data

Collection

4.2.4 Network Traffic Data

Analysis

4.3 Data Analysis Process

4.4 Analysis of Sasser Worm Attack

4.4.1 Dataset 1 Analysis

4.4.2 Dataset 2 Analysis

4.4.3 Overall Analysis

4.4.4 Attack Pattern Generation

4.5 Visualization Algorithm Design

4.6 Summary

 25

25

26

37

27

28

28

29

29

 38

 43

 44

 45

 45

CHAPTER V IMPLEMENTATION

 5.1 Introduction

5.2 Visualization Prototype

Architecture

 5.2.1 Visualization Module

5.3 Summary

46

46

47

48

ix

CHAPTER VI TESTING

 6.1 Introduction

6.2 Test Plan

6.3 Test Environment

6.4 Test Strategy

6.5 Test Result

 6.5.1 Dataset Result Analysis

6.6 Summary

 49

49

50

50

50

50

53

CHAPTER VII PROJECT CONLUSION

 7.1 Introduction

7.2 Project summarization

7.3 Project Limitation

7.4 Future Works

REFERENCES

APPENDIX

 54

54

56

56

57

58

x

LIST OF TABLES

TABLE TITLE PAGE

 1.1 Problem Statement 2

 1.2 Project Question 2

 1.3 Project Objective 3

 2.1 Definition of Malware 7

 2.2 Malware Categories and Description 10

 2.3

 2.4

 2.5

 2.6

 4.1

 4.2

 4.3

 4.4

 4.5

 4.6

Types of Malware

Techniques for Static Malware Analysis

Visualization Technique Categories

Visualization Technique

Malware Attribute of First Suspicious Traffic

at Port 9996 in Dataset 1

Malware Attribute of Second Suspicious

Traffic at Port 9996 in Dataset 1

Malware Attribute of First Suspicious Traffic

at Port 5554 in Dataset 1

Malware Attribute of Second Suspicious

Traffic at Port 5554 in Dataset 1

Malware Attribute of Suspicious Traffic at

Port 9996 in Dataset 2

Malware Attribute of Suspicious Traffic at

Port 5554 in Dataset 2

 10

12

15

16

 36

 37

 37

 38

 42

 43

xi

 4.7

 6.1

 6.2

Overall Analysis from Both Datasets

Analysis of Test Result for Dataset 1

Analysis of Test Result for Dataset 2

 43

 51

 53

xii

LIST OF FIGURES

FIGURES TITLE PAGE

 2.1 Framework of Literature Review 6

 2.2 Development of New Malware 9

 3.1 Project Methodology 20

 4.1 Experiment Approach 25

 4.2

 4.3

 4.4

 4.5

 4.6

 4.7

 4.8

 4.9

 4.10

 4.11

 4.12

 4.13

Physical Design

Logical Design

Steps to Collect the Network Traffic

Activities Involved in Analysis Process

First Suspicious Traffic (Scanning Process) in

Dataset 1

Second Suspicious Traffic (Scanning Process) in

Dataset 1

First Suspicious Traffic at Port 9996 in Dataset 1

Second Suspicious Traffic at Port 9996 in Dataset

1

First Suspicious Traffic at Port 5554 in Dataset 1

Second Suspicious Traffic at Port 5554 in Dataset

1

Payload of First Suspicious Traffic at Port 9996

in Dataset 1

Payload of Second Suspicious Traffic at Port

 26

27

28

29

30

 31

 31

 32

 32

 33

 34

xiii

 4.14

 4.15

 4.16

 4.17

 4.18

 4.19

 4.20

 4.21

 4.22

 5.1

 5.2

 5.3

 6.1

 6.2

 6.3

9996 in Dataset 1

Payload of First Suspicious Traffic at Port 5554

in Dataset 1

Payload of Second Suspicious Traffic at Port

5554 in Dataset 1

Suspicious Traffic (Scanning Process) in Dataset

2

Suspicious Traffic at Port 9996 in Dataset 2

Suspicious Traffic at Port 5554 in Dataset 2

Payload of Suspicious Traffic at Port 9996 in

Dataset 2

Payload of Suspicious Traffic at Port 5554 in

Dataset 2

Attack Pattern of Sasser Worm

Flowchart of Visualization Algorithm

Visualization Prototype Architecture

Flowchart of Visualization Process

Algorithm of Visualization Process

Test Plan of Visualization Algorithm

Test Result for Dataset 1

Test Result for Dataset 2

 34

 35

 35

 39

 39

 40

 41

 41

 44

 45

 46

 47

 48

 49

 51

 52

CHAPTER I

INTRODUCTION

1.1 Background Study

Malware is short for malicious software. It is referring to any software that is

inserted without any authorize into a computer system to comprome the

confidentiality, integrity, or availability of the victim’s data, applications, or

operating systems. Malware is malicious code as any code added, changed, or

removed from a software system in order to intentionally cause harm or subvert the

intended function of the system (McGraw & Morrisett, 2000).

The number of new type of malware released has increased day by day.

Malware is not only executed in windows operating system. It also can be executed

in smartphone, tablet, and other operating system such as macOS and Linux. Since

Windows is used widely, the statistics shows the highest amount of malware attack

was occurred in Windows operating system. Malware can be classified based on their

behavior. There are two approaches towards analyzing a malware sample which is

dynamic analysis and static analysis. Dynamic analysis is a technique for studying

the behavior of a malware sample while the sample is being executed. However,

static analysis is a technique that enables the study of a sample without the need for

sample execution (Band & Antenna, 2014). Based on this problem, we need to

expose to users on malware behavior. However, malware behavior is hard to

2

understand by non-technical viewers. Visualization on malware behavior is needed to

give more understanding on how they attack and affect the system.

Nowadays, many existing method of visualizing malware behavior have been

done previously. Malware behavior visualization could possibly open up a new

paradigm for malware research. There are currently 4 methods of malware

visualization. These are Malware Treemap, Malware Threadgraph, Malware Image,

and visualization of Executables for Reversing and Analysis (VERA) (Band &

Antenna, 2014). In this research, a new technique to visualize malware behavior

using matrix is presented.

1.2 Problem Statement

Malware behavior should be documented in the visual form that can be used

in presentation process. Besides that, it can provide better understanding for others to

translate malware behavior in visual form.

Table 1.1: Problem Statement

No Project Problem

PP1 Malware behavior is hard to understand by non-technical viewers

1.3 Project Questions

Based on the problem statements, two project questions (PQ) are constructed as

shown in Table 1.1 below.

Table 1.2: Project Question

PP PQ Project Question (PQ)

PP1 PQ1 How could we identify the malware behavior?

PQ2 What is the effective visualization technique?

3

1.4 Project Objective

In order to solve the problem identified as in Section 1.1, two project objectives

(PO) are derived as shown in Table 1.2.

Table 1.3: Project Objective

PP PQ PO Project Objective (PO)

PP1 PQ1 PO1 To analyze malware behavior

PQ2 PO2 To construct matrix for malware behavior visualization

1.5 Project Scope

The scope for this project are:

1. The data used in this project is limited to the types of malware that is discovered

and tested.

2. The result acchieved are based on the data in a controlled environment

experiment and testing.

1.6 Expected Output

The expectation by the end of this project is to represent the malware behavior

by Visualize it using matrix. Hence, this will facilitate an administrator to identify

the behavior of malware during the threat analysis.

1.7 Report Organization

Chapter 1: Introduction

This chapter explained about the definition, background, problem statement,

objective, scope and expected output related to the malware.

4

Chapter 2: Literature review

This chapter explained about malware, malware behavior analysis, and the

visualization techniques of malware behavior. It will help to more understanding

about malware behavior and the methods to identify the behavior for various types of

malware.

Chapter 3: Methodology

This chapter provide a decision of the method or what analysis techniques to be

used for experimental part. With the certain analysis technique, it helps to know

about the malware behavior. It also will involve about the method to visualize it.

Chapter 4: Design and implementation

The design of visualize malware behavior in matrix form is describe in details on

how it works carried out. The sample of result and output will be providing.

Chapter 5: Testing and analysis

On the testing and analysis part, it explains about the method use and procedure

on how to test and analyze the experiment. After the visualizing technique was

identified, we compare the result with the other techniques.

Chapter 6: Conclusion

This chapter combining the entire chapter in a final documentation and state the

contribution that able to provide for future works.

1.8 Summary

The increasing of malware variants in each day seems to be serious problem

for all computer users. We should pay enough attention on this situation. Malware

detection is one of the actions that can be taken. By knowing their behavior, we can

easily know the type of malware based on their behavior. To get better

understanding, presentation of malware behavior should be done visually.

5

Visualization in the form of matrix will be presented in this research. Related work

about visualization technique of malware behavior will be explained in the next

chapter of this research

.

CHAPTER II

LITERATURE REVIEW

2.1 Introduction

This chapter will discuss about the literature review regarding all the sub

topics in the framework as shown in Figure 2.1.

Figure 2.1: Framework of Literature Review

Visualization of Malware Behavior Using Matrix

Malware

Definition of Malware

Types of Malware

Issues on Malware

Analysis of Malware

Categories of Visualization

Technique

Definition of Visualization

Visualization

Malware Behavior Analysis of Visualization

7

Figure 2.1 shows the topics that will be elaborated and analyzed in this

chapter. Two main topics are defined namely malware and visualization.

2.2 Malware

In this section, the definition, type, and issues related malware behavior are

elaborated and analyzed.

2.2.1 Definition of Malware

There are millions of new malware was developed each year. Many

researchers defined malware with different words. There are several definitions of

malware defined by different authors was shown in Table 2.1.

Table 2.1: Definition of Malware

Author Definition

Rutkowska, 2006 A piece of code which changes the behavior of either the operating

system kernel or some security sensitive applications, without a user

consent that it is then impossible to detect those changes using a

documented features of the operating system or the application

Kramer & Bradfield,

2010

A software that harmfully attacks other software where to harmfully

attack can be observed to mean to cause the actual behavior to differ

from the intended behavior

Moser, 2007

Software that deliberately fulfills the harmful intent of an attacker is

commonly referred to as malicious software or malware

Science, 2010 Malware is short for malicious software that represents the category

of programs designed to infiltrate a computer system without the

owner's consent.

Grégio & Santos, 2011 A set of malicious applications or codes, such as worms, viruses,

trojans and bots to attack system in order to disrupt them, steal

sensitive, financial information or even to use them as a disguise in

other attacks, with directed target or not

Makandar & Patrot,

2015

A computer virus this is also a name given to a group of malicious

data to all types of malicious data like virus, worm, Trojan and so on

Sikorski & Honig, 2012 Malicious software, or malware, can be defined as any software that

does something that causes harm to a user, computer, or network

Symantec Corp, 2012 A software designed to attack and disable, damage or disrupt

computers, computer systems, or networks.

8

Table 2.1 shows several different definition of malware by different authors.

They have different opinion about what actually malware is. Based on the definition,

this project defines malware as software that contain malicious code that can causes

bad effect to computer user, computer system or computer network. Malware have

been developed in many different types and each type have different characteristic.

The next section will discuss about several types of malware.

2.2.2 Issues on Malware

First viruses started to be created in the early 1970s, when ARPANET, the

forerunner of the Internet, was the main and wider interconnection network available.

They had the form of experimental self-replicating programs, initially ideated as

jokes between colleagues in laboratories. The first virus to be executed outside the

single computer or lab where it was created was written in 1981, and injected in a

game on a floppy disk as a practical joke. Before computer networks became

widespread, most viruses spread on removable media, particularly floppy disks

(Tiziano Santoro, 2010).

The effect of malicious data affect the various computer networks,

infrastructures, services, file sharing, online social networking, and Bluetooth

wireless networks (Makandar & Patrot, 2015).. Malware has infected every corner

of the Internet, and is now can affect the social networks and mobile devices too. In

2010 alone, 286 million different types of malware were responsible for more than 3

billion total attacks on computer users, staggering numbers that are just one simple

measure of malware’s impact (Symantec Corp, 2012). This become worst as the

rapid increased on the new malware development as shown in Figure 2.2.

9

Figure 2.2: Development of new malware in the last 10 years (AV-Test, 2015)

Figure 2.2 shows the increasing number of new malware development in last

10 years based on 2015 AV-TEST security report. From the figure, we can conclude

that the development of new malware is increase sharply year by year. As Microsoft

Windows operating system is being used widely, statistics shows Microsoft

ecosystem by far sustains the most attacks and the highest number of malware

samples of all operating systems (AV-Test, 2015). This indicates that most of

networks or systems are exposed to malware attack. In addition, the malware

behavior is become more sophisticated and difficult to analyze. The next section will

discuss about the malware behavior.

2.2.3 Malware Behavior

Malware behavior refers to what malware does, exhibits, or causes to its

environment during live execution. Among the candidates for representing malware

behavior includes monitoring changes to operating system resources during malware

execution (Jiang, Wang, & Xu, 2010), capturing malware’s API call sequence (Nair,

2010), malware’s I/O request packets (IRP) (Jiang et al., 2010), and malware’s

network activity (Ahmed, 2011).

10

The malware behaviors are identified in one of them such as encrypted

malware, polymorphic malware, metamorphic malware, and obfuscated which have

the ability to change their code as they propagate.

Table 2.2: Malware Categories and Descriptions

Category Description

Metamorphic malware Automatically recodes itself each time it propagates or is

distributed.

Polymorphic malware Mutation engines are bundled with the self-propagating

code such as virus and worm.

Metamorphic malware is harder to write than polymorphic malware. The

author may use multiple transformation techniques, including register renaming,

code permutation, code expansion, code shrinking and garbage code insertion. As a

result, advanced techniques such as generic decryption scanning, negative heuristic

analysis, emulation and access to virtualization technologies are required for

detection. The next section will discuss about the types on malware.

2.2.4 Types of Malware

Malware can be categorized in many types. Different type of malware is used

for different purpose. Table 2.3 shows several types of malware and their description.

Table 2.3: Types of Malware

Name Description
Worm Spafford (1989) defines a worm as a program that can run independently and can

propagate a fully working version of itself to other machines. Sasser worm will find

the vulnerability in Local Authority Subsystem Service (LSASS). The Code Red

worm infected thousands (359,000) of hosts on the Internet during the first day of its

release (Moore et al. 2002).

Trojan horse Software that pretends to be useful but performs malicious actions in the background.

It can disguise itself as any legitimate program, frequently, they pretend to be useful

screensavers, browser plug-ins, or downloadable games. Once installed, their

malicious part might download additional malware, modify system settings, or infect

other files on the system.

Virus A virus is a piece of code that adds itself to other programs, including operating

systems. It requires a host program be run to activate it. (Spafford 1989). As with

worms, viruses usually propagate themselves by infecting every vulnerable host they

can find.

Bot A piece of malware that allows its author to remotely control the infected system.

The set of bots collectively controlled by one bot master is a botnet. Bots are

commonly instructed to send spam emails or perform spyware activities as just

described.

http://searchsecurity.techtarget.com/definition/polymorphic-malware
http://whatis.techtarget.com/definition/emulator
http://searchservervirtualization.techtarget.com/definition/virtualization

11

From Table 2.3, there are 6 common types of malware which is Worm,

Trojan horse, Virus, and Bot.

2.2.5 Analysis on Malware

The analysis of malware should be performed in order to obtain their attack

pattern and attributes. Normally, malware analysis is performed in two methods

which are static analysis and dynamic analysis.

Static Analysis

Static analysis is the method that perform analysis without execute the code

(Thorsten Holz, 2009). It can be performed on different representation of program.

Static analysis can help in finding memory corruption flaws and prove the

correctness of models for a given system if the source code is available. Static

analysis method also can be used on binary representation of a program. Some

information gets lost when compiling the source code of a program into a binary

executable. This will further complicate the task of analyzing the code.

Mostly, the process of inspecting a given binary without executing it is

conducted manually. Several information such as used function, call graph and data

structures can be extracted. All of this information gets lost once the source code has

been compiled into binary executable. These situations will effects further analysis.

Various techniques are used for static malware analysis as shown in Table 2.4.

Based on Table 2.5, static analysis consists of six techniques which are file

fingerprinting, file format, AV scanning, extracting of hard coded strings, packer

detection and disassembly. All of these techniques could be done without executing

the code.

12

Table 2.4: Techniques for Static Malware Analysis

Technique Description

File fingerprinting Examining obvious external features of the binary. Includes

operations on the file level such as computation of a

cryptographic hash of the binary in order to distinguish it

from others and to verify that it has not been modified.

File format By leveraging meta data of a given file format additional,

useful information can be gathered. This includes the magic

number on UNIX systems to determine the file type as well

as dissecting information of the file format itself.

AV scanning It is highly likely to be detected by one or more AV scanners

if the examined binary is well-known malware.

Extraction of hard

coded strings

Software typically prints output such as status or error

message which embedded in the compiled binary as readable

text. Examining these embedded strings often allows

conclusions to be shown about internals of the inspected

binary.

Packer detection Obfuscated form of malware is achieved using a packer,

whereas arbitrary algorithms can be used for modification.

After packing the program looks much different from a static

analysis perspective and its logic as well as other metadata is

thus hard to recover.

Disassembly Conducted utilizing tools, which are capable of reversing the

machine code to assembly language, such as IDA Pro3.

Based on the reconstructed assembly code an analyst can then

inspect the program logic and thus examine its intention.

Dynamic Analysis

Dynamic analysis is the process of executing a given malware sample within

a controlled environment and monitoring its actions in order to analyze the malicious

behavior. This method evades the restrictions of static analysis for example

unpacking and obfuscation issues since it is performed during runtime and malware

unpacks itself. This method is easy to see the actual behavior of a program. Besides

that, dynamic analysis can be automated thus enabling analysis at a large scale basis.

However, it is usually monitors only one execution path and thus suffers from

incomplete code coverage. It is also can harming third party systems if the analysis

environment is not properly isolated or restricted respectively. Moreover, malware

samples can alter their behavior or stop executing respectively once they detect to be

executed within a controlled analysis environment (Brunner, Fuchs, & Todt, 2012).

13

Typically, two basic approaches for dynamic malware analysis can be

recognized (Brunner et al., 2012):

 Analyzing the difference between defined points: A given malware

sample is executed for a certain period of time and after that the

modifications made to the system are analyzed by comparison to the initial

system state.

 Observing runtime-behavior: Malicious activities launched by the

malicious application are monitored during runtime using a specialized

tool

The next section will discuss about the visualization.

.

2.3 Visualization

In this section, the definition, techniques and information about visualization are

elaborated and analyzed.

2.3.1 Definition of Visualization

Visualization is a task easily performed by humans. The human visual system

is able to detect patterns, trends, exceptions, and relationships among visually

noticed objects, even if it is not possible to describe these phenomena in natural

language (Grégio & Santos, 2011).

A lot of techniques have been devised by researchers to undergo malware

analysis and one of them is through malware visualization. Malware visualization is

a technique that focuses on representing malware features in the form of visual cues

or images (Syed Zainudeen, 2014).

14

2.3.2 Categories of Visualization Technique

There are several data visualization techniques, since the simplest and generic

ones, such as area, pie, bar, pizza, lines and dots graphics which are usually available

in electronic spreadsheets, until more complex and specific ones, such as volume

slicing in 3D to present bi-dimensional images used in nuclear magnetic resonance

image visualization.

Visualization techniques can be grouped in categories, but some techniques

can belong to more than one category and some other can belong to any of them. As

there are plenty of visualization techniques this project will cover just 8 subsets of

them as shown in Table 2.5.

Based on Table 2.5, geometric technique category is the most suitable

technique to be used for visualizing malware behavior. Malware have their own

attributes which can be used in visualization process by using geometric technique.

The next section will discuss about the visualization technique.

15

Table 2.5: Visualization Technique Categories

Categories Description

Geometric techniques Visualization through transformations

(reorganization, projection) of its attribute values.

One of the most known geometric technique is the

scatter-plot matrix,

Pixel-based techniques Represent multidimensional values and to

organize this set in greater arrangements that may

represent the dataset special or temporal

dimensions. The attributes values are depicted as

colored pixels, usually in a color map.

Icon-based techniques Represent multidimensional data as icons whose

characteristics correspond to data attribute values.

Shape coding is where the multidimensional

values are mapped in a small rectangular graphic.

This kind of technique helps in visually

identifying exceptions.

Hierarchical techniques Partition multiple dimensions of data in subspaces

that can be visualized in 2 or 3 dimensions. Other

features such as colors or textures can be added to

denote additional information. This kind of

graphic can divides a relatively small set of data in

partitions and shows groupings and distances

among represented data.

Graph-based techniques Show relations (edges) among objects (vertices).

This graphic representation can be used to present

patterns and values associated to relationships,

such as proximity, intensity, correlation. There are

several visualization techniques that use graphs

and the study of algorithms to position vertices

and edges.

Tridimensional techniques Make use of 3D graphics to visualize data that are

organized in scenarios. The user can select a

region or subset of data to visualize in a focused

manner or to change the scenario's point of view.

Maps Visualization components universally known and

can be used as background in graphics that contain

geographic information – regions or coordinates.

They can, for instance, show a current trend by

presenting a visualization example of a

geographically-located phenomenon.

16

2.3.3 Visualization Technique

Currently, there are 4 documented malware visualization techniques in

malware analysis. These are Malware Images, Malware Treemap, Threadgraph, and

Visualization of Executables for Reversing and Analysis (VERA). All of these

techniques will be described in the Table 2.6

 Table 2.6: Visualization Techniques

Technique Description

Malware Images Introduced by Nataraj, L., Karthikeyan, S., Jacob, G.,

and Manjunath, B. in 2011

 Use static feature based

 Use raw malware data

 Each byte of the malware binary is interpreted as an 8-bit

unsigned integer value in range of 0-255.

 Value of 0 will represent black while a value of 255 will

represent white

 The width of the image depends on the size of the

malware sample

Malware Treemap Introduced by Trinius, P., Holz, T., Gobel, J., and

Freiling, F. C. in 2009

 Form of an image of nested rectangles

 Use dynamic feature

 Use API calls

 Represented in colour image

Threadgraph Introduced by Trinius, P., Holz, T., Gobel, J., and

Freiling, F. C. in 2009

 ‘Thread’ here refers to the execution threads of a

malware sample

 Use dynamic feature

 Use API calls

 Single-threaded malware will have only one line plotted

in the threadgraph while multi-threaded malware will

have 2 or more lines plotted

 Represents the chronological order of the sections and

the transition between the regions

 Limited to showing only the first 550 operations

VERA Introduced by Quist, D. A. and Liebrock, L. M. in 2009.

 Use dynamic feature

 Visualizing malware samples in the form of a 3D image

 Differentiate code section entropy and monitor the

creation, deletion, and modification of code sections of

malware in memory by representing executable code

blocks as colour coded nodes

17

Malware Treemap, Malware Threadgraph, and VERA are malware

visualization techniques based on the use of dynamic analysis of malware. On the

other hand, Malware Image is using static analysis. The use of raw malware binary

for the creation of Malware Images includes visualization of non-behavior related

data such as the PE header (metadata), and resources for example icons, bitmaps, and

xml files (Microsoft, 2010). This could affect the overall accuracy of the generated

image if the size of non-behavior related data is greater than the size of behavior

related data in a malware binary. Therefore, Malware Image is not a good

visualization technique that could accurately visualize malware behavior.

Malware Treemap did not capture information on malware behavior sequence

and represents behavior in the form of sections. These situations cause the technique

to represent low granularity malware behavior, which is not suitable for use in

differentiating very similar malware families or groups. This also same as Malware

Threadgraph that makes use of limited number of behavior sections.

The 3D malware model by VERA is not a good candidate technique for

representing malware behavior. This is because the VERA scheme is only interested

in capturing memory location and other memory state information. While the

technique is good for malware analysis, especially in malware unpacking, it does not

capture any data that could be related to malware behavior.

All of the mentioned malware visualization techniques have their drawbacks

that prevent them from being used in visualizing the behavioral of malware samples

for malware analysis. The objective for this project are giving a better view and

understanding to non-technical viewers about malware behavior. All the current

visualization technique gives the output that hard to understand by non-technical

viewers. This project will give a better output which is matrix form that will be easily

to understand.

2.4 Proposed Solution

18

 Based on the previous research, this project will use matrix as visualization

technique to visualize the malware behavior. Matrix has the relation between the row

and column which will easier to read and understand. This project will focus on

visualizing the behavior of Sasser worm which will undergoes the experiment to

gather all attributes and behaviors before it will be visualized.

2.5 Summary

In conclusion, analysis on malware and visualization have been done in this

chapter. The next chapter will discuss about the project methodology. All of the

activities involved in the project will be discussed.

CHAPTER III

METHODOLOGY

3.1 Introduction

The previous chapter discussed about the topics which related to malware and

visualization. This chapter will describe the project methodology and the activities

for each phase. The milestones of this project also will be created in this chapter.

3.2 Methodology

Methodology is the steps or methods which designed to complete the project.

This project consist of seven phases which are literature review phase, data collection

phase, data analysis phase, design phase, algorithm development phase, testing phase

and documentation phase as shown in Figure 3.1.

20

Figure 3.1: Project Methodology

3.2.1 Literature Review Phase

In this phase, the research related to malware and visualization is carried out.

The definition of malware, type of malware, malware behavior, issues on malware

and analysis on malware is described and analyzed in order to choose the type of

malware to be used for this project. In addition, this phase also will describe and

analyze the definition of visualization, technique of visualization and analysis of

visualization to determine the existing technique of malware visualization to be

improved in this project.

3.2.2 Data Collection Phase

In this phase, network traffic data will be collected. A testbed experiment

approach will be designed and used in this phase. First, the network environment

used to collect the network traffic data is setup. Next, the malware (Sasser worm) is

activated at the attacker’s workstation. The malware attack will be launched. After

that, the network traffic after the malware is activated will be captured using

tcpdump. The network traffic will be analyzed by using Wireshark.

Literature review phase

Data collection phase

Design phase

Data analysis phase

Algorithm development

phase

Testing phase

Documentation phase

21

3.2.3 Data Analysis Phase

In this phase, the network traffic data collected from the experiment will be

analyzed. The general attributes of Sasser worm will be identified. All the captured

packets is observed and examined to know about the events on the network. After

that, all attributes and the attack pattern of malware are collected. Two datasets will

be analyzed in this phase.

3.2.4 Design Phase

The experiment environment will be designed in this phase to collect the

network traffic. Three main activities will be done. First, the logical and physical

designs of the network environment will be constructed. Second, the process of

analysis will be done. Third, the visualization algorithm will be designed. For this

algorithm, the flowchart will be produced. The detailed design of this project will be

explained in the next chapter.

3.2.5 Algorithm Development Phase

In this phase, the visualization algorithm will be developed in order to

construct the matrix for malware behavior. This algorithm will be developed by

using Java programming language based on the flowchart of the visualization

algorithm that have been created in the design phase.

3.2.6 Testing Phase

In this phase, the visualization algorithm will be tested. The objective of this

testing is to determine the ability of the algorithm to visualize malware behavior.

Based on the testing, the result will be analyzed and discussed. More result details

will be discussed in Chapter V.

22

3.2.7 Documentation Phase

Documentation phase is the last phase for this project. In this phase, final

report will be produced. The presentation of the outcome of this project also will be

done. The document will conclude the results of this project and state the weakness

and strength of the project, project contribution to the society, project limitation and

suggestions on future works in details. The overall conclusion will be stated and

elaborated in Chapter VII.

3.3 Software and Hardware Requirement

In this section, the required software and hardware for this project will be

stated. The software required includes the Microsoft Windows XP operating system,

network traffic capturing and analyzing tool, Java and SQLite database while the

hardware required is computer, router and switch.

3.3.1 Microsoft Windows XP

Microsoft Windows XP operating system is used in the workstation to carry

out the testbed experiment. Windows XP is selected because it is vulnerable to

Sasser worm attack as reported by Michael Socher (2004).

3.3.2 Network Traffic Capturing and Analyzing Tool

Tcpdump will be used as the network traffic capturing tool because there is

no size limitation when capturing the network traffic. Tcpdump will capture the

whole network traffic during the experiment. Wireshark will be used as network

analyzing tool. Wireshark is chosen because it can view data traffic information in

GUI.

23

3.3.3 Java

Java programming language will be used to develop the visualization

algorithm as it is flexible programming language.

3.3.4 Computer

Computer will be used in the experiment as the workstation. A different

computer will be used in analyzing network traffic captured and develop

visualization algorithm.

3.3.5 Router

The router is used to join the networks and performing traffic directing

functions. In the experiment, the router will join two switches together to become

one network.

3.3.6 Switch

The switch will connects devices together in a network by using packet

switching to receive, forward and process data to the destination device. The switch

will connect the network sniffer and workstations together in a network.

24

3.4 Project Milestone

No. Activity Duration

(weeks)

Completed date

1 Literature review

-analysis

2 24 February 2017

2 Data collection

-network traffic data collection

3 15 Mac 2017

3 Analysis phase

-analysis of collected network traffic

4 20 April 2017

4 Design

-experiment approach

-network traffic analysis

-Visualization algorithm (flowchart)

4 22 May 2017

5 Algorithm development

-development of visualization

algorithm

7 29 July 2017

6 Testing

-Testing of visualization algorithm

2 12 August 2017

7 Documentation

-final report

-final presentation

2 26 August 2017

3.5 Summary

In conclusion, this chapter discussed the methodology that will be used in this

project. Each phase and activity involved is described. The milestones of this project

also will be presented. The next chapter will discuss the design of the experiment and

the analysis process for this project.

CHAPTER IV

DESIGN

4.1 Introduction

The previous chapter discussed the project methodology and the description

about each phase. This chapter will focus in experiment approach, data analysis

process, analysis of Sasser worm attack and the visualization design.

4.2 Experiment Approach

The experiment approach of this project consists of four phases which are

network environment setup, attack activation, network traffic data collection and

network traffic data analysis as shown in Figure 4.1.

Figure 4.1: Experiment Approach

Network environment setup

Attack activation

Network traffic data collection

Network traffic data analysis

26

Figure 4.1 shows the stages of the experiment for this project. First, the

testbed is designed and setup for network environment. The network design consists

of one router, two switches, two network sniffers and eight workstations. All

workstation should run Windows XP operating system. Next, The Sasser worm will

be installed and activated at the attacker’s workstation. Then, the network traffic data

will be collected. The data used is the network traffic file collected by the previous

researcher Siti Rahayu, S. et al. (2010). In this phase, tcpdump is activated at the

network sniffers to capture the whole traffic. Finally, the network traffic data will be

analyzed by using Wireshark to identify the Sasser worm’s attack. The attack is

analyzed by examining the attack pattern and all attributes of Sasser worm. All the

attributes will be used in visualization algorithm development.

4.2.1 Network Environment setup

The network environment will be presented in physical and logical design as

shown in Figure 4.2 and Figure 4.3

Physical Design

Workstation 1
(Attacker)

192.112.111.104

Workstation 2
192.112.112.200

Workstation 3
192.112.100.31

Workstation 4
192.112.110.182

Workstation 5
192.112.112.196

Workstation 6
192.112.111.102

Workstation 7
192.112.100.100

Workstation 8
192.112.110.144

Switch 2

Switch 1

Network sniffer 2

Network sniffer 1

Router

Figure 4.2: Physical Design

27

Workstation 1
(Attacker)

192.112.111.104

Workstation 2
192.112.112.200

Workstation 3
192.112.100.31

Workstation 4
192.112.110.182

Workstation 5
192.112.112.196

Workstation 6
192.112.111.102

Workstation 7
192.112.100.100

Workstation 8
192.112.110.144

Switch 2

Switch 1

Network sniffer 2

Network sniffer 1

Router

Figure 4.3: Logical Design

4.2.2 Attack Activation

Workstation 1 is the attacker. The Sasser worm’s is installed and the activated

at Workstation 1 and it is allowed to run without any interception. The potential

victims in the network are Workstation 2, Workstation 3, Workstation 4, Workstation

5, Workstation 6, Workstation 7 and Workstation 8.

4.2.3 Network Traffic Data Collection

The network traffic will be collected by installing tcpdump at the network

sniffer after the malware is activated. Figure 4.4 shows the steps to collect the

network traffic.

28

Figure 4.4: Steps to Collect the Network Traffic

4.2.4 Network Traffic Data Analysis

In this process, Wireshark will be used to analyze the network traffic to

obtain all the attributes needed related to Sasser worm to generate their attack

pattern. The attributes obtained will be used for visualization process.

4.3 Data Analysis Process

This process involves performing analysis of the network traffic data that

have been collected. Wireshark is used to view the captured network traffic. The

captured network traffic will be observed to identify the suspicious traffic. This

analysis is performed to identify the attack pattern and all attributes for malware that

will be used in the visualization process. Figure 4.5 shows four activities involved in

this analysis process.

Activate the tcpdump to capture the

network traffic

Let the network runs for five days. Make

sure there is no interception to get

network traffic

Save the collected network traffic data

Stop capturing the network

Repeat experiment if there is no

suspicious network traffic captured

29

Figure 4.5: Activities Involved in Analysis Process

Based on Figure 4.5, the first process is the general attribute identification. In

this process, the research regarding the general attributes of the Sasser worm such as

the port used, name of malware copy sent is done in order to determine the general

malware attributes. The second process is network traffic observation. In this

process, the network traffic that have been collected is examined to identify the

malicious traffic. The third process is suspicious network traffic payload observation.

In this process, the suspicious network traffic payload will be examined in order to

determine the data that has been sent. The last process is Sasser worm’s attributes

identification. The Sasser worm’s attributes that have been identified in the network

traffic analysis are further discussed.

4.4 Analysis of Sasser worm attack

This analysis will be done for two selected datasets namely Dataset 1 (from

network sniffer 1) and Dataset 2 (from network sniffer 2). The analysis process as

discussed in Section 4.3. After the analysis is done, the attack pattern of Sasser worm

will be constructed based on the results of analysis.

4.4.1 Dataset 1 Analysis

General attributes identification process

Based on the research, port used and type of communication in the network

traffic used by Sasser worm have been identified. This research is helpful to improve

the network analysis process. The Sasser worm affects the computers that using

General attributes

identification

Network traffic

observation

Suspicious network

traffic payload

observation

Sasser worm’s

attribute

identification

30

Windows XP or Windows 2000 operating system. Sasser worm attacks by exploiting

a buffer overflow in the Security Service (LSASS) component on the infected

systems. Sasser is programmed to launch 128 processes. This malware will scans

random IP addresses to search for vulnerable to the LSASS vulnerability on port 445.

After that, Sasser will install FTP server on port 5554. This FTP server

functions to allow other infected computers to download the worm. When the

vulnerable machine is found, the worm will open a remote shell on the machine on

TCP port 9996 and make the machine download a copy of the worm. The worm

named avserve.exe or avserve2.exe in the Windows directory. Sasser also can send

their copy through file namely “*_up.exe” (i.e 1234_up.exe). If any of these

attributes is seen in the network traffic data during analysis process, it should be

further examined to determine if there is malicious network traffic.

Network traffic observation process

The network traffic for Dataset 1 is observed to determine the packet that the

malware use to sending their copy. The samples of network traffic shown in Figure

4.6 and Figure 4.7 are suspicious traffic where scanning activities is done.

Figure 4.6: First Suspicious Traffic (Scanning Process) in Dataset 1

Figure 4.6 shows the first sample network traffic shows that 192.112.111.104

may be do scanning activities towards random IP addresses and ports in sequence.

31

Figure 4.7: Second Suspicious Traffic (Scanning Process) in Dataset 1

 As shown in Figure 4.7, IP address 192.112.112.200 may be do scanning

activities for vulnerable victims. The next samples of suspicious network traffic at

port 9996 are shown in Figure 4.8 and Figure 4.9.

Figure 4.8: First Suspicious Traffic at Port 9996 in Dataset 1

Figure 4.8 shows the network traffic which contain communication between

192.112.111.104 and 192.112.112.196. This sample traffic is suspicious to be the

malicious traffic where the malware is sending its copy to victim because the port

9996 is used by the Sasser worm as the remote shell opened on the vulnerable host

by the attacker. 192.112.111.104 establish the connection to send the malware copy

to 192.112.112.196 by sending SYN to the server from port 3940 to port 9996. Next,

the server reply SYN+ACK. After that, 192.112.111.104 sends ACK to the server.

After the server recieves ACK reply from 192.112.111.104, the connection is

succesful. Then, the file is transmitted. If the file is failed to be transmitted, it will be

retransmitted until it is successfully sent.

32

Figure 4.9: Second Suspicious Traffic at Port 9996 in Dataset 1

Figure 4.9 shows the network traffic which contain communication between

192.112.112.200 and 192.112.110.144. This sample traffic is suspicious to be the

malicious traffic where the malware is sending it’s copy to victim because the port

9996 is used by the Sasser worm as the remote shell opened on the vulnerable host

by the attacker. 192.112.112.200 establish the connection to send the malware copy

to 192.112.110.144 by sending SYN to the server from port 4876 to port 9996. Next,

the server reply SYN+ACK. After that, 192.112.112.200 sends ACK to the server.

After the server recieves ACK reply from 192.112.112.200, the connection is

succesful. Then, the file is transmitted. If the file is failed to be transmitted, it will be

retransmitted until it is successfully sent. The communication is further observed and

the results shows some malicious activities in which there is 5554 port used as shown

in Figure 4.10 and Figure 4.11.

Figure 4.10: First Suspicious Traffic at Port 5554 in Dataset 1

Figure 4.10 shows the first sample of suspect network traffic which contain

communication between 192.112.112.196 and 192.112.111.104 at port 5554. Port

5554 is the FTP server on the infected machine. This sample traffic is suspicious

33

because maybe there are malicious traffic where malware copy is retrieved. First,

192.112.112.196 sends SYN to the server with IP address 192.112.111.104 from port

3008 to port 5554 to establish the connection. After that, the file contain malware

copy is retrieved. If the file is failed to be transmitted, it will be retransmitted until it

is successfully sent. The file is retrieved successfully when the server reply

FIN+ACK.

Figure 4.11: Second Suspicious Traffic at Port 5554 in Dataset 1

Figure 4.11 shows the second sample of suspicious network traffic at port

5554 which contain communication between 192.111.110.114 and 192.112.112.200.

This network traffic might be a malicious traffic where the malware copy is

retrieved. First, 192.111.110.114 sends SYN to the server with IP address

192.112.112.200 from port 3008 to port 5554. Then, the server reply with

SYN+ACK. After that, 192.112.110.144 send ACK to the server. The connection is

successfully established when 192.112.112.200 receive the ACK reply from

192.112.110.144. Then, the file contain malware copy is successfully transmitted.

Suspicious network traffic payload inspection process

Based on the port number that have been indentified, the traffic is further

observed in order to confirm the malicious attack. The network traffic payload is

examined as shown in Figure 4.12 and Figure 4.13. Figure 4.12 shows the network

traffic payload from the first sample network at port 9996.

34

Figure 4.12: Payload of First Suspicious Traffic at Port 9996 in Dataset 1

Based on the Figure 4.12, the malware has sent a payload to

192.112.112.196. The FTP port 5554 is opened to allow malware to connect with this

port and send its copy through FTP server. 192.112.112.196 is asked to get

2633_up.exe through GET request. The file contains the malware copy and the

malware wants the victim to download. Figure shows the payload from the second

suspicious network sample at port 9996.

Figure 4.13: Payload of Second Suspicious Traffic at Port 9996 in Dataset 1

Figure 4.13 shows the payload that has been sent to 192.112.110.144. The

FTP port 5554 is opened to allow malware to connect with this port and send its copy

through FTP server. 192.112.110.144 is asked to get 27286_up.exe through GET

request. The file contains the malware copy and the malware wants the victim to

35

download. Figure 4.14 and Figure 4.15 shows the payload from the first and second

suspicious network traffic at port 5554.

Figure 4.14: Payload of First Suspicious Traffic at Port 5554 in Dataset 1

Figure 4.14 shows the payload from the first sample suspicious network

traffic at port 5554. RETR request asks the server to send the file contains malware

copy over an established connection. The OK status for code 226 means the server

has fulfilled the request. The malware copy with name 2633_up.exe is sent after it is

sucessfully written to the server’s TCP buffers by 192.112.111.104 to

192.112.112.196.

Figure 4.15: Payload of Second Suspicious Traffic at Port 5554 in Dataset 1

Figure 4.15 shows the payload from the first sample suspicious network

trafficat port 5554. RETR request asks the server to send the file contains malware

copy over an established connection. The OK status for code 226 means the server

has fulfilled the request. The malware copy with name 27286_up.exe is sent after it

36

is sucessfully written to the server’s TCP buffers by 192.112.112.200 to

192.112.110.144.

Sasser worm’s attribute identification process

Based on the results from the previous processes, the malware attributes are

identified and shown in Table 4.1, Table 4.2, Table 4.3 and Table 4.4

Attributes from the sample of suspicious network traffic at port 9996

Table 4.1 shows the malware attributes identified in the first suspicious

network traffic at port 9996.

Table 4.1: Malware Attributes of First Suspicious Traffic at Port 9996 in

Dataset 1

 Based on Table 4.1, the source IP address (192.112.111.104) is the IP where

the packet originates. The destination IP address (192.112.112.196) is the IP address

where the packet is sent to. Source port for this packet is 3940. The packet is sent to

the destination port which is port 9996. The GET request method is used to send the

data. The data that have been sent is 2633_up.exe which is malware copy. Next,

Table 4.2 shows the attributes found from the second suspicious network traffic at

port 9996.

Attribute Data

Source IP address 192.112.111.104

Destination IP address 192.112.112.196

Source port 3940

Destination port 9996

Request method GET

Data sent 2633_up.exe

37

Table 4.2: Malware Attributes of Second Suspicious Traffic at Port 9996 in

Dataset 1

 Based on Table 4.2, the source IP address (192.112.112.200) is the IP where

the packet originates. The destination IP address (192.112.110.144) is the IP address

where the packet is sent to. Source port for this packet is 4876. The packet is sent to

the destination port which is port 9996. The GET request method is used to send the

data. The data that have been sent is 27286_up.exe which is malware copy. Next, the

attributes found from the suspicious network traffic at port 5554.

Attributes from the sample of suspect network traffic at port 5554

 Table 4.3 shows the malware attributes identified from the first suspicious

network traffic at port 5554.

Table 4.3: Malware Attributes of First Suspicious Traffic at Port 5554 in

Dataset 1

Attribute Data

Source IP address 192.112.112.200

Destination IP address 192.112.110.144

Source port 4876

Destination port 9996

Request method GET

Data sent 27286_up.exe

Attribute Data

Source IP address 192.112.112.196

Destination IP address 192.112.111.104

Source port 3008

Destination port 5554

Request method RETR

Data sent 2633_up.exe

38

 Based on Table 4.3, the source IP address (192.112.112.196) is the IP where

the packet originates. The destination IP address (192.112.111.104) is the IP address

where the packet is sent to. Source port for this packet is 3008. The packet is sent to

the destination port which is port 5554. The RETR request method is used to retrieve

the data. The data that have been retrieved is 2633_up.exe which is malware copy.

Next, Table 4.4 shows the attributes found from the second suspicious network

traffic at port 5554.

Table 4.4: Malware Attributes of Second Suspicious Traffic at Port 5554 in

Dataset 1

 Based on Table 4.4, the source IP address (192.112.110.144) is the IP where

the packet originates. The destination IP address (192.112.112.200) is the IP address

where the packet is sent to. Source port for this packet is 3008. The packet is sent to

the destination port which is port 5554. The RETR request method is used to retrieve

the data. The data that have been retrieved is 27286_up.exe which is malware copy.

Next, the Dataset 2 will be analyzed.

4.4.2 Dataset 2 Analysis

General attributes identification process

General attributes identification process are the same process that have been

done for Dataset 1.

Attribute Data

Source IP address 192.112.110.144

Destination IP address 192.112.112.200

Source port 3008

Destination port 5554

Request method RETR

Data sent 27286_up.exe

39

Network traffic observation process

The network traffic for Dataset 2 is observed to determine the packet that the

malware use to sending their copy. The samples of network traffic shown in Figure

4.16 are suspicious traffic where scanning activities is done.

Figure 4.16: Suspicious Traffic (Scanning Process) in Dataset 2

 Figure 4.16 shows the first sample network traffic shows that

192.112.110.144 may be do scanning activities towards random IP addresses and

ports in sequence. The next sample of suspicious network traffic at port 9996 are

shown in Figure 4.17.

Figure 4.17: Suspicious Traffic at Port 9996 in Dataset 2

Figure 4.17 shows the network traffic which contain communication between

192.112.112.200 and 192.112.110.144. This sample traffic is suspicious to be the

malicious traffic where the malware is sending its copy to victim because the port

9996 is used by the Sasser worm as the remote shell opened on the vulnerable host

by the attacker. 192.112.112.200 establish the connection to send the malware copy

to 192.112.110.144 by sending SYN to the server from port 4876 to port 9996. Next,

the server reply SYN+ACK. After that, 192.112.112.200 sends ACK to the server.

40

After the server recieves ACK reply from 192.112.112.200, the connection is

succesful. Then, the file is transmitted. If the file is failed to be transmitted, it will be

retransmitted until it is successfully sent. The communication is further observed and

the results shows some malicious activities in which there is 5554 port used as shown

in Figure 4.18

Figure 4.18: Suspicious Traffic at Port 5554 in Dataset 2

Figure 4.18 shows the first sample of suspect network traffic which contain

communication between 192.112.110.144 and 192.112.112.200 at port 5554. Port

5554 is the FTP server on the infected machine. This sample traffic is suspicious

because maybe there are malicious traffic where malware copy is retrieved. First,

192.112.110.144 sends SYN to the server with IP address 192.112.112.200 from port

3008 to port 5554 to establish the connection. After that, the file contain malware

copy is retrieved. If the file is failed to be transmitted, it will be retransmitted until it

is successfully sent. The file is retrieved successfully when the server reply

FIN+ACK.

Suspicious network traffic payload inspection process

Based on the port number that have been indentified, the traffic is further

observed in order to confirm the malicious attack. The network traffic payload is

examined as shown in Figure 4.19 and Figure 4.20. Figure 4.19 shows the network

traffic payload from the sample network at port 9996.

41

Figure 4.19: Payload of Suspicious Traffic at Port 9996 in Dataset 2

Based on the Figure 4.19, the malware has sent a payload to

192.112.110.144. The FTP port 5554 is opened to allow malware to connect with this

port and send its copy through FTP server. 192.112.110.144 is asked to get

27286_up.exe through GET request. The file contains the malware copy and the

malware wants the victim to download. Figure 4.20 shows the payload from the

suspicious network sample at port 5554.

Figure 4.20: Payload of Suspicious Traffic at Port 5554 in Dataset 2

Figure 4.20 shows the payload from the first sample suspicious network

traffic at port 5554. RETR request asks the server to send the file contains malware

copy over an established connection. The OK status for code 226 means the server

has fulfilled the request. The malware copy with name 27286_up.exe is sent after it

is sucessfully written to the server’s TCP buffers by 192.112.112.200 to

192.112.110.144.

42

Sasser worm’s attribute identification process

Based on the results from the previous processes, the malware attributes are

identified and shown in Table 4.5 and Table 4.6

Attributes from the sample of suspicious network traffic at port 9996

Table 4.5 shows the malware attributes identified in the suspicious network

traffic at port 9996.

Table 4.5: Malware Attributes of Suspicious Traffic at Port 9996 in Dataset 2

 Based on Table 4.5, the source IP address (192.112.112.200) is the IP where

the packet originates. The destination IP address (192.112.110.144) is the IP address

where the packet is sent to. Source port for this packet is 4876. The packet is sent to

the destination port which is port 9996. The GET request method is used to send the

data. The data that have been sent is 27286_up.exe which is malware copy. Next,

Table 4.6 shows the attributes found from the suspicious network traffic at port 5554.

Attributes from the sample of suspect network traffic at port 5554

 Table 4.6 shows the malware attributes identified from the first suspicious

network traffic at port 5554.

Attribute Data

Source IP address 192.112.112.200

Destination IP address 192.112.110.144

Source port 4876

Destination port 9996

Request method GET

Data sent 27286_up.exe

43

Table 4.6: Malware Attributes of Suspicious Traffic at Port 5554 in Dataset 2

 Based on Table 4.6, the source IP address (192.112.110.144) is the IP where

the packet originates. The destination IP address (192.112.112.200) is the IP address

where the packet is sent to. Source port for this packet is 3008. The packet is sent to

the destination port which is port 5554. The RETR request method is used to retrieve

the data. The data that have been retrieved is 27286_up.exe which is malware copy.

4.4.3 Overall Analysis

Overall analysis for this experiment are shown in Table 4.7

Table 4.7: Overall Analysis for Both Datasets

Parameter Description

Source port 3940, 4876, 3008, 3024 (random)

Destination port 445,9996, 5554 (fix for both datasets)

Request method GET, RETR

Data sent/retrieved “*_up.exe” (malware copy)

Based on Table 4.7, all the analysis has been done on Dataset 1 and Dataset

2. The attributes that can be collected are source IP address, destination IP address,

source port, destination port, request method and data sent and retrieved. All

attributes can be found in the network traffic and will be selected to be used for

Sasser worm parameter. Source and destination IP address can determine the attacker

and the victim if there have malicious traffic.

Attribute Data

Source IP address 192.112.110.144

Destination IP address 192.112.112.200

Source port 3008

Destination port 5554

Request method RETR

Data sent 27286_up.exe

44

The request method represents the method for data transmission. The attacker

may use GET request or the FTP server to send malware. However, GET request is

might not be used in some cases and it is not suitable to be used as a parameter.

RETR request is the request method to retrieve the malware copy. RETR request can

be used to confirm the attack.

Source port that have been determine are random which are 3940, 4876, 3008

and 3024. However, the destination port are remains the same for all datasets. Port

445 are the destination port for scanning random IP addresses to search for

vulnerable to the LSASS vulnerability. Port 9996 is used to send malware copy. Port

5554 is used to retrieve malware copy. Both ports 9996 and 5554 are usually used by

Sasser worm as the FTP server and remote shell. Therefore, all communication using

these ports should be a suspicious. Data sent and retrieved also can be the attribute to

confirm the attack because the data is the malware copy. As a conclusion, the

destination port, request method and data sent and retrieved are the attributes that

will be used to construct visualization algorithm.

4.4.4 Attack Pattern Generation

 The attack pattern of the Sasser worm obtained from the analysis of Dataset 1

and Dataset 2 is illustrated in Figure 4.21.

Figure 4.21: Attack Pattern of Sasser Worm

45

 Based on Figure 4.21, the attack pattern consists of three attack steps which

are scan, exploit and impact. The victim’s port and IP address are scanned to find

vulnerable port and IP address to be exploited. In exploit step, the attacker will

exploit by install FTP server at port 5554 and remote shell at port 9996. The impact

is where the malware copy is sent or retrieved through request method GET and

RETR.

4.5 Visualization Algorithm Design

Figure 4.22 shows the visualization algorithm represented in flowchart.

Start

Visualisation module

End

Figure 4.22: Flowchart of Visualization algorithm

Based on Figure 4.22, the visualization algorithm contain visualization

module. The visualization module will trace the malware attributes in the network

traffic data and visualize it in the form of matrix table.

4.6 Summary

In this chapter, the experiment approach, data analysis process, analysis of

Sasser worm attack and visualization algorithm design have been discussed. Each

step of the experiment is explained. The analysis of captured network traffic is done

to determine the attack pattern and the attributes for Sasser worm. The visualization

algorithm is designed and represented in flowchart. The next chapter will discuss the

implementation of this project and the visualization algorithm will be developed.

CHAPTER V

IMPLEMENTATION

5.1 Introduction

The previous chapter discussed on the design of the network traffic data

collection experiment, visualization algorithm design and analysis of the Sasser

worm attack in the network traffic. This chapter will discuss about the visualization

prototype architecture and visualization module.

5.2 Visualization Prototype Architecture

Figure 5.1 shows the visualization prototype architecture.

Figure 5.1: Visualization Prototype Architecture

User

Input Dataset

Visualization module

 Tracing

 Visualizing

Visualized
malware
behavior

47

Based on Figure 5.1, the user will input the dataset in text file format. The

system will trace all suspicious traffic and display it in the matrix table form.

5.2.1 Visualization Module

 Visualization module will trace all malicious traffic in the dataset based on

the port number that has been entered by user. The flowchart and algorithm of the

visualization process are shown in Figure 5.2 and Figure 5.3.

Figure 5.2: Flowchart of Visualization Process

Start

Input

dataset

Destination port== 445

Destination port==5554

Destination port== 9996

Matrix

End

No

Yes

No Yes

48

Figure 5.3: Algorithm of Visualization Process

Based on Figure 5.2 and Figure 5.3, the system will find all the traffic that

contains the port number that has been entered by the user. If the destination port is

445 the system will find the traffic and display only the source IP that do the

scanning activity and display it as scan trace category. If the destination port is 5554

and 9996, the system will find all the traffic that contains malware copy and display

the information in involved frame includes source and destination IP as exploit and

impact trace category. Finally, if all the port number is successfully traced from the

dataset, the overall information will be displayed in matrix table form.

5.3 Summary

This chapter discussed on the visualization prototype architecture and

visualization module. The flowchart and algorithm of each process involve in the

module are described. The testing of the visualization algorithm will be discussed in

the next chapter.

Start

 IF Destination port == “445”

IF Destination port == “5554” || Destination port == “9996”

 THEN

Display traced suspicious traffic

Display malware behavior matrix

 ELSE

 Display attack not detected

End

CHAPTER VI

TESTING

6.1 Introduction

 The implementation of the project includes visualization prototype and

visualization module have been discussed in the previous chapter. In this chapter, the

testing of the visualization algorithm will be discussed. The test plan, test strategy,

test dataset and test result also will be discussed.

6.2 Test Plan

 Test plan is done to make sure that all the process works well and the result

obtained is efficient. The function of visualization algorithm is to visualize all the

behavior of Sasser worm attack that present in the datasets. The test plan of

visualization algorithm is shown in Figure 6.1.

Figure 6.1: Test Plan of Visualization Algorithm

 Based on Figure 6.1, two datasets namely Dataset 1 and Dataset 2 are used

during the testing process. The datasets are the network traffic file that consists of the

Sasser worm attack. Each dataset will be input to the visualization algorithm. If all

Dataset -Tracing

-Visualization
Test success

50

the ports are identified in the dataset, the Sasser worm behavior will be visualized

based on the attack pattern and other attributes that found in the datasets.

6.3 Test Environment

 The testing process is carried out by using a notebook computer that runs

Windows 8 operating system with Intel Core i5 processor with 1.80 GHz processor

speed and 4.00 GB memory. Java Eclipse software is installed in the notebook to

develop the visualization algorithm. The visualization algorithm will be run directly

using Java Eclipse software.

6.4 Test Strategy

 The visualization algorithm will be tested with two different datasets. The

datasets will be exported into text file (.txt) format to be used in visualization

algorithm.

6.5 Test Result

This section will discusses on result obtained from the visualization algorithm

testing that has been performed on the datasets namely Dataset 1 and Dataset 2.

6.5.1 Dataset Result Analysis

 The results obtained from Dataset 1 and Dataset 2 are shown.

Dataset 1 Result

 The Dataset 1 visualization test result is shown in Figure 6.2 and Table 6.1.

51

Figure 6.2: Test Result for Dataset 1

Table 6.1: Analysis of Test Result for Dataset 1

Dataset Details

Dataset 1 IP addresses

192.112.111.104 (attacker)

192.112.112.200 (victim, attacker)

192.112.100.31(victim)

Port

445 (scan)

9996 (exploit)

5554 (exploit)

Request method

“RETR” found (impact)

“GET” found (impact)

Malware copy

“*_up.exe” found (impact)

Based on Figure 6.2 and Table 6.1, Sasser worm attack is successfully traced.

In this dataset, there are two attackers. The host with IP address 192.112.111.104 is

the true attacker where it done scanning activity to find vulnerable host at port 445.

52

The host with IP address 192.112.112.200 is the victim as it have received RETR and

GET request from the attacker to retrieve and download the malware copy namely

“*_up.exe”. It also have fully infected as it also do some scanning activity and try to

exploit other host by sending RETR request to host with IP address 192.112.100.31.

The matrix table of malware behavior also displayed. Test result for Dataset 2 will be

described in the next session.

Dataset 2 Result

The Dataset 2 visualization test result is shown in Figure 6.3 and Table 6.2.

Figure 6.3: Test Result for Dataset 2

Based on Figure 6.3 and Table 6.2, Sasser worm attack is successfully traced.

In this dataset, the host with IP address 192.112.112.200 is the true attacker where it

done scanning activity to find vulnerable host at port 445. The host with IP address

192.112.110.144 is the victim as it have received RETR and GET request from the

attacker to retrieve and download the malware copy namely “*_up.exe”. It also have

53

fully infected as it also do some scanning activity. The matrix table of malware

behavior also displayed.

Table 6.2: Analysis of Test Result for Dataset 2

Dataset Details

Dataset 2 IP addresses

192.112.112.200 (attacker)

192.112.110.144 (victim)

Port

445 (scan)

9996 (exploit)

5554 (exploit)

Request method

“RETR” found (impact)

“GET” found (impact)

Malware copy

“*_up.exe” found (impact)

6.6 Summary

In conclusion, Sasser worm attack in both datasets are successfully visualized

based on their attributes as the attackers and victims can be traced based on the

output which is matrix table of the visualization algorithm. The next chapter is the

conclusion of the project.

CHAPTER VII

CONCLUSION

7.1 Introduction

 The previous chapter discussed on the testing process and the test result

obtained. This chapter will conclude all the works that have been done in the project.

This project consists of literature review, methodology, design, implementation and

testing. Project limitation and future works will be discussed in this chapter.

7.2 Project Summarization

 This project has achieved the both objectives. The first objective of this

project namely PO1 which is to analyze malware behavior. PO1 is achieved in

Chapter II by doing literature review on the behavior of the malware. Besides that,

PO1 is achieved in Chapter IV by analyzing the behavior of the Sasser worm and

their attributes that can be used to visualize the Sasser worm attack. Therefore,

project contribution namely PC1 which is malware behavior for visualize malware

attack is achieved.

 The second project objective namely PO2, which is to construct matrix for

malware behavior visualization is achieved in Chapter V by developing visualization

55

algorithm. Thus, the second project contribution namely PC2 which is the

visualization of malware behavior using matrix is achieved. This will benefit the

non-technical person to understand the malware behavior and also can help in the

investigation process.

 The problem of difficulty in understanding the malware behavior can be

solved as this project objective is achieved. The non-technical viewers can use this

matrix to associate how the malware take the action to attack and what attribute used.

Besides that, this project also cover on tracing all the IP address that might be

involve in the attack. Therefore, this information can be used to analyze and

investigate the malicious activities to find the real attacker.

 In conclusion, the analysis on malware and visualization have been done to

select the malware and the technique that will be used in the project. Based on the

literature review that has been done, all the current visualization of the malware

behavior is too complex and hard to understand by the non-technical viewer. This

project consist of seven phases which are literature review phase, data collection

phase, data analysis phase, design phase, algorithm development phase, testing phase

and documentation phase.

 In design chapter consists of the experiment design and approach, data

analysis process, analysis of Sasser worm attack and visualization algorithm design.

The experiment is carried out to collect the data which is network traffic data. The

network traffic analysis is done to obtain malware attribute and the attack pattern of

Sasser worm. All the attributes will be used to test the visualization algorithm.

 The test plan and test strategy is discussed in testing chapter. The results

obtained are described and discussed. The purpose of testing the visualization

algorithm is to verify that the output of the algorithm is in the form of matrix table

which include all the information that can easily understand by the non-technical

viewers.

56

7.3 Project Limitation

 1. Only focus on Visualization Sasser worm attack

This visualization algorithm may not suitable for other malware types

as the main focus of the analysis is on the Sasser worm attack.

 2. Size of dataset is too large

The datasets are too large to be executed in the prototype. This can

take more time to get the result from the prototype. Thus, the datasets

have to be divided into smaller parts.

7.4 Future Works

 1. Develop the algorithm that able to visualize other malware attack

The visualization algorithm can be developed by adding more

modules that can visualize other types of malware. This can be done

by analyzing and identifying the common parameters of other types of

malware.

 2. Enhance the user interface

The user interface can be enhanced to become more attractive and

user friendly.

57

REFERENCES

AV-Test. (2015). Security Report 2015/16. Https://www.av-

test.org/fileadmin/pdf/security_report/AV-TEST_Security_Report_2015-

2016.pdf. Retrieved from https://www.av-

test.org/fileadmin/pdf/security_report/AV-TEST_Security_Report_2015-

2016.pdf

Band, D., & Antenna, S. (2014). Jurnal Teknologi, 1, 119–122.

Brunner, M., Fuchs, C. M., & Todt, S. (2012). Integrated Honeypot based Malware

Collection and Analysis A Survey on Current Malware, 1–13.

Grégio, A. R. A., & Santos, R. D. C. (2011). Visualization techniques for malware

behavior analysis, 8019, 801905. https://doi.org/10.1117/12.883441

Jiang, X., Wang, X., & Xu, D. (2010). Stealthy malware detection and monitoring

through VMM-based “out-of-the-box” semantic view reconstruction. ACM

Transactions on Information and System Security, 13(2), 1–28.

https://doi.org/10.1145/1698750.1698752

Kramer, S., & Bradfield, J. C. (2010). A general definition of malware. Journal in

Computer Virology, 6(2), 105–114. https://doi.org/10.1007/s11416-009-0137-1

Makandar, A., & Patrot, A. (2015). Overview of Malware Analysis and Detection,

(Nckite), 35–40.

McGraw, G., & Morrisett, G. (2000). Attacking malicious code: A report to the

Infosec Research Council. IEEE Software, 17(5), 33–41.

https://doi.org/10.1109/52.877857

Rutkowska, J. (2006). Introducing Stealth Malware Taxonomy. COSEINC Advanced

Malware Labs, (November), 1–9.

Science, I. (2010). Institutionen för datavetenskap Final thesis Automatic behavioral

analysis of malware Tiziano Santoro.

Sikorski, M., & Honig, A. (2012). Pratical Malware Analysis. No starch press.

https://doi.org/10.1017/CBO9781107415324.004

Nataraj, L., Karthikeyan, S., Jacob, G., and Manjunath, B. 2011. Malware Images:

Visualization and Automatic Classification. Proceedings of Visualization for

Cyber Security (VizSec). 2011: 1–7

Trinius, P., Holz, T., Gobel, J., and Freiling, F. C. 2009. Visual Analysis of Malware

Behavior Using Treemaps and Thread Graphs. 6th International Workshop on

Visualization for Cyber Security, 2009 (VizSec 2009). Oct 2009. 33–38.

Quist, D. A. and Liebrock, L. M. 2009. Visualizing Compiled Executables for

Malware Analysis. In International Workshop on Visualization for Cyber

Security (VizSec). 27–32.

58

APPENDIX

import java.awt.EventQueue;
import java.awt.EventQueue;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.ArrayList;

import javax.swing.JButton;
import javax.swing.JFileChooser;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JScrollPane;
import javax.swing.JTextArea;
import javax.swing.JProgressBar;

public class MalwareTracer extends JFrame {

 private static final long serialVersionUID = 1L;

 private JFrame frame;
 private JTextArea textArea;
 private JButton btnChooseFile;
 private JLabel lblPath;
 private JLabel lblNewLabel;
 private JScrollPane scrollPane;
 private JProgressBar progressBar;

 String port9996 = "";
 String port5554 = "";
 String port445 = "";

 String path = "";

 String srcIp445 = "";
 ArrayList<String> srcIp9996 = new ArrayList<String>();

 double d = 0.0;

 public static void main(String[] args) {
 EventQueue.invokeLater(new Runnable() {
 public void run() {
 try {
 MalwareTracer window = new
MalwareTracer();
 window.frame.setVisible(true);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 });
 }

59

 public MalwareTracer() {
 initialize();
 }

 private void initialize() {
 frame = new JFrame("Malware Tracer & Visualizer");
 frame.setBounds(100, 100, 1000, 600);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.getContentPane().setLayout(null);

 scrollPane = new JScrollPane();
 scrollPane.setBounds(60, 138, 900, 332);
 frame.getContentPane().add(scrollPane);

 textArea = new JTextArea();
 scrollPane.setViewportView(textArea);

 JLabel lblResult = new JLabel("Result : ");
 lblResult.setBounds(60, 113, 460, 14);
 frame.getContentPane().add(lblResult);

 JButton btnNewButton = new JButton("Trace");
 btnNewButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent arg0) {

 textArea.setText("Tracing in progress..Please
Wait!");

 port9996 = "";
 port5554 = "";
 port445 = "";
 srcIp445 = "";
 srcIp9996.clear();

 FileReader fr;
 File file = new File(path);

 d = 0.0;

 try {
 fr = new FileReader(file);
 BufferedReader br = new
BufferedReader(fr);
 String line;

 while ((line = br.readLine()) != null) {
 d++;
 }

 br.close();
 } catch (Exception e) {

 }

 new Thread(new Runnable() {

 @Override

60

 public void run() {
 s1();
 }
 }).start();

 }
 });
 btnNewButton.setBounds(352, 511, 89, 23);
 frame.getContentPane().add(btnNewButton);

 btnChooseFile = new JButton("Choose File");
 btnChooseFile.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 chooseFile();
 }
 });
 btnChooseFile.setBounds(526, 84, 109, 23);
 frame.getContentPane().add(btnChooseFile);

 lblPath = new JLabel("Path :");
 lblPath.setBounds(60, 88, 46, 14);
 frame.getContentPane().add(lblPath);

 lblNewLabel = new JLabel("");
 lblNewLabel.setBounds(99, 88, 389, 14);
 frame.getContentPane().add(lblNewLabel);

 progressBar = new JProgressBar(0, 100);
 progressBar.setBounds(159, 481, 563, 14);
 progressBar.setStringPainted(true);
 frame.getContentPane().add(progressBar);

 JLabel lblProgress = new JLabel("Progress :");
 lblProgress.setBounds(60, 481, 89, 14);
 frame.getContentPane().add(lblProgress);
 }

 public void s1() {
 FileReader fr;
 File file = new File(path);

 int c = 1;

 try {
 fr = new FileReader(file);
 BufferedReader br = new BufferedReader(fr);
 String line;

 while ((line = br.readLine()) != null) {

 if (line.contains("up.")) {

 String line1 =
Files.readAllLines(Paths.get(path)).get((c - 9));
 String line2 =
Files.readAllLines(Paths.get(path)).get((c - 10));

 if
(line1.contains("9996")||line2.contains("9996")) {

61

 String temp = "";

 if(line1.contains("TCP"))
 temp = " " +
line2.substring(1,7) + " " + line.substring(53) + " " +
"GET" + " " + "9996" + " " +
line2.substring(43, 60) + " " + line2.substring(22, 38) + "
Exploit/Impact";

 else
 temp = " " +
line2.substring(1,7) + " " + line.substring(53) + " " +
"GET" + " " + "9996" + " " +
line2.substring(43, 60) + " " + line2.substring(22, 38) + "
Exploit/Impact";

 if
(!port9996.contains(temp)) {
 port9996 += temp +
"\n";
 }

 }else
if(line1.contains("5554")||line2.contains("5554"))
 {
 String temp = "";

 if(line1.contains("TCP"))
 temp = " " +
line1.substring(1,7) + " " + line.substring(60) + " " +
"RETR" + " " + "5554" + " " +
line1.substring(43, 60) + " " + line1.substring(22, 38) + "
Exploit/Impact";

 else
 temp = " " +
line1.substring(1,7) + " " + line.substring(60) + " " +
"RETR" + " " + "5554" + " " +
line1.substring(43, 60) + " " + line1.substring(22, 38) + "
Exploit/Impact";

 if
(!port5554.contains(temp)) {
 port5554 += temp +
"\n";
 }

 }

 }

 else if (line.contains("Dst Port: 445")) {
 String line1 =
Files.readAllLines(Paths.get(path)).get((c - 2));

 String[] temp = line1.split(" ");

 temp[5] = temp[5].replace(",", "");

62

 String temp2 = "
 " + "445" + " " + temp[5] + "
Random" + " Scan";

 if (srcIp445.equals("")) {
 srcIp445 = temp[5];
 }

 if (!port445.contains(temp2)) {
 port445 += temp2 + "\n";
 }

 }

 double progress = ((c / d) * 100);
 progressBar.setValue((int) progress);

 c++;
 }
 br.close();
 } catch (IOException e1) {
 e1.printStackTrace();
 }

 setTextField();
 if (textArea.getText().toString().equals("")) {
 textArea.append("Trace Successfull\n");
 textArea.append("No Known Attribute Detected!\n");
 }
 }

 public void chooseFile() {
 JFileChooser fileChooser = new JFileChooser();
 fileChooser.setCurrentDirectory(new
File(System.getProperty("user.home")));
 int result = fileChooser.showOpenDialog(this);
 if (result == JFileChooser.APPROVE_OPTION) {

 File selectedFile = fileChooser.getSelectedFile();

 path =
selectedFile.getAbsoluteFile().toString().replaceAll("\\\\", "/");
 lblNewLabel.setText(path);

 }
 }

 public void setTextField() {
 textArea.setText("");
 textArea.append("\n");
 textArea.append(" Suspicious Traffic
Traced\n");
 textArea.append("
 ..
..
..
.....................\n");

63

 textArea.append(" | Frame Number | Malware Copy |
Request Method | Port Used | Source Address | Destination Address
| Trace Category |\n");
 textArea.append("
 ''
''
''
''
''\n");
 textArea.append(port445);
 textArea.append("
 ''
''
''
''
''\n");
 textArea.append(port5554);
 textArea.append(port9996);
 textArea.append("\n\n");
 textArea.append(" General behavior visualized :\n");
 textArea.append("
 ..
..
...............\n");
 textArea.append(" | | Traces
|\n");
 textArea.append(" |
 ''
''
''\n");
 textArea.append(" | | Scan
| Exploit | Impact
|\n");
 textArea.append(" |
 ''
''
''\n");
 textArea.append(" | Attributes | Destination
Port | Destination Port | Request Method |\n");
 textArea.append(" |
 ''
''
''\n");
 textArea.append(" | | Destination Address |
| Malware Copy |\n");
 textArea.append(" | | (random) |
| |\n");
 textArea.append("
 ''
''
''
''''''''''''''''''''\n");
 }
}

