
 

 

 

 

 

 
 

 

Faculty of Electrical Technology and Engineering 
 

   
 

 

 

 

 

 

DEVELOPMENT OF GREENHOUSE LEAF HEALTH MONITORING 

SYSTEM USING MATLAB 

 

 

 

 
CLEY ALEXSIUS JARIUS 

 

 

 

 
Bachelor of Electrical Engineering Technology with Honours 

 

 

 

 
2023



 

DEVELOPMENT OF GREENHOUSE LEAF HEALTH MONITORING SYSTEM 

USING MATLAB 

 

 

 

 

 

 

CLEY ALEXSIUS JARIUS  

 

 

 

 

 

 

A project report submitted  

in partial fulfillment of the requirements for the degree of 

Bachelor of Electrical Engineering Technology (Industrial Automation & Robotics) 

with Honours 

 

 

 

 

 

 

 

 

Faculty of Electrical Technology and Engineering  

 

 

 

 

 

 

 

 

UNIVERSITI TEKNIKAL MALAYSIA MELAKA 

 

 

 

 

 

 

2023 

 

 

 

 



 

  

 

 

                                                     UNIVERSITI TEKNIKAL MALAYSIA MELAKA 
                                                                                    FAKULTI TEKNOLOGI KEJUTERAAN ELEKTRIK DAN ELEKTRONIK   

 

                 BORANG PENGESAHAN STATUS LAPORAN 

                                                                              PROJEK SARJANA MUDA II 

 

     Tajuk Projek    : DEVELOPMENT OF GREENHOUSE LEAF HEALTH MONITORING 

                                 SYSTEM USING MATLAB        

      Sesi Pengajian : 2023/2024 

 

 

   Saya CLEY ALEXSIUS JARIUS  mengaku membenarkan  laporan  Projek Sarjana                             

   Muda ini disimpan di Perpustakaan  dengan  syarat-syarat kegunaan seperti berikut: 

1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka. 

2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja. 

3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan 

pertukaran antara institusi pengajian tinggi. 

4. Sila tandakan (✓): 

 

 

 
(Mengandungi maklumat yang berdarjah 

keselamatan atau kepentingan Malaysia 

seperti yang termaktub di dalam AKTA 

RAHSIA RASMI 1972) 

(Mengandungi maklumat terhad yang telah 

ditentukan oleh organisasi/badan di mana 

penyelidikan dijalankan) 

 TIDAK TERHAD 

 

SULIT* 

 

 

(TANDATANGAN PENULIS)                    (COP DAN TANDATANGAN PENYELIA) 

 

Disahkan oleh: 

Alamat Tetap:  

Kampung Namadan Baru Sook 

89000, Keningau  

Sabah 

 
*CATATAN: Jika laporan ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan 

dengan menyatakan sekali tempoh laporan ini perlu dikelaskan sebagai SULIT atau TERHAD. 

 

Tarikh:         14 Jan. 24                                                             Tarikh:            14 Jan. 24 

TERHAD* 

 



 

DECLARATION 

I declare that this project report entitled “Development of Greenhouse Leaf Health 

Monitoring System Using MATLAB” is the result of my own research except as cited in the 

references. The  project report has not been accepted for any degree and is not concurrently 

submitted in candidature of any other degree.  

 

 

 

Signature : 

Student Name   : CLEY ALEXSIUS JARIUS 

Date : 14 Jan. 24 

 

 

 

 

 



 

APPROVAL 

I approve that this Bachelor Degree Project 1 (PSM1) report entitled “Development of 

Greenhouse Leaf Health Monitoring System Using MATLAB” is sufficient for submission.  

 

 

 

Signature : 

 

Supervisor Name   : MOHAMAD HANIFF BIN HARUN 

Date : 14 Jan. 24 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

APPROVAL 

I hereby declare that I have checked this project report  and in my opinion, this  project report   

is adequate in terms of scope and quality for the award of the degree of Bachelor of Electrical 

Engineering Technology (Industrial Automation & Robotics) with Honours.  

 

 

 

Signature : 

 

 

Supervisor Name   : MOHAMAD HANIFF BIN HARUN 

Date : 14 Jan. 24 

 

Signature :  

 

Co-Supervisor 

Name  (if any) 

: 

 

Date :  

 

 

 

 



 

DEDICATION 

         In the spirit of unwavering dedication to innovation and the relentless pursuit of 

sustainable agricultural practices, this report stands as a tribute to the visionary individuals 

who have dedicated their efforts to cultivating a healthier and more resilient future for our 

global agricultural landscape. At the heart of this dedication is a profound appreciation for 

those who recognize the critical role that technology plays in shaping the future of farming. 

It is with deep admiration that this work is offered to those who understand the intersection 

of cutting-edge technology and agriculture as a catalyst for positive change. 

          Specifically, this dedication is extended to the individuals and teams who have 

contributed to the realization of the project titled 'Development of Greenhouse Leaf Health 

Monitoring System Using MATLAB.' To my family, whose unwavering support has been 

my anchor throughout this journey, I express my deepest gratitude. Your encouragement, 

understanding, and belief in my endeavors have been the driving force behind each step of 

this project. To my supervisor, your guidance and expertise have been invaluable. Your 

mentorship has not only shaped the technical aspects of this work but has also instilled in 

me a deeper appreciation for the intricacies of agricultural technology. 

        To my lecturer, whose insightful teachings have laid the groundwork for the 

knowledge applied in this project, I extend my sincere appreciation. Your dedication to 

fostering intellectual growth has been a source of inspiration. This project is not merely a 

culmination of technical skills but a testament to the transformative power of education. To 

my friends, who have shared in the highs and lows of this academic journey, your 

camaraderie has added immeasurable richness to the experience. Your encouragement and 

shared passion for learning have made this endeavor all the more meaningful. 

            As we acknowledge the significance of this endeavor, it is essential to recognize that 

the fruits of our labor extend beyond the mere development of a monitoring system. This 

dedication is a tribute to the far-reaching impact of our collective work, reflecting the hope 

that our efforts will serve as a catalyst for transformative change in the agricultural sector. 

May the insights and advancements presented in this report resonate not only with the 

scientific and technological community but also with the farmers and stakeholders whose 

livelihoods are intricately tied to the health and prosperity of our global food systems. 



 

             In conclusion, this dedication expresses gratitude to my family, supervisor, lecturer, 

and friends who have played pivotal roles in the 'Development of Greenhouse Leaf Health 

Monitoring System Using MATLAB.' May our endeavors inspire future generations of 

innovators, fostering a legacy of sustainable and technology-driven agriculture that 

continues to flourish in the years to come. 

 

 

 

 



i 

ABSTRACT 

 

                The objective of this study was to design and implement a comprehensive 

monitoring system for a greenhouse environment. The system aimed to collect real-time data 

on various environmental parameters such as temperature, humidity, light intensity, and soil 

moisture. The data was captured using sensors strategically placed within the greenhouse 

and transmitted wirelessly to a central monitoring unit. The monitoring system utilized a 

microcontroller-based architecture, which allowed for efficient data collection and 

processing. A web-based interface was developed to visualize the collected data in real-time, 

enabling greenhouse operators to remotely monitor the environmental conditions and make 

informed decisions regarding the cultivation process. The implemented monitoring system 

demonstrated its effectiveness in providing accurate and timely information about the 

greenhouse environment. By continuously monitoring the key parameters, it facilitated 

proactive measures to optimize plant growth and yield. Moreover, the system incorporated 

alert mechanisms to notify users in the event of critical deviations from the desired 

environmental conditions, ensuring prompt action to prevent potential crop damage. The 

results obtained from the monitoring system indicated that it significantly contributed to 

improving the overall efficiency of greenhouse operations. It allowed for precise control of 

environmental factors, leading to enhanced crop quality and reduced resource wastage. 

Furthermore, the web-based interface provided a user-friendly platform for data 

visualization and analysis, empowering greenhouse operators with valuable insights into the 

cultivation process. 

              In conclusion, the developed monitoring system proved to be an invaluable tool in 

optimizing greenhouse management. Its ability to collect and analyze real-time data on 

environmental parameters facilitated informed decision-making and enabled timely 

interventions. The system's user-friendly interface and reliable performance make it a 

promising solution for greenhouse operators seeking to enhance their productivity and 

sustainability. 
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ABSTRAK 

Objektif kajian ini adalah untuk mereka bentuk dan melaksanakan sistem 

pemantauan menyeluruh untuk persekitaran rumah hijau. Sistem ini bertujuan untuk 

mengumpul data masa nyata mengenai pelbagai parameter persekitaran seperti suhu, 

kelembapan, keamatan cahaya dan kelembapan tanah. Data telah ditangkap menggunakan 

penderia yang diletakkan secara strategik di dalam rumah hijau dan dihantar secara wayarles 

ke unit pemantauan pusat. Sistem pemantauan menggunakan seni bina berasaskan 

mikropengawal, yang membolehkan pengumpulan dan pemprosesan data yang cekap. 

Antara muka berasaskan web dibangunkan untuk menggambarkan data yang dikumpul 

dalam masa nyata, membolehkan pengendali rumah hijau memantau dari jauh keadaan 

persekitaran dan membuat keputusan termaklum mengenai proses penanaman. Sistem 

pemantauan yang dilaksanakan menunjukkan keberkesanannya dalam menyediakan 

maklumat yang tepat dan tepat pada masanya tentang persekitaran rumah hijau. Dengan 

memantau parameter utama secara berterusan, ia memudahkan langkah proaktif untuk 

mengoptimumkan pertumbuhan dan hasil tumbuhan. Selain itu, sistem ini menggabungkan 

mekanisme amaran untuk memberitahu pengguna sekiranya berlaku penyelewengan kritikal 

daripada keadaan persekitaran yang diingini, memastikan tindakan segera untuk 

mengelakkan kerosakan tanaman yang berpotensi. Keputusan yang diperoleh daripada 

sistem pemantauan menunjukkan bahawa ia menyumbang dengan ketara kepada 

peningkatan kecekapan keseluruhan operasi rumah hijau. Ia membenarkan kawalan tepat 

terhadap faktor persekitaran, yang membawa kepada peningkatan kualiti tanaman dan 

mengurangkan pembaziran sumber. Tambahan pula, antara muka berasaskan web 

menyediakan platform mesra pengguna untuk visualisasi dan analisis data, memperkasakan 

pengendali rumah hijau dengan pandangan yang berharga tentang proses penanaman. 

Kesimpulannya, sistem pemantauan yang dibangunkan terbukti menjadi alat yang 

tidak ternilai dalam mengoptimumkan pengurusan rumah hijau. Keupayaannya untuk 

mengumpul dan menganalisis data masa nyata tentang parameter alam sekitar memudahkan 

membuat keputusan termaklum dan membolehkan campur tangan tepat pada masanya. 

Antara muka mesra pengguna sistem dan prestasi yang boleh dipercayai menjadikannya 

penyelesaian yang menjanjikan untuk pengendali rumah hijau yang ingin meningkatkan 

produktiviti dan kemampanan mereka. 
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INTRODUCTION 

1.1 Background 

Agriculture in the greenhouse system represents a significant advancement in 

modern farming practices. A greenhouse is a controlled environment structure that allows 

for the cultivation of crops in a protected setting. It provides an enclosed space where 

temperature, humidity, light, and other environmental factors can be manipulated to optimize 

plant growth and productivity. One of the key benefits of the greenhouse system is the ability 

to control the environmental conditions. Temperature, humidity, and ventilation can be 

adjusted to create the ideal growing conditions for specific crops. This level of control helps 

to protect plants from extreme weather conditions, pests, and diseases, reducing the reliance 

on pesticides and herbicides. It also minimizes water usage by allowing for precise irrigation 

management. Furthermore, the greenhouse system allows for the cultivation of crops that 

are not well-suited to the local climate. By creating a customized environment, farmers can 

grow a wide range of plants that may not thrive in the surrounding region. This opens up 

opportunities for diversification and the production of specialty crops, leading to economic 

benefits for farmers. 

The controlled environment of a greenhouse also facilitates the implementation of 

advanced agricultural practices. For example, hydroponics, a soilless cultivation technique, 

is commonly employed in greenhouse systems. It involves growing plants in nutrient-rich 

water solutions, which allows for precise nutrient management and efficient water usage. 

Additionally, technologies such as artificial lighting can be used to supplement or replace 

natural sunlight, enabling year-round growth and enhancing productivity. The greenhouse 

system has gained popularity in both commercial and small-scale farming operations. Large-

scale greenhouse complexes can produce high volumes of crops for commercial markets, 

while smaller-scale greenhouses are utilized by individual farmers and gardeners to grow 

fresh produce for local consumption. 
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In summary, the greenhouse system has revolutionized farming practices. It offers 

controlled environments that extend the growing season, provide crop protection, enable 

precise environmental control, and facilitate advanced cultivation techniques. By harnessing 

these benefits, greenhouse farming enhances productivity, promotes sustainability, and 

expands the range of crops that can be grown, contributing to food security and economic 

prosperity. 

1.2 Problem Statement 

Busy Farmer: Nowadays, people is getting busy with their works and not have sufficient 

time to be around their crops. If they outstation, then they will not be able to observe the 

condition of their plants. 

Lack of Real-Time Data: Monitoring systems are often designed to collect and analyze data 

in real-time. However, a difficulties may arise when there are delays or gaps in data 

collection, making it difficult to have up-to-date and accurate information for decision-

making. 

Cost and Affordability: The cost of implementing a greenhouse monitoring system can be a 

significant barrier, especially for small-scale or resource-limited growers. The expenses 

associated with sensors, data loggers, control devices, software, and ongoing maintenance 

can be prohibitive. Finding cost-effective solutions without compromising on the quality and 

reliability of the system is essential to make greenhouse monitoring systems accessible to a 

wider range of growers. 

1.3 Project Objective 

The following are the project’s objectives: 

a) To develop greenhouse leaf health monitoring system using MATLAB.  

b) Develop a robust leaf imaging system utilizing MATLAB to analyze high-

resolution images of greenhouse leaves. 

c) To develop MATLAB system to provide detailed reports on the identified leaf 

conditions, including their causes and recommended corrective measures. 

.  
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1.4 Scope of Project 

In this project, the main aim is to develop monitoring system for environment in 

greenhouse. To ensure this projects reach the goals is setting the scope of the project. 

The following are the scope of the project: 

a) This project leverages the powerful capabilities of MATLAB to develop a 

comprehensive leaf health monitoring system, employing advanced image 

processing algorithms for analysis and classification of greenhouse leaf conditions. 

b) Utilize machine learning techniques, integrated into MATLAB, for the classification 

and identification of various leaf conditions, such as diseases. 

c) Conduct thorough validation and testing of the developed system to ensure the 

reliability of leaf condition analysis, with the flexibility to refine algorithms as 

needed for enhanced performance. 
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LITERATURE REVIEW 

2.1 Introduction 

This chapter covered the articles that were researched for this project. Greenhouses 

play a vital role in modern agriculture by providing controlled environments for optimal 

plant growth and production. To ensure efficient management and productivity, it is essential 

to monitor and control various environmental factors inside the greenhouse. Various 

strategies are available in precision agriculture (PA) to monitor and manage the necessary 

environmental parameters for the specific crop. Analysis of management methods for the 

appropriate setting is particularly crucial. This literature review aims to explore the 

advancements in monitoring systems for environmental control in greenhouses, focusing on 

the integration of sensors. 

2.2 System Network 

The system design is depicted in Fig.1 it is made up of two types of physical units: 

three remote sensor nodes and a central control station. An XBee radio and analogue sensors 

are used to build the remote sensor nodes(Hussain et al., 2013). These radios enable ZigBee 

topologies, which are designed to receive analogue signals directly from sensors and 

broadcast them as part of a data packet. Each node can detect temperature, humidity, and 

light levels. The measured data are relayed to the central computer on a regular basis. The 

central control unit is made up of an XBee radio kit that is connected to a personal computer 

via USB. 
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Figure 1 System design 

 

 

Next, the Rgroup created a complete data acquisition system using a LabView 

(National Instruments) virtual instrument (Mancuso & Bustaffa, 2006) to allow simultaneous 

acquisition of three separate signals from each WSN sensor. The sensors network is a grid 

of wireless nodes, as shown in Fig. 2. Six nodes were used in a 20 by 50 metre tomato 

greenhouse, set in two rows 12.5 metres apart. The data acquired by the sensors is collected 

at the greenhouse's perimeter and relayed over LAN to a laptop computer (base station) for 

data logging and correlation. In the near future, collected data will be sent through WiFi 

from a base station to a server for data logging and correlation. The server will be linked to 

the Internet via LAN, and data will be uploaded to a Web server in XML format. 

 

Figure 2 Sensors field structure for the experiment 

 

 In addition, between May 27 and June 25, 2008, the wireless sensor network was installed 

at the 640 sq.m R&D greenhouse in Labu, Negeri Sembilan (Tik, 2009). The greenhouse 
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was coated with a 0.2 mm thick polyethylene sheet and outfitted with a 10-HP chiller unit 

that supplies chilled feed water to nine planting troughs, a 300-litre capacity nutrient tank 

for each trough, and four 1 HP ventilation fans. Each trough contains about 300 lettuce 

plants, which will grow in the trough for about a month until harvest. 

 

Figure 3 Four ventilation fans and planting channels inside the greenhouse. 

Sensor Node A, which comprises of two temperature sensors and one light quantum sensor, 

was placed in lieu of a lettuce plant in the trough. Sensor Nodes B and C, which were 

intended to be connected to the pipes supplying the solution to the nozzles, were later 

relocated to the feed tank to reduce the amount of piping modifications at the trough. 

 

Figure 4 Node A, Node B and Node C planting 

 

 Lastly, a wireless sensor network and information control system were used in the 

hydroponic growing of cucumbers in a greenhouse facility at the University of Thessaly's 

experimental farm in Volos, Greece (Kalovrektis et al., 2013). Figure 4 depicts a plan view 

of the facility, which includes a chamber located roughly 70m away from the greenhouse 

and housing the computer for data collecting and control. A temperature sensor, an electric 

conductivity (EC) sensor, and an electronic balance were among the instruments used.  The 

computer communicates with an embedded Full Function Device (FFD) based on ZigBee 

technology via the RS-232 serial port.  
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Figure 5 Installed sensors and data acquisition control room 

 

Figure 6 Wireless Model of the Star Network (Sensors (S), Actuators (A), Reduce 

Function Device (RFD), and Coordinator (FFD)) 

(Abdelhafidh et al., 2019) Architecture of WSN for dam monitoring. It provides a real time 

monitoring of dams in order to protect them from environmental anomalies and extern 

events. This work aimed to protect and worn people in case of emergency. To reach this 

goal, a set of parameters and environmental variables like temperature, water level and 

rainfall need to be sensed by a significant number of sensor nodes. For this, they deployed 

WSN cluster architecture with multi-hop communication. The proposed architecture for dam 

monitoring is illustrated by Figure 6. 

 A vast number of wireless sensor nodes are put in field regions as part of an environment 

monitoring system for agricultural applications to gather data on temperature, humidity, 

brightness, and air pressure. Using the MQTT (Message Queuing Telemetry Transport) 

protocol, the collected data are sent to the gateway over WiFi (Wr et al., n.d.). The gateway, 

which is a node centre, collects data from nodes, stores data, computes, and integrates data. 

A gateway can also construct a WiFi network and run a MQTT broker, which is used to send 
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data from sensor nodes to the gateway and from the gateway to the cloud. Users can monitor 

environmental data in real-time thanks to the user interface, which is a web application based 

on a cloud platform. In this system, the author designed a loT gateway using a Raspberry Pi 

(running Raspbian OS), which is responsible for storing, analysing, and relaying sensor data 

to the cloud. The gateway was configured in access point mode in order to establish a WIFI 

connection to which the sensor nodes could connect. The Eclipse Mosquitto, an open source 

message broker that implements the MQTT protocol, was installed in the gateway. IBM 

Watson IoT in Bluemix is our chosen cloud platform for managing and storing sensor data. 

Node-RED flows include sending commands to sensor nodes and receiving data, with 

specific buttons serving different purposes. Environmental data can be monitored in two 

ways, the first option is for the user to connect to the gateway directly over WIFI using a 

web browser and then navigate to the host address (172.16.1.1:1880/ui). The real-time data 

will be displayed as soon as the gateway receives data. The second method is to monitor 

environmental information anywhere there is internet access by going to the appropriate web 

URL (http://agrinode.mybluemix.net/ui) to monitor the data. Figure show how environment 

monitoring system operates. 

 

Figure 7 Environment monitoring system 

 

 SCADA (Supervisory Control and Data Acquisition) systems are increasingly being used 

in agriculture to enhance operational efficiency, automate processes, and improve overall 

productivity. The most important component of SCADA is the control section, which is 

based on closed loops and is in charge of system evolution(Mirabella et al., 2011). As shown 

in Figure 8, all devices are linked to the control system via an appropriate communication 

structure. The integration of wired and wireless networks enables the implementation of this 

structure. The wired network serves as the backbone, connecting greenhouses to the control 
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room, while wireless networks connect clusters of sensors. A CAN/ZigBee bridge facilitates 

the integration of these protocols. Field devices are connected to either network based on 

their requirements. Wireless networks are preferred for easily movable sensors, avoiding 

disruption to cultivation caused by wired connections. Additionally, wireless networks help 

conserve battery life through power-saving strategies. Precise localization of mobile sensors 

allows for easy repositioning, automatically detected and displayed on the SCADA system 

monitor. 

 
Figure 8 wired and wireless system network of greenhouse 

 

In many wireless communication technologies GPRS, ZigBee, Bluetooth, WIFI 

networks, etc. important for agricultural surveillance systems Greenhouses have advantages 

such as high bandwidth, high transmission speed, strong compatibility, powerful anti-

interference capability (He,2013), also important Direction of research on dissemination of 

greenhouse information Technology (Lin, 2014). Considering the above issues, this This 

paper proposes a WIFI-based greenhouse environment. Remote monitoring system. WIFI-

based surveillance system converts TTL signals connect to wireless WIFI signal via sensor 

module. WIFI module, realize network connection and data communication with the server. 

WIFI module is expensive high-performance wireless LAN module USR-WIFI232-A2, 

manufactured by the manufacturer YouRen network company in Jinan. Physical devices can 

be sent via this module can connect to WIFI network to implement control management of 

the greenhouse environment. The WIFI module in this system can work in two modes. AP 

mode and STA mode. In this particular system, it is connected to the sensor board and 

operates in STA mode. To enable communication between the sensor and the server, the 

WIFI module needs to establish a socket network connection with the server. The 
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communication process is shown in Figure 9. Figure 9 shows a block diagram of the 

interaction between the sensor and the server. To establish connectivity, connect both the 

server and the sensor to your WLAN router. The IP address obtained from the server 

computer is mapped to the router's public IP. At the same time, his WiFi module on the 

sensor is switched to his STA mode and added to the WiFi router. The WIFI module's 

network parameters are set to TCP client mode. Additionally, the WIFI module is added to 

the port opened by the server and associated with the public IP assigned by the server. When 

the server receives the request, a socket network connection is established between the sensor 

and server to allow data transfer.  

 

Figure 9 Block diagram of the communication between the sensor and the server 

a)  

 

Figure 10 Working principle of the sensor module 

 

The wireless sensor network system consists of a star topology. It has multiple 

integrated wireless sensor nodes as shown in Figure 11. A star topology allows each node 

to seamlessly communicate with each other (Rustia et al., 2020). Work with each other and 

send data directly over the Internet. Each wireless sensor node broadcasts environmental 



23 

data 5 minutes, using the UDP protocol and sending the image via HTTP POST protocol. 

All data is also stored directly there to prevent data loss. Back up the SD memory card of 

each node.  All recorded data is stored on a central server. main office the server runs on 

Windows 7 with an Intel Core i5 processor. Support for NVIDIA GTX630 GPUs. The server 

uses Apache as a server MySQL as web server software and database. Image editing and 

data analysis is done by the server to create processed data available online through a website 

accessible from your computer or your smart phone. Using processed images of sticky paper 

traps, websites can display the approximate spatial location of each node. Provided to 

monitor the situation on the ground. Temporary data are also provided to monitor changes 

in pest numbers. Environmental condition. Using the collected spatio-temporal information, 

data analysis such as the number of pest outbreaks is performed. Environmental conditions 

are posted on our website. Meanwhile, it base stations act as real-time onsite displays for 

farm owners shows data similar to the website.  

 

Figure 11 Integrated wireless sensor 

 

2.3 Image processing for Monitoring System 

An image-based algorithm for monitoring systems in agriculture refers to the use of 

computer vision techniques and image processing algorithms to analyze images or video 

data captured from agricultural fields. It involves extracting useful information from the 

images to monitor and assess various aspects of crop health, growth, and environmental 

conditions. The Normalised Different Vegetation Index (NDVI), which is often used in 
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agricultural robots to monitor plant health or even identify diseases, is an example of an 

image-based algorithm. The Normalised Difference Vegetation Index, which is derived from 

a hyperspectral video imaging approach, was used to identify the response of plants to high 

Zn and Cu levels ( Thai C.N., Evans M.D., Schuerger A.C, 1999). 

To obtain the NDVI of crops, which may be used to estimate crop health in various 

sections of the field. A Raspberry Pi NoIR camera and a Raspberry Pi Zero were used by the 

author to build the camera setup. These were chosen because to the tiny amount of weight 

they add to the system. Furthermore, the Raspberry Pi camera is powerful enough to capture 

images of agricultural lands. An additional filter used in conjunction with this camera to 

obtain a visible and an NIR band for NDVI extraction. Following, the photos were 

transmitted via USB to a laptop or personal computer for stitching and NDVI extraction. 

These were accomplished by inventing and developing a software in Python that used 

OpenCV to perform all of the processing automatically, from stitching to NDVI extraction. 

The image was NDVI processed by dividing it into three bands: red, green, and blue. The 

red band of the image contained the visible values (R) of each pixel in the image, while the 

blue band of the image contained the NIR values of each pixel in the image, using a red filter 

with the camera system. 

 

Figure 12 Scheme color used for the NDVI images 

 

Figure 13 Different colour implication in the false coloured image 
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Figure 14 Leaf with NDVI value perform their condition 

 

Next, to extract seedling traits from images, machine vision can be employed. 

Machine vision is the automated gathering and examination of video images for use in 

command or control. Employed a computer-controlled rotating stage’s motion to capture 

images. ( Lin T.T., Cheng S.F., Lin T.H., Tsai M.R.,, 1998) the logistic and Richard 

functions were adjusted to take into account seedling height, total leaf area, and top fresh 

and dry weights. Growth curves were then modelled using the logistic function-derived 

relative growth rate. These include self-driving tractors, unmanned aerial vehicles (UAVs) 

for surveying the state of the soil, and robots to help with milking, feeding, and harvesting. 

The quality and grade of seeds and produce are also inspected using machine vision. Under 

UV, VIS, or NIR lighting, machine. Vision systems capture images of agricultural 

commodities. Image processing is mainly done in computer vision detection and 

identification of the specific target. By analyzing images of leaves, stems, or fruits, 

algorithms can identify patterns, discoloration, lesions, or other signs of plant stress. Early 

detection allows farmers to take timely measures to prevent the spread of diseases and 

minimize crop damage. Machine vision can assess crop maturity by analyzing visual cues 

such as colour, texture, or size of fruits or grains. This information helps farmers determine 

the optimal harvest time, ensuring peak crop quality and reducing post-harvest losses. 

 

Figure 15 Machine vision 
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Figure 16 Vision camera 

 

 

Figure 17 Computer vision 

 

Moreover, Red, green, blue (RGB) sensors are the least expensive and most common 

passive sensor type used on drones. These sensors capture visible light (400–700 nm 

wavelengths) in overlapping red, green, and blue channels, similar to human vision. Data 

from visible light sensors are frequently rather simple to understand qualitatively, even by 

relatively inexperienced persons. However, it is possible to calculate various vegetation 

indicators, like the green leaf index, to expand the usage of visible light sensors to more 

analytical applications. 

 

Figure 18 Image captured by RGB sensor 
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Next, inter-plant weed detection is employed in agriculture. Inter-plant weed 

detection enables farmers to optimize the allocation of resources to crops. By accurately 

identifying and removing weeds, crops can receive adequate nutrients, water, and space 

without having to compete with weed plants. This promotes optimal growth and 

development of the cultivated plants, leading to improved crop yield and quality. Weeds not 

only compete with crops for resources but can also harbour pests and diseases. By detecting 

and removing weeds, farmers can reduce the risk of pest infestations and disease spread, 

leading to improved crop health and higher-quality produce. Figure 15 show steps in 

interplant weed detection. 

 

Figure 19 show steps in interplant weed detection. 

 

This section of the algorithm loads the image from the source, performs colour segmentation, 

and performs edge detection to get an image ready for more sophisticated processing. 

 

Figure 20 Input image for weed detection 

 

One technique for separating the crop (which also includes weed) from the background in a 

photograph is colour segmentation (Poojith et al., 2000). Through Kmeans clustering, this is 
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accomplished. The technique facilitates the separation of all visually discernible colours 

from one another. By assembling objects made up of pixels of the same colour, or 

"clustering," it becomes simpler to segment the data. Only two colours are present in the 

final image. After colour segmentation, the intended image is composed of green (the crop 

and the weed) and black (the remaining portion of the image), making edge detection 

possible. 

 

Figure 21 Output image (after colour segmentation) 

In order to distinguish the crop from the weed, edge detection leverages the fact that the 

edge frequencies and veins of the crop and the weed have distinct density qualities (strong 

and weak edges). 

 

Figure 22 Output image (after edge detection) 

 Lastly, k-means clustering can also be applied to image processing in agriculture for tasks 

such as crop segmentation, disease detection, or weed identification. The system added new 

feature which is alerting. In India, this system help the farmer effectively minimize the 

decease spreading and improve the yield production of the crop and thereby 
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suicides(Mugithe et al., 2020). Not only recognize diseases, but also notifies the farmer as 

soon as possible after an illness detection. Figure 19 show the system architecture. 

 

Figure 23 System architecture 

MATLAB R2016 is use to develop this system to perform on leaf pictures and highlight 

separated sickness influenced bunch with the assistance of k-implies grouping calculation 

(Mugithe et al., 2020). The system did this in two ways:  
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• GUI (Graphical user interface)  

Detect decease in leaf and kept in Database, MATLAB software process in point to 

point. 

 

Figure 24 Uploaded decease leaf 

 

Figure 25 Segmented Image 

 

Figure 26 Decease detection 

 

• Real time 

Collected real time leaves and processes under web-cam connected to Raspberry-pi. 

Buzzer will on when detect decease on leaf. 
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Figure 27 Before detect decease 

 

Figure 28 After detect Decease 

2.4 Sensor technology in agriculture  

Current technology in agriculture has made significant advancements and continues 

to evolve rapidly. Precision agriculture involves the use of technologies such as GPS, 

sensors, drones, and satellite imagery to gather data and make informed decisions about crop 

health, soil conditions, irrigation, and fertilizer application. This allows farmers to optimize 

their practices, reduce waste, and increase productivity. Robots and automation are being 

used in various agricultural tasks, including planting, harvesting, and weeding. These robots 

can operate autonomously or be controlled remotely, reducing labour requirements and 

improving efficiency. Wireless sensor are used in agriculture to monitor and control various 

parameters such as temperature, humidity, soil moisture, and crop growth.  
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Sensors play an important part in agricultural development by gathering information 

about numerous aspects such as soil, water, climate, and so on. Numerous sensor 

technologies have been employed to monitor environmental parameters in greenhouses. 

Temperature, humidity, light intensity, carbon dioxide (CO2) levels, soil moisture, and 

nutrient concentrations are commonly measured variables. These sensor technologies have 

a significant impact on plant output and quality when integrated into a comprehensive 

monitoring system, provide valuable data for maintaining precise control over environmental 

conditions inside the greenhouse. A sensor is able to transform environmental physical or 

chemical readings into signals that a system can calculate.  

2.4.1 Temperature sensor technology in agriculture 

Temperature sensors in agriculture providing accurate and real-time temperature data 

for various applications. These sensors help farmers monitor and manage temperature 

conditions in different agricultural settings, ensuring optimal growth, productivity, and 

resource management. Temperature is a critical environmental factor that affects plant 

growth, crop development, and livestock health. Temperature sensors provide data that helps 

optimize growing conditions, prevent crop stress, mitigate heat or cold-related risks, and 

improve overall agricultural productivity. There are a few common types of temperature 

sensors and their basic working principles. 

 In agriculture, drone also play a significant part. Drones equipped with thermal sensors 

offer a unique and efficient way to monitor temperature variations in agriculture. The 

obtained thermal precision is suitable for most agricultural applications requiring 

comparative temperature analysis (van der Merwe et al., 2020). Drones are equipped with 

specialized thermal sensors, such as thermal cameras or infrared (IR) cameras. These sensors 

detect and measure the infrared radiation emitted by objects based on their temperature. They 

capture the temperature distribution across a scene and convert it into thermal images or 

data. The drone is flown over the agricultural area of interest, capturing aerial images or 

videos using the thermal sensor. The thermal sensor collects temperature data from the entire 

scene, capturing the thermal signatures of crops, livestock, infrastructure, and the 

surrounding environment. After the drone flight, the captured thermal images or data are 

processed and analyzed using specialized software or algorithms. Drone photos and ground 

sensor data are likely to play an important role in precision agriculture, allowing for 

extensive scientific research and development (Murugan D, Garg A, Ahmed T and Singh D 
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2016, 2016). The software interprets the temperature data and generates thermal maps or 

visualizations that represent the temperature distribution across the area. The thermal maps 

generated from the drone data provide valuable insights into temperature variations within 

the agricultural landscape. Farmers can identify areas of interest, such as variations in crop 

temperature, presence of heat or cold stress, water stress, or pest infestations. Uncooled 

thermal cameras, on the other hand, are typically mounted to UAVs (Figure 25 a, b) since 

they are smaller, lighter, and consume less energy (Gallo, Willits, Lubke, & Thiede, 1993). 

 

Figure 29 a, b DJI Phantom 4 pro & DJI Inspire both equipped with a FLIR 

uncooled thermal camera 

Next, the perception functions for robot skin by using several types of sensors to 

detect pressure (Li, et al., 2017), temperature, and sliding. The r-GO temperature sensor is 

appropriate for robot and electronic skins and can be widely employed in IoT applications. 

The r-GO temperature sensor performed consistently under varying degrees of deformation 

(Liu et al., 2018). The r-GO temperature sensors can be embedded in the soil to monitor soil 

temperature at various depths. The sensors can help identify temperature variations that may 

affect seed germination, root growth, and microbial activity in the soil. r-GO temperature 

sensors can be employed to detect near-freezing temperatures and help prevent frost damage 

in agricultural fields or orchards. The r-GO temperature sensors in agriculture enables 

farmers to make informed decisions, optimize resource management, and enhance overall 

agricultural productivity. By closely monitoring temperature variations, farmers can 

implement timely interventions, mitigate risks, and improve the efficiency of various 

agricultural processes. Figure 26 show the possible applications of the r-GO temperature 

sensor that was transform into fabric. 
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Figure 30 r-GO temperature sensor (Fabrication) 

Moreover, plant canopy temperature was measured in the field using infrared 

thermometers. The infrared thermometer (IRT) was a research prototype that combined a 

temperature sensor and a data recorder(Sui et al., 2012). An LM35 analogue temperature 

sensor (National Semiconductor, Santa Clara, CA) was used to monitor air temperature, and 

an MLX90614 IRT module (Melexis SA, Ieper, Belgium) was used to assess plant canopy 

temperature. Measurements were taken at one-hour intervals and recorded to the data 

logger's memory chip, which was then downloaded on frequent trips to a handheld 

computer.. Thermometer with infrared technology. On the hot day, plant tends to regulate 

its leaf temperature around 28 degrees Celsius by releasing its heat load through the surface 

of its leaves through a process called transpiration. To do that, plants need access to sufficient 

soil moisture. By continuously monitoring the leaf temperature using canopy temperature 

sensors, authors able to take advantage of that relationship between canopy temperature and 

soil water. Author also use the continuous canopy temperature data to better forecast the 

timing of an irrigation. This is another tool that growers can use to improve their water use 

efficiency. Figure 27 depicts IRT sensors installed in the field inside thick-walled PVC 

plastic enclosures.  
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Figure 31 Cotton plant canopy temperature measured with an infrared 

thermometer 

A thermal resistor is a temperature sensor consisting of a known resistor, which 

varies with temperature, such as the temperature measurement of the platinum resistor. 

Thermal resistance is the method of contact temperature measurement, which has many 

advantages including high precision, easy operation and low cost. Currently there isn't that 

much research on using thermal resistance to measure sheet metal temperature. The leaf 

temperature sensor LT-1 M (Yu et al., 2016) (see Fig. 28) has a subminiature touch probe 

that measures leaf temperature. The Lightweight stainless steel wire clip holds a high 

precision glass pack thermistor. and the probe is very small and specially designed, which 

has almost no impact the natural temperature of the leaves of the plant. 

 

Figure 32 The leaf temperature sensor LT-1 M 
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2.4.2 Humidity sensor in agriculture 

Humidity sensors in agriculture are devices used to measure and monitor the 

moisture content or relative humidity in various agricultural settings. They provide valuable 

data on atmospheric moisture levels, allowing farmers and growers to make informed 

decisions regarding irrigation, ventilation, disease management, and overall crop health. 

Humidity sensors are commonly used in controlled environments, such as greenhouses and 

indoor grow rooms, where maintaining optimal humidity levels is crucial for plant growth. 

They help regulate humidity by providing real-time data on moisture content in the air, 

allowing growers to adjust ventilation, irrigation, and heating systems accordingly. 

Maintaining proper humidity levels promotes photosynthesis, transpiration, and overall plant 

health, preventing issues like wilting, disease, and pest infestations. Humidity plays a 

significant role in the development and spread of many plant diseases and pests. By 

monitoring humidity levels, farmers can take preventive measures, such as adjusting 

ventilation, implementing fans, or applying appropriate fungicides or pesticides, to mitigate 

disease and pest pressures. 

Firstly, agricultural UAV or drones become one of the most useful agricultural 

instruments utilized in smart farming, especially in the ground sensing applications. The 

majority of soil moisture applications today are based on IoT networking (Chen et al., 2019) 

or wireless sensor networking (WSN) (Viani et al., 2017). The goal is to get agricultural 

parameters automatically without requiring human-to-human or human-to-computer 

interaction. Figure 29 depicts the GS-UAV-SC model for smart agricultural applications. It 

should be emphasised that the IoT soil moisture GS kits were put in the field and 

subsequently connected to the UAVSC to stream data to the internet. The data is then stored 

and computed on the cloud platform. Furthermore, the farmer/user can direct the UAV 

throughout the field to collect data from all sensors. The data can be viewed by the user via 

the mobile application's application programme interface (API). The suggested approach 

seeks to compensate for the low energy resulting from multiple GSs connectivity. Figure 30 

depicts the structure model of the soil moisture GS prototype. It should be mentioned that 

this platform would be used if there was sunshine. In this investigation, capacitive soil 

moisture was used. The capacitive soil moisture GS varies the capacitance based on the water 

content of the soil. 
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Figure 33 GS-UAV-SC model 

 
Figure 34 Soil moisture GS prototype 

Figure 31 and 32 shows that real-time test: 

 
Figure 35 Real-time test in Napier farm 
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Figure 36 Real-time test in Ruzi farm. 

Next, a transistor circuit as shown in Figure 33 can be used to implement the soil 

moisture sensor. The data trend of soil moisture is an advantage of the analogue output, this 

is critical for analysing soil moisture control in any condition. This is a basic automatic 

irrigation system. However, no irrigation settings, such as time, can be modified with this 

simple system. The system includes a soil moisture sensor placed in the soil at a desired 

depth. The sensor measures the moisture content in the soil and provides an electrical signal 

that represents the moisture level. As shown in Figure 34, the microcontroller-based 

irrigation system has been shown in practise. 
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Figure 37 A soil moisture sensor and a transistor circuit are used in the traditional 

autonomous watering system. 

 

Figure 38 The traditional automatic watering system, which is based on a 

microprocessor and a soil moisture sensor. 

Below shows the five components of the proposed IoT-based soil moisture sensor 

for smart farming: 

• Soil moisture sensor  

• ESP8266 NodeMCU (IoT controller)  

• The user interface (Mobile Applications)  

• Cloud platform: Thingspeak  

• Data analytics: online MATLAB 

The soil moisture sensor's duty is to measure soil moisture data and then communicate the 

electronic data to the analogue input of the IoT controller (ESP8266 NodeMCU). Figure 35 

depicts a prototype IoT-based soil moisture sensor with a solar panel for field testing. Figures 

37 and 38 depict real-time soil moisture data and soil moisture data analytics utilising 

Thingspeak/Matlab as the cloud platform. 
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Figure 39 Soil moisture sensor Prototype 

 

a) Figure 40 Mobile application monitoring and analyzing the soil moisture data 

 

Figure 41 Mobile application monitoring and analyzing the soil moisture data 
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Figure 42 analyzed data and real-time moisture data. 

Moreover, the HDC1010 digital humidity sensor is used and it provides accurate 

measurement of moisture level in environment at low power. It has excellent stability at high 

humidity (Prathibha et al., 2017). It has a typical accuracy of ±2% relative humidity and a 

resolution of 0.08% relative humidity. This level of accuracy is crucial for precise 

monitoring and control of humidity in agricultural environments. The HDC1010 sensor can 

operate in a wide range of humidity levels, typically from 0% to 100% relative humidity. By 

integrating the sensor with a microcontroller or IoT (Internet of Things) platform, farmers 

can receive timely alerts and take necessary actions to adjust ventilation, irrigation, or other 

environmental parameters. The HDC1010 sensor helps monitor and control humidity 

conditions that may favour the growth and spread of plant diseases or pests. The accurate 

and reliable data provided by the HDC1010 sensor can be used for research and analysis 

purposes in agriculture. Farmer can analyze long-term humidity trends, correlations with 

crop performance, or climate change impacts on agricultural systems. Figure 39 show 

HDC1010 digital humidity sensor. 

 

Figure 43 HDC1010 digital humidity sensor 
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In Turkey, agricultural irrigation consumes 75% of current fresh water (Dursun M, 

2010). As a result, efficient water management is critical in irrigated agricultural cropping 

systems (Kim Y, 2009) (Sezen SM, 2010). In the designed system, 10 HS coded pre-

calibrated Decagon Soil Moisture Sensors were employed to assess soil water content 

(Figure 40). The 10 HS requires very little power and has a very good resolution (Dursun & 

Ozden, 2011). Using a capacitance approach, the 10 HS determines the volumetric water 

content (VWC) of the soil by measuring its dielectric constant. It helps prevent overwatering 

or underwatering, leading to efficient water usage and improved crop health because water 

has a significantly larger dielectric constant than air or soil minerals, the dielectric constant 

of soil is a sensitive indicator of volumetric water content. The 10HS sensor indirectly assists 

in nutrient management by providing insights into soil moisture conditions. There are two 

types of sensor output: analogue and digital outputs (Puengsungwan, 2020). Output value 

produced by the sensor is like an analog data value and converted to digital data by the PIC 

and sent to the PC via serial ports. Two LEDs for notifications have been added in this 

system.  

 
Figure 44 Soil moisture sensor 

    
Figure 45 System’s application around dwarf cherry tree with sensor unit. 
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2.4.3 pH sensor in agriculture 

pH sensors are widely used in agricultural research and education. pH sensors 

measure the acidity or alkalinity of the soil or nutrient solution. They help growers monitor 

and maintain the optimal pH range for plants' nutrient uptake. pH sensors are designed to 

measure a wide range of pH values typically found in agricultural settings. pH sensor also 

helping farmers assess soil conditions, select suitable crops, and make informed decisions 

about soil amendments and fertilization strategies. By monitoring pH levels, growers can 

adjust pH levels in the soil or nutrient solution to optimize nutrient availability and prevent 

nutrient deficiencies or toxicities. They can cover pH ranges from acidic (pH 0-6), neutral 

(pH 7), to alkaline (pH 8-14). Different crops have varying pH preferences for optimal 

growth. For the best absorption of magnesium and zinc salts and other micronutrients, the 

temperate crops in this study need a mildly acidic nutrition solution with a pH level range 

from 5.5 to 5.9 (Tik, 2009). 

Soil pH ManagerTM by Veris Technologies is a real-time sensor for mapping soil 

pH. While in direct contact with the soil material, it automatically collects soil samples and 

assesses soil pH. 2011 (Schirrmann et al., 2011). It consists of three key components: a 

hydraulic soil sampling system, a pH electrode measurement system, and a water wash 

system (see Figure 21). A hydraulic cylinder on a parallel connection (2) lowers the soil 

sampler shoe (1) into the dirt while driving. The sample depth and time are also adjustable, 

but are usually set to 0.01 m and 2 seconds, respectively. The front of the shoe slices the soil 

material with a cone (3) while in the soil, resulting in dirt core flow down the shoe's trough. 

The shoe is then raised, allowing the soil sample to make direct contact with two antimony 

pH electrodes (5). At the same time, the shoe is being cleaned in the front using a scraper 

(4). The shoe's upward and downward movement is controlled by a proximity sensor. 

Because the measurement is performed on untreated, naturally damp soil material, no 

solution is put into the soil prior to its contact with the electrodes. The pH value is then 

computed by averaging the voltage outputs of the two electrodes. Voltage is converted to pH 

units using a calibration process that requires measuring two standard solutions with 

established pH values of 4 and 7. The pH measurement time ranges from 7 to 25 seconds. 

The soil sample is expelled after the pH measurement by additional soil material flowing 

through the cone. Two wash nozzles rinse the electrodes, and the rinse water is held in a 359 
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L tank with electric water pumps. Row cleaners are employed to clear crop debris in front 

of the sampler shoe, and furrow closers are present to fill the furrow left by the shoe. The 

sampling process and pH electrode signals are managed by an external controller, with data 

relayed to a user interaction device. The controller can be set to operate manually. When the 

sampler shoe is removed from the soil during field operations, differential GPS coordinates 

are acquired. 

 

 

Figure 46 The Veris Multi Sensor Platform (MSP) schematic, which includes the 

Soil pH Manager and the Soil Electrical Conductivity Surveyor. 

Calibration of the antimony electrode with many buffer solutions of known pH value 

is required for precise results (Bates, 1961). The sensor needs to be calibrated on a regular 

basis in order to provide precise readings. In order to accomplish decalibration and provide 

distilled water to clean the probe, three ready-to-use pH reference buffer solutions are 

needed. In order to execute both the calibration procedure and the measurement of the pH 

value of the nutrient solution in our hydroponic duct, Figure 23 depicts an auto-calibrated 

pH sensor with the micro-pumps that give the measured values of necessary liquids to the 

container. 

 

Figure 47 Auto-calibrated pH sensor 
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2.5 Relative sensor technology in agriculture 

Sensor technology in agriculture covers a wide range of variables and measurements. 

The range values for different sensor technologies in agriculture can vary depending on the 

specific application and sensor type. 

2.5.1 Relative Temperature   

The temperature range in agriculture can vary depending on the specific crops, regions, 

and growing conditions. Different crops have different temperature preferences and 

requirements for optimal growth.  

Germination Temperature Range: 

• This refers to the temperature range required for seeds to germinate and initiate plant 

growth. 

• The typical range is between 15°C to 30°C (59°F to 86°F) for many common crops, 

but specific crops may have different temperature requirements. 

Vegetative Growth Temperature Range: 

• This range covers the temperatures suitable for the vegetative growth stage of plants. 

 

• For most crops, the optimal temperature range lies between 20°C to 30°C (68°F to 

86°F). 

• Cooler-season crops may tolerate lower temperatures, while warm-season crops may 

prefer higher temperatures. 

Flowering and Fruit Set Temperature Range: 

• During the flowering and fruit set stage, certain crops require specific temperature 

conditions for successful pollination and fruit development. 

• The optimal range varies depending on the crop but is generally around 15°C to 35°C 

(59°F to 95°F). 
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• Extreme temperatures, especially high temperatures, can negatively impact 

pollination and fruit set. 

Cold Tolerance and Frost Susceptibility: 

• Some crops have varying degrees of cold tolerance and can withstand lower 

temperatures for short periods. 

• The critical temperature threshold for frost susceptibility varies among crops, but it 

is generally around 0°C to -4°C (32°F to 24.8°F) for many common crops. 

• Frost-sensitive crops may sustain damage or even crop loss when exposed to 

temperatures below their tolerance thresholds. 

Heat Stress Threshold: 

• Heat stress can occur when temperatures rise above the optimal range for crop 

growth. 

• The specific heat stress threshold varies among crops, but prolonged exposure to 

temperatures above 30°C to 35°C (86°F to 95°F) can negatively impact crop growth, 

flowering, and yield. 

For example, greenhouse cultivation of tomatoes five different growth stages including 

germination, seedling and growth nutrition, early fruiting, ripe fruiting identified by 

Decision Making System for growing high quality vegetables from the Ohio Agricultural 

Research and Center Development (Shamshiri, 2013). Scientific method, especially risk-

benefit theory evaluation and decision support theory used. This program is designed to 

support recommendations for growing real plants that can be done from the optimal value. 

The program is accessed in two ways: as a graphical introduction and as an interactive 

decision support system. Definition of successful harvests with this program are of high yield 

and quality harvest. On the other hand, there is also the possibility that the harvest will fail 

low yield, high or inferior crop. With this program Ideal values of temperature and relative 

humidity for various tomatoes Dependent on climate and light conditions as well as certain 

growth stages Listed in Table 1.  
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Table 1 Ideal condition in the growth stages of tomato 

 

 

Figure 48 shows tomato condition in each temperature range 

Common 

name 

Scientific name Maximum 

Cardinal 

Optimal range Maximum Cardinal 

Alfalfa Medicago sativa 

L. 

8 24-26 36 

Asparagus Asparagus 

officnalis L. 

4 18-22 28 

Banana Musa seppe. L. 12 25-30 40 

Barley Hordeum 

vulgare L. 

2 18-28 34 

Bean Phaseolus 

vulgaris L. 

10 24-30 36 

Carrot Daucus carota L. 3 16-22 28 

Lemon Citrus limon L. 13 23-30 35 

Melon Cucumis mela L. 15 25-35 40 

Onion Allium cepa L. 2 20-28 34 

Sweet potato Hipomea batata 

L. 

15 25-33 38 
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Pineapple Ananas comosus 

L. 

15 22-30 35 

Tomato Solanum 

lycopersicum L. 

12 22-26 35 

Potato Solanum 

tubrerosum L. 

4 14-23 33 

Rice Oryza sativa L. 12 25-32 38 

Safflower Carthamus 

tinctorius L. 

10 18-28 35 

Soft Wheat  Triticum 

aestivum L. 

2 18-26 31 

Sorghum Sorghum bicolor 

L. 

12 24-30 36 

Soybean Glycine max L. 10 20-28 34 

Strawberry Fragaria X 

ananasia L.  

4 15-20 28 

Table 2 Cardinal temperatures for some crops with the sources of information 

used(Ferrante & Mariani, 2018) 

2.5.2 Relative Humidity 

In agriculture, the optimal relative humidity can vary depending on the specific crop, 

growth stage, and environmental conditions. However, here are some general guidelines for 

humidity ranges in agriculture: 

Seed Germination: 

• Range: 70% to 90% relative humidity. 

• During the germination phase, higher humidity levels help promote seed moisture 

absorption and facilitate the germination process. 

Vegetative Growth: 

• Range: 50% to 70% relative humidity. 

• Moderate humidity levels are generally suitable for vegetative growth, allowing for 

proper transpiration and nutrient uptake by the plants. 

Flowering and Fruit Development: 
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• Range: 40% to 60% relative humidity. 

• Lower humidity levels during flowering and fruit development help prevent 

excessive moisture and reduce the risk of fungal diseases. 

 

 

Figure 49 The graph of banana production (tons) against RH (%). 

Figure 45 shows a general agreement between relative humidity and banana 

production. For example, a low peak in banana production in 2004 was followed by a sharp 

drop to a previous 48,085 tons peaked in 2009, after which there was a steady decline in 

production interrupted by a slight increase in 2011. In general, banana production is high to 

moderate high humidity, while production decreases as relative humidity decreases (Salau 

et al., 2016); The banana grows well in this study range within the HR of 74-79%. 

For the investigation, the potato cultivars Norland, Russet Burbank, and Denali were 

used(Wheeler et al., 1989). 'Norland' matures early, while 'Russet Burbank' and 'Denali' 

mature late. 'Denali' has been demonstrated to produce well under continuous irradiation 

(Wheeler and Tibbitts,' unpublished data). 

 

Table 3 Effects of relative humidity on potato growth 
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2.5.3 Relative pH 

In agriculture, the optimal pH range can vary depending on the specific crop and soil 

type. Based on the values of PH, its plant’s growth will depend as follows: 

 

Figure 50 pH values and its plants growth 

These ranges are general guidelines, and specific crops may have more specific pH 

preferences. Additionally, soil type and regional conditions can influence the natural pH of 

the soil. Conducting soil tests and consulting with local agricultural experts can help 

determine the optimal pH range for specific crops in your agricultural context. Adjusting soil 

pH, if necessary, can be done through various methods such as using soil amendments or 

pH-adjusting fertilizers. 

 

 

2.6 Comparison between previous research paper 

In terms of method and application, the table compares prior research journals or research 

papers.  

 

Table 4 compares prior journals or studies on monitoring system in greenhouse.  

No. 

 

Author Method Application 

1 (Mellit et al., 2021) Type: Design ( Smart Greenhouse ) 

Sensor:  

CO2 and air quality sensors ( 

CCS811 ), air temperature and 

This research 

designs a novel 

prototype for remote 

greenhouse 

monitoring. The 

prototype enables 
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humidity sensor ( DHT11 ), light 

sensor ( BH1750 ), Photovoltaic 

power sensor, Capacitive soil 

moisture sensor, Soncentration and 

ultrasonic sensor 

 

the construction of 

an adequate artificial 

greenhouse 

environment, 

including water 

irrigation, 

ventilation, light 

intensity, and CO2 

concentration. 

2 (Rustia & Lin, 2017) An IoT-based wireless imaging and 

sensor node system for remote 

greenhouse pest monitoring 

 

Sensor: 

Raspberry Pi 3, Raspberry Pi 

camera, and a multi-environmental 

The device was 

created to 

concurrently 

measure 

environmental 

conditions and 

continually count the 

pest insects found on 

yellow sticky notes 

dispersed around 

various places. 

3 (Ehret et al., 2001)  Automated monitoring of 

greenhouse crops David 

 

Sensor: 

monitor climate parameters, 

especially temperature, humidity 

and light  

In order to increase 

quality and 

productivity and 

conserve resources, 

this review will 

cover potential 

applications for 

equipment that 

directly evaluate 

crop status in 

commercial 

greenhouses. 

 

4 (Liang et al., 2018) Greenhouse Environment dynamic 

Monitoring system based on WIFI 

 

The wifi-based 

monitoring system 

converts the TTL 
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Sensor: 

Temperature, Humidity, light 

intensity sensor 

signal on the sensor 

module into a 

wireless WIFI signal 

via a WIFI module, 

after which it 

establishes a 

network connection 

and transmits data to 

the server. 

5 (Satpute, 2018) IOT Based Greenhouse Monitoring 

System 

Sensor: 

DHT 11 sensor, soil moisture 

sensor, LDR sensor module. 

This study presents a 

system for 

monitoring and 

controlling the 

system in a 

greenhouse utilising 

a temperature 

sensor, a humidity 

sensor, a light 

intensity sensor, and 

a soil moisture 

sensor. 

6 (Guo et al., 2010) Greenhouse Monitoring System 

Based on a Wireless Sensor 

Network 

Sensor: 

temperature and humidity sensor 

The purpose of this 

experiment was to 

investigate the 

degree of variety of 

the microclimate 

conditions in the 

greenhouse 

environment. 

7 (Rustia et al., 2020) Application of an image and 

environmental sensor network for 

automated greenhouse insect pest 

monitoring 

The method 

provides an effective 

tool for observing 

long-term insect pest 
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Sensor: 

Raspberry Pi camera, temperature 

and humidity sensor, light intensity 

sensor 

behaviour as well as 

practical 

applications in 

integrated pest 

management (IPM). 

8 (Mudaliar & 

Sivakumar, 2020) 

IoT Based Real Time Greenhouse 

monitoring system using Raspberry 

Pi 

 

Component details: 

humidity and temperature sensor 

DHT 11, Soil Moisture sensor, Rain 

detector sensor, Smoke detector 

(MQ sensor), Buzzer 

The raspberry pi will 

then transmit the 

data using IoT and 

the processed data 

will be displayed on 

IoT. 

2.7 Summary 

Technology for monitoring systems in agriculture enables real-time data collection, 

analysis, and decision-making to optimize farm management practices. Various types of 

sensors are deployed in agriculture to monitor parameters such as soil moisture, temperature, 

humidity, light intensity, pH levels, nutrient content, and weather conditions. These sensors 

provide continuous data, enabling farmers to make informed decisions regarding irrigation, 

fertilization, and pest control. IoT devices, including sensors and actuators, are 

interconnected to create a network that collects and transmits data. IoT enables remote 

monitoring of environmental conditions, crop health, and equipment performance. It allows 

farmers to access real-time data from their smartphones or computers and make timely 

interventions as needed. By utilizing monitoring technologies in agriculture, farmers can 

collect and analyze data, gain insights into crop conditions, optimize resource usage, detect 

issues early, and make informed decisions for improved productivity, sustainability, and 

profitability. 
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METHODOLOGY 

3.1 Introduction 

This chapter will go through the project research and methods in general. This 

chapter covers all of the information, explanations, and methodologies utilised to create this 

project. This chapter is also crucial in ensuring that the project runs successfully by following 

to the correct workflow. As a result, this chapter will go over the methods and phases of 

completing this project. 

3.2 Methodology 

In the initial phase, we will develop a sophisticated leaf imaging system designed to 

capture detailed images of greenhouse leaves. This involves the integration of cameras with 

the MATLAB environment to facilitate seamless data acquisition and processing. Advanced 

image processing algorithms will then be implemented in MATLAB, focusing on 

preprocessing to enhance image quality and subsequent feature extraction for key indicators 

like colour, texture, and shape. These algorithms will enable the system to classify leaves 

based on their health conditions. 

Simultaneously, machine learning techniques integrated into MATLAB will play a 

crucial role in the project. A diverse dataset representing various leaf conditions, including 

diseases and stress factors, will be used to train machine learning models. These models will 

subsequently be integrated into the leaf health monitoring system to perform real-time 

classification, providing a dynamic and adaptive aspect to the monitoring process. 

The project's robustness will be ensured through thorough validation and testing. 

Dataset splitting and cross-validation techniques within MATLAB will be employed to 

assess the accuracy and reliability of the developed algorithms. Additionally, a feedback 

loop will be established to continuously refine the algorithms based on testing outcomes, 

enhancing the overall performance of the system. 

The generated insights from the leaf health monitoring system will be stored in a 

comprehensive database within MATLAB. This database will correlate identified leaf 
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conditions with potential causes, drawing from existing agricultural knowledge. The system 

will then generate detailed reports on the identified leaf conditions, their causes, and 

recommended corrective measures. These reports will be seamlessly integrated into a user-

friendly interface, providing accessible information for greenhouse operators and facilitating 

informed decision-making. 

 

 

Figure 51 Overall project flowchart 
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3.3 Software Development 

This software development initiative aims to revolutionize greenhouse management by 

leveraging the advanced capabilities of MATLAB, integrating sophisticated leaf imaging 

systems, powerful image processing algorithms, and machine learning models to create a 

comprehensive Greenhouse Leaf Health Monitoring System. 

 

3.3.1 Overall Project Flowchart  
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The flowchart for the greenhouse leaf health monitoring system using MATLAB 

begins with the "Start" symbol, signifying the initiation of the monitoring process. 

Subsequently, the system progresses to the "Load Image" process, where an image of 

greenhouse leaves is loaded into the MATLAB environment. The "Image Loaded?" decision 

point follows to verify the successful loading of the image. In case of successful loading 

(Yes), the system advances to the "Image Processing" step, involving the implementation of 

MATLAB algorithms for leaf health analysis. Processed results are then displayed in the 

GUI through the "Display Results" step, which may include updating an axes component 

with the processed image or presenting health metrics in a text box. The process proceeds to 

the "End" symbol, marking the completion of the greenhouse leaf health monitoring system. 

This flowchart serves as a high-level representation of the primary steps involved in the 

project, and its structure can be further customized based on specific details and decision 

points in the MATLAB GUI implementation. 

 

 

3.3.2 MATLAB GUI  

 

The development of a MATLAB Graphical User Interface (GUI) for the greenhouse 

leaf health monitoring system involves the utilization of tools such as GUIDE or App 

Designer to architect a user-centric interface, incorporating essential components such as 

buttons, axes, and text boxes. Callback functions must be meticulously defined for 

interactive elements, such as the "Load Image" button, in order to effectively manage user 

interactions. The implementation of image processing algorithms using pertinent MATLAB 
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functions like imread and the Image Processing Toolbox is imperative for comprehensive 

leaf health analysis. The presentation of processed results within the GUI, coupled with user 

guidance, error handling mechanisms, and rigorous testing, is essential to ensure optimal 

functionality. The documentation of the code is recommended for future reference, and upon 

satisfaction, deployment of the GUI can be accomplished through the creation of standalone 

applications or by sharing the MATLAB script. 
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3.3.3 MATLAB CODING 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

% Project Title: Plant Leaf Disease Detection & Classification 

% Author: Cley Alexsius Jarius 

% Contact: cleyalexsiusjarius01@gmail.com 

  

function varargout = DetectDisease_GUI(varargin) 

% DETECTDISEASE_GUI MATLAB code for DetectDisease_GUI.fig 

%      DETECTDISEASE_GUI, by itself, creates a new DETECTDISEASE_GUI or 

raises the existing 

%      singleton*. 

% 

%      H = DETECTDISEASE_GUI returns the handle to a new DETECTDISEASE_GUI 

or the handle to 

%      the existing singleton*. 

% 

%      DETECTDISEASE_GUI('CALLBACK',hObject,eventData,handles,...) calls 

the local 

%      function named CALLBACK in DETECTDISEASE_GUI.M with the given input 

arguments. 

% 

%      DETECTDISEASE_GUI('Property','Value',...) creates a new 

DETECTDISEASE_GUI or raises the 

%      existing singleton*.  Starting from the left, property value pairs 

are 

%      applied to the GUI before DetectDisease_GUI_OpeningFcn gets called.  

An 

%      unrecognized property name or invalid value makes property 

application 

%      stop.  All inputs are passed to DetectDisease_GUI_OpeningFcn via 

varargin. 

% 

%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 

%      instance to run (singleton)". 

% 

% See also: GUIDE, GUIDATA, GUIHANDLES 

  

% Edit the above text to modify the response to help DetectDisease_GUI 

  

% Last Modified by GUIDE v2.5 11-Jan-2024 10:56:31 

  

% Begin initialization code - DO NOT EDIT 

gui_Singleton = 1; 

gui_State = struct('gui_Name',       mfilename, ... 

                   'gui_Singleton',  gui_Singleton, ... 

                   'gui_OpeningFcn', @DetectDisease_GUI_OpeningFcn, ... 

                   'gui_OutputFcn',  @DetectDisease_GUI_OutputFcn, ... 

                   'gui_LayoutFcn',  [] , ... 

                   'gui_Callback',   []); 

if nargin && ischar(varargin{1}) 

    gui_State.gui_Callback = str2func(varargin{1}); 

end 

  

if nargout 

    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 

else 

    gui_mainfcn(gui_State, varargin{:}); 

end 

% End initialization code - DO NOT EDIT 

  

  

% --- Executes just before DetectDisease_GUI is made visible. 

function DetectDisease_GUI_OpeningFcn(hObject, eventdata, handles, 

varargin) 

% This function has no output args, see OutputFcn. 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

% varargin   command line arguments to DetectDisease_GUI (see VARARGIN) 

  

% Choose default command line output for DetectDisease_GUI 

handles.output = hObject; 

ss = ones(300,400); 

axes(handles.axes1); 

imshow(ss); 

axes(handles.axes2); 

imshow(ss); 

axes(handles.axes3); 

imshow(ss); 
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% --- Executes just before DetectDisease_GUI is made visible. 

function DetectDisease_GUI_OpeningFcn(hObject, eventdata, handles, 

varargin) 

% This function has no output args, see OutputFcn. 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

% varargin   command line arguments to DetectDisease_GUI (see VARARGIN) 

  

% Choose default command line output for DetectDisease_GUI 

handles.output = hObject; 

ss = ones(300,400); 

axes(handles.axes1); 

imshow(ss); 

axes(handles.axes2); 

imshow(ss); 

axes(handles.axes3); 

imshow(ss); 

% Update handles structure 

guidata(hObject, handles); 

  

% UIWAIT makes DetectDisease_GUI wait for user response (see UIRESUME) 

% uiwait(handles.figure1); 

  

  

% --- Outputs from this function are returned to the command line. 

function varargout = DetectDisease_GUI_OutputFcn(hObject, eventdata, 

handles)  

% varargout  cell array for returning output args (see VARARGOUT); 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

% Get default command line output from handles structure 

varargout{1} = handles.output; 

  

  

% --- Executes on button press in pushbutton1. 

function pushbutton1_Callback(hObject, eventdata, handles) 

% hObject    handle to pushbutton1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

%clear all 

%close all 

clc 

[filename, pathname] = uigetfile({'*.*';'*.bmp';'*.jpg';'*.gif'}, 'Pick 

a Leaf Image File'); 

I = imread([pathname,filename]); 

I = imresize(I,[256,256]); 

I2 = imresize(I,[300,400]); 

axes(handles.axes1); 

imshow(I2);title('Query Image'); 

ss = ones(300,400); 

axes(handles.axes2); 

imshow(ss); 

axes(handles.axes3); 

imshow(ss); 

handles.ImgData1 = I; 

guidata(hObject,handles); 

  

% --- Executes on button press in pushbutton3. 

function pushbutton2_Callback(hObject, eventdata, handles) 

I3 = handles.ImgData1; 

I4 = imadjust(I3,stretchlim(I3)); 

I5 = imresize(I4,[300,400]); 

axes(handles.axes2); 

imshow(I5);title(' Contrast Enhanced '); 

handles.ImgData2 = I4; 

guidata(hObject,handles); 
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% --- Executes on button press in pushbutton3. 

function pushbutton3_Callback(hObject, eventdata, handles) 

% hObject    handle to pushbutton3 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

I6 = handles.ImgData2; 

I = I6; 

%% Extract Features 

  

% Step 1: Allow the user to select a folder 

selectedFolder = uigetdir(); 

  

% Check if the user clicked Cancel 

if isequal(selectedFolder, 0) 

    disp('User cancelled the operation.'); 

    return; % Exit the script 

else 

    [~, folderName] = fileparts(selectedFolder); % Extract folder name 

end 

  

% Step 2: List of items and their representations 

items = { 

    'Alternaaria Alternata' 'Fungal Pathogen: Infects plants, causes leaf 

spots and blights.'; 

    'Anthracnose'           'Caused by Colletotrichum fungi; infects many 

plants.'; 

    'Bacterial Blight'      'Caused by various bacteria; affects different 

plants.'; 

    'Cercospora Leaf Spot'  'Fungal infection by Cercospora species.'; 

    'Healthy leaves'        'Healthy leaves'; 

    % Add other items as needed 

}; 

  

% Display the available items 

disp('List of Items:'); 

for i = 1:size(items, 1) 

    fprintf('%d. %s\n', i, items{i, 1}); 

end 

  

% Step 3: Select an item 

choice = input('x: '); 

  

if choice >= 1 && choice <= size(items, 1) 

    selectedItem = items{choice, 2}; 

    fprintf('Disease cause: %s\n', selectedItem); 

    associatedItem = items{choice, 1}; 

else 

    disp('Invalid choice.'); 

    return; % Exit the script 

end 

  

% Display the selected folder and associated disease classification 

disp(['Selected Folder: ', folderName]); 

disp(['Associated Disease Classification: ', associatedItem]); 

  

% Continue with the remaining steps (selecting an image and displaying it) 

% ... 

  

  

% Step 2: Allow the user to select an image file from the selected folder 

[fileName, pathname] = uigetfile({'*.*';'*.bmp';'*.jpg';'*.gif'}, 'Pick a 

Leaf Image File'); 

  

% Check if the user clicked Cancel 

if isequal(fileName, 0) || isequal(pathname, 0) 

    disp('User cancelled the operation.'); 

    return; % Exit the script 

end 
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% Step 2: Allow the user to select an image file from the selected folder 

[fileName, pathname] = uigetfile({'*.*';'*.bmp';'*.jpg';'*.gif'}, 'Pick a Leaf 

Image File'); 

  

% Check if the user clicked Cancel 

if isequal(fileName, 0) || isequal(pathname, 0) 

    disp('User cancelled the operation.'); 

    return; % Exit the script 

end 

  

% Step 3: Display the name of the selected image file and the folder name 

disp(['Selected image: ', fileName]); 

disp(['Disease Classificaiton: ', folderName]); 

  

% Step 4: Display the selected image 

fullImagePath = fullfile(pathname, fileName); 

imageData = imread(fullImagePath); % Read the image data 

imshow(imageData); % Display the image 

title(['Selected Image: ', fileName], 'Interpreter', 'none'); % Display the 

image title 

  

% ... (rest of your code for image segmentation, feature extraction, and GUI 

updating) 

  

% Function call to evaluate features 

%[feat_disease seg_img] =  EvaluateFeatures(I) 

  

% Color Image Segmentation 

% Use of K Means clustering for segmentation 

% Convert Image from RGB Color Space to L*a*b* Color Space  

% The L*a*b* space consists of a luminosity layer 'L*', chromaticity-layer 'a*' 

and 'b*'. 

% All of the color information is in the 'a*' and 'b*' layers. 

cform = makecform('srgb2lab'); 

% Apply the colorform 

lab_he = applycform(I,cform); 

  

% Classify the colors in a*b* colorspace using K means clustering. 

% Since the image has 3 colors create 3 clusters. 

% Measure the distance using Euclidean Distance Metric. 

ab = double(lab_he(:,:,2:3)); 

nrows = size(ab,1); 

ncols = size(ab,2); 

ab = reshape(ab,nrows*ncols,2); 

nColors = 3; 

[cluster_idx cluster_center] = kmeans(ab,nColors,'distance','sqEuclidean', ... 

                                      'Replicates',3); 

%[cluster_idx cluster_center] = 

kmeans(ab,nColors,'distance','sqEuclidean','Replicates',3); 

% Label every pixel in tha image using results from K means 

pixel_labels = reshape(cluster_idx,nrows,ncols); 

%figure,imshow(pixel_labels,[]), title('Image Labeled by Cluster Index'); 

  

% Create a blank cell array to store the results of clustering 

segmented_images = cell(1,3); 

% Create RGB label using pixel_labels 

rgb_label = repmat(pixel_labels,[1,1,3]); 

  

for k = 1:nColors 

    colors = I; 

    colors(rgb_label ~= k) = 0; 

    segmented_images{k} = colors; 

end 

  

  

  

figure,subplot(2,3,2);imshow(I);title('Original Image'); 

subplot(2,3,4);imshow(segmented_images{1});title('Cluster 1'); 

subplot(2,3,5);imshow(segmented_images{2});title('Cluster 2'); 

subplot(2,3,6);imshow(segmented_images{3});title('Cluster 3'); 

set(gcf, 'Position', get(0,'Screensize')); 

set(gcf, 'name','Segmented by K Means', 'numbertitle','off') 

% Feature Extraction 

pause(2) 

x = inputdlg('Enter the cluster no. containing the ROI only:'); 

i = str2double(x); 

% Extract the features from the segmented image 

seg_img = segmented_images{i}; 

  

% Convert to grayscale if image is RGB 

if ndims(seg_img) == 3 

   img = rgb2gray(seg_img); 

end 

%figure, imshow(img); title('Gray Scale Image'); 
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  for k = 1:nColors 

    colors = I; 

    colors(rgb_label ~= k) = 0; 

    segmented_images{k} = colors; 

end 

  

  

  

figure,subplot(2,3,2);imshow(I);title('Original Image'); 

subplot(2,3,4);imshow(segmented_images{1});title('Cluster 1'); 

subplot(2,3,5);imshow(segmented_images{2});title('Cluster 2'); 

subplot(2,3,6);imshow(segmented_images{3});title('Cluster 3'); 

set(gcf, 'Position', get(0,'Screensize')); 

set(gcf, 'name','Segmented by K Means', 'numbertitle','off') 

% Feature Extraction 

pause(2) 

x = inputdlg('Enter the cluster no. containing the ROI only:'); 

i = str2double(x); 

% Extract the features from the segmented image 

seg_img = segmented_images{i}; 

  

% Convert to grayscale if image is RGB 

if ndims(seg_img) == 3 

   img = rgb2gray(seg_img); 

end 

%figure, imshow(img); title('Gray Scale Image'); 

  

% Evaluate the disease affected area 

black = im2bw(seg_img,graythresh(seg_img)); 

%figure, imshow(black);title('Black & White Image'); 

m = size(seg_img,1); 

n = size(seg_img,2); 

  

zero_image = zeros(m,n);  

%G = imoverlay(zero_image,seg_img,[1 0 0]); 

  

cc = bwconncomp(seg_img,6); 

diseasedata = regionprops(cc,'basic'); 

A1 = diseasedata.Area; 

sprintf('Area of the disease affected region is : %g%',A1); 

  

I_black = im2bw(I,graythresh(I)); 

kk = bwconncomp(I,6); 

leafdata = regionprops(kk,'basic'); 

A2 = leafdata.Area; 

sprintf(' Total leaf area is : %g%',A2); 

  

%Affected_Area = 1-(A1/A2); 

Affected_Area = (A1/A2); 

if Affected_Area < 0.1 

    Affected_Area = Affected_Area+0.15; 

end 

sprintf('Affected Area is: %g%%',(Affected_Area*100)) 

Affect = Affected_Area*100; 

% Create the Gray Level Cooccurance Matrices (GLCMs) 

glcms = graycomatrix(img); 

  

% Derive Statistics from GLCM 

stats = graycoprops(glcms,'Contrast Correlation Energy Homogeneity'); 

Contrast = stats.Contrast; 

Correlation = stats.Correlation; 

Energy = stats.Energy; 

Homogeneity = stats.Homogeneity; 

Mean = mean2(seg_img); 

Standard_Deviation = std2(seg_img); 

Entropy = entropy(seg_img); 

RMS = mean2(rms(seg_img)); 

%Skewness = skewness(img) 

Variance = mean2(var(double(seg_img))); 

a = sum(double(seg_img(:))); 

Smoothness = 1-(1/(1+a)); 

Kurtosis = kurtosis(double(seg_img(:))); 

Skewness = skewness(double(seg_img(:))); 

% Inverse Difference Movement 

m = size(seg_img,1); 

n = size(seg_img,2); 

in_diff = 0; 

for i = 1:m 

    for j = 1:n 

        temp = seg_img(i,j)./(1+(i-j).^2); 

        in_diff = in_diff+temp; 

    end 

end 

IDM = double(in_diff); 
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  Correlation = stats.Correlation; 

Energy = stats.Energy; 

Homogeneity = stats.Homogeneity; 

Mean = mean2(seg_img); 

Standard_Deviation = std2(seg_img); 

Entropy = entropy(seg_img); 

RMS = mean2(rms(seg_img)); 

%Skewness = skewness(img) 

Variance = mean2(var(double(seg_img))); 

a = sum(double(seg_img(:))); 

Smoothness = 1-(1/(1+a)); 

Kurtosis = kurtosis(double(seg_img(:))); 

Skewness = skewness(double(seg_img(:))); 

% Inverse Difference Movement 

m = size(seg_img,1); 

n = size(seg_img,2); 

in_diff = 0; 

for i = 1:m 

    for j = 1:n 

        temp = seg_img(i,j)./(1+(i-j).^2); 

        in_diff = in_diff+temp; 

    end 

end 

IDM = double(in_diff); 

     

feat_disease = [Contrast,Correlation,Energy,Homogeneity, Mean, 

Standard_Deviation, Entropy, RMS, Variance, Smoothness, Kurtosis, Skewness, 

IDM]; 

I7 = imresize(seg_img,[300,400]); 

axes(handles.axes3); 

imshow(I7);title('Segmented ROI'); 

set(handles.edit3,'string',Affect); 

set(handles.edit2,'string',folderName); 

set(handles.edit4,'string',selectedItem); 

set(handles.edit5,'string',Mean); 

set(handles.edit6,'string',Standard_Deviation); 

set(handles.edit7,'string',Entropy); 

set(handles.edit8,'string',RMS); 

set(handles.edit9,'string',Variance); 

set(handles.edit10,'string',Smoothness); 

set(handles.edit11,'string',Kurtosis); 

set(handles.edit12,'string',Skewness); 

set(handles.edit13,'string',IDM); 

set(handles.edit14,'string',Contrast); 

set(handles.edit15,'string',Correlation); 

set(handles.edit16,'string',Energy); 

set(handles.edit17,'string',Homogeneity); 

handles.ImgData3 = feat_disease; 

handles.ImgData4 = Affect; 

% Update GUI 

guidata(hObject,handles); 

 

% --- Executes on button press in pushbutton4. 

function pushbutton4_Callback(hObject, eventdata, handles) 

% hObject    handle to text (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

% Step 1: Allow the user to select a folder 

selectedFolder = uigetdir(); 
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  % Check if the user clicked Cancel 

if isequal(selectedFolder, 0) 

    disp('User cancelled the operation.'); 

    return; % Exit the script 

else 

    [~, folderName] = fileparts(selectedFolder); % Extract folder name 

    set(handles.edit2,'string',folderName); 

end 

guidata(hObject,handles); 

function edit3_Callback(hObject, eventdata, handles) 

% hObject    handle to edit3 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

% Hints: get(hObject,'String') returns contents of edit3 as text 

%        str2double(get(hObject,'String')) returns contents of edit3 as a 

double 

  

  

% --- Executes during object creation, after setting all properties. 

function edit3_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to edit3 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

  

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

  

  

% --- Executes on button press in text. 

function pushbutton5_Callback(hObject, eventdata, handles) 

% hObject    handle to text (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

guidata(hObject,handles); 

  

function edit4_Callback(hObject, eventdata, handles) 

% hObject    handle to edit4 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

% Hints: get(hObject,'String') returns contents of edit4 as text 

%        str2double(get(hObject,'String')) returns contents of edit4 as a 

double 

  

  

% --- Executes during object creation, after setting all properties. 

function edit4_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to edit4 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

  

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 
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To enhance and cluster selected leaves in MATLAB for disease classification, 

affected area determination, and suggesting corrective measures, you'll embark on a multi-

step process. The initial phase involves image enhancement, wherein MATLAB's image 

processing functions, such as histogram equalization and contrast adjustment, will be 

employed to improve the quality of the selected leaf image. Subsequently, relevant features, 

such as colour histograms, texture features, and shape descriptors, will be extracted from the 

enhanced image to serve as inputs for subsequent clustering and classification steps. 

Following image enhancement and feature extraction, clustering becomes pivotal for 

grouping similar leaves together. K-Means clustering, a popular technique for image 

segmentation, can be employed for this purpose. The clustered regions are then subjected to 

disease classification through the training of a machine learning model. Utilizing features 

extracted from healthy and diseased leaves, common classifiers like Support Vector 

Machines (SVM), Random Forests, or Neural Networks can be implemented to predict the 

presence of diseases in the leaves. 

           With the classified information, subsequent steps involve the determination of 

affected areas on the leaf. Image processing techniques, including region properties analysis 

and contour detection, can be employed to identify and quantify these affected regions. 

Finally, based on the disease classification and affected area analysis, the system can provide 

insights into the potential causes of the disease and suggest corrective measures. For 

instance, specific diseases may be linked with known causes, and corrective actions, such as 

applying fungicides for fungal infections, can be recommended. This comprehensive 

approach aims to provide a robust framework for the enhancement, clustering, classification, 

and analysis of selected leaves in the context of greenhouse leaf health monitoring. 

 

 

3.4 Summary 

The methodology for the greenhouse leaf health monitoring system involves a 

systematic approach encompassing image processing and machine learning techniques. The 

process initiates with the loading of leaf images into the MATLAB environment, followed 

by image enhancement procedures such as histogram equalization and contrast adjustment. 

Extracted features, comprising colour histograms, texture features, and shape descriptors, 

serve as inputs for subsequent clustering and classification steps. 
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For clustering, the K-Means algorithm is applied to group similar leaves together, 

facilitating effective segmentation. The clustered regions are then subjected to disease 

classification through the training of a machine learning model, employing classifiers such 

as Support Vector Machines (SVM). This step enables the system to predict the presence of 

diseases based on features extracted from healthy and diseased leaves. 

The subsequent stages involve the determination of affected areas on the leaves. 

Image processing techniques, including region properties analysis and contour detection, are 

employed to identify and quantify these areas. This comprehensive approach not only 

facilitates the visualization of affected regions but also provides essential insights for further 

analysis. Based on the disease classification and affected area analysis, the system delivers 

valuable information about potential causes and suggests corrective measures. Specific 

diseases can be linked to known causes, and corresponding recommendations, such as 

applying fungicides for fungal infections, are provided. 

In summary, the methodology integrates image processing and machine learning to enhance, 

cluster, classify, and analyze selected leaves, forming a robust framework for effective 

greenhouse leaf health monitoring. 
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RESULTS AND DISCUSSIONS 

4.1 Introduction 

The culmination of meticulous efforts in the development of the greenhouse leaf 

health monitoring system is presented in this chapter. As we delve into the results, the 

efficacy of the implemented methodologies, including image processing and machine 

learning techniques, comes to the forefront. The chapter encapsulates the outcomes of image 

enhancement, clustering, disease classification, and the subsequent analysis of affected 

areas. Through a combination of visual representations and quantitative assessments, this 

section aims to showcase the system's ability to discern and interpret various aspects of leaf 

health. 

The results obtained provide a comprehensive insight into the performance of the 

system in differentiating healthy leaves from those afflicted with diseases. Furthermore, the 

visualization of clustered regions and the determination of affected areas contribute to a 

holistic understanding of the system's analytical capabilities. This chapter not only presents 

the raw outcomes but also provides interpretations and discussions that elucidate the 

significance of the findings. 

As we navigate through the presented results, it is imperative to keep in mind the 

ultimate goal of this greenhouse leaf health monitoring system: to empower users with a 

robust tool for early detection, classification, and analysis of leaf diseases. The outcomes 

herein form a critical foundation for the ensuing discussions in Chapter 5, where 

implications, limitations, and future work will be explored in greater detail. 

4.2 Results and Analysis 

In this section, we unveil the outcomes of our greenhouse leaf health monitoring 

system, providing a detailed examination of the results obtained through image 

enhancement, clustering, and disease classification processes. 
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4.2.1 Image Analysis 

 

• Table 4.2.1 Image Segmentation 
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The process of enhancing the leaf image plays a pivotal role in refining its visual 

quality and characteristics, addressing common issues such as low contrast, uneven lighting, 

and noise. Through techniques like histogram equalization, contrast adjustment, and noise 

reduction, the enhanced image becomes more suitable for detailed analysis. Subsequently, 

the application of K-Means clustering serves the purpose of image segmentation, wherein 

pixels with similar characteristics are grouped together. This process facilitates the 
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identification of distinct regions within the leaf image by categorizing pixels into 'k' clusters 

based on their color or intensity similarity. The clustered regions represent different 

segments or areas within the leaf, allowing for a clearer understanding of its structure. 

Together, the enhanced image and K-Means clustering form a cohesive pipeline that 

significantly improves the system's ability to discern and interpret various features, 

ultimately contributing to the accuracy of disease classification and the analysis of affected 

areas in the greenhouse leaf health monitoring system. 

• Table 4.2.2 Data collected from image processing 

Plant  Cluster 1 Cluster 2 Cluster 3 

1 15.3 50.7 15.0 

2 15.2 15.0 17.9 

3 15.0 15.3 15.9 

4 18.9 15.0 15.04 

 

• Graph 4.2.1 Line graph of Affected region values 
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Each cluster representing affected regions, the process begins with the identification 

of clusters after K-Means clustering, where each pixel is labelled according to its cluster 

assignment. Subsequently, MATLAB's regionprops function is employed to compute 

essential properties of the segmented regions, including area, centroid, and bounding box. 

The key step involves iterating through the obtained statistics and assigning a value to each 

cluster based on specific criteria for identifying affected regions. For instance, one may 

choose to assign a value of 1 to clusters representing regions with an area exceeding a 

predefined threshold (thresholdArea), designating them as affected, while assigning a value 

of 0 to non-affected regions. This threshold can be adjusted based on the characteristics of 

the dataset and the specific requirements of the analysis. Optionally, for visualization 

purposes, an image can be created where each pixel is coloured according to its assigned 

cluster value, offering a clear representation of affected and non-affected regions within the 

greenhouse leaf health monitoring system. 

 

• Table 4.2.3 Paramater  

Plan

t  

Cluster 1 Cluster 2 Cluster 3 

1 
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• graph Graph 4.2.1 Line graph of Mean values 
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• graph Graph 4.2.1 Line graph of Standard Deviation values 

 

 

In the realm of our greenhouse leaf health monitoring system project, a meticulous 

selection of image features has been employed to encapsulate various aspects of leaf 

characteristics. The mean, denoting the average pixel intensity, serves as a metric for 

assessing the overall brightness or darkness within the leaf images. Standard deviation, a 

measure of pixel intensity variability, provides valuable insights into the texture and level of 

detail present. Entropy, representing the unpredictability of pixel values, aids in the 

identification of regions with irregular patterns, while RMS (Root Mean Square) quantifies 

the overall amplitude of pixel values, contributing to the assessment of contrast. Variance, 

indicative of pixel value dispersion, offers details on texture variation. Smoothness, 

capturing the uniformity of pixel values, aids in recognizing regions with smooth textures. 

Kurtosis describes the shape of the pixel value distribution, identifying peaks or outliers. 

Skewness measures distribution asymmetry, offering insights into intensity value 

distribution. IDM (Inverse Difference Moment) reflects local homogeneity, contributing to 

the detection of consistent intensity patterns. Contrast measures intensity differences 

between neighboring pixels, assisting in the identification of edges or boundaries. 

Correlation quantifies linear relationships between pixel values, providing information on 

overall structure. Energy represents the total pixel value 'amount,' aiding in the detection of 

high-frequency patterns. Lastly, homogeneity signifies the closeness of pixel values, 

shedding light on regions with a uniform texture or intensity. The incorporation of these 
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diverse features forms a comprehensive framework for the analysis and classification of 

greenhouse leaf health. 

The selection of mean and standard deviation for plotting the graph is driven by their 

fundamental roles in characterizing the overall brightness and variability of pixel intensities 

within the greenhouse leaf images. By utilizing mean as a measure of central tendency and 

standard deviation as an indicator of pixel intensity dispersion, the graph provides a concise 

visual representation of the distribution of these key statistical features across different 

clusters. This enables a nuanced understanding of how the mean and standard deviation 

values evolve for each cluster, offering insights into the varying textures and intensity 

patterns present within distinct regions of the leaf images. 

 

4.2.2 Disease Classification 
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In this demonstration, a diverse set of leaf samples, encompassing both infected and 

non-infected instances, undergoes classification by MATLAB's algorithms, accurately 

categorizing them into specific classes such as Alternaria alternata, Anthracnose, Bacterial 

Blight, and Cercospora Leaf Spot. Notably, the system goes beyond classification; it also 

provides valuable insights into the potential causes of identified diseases. Additionally, the 

system offers corrective measures that users can consider to mitigate or prevent these 

issues. This integrated approach empowers end-users with actionable information, guiding 

them toward informed decisions and preventive measures to ensure the health and vitality 

of greenhouse plants 
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CONCLUSION AND RECOMMENDATIONS  

5.1 Conclusion 

In the culmination of this project, the development and evaluation of the greenhouse 

leaf health monitoring system have yielded promising outcomes, reflecting significant 

strides in the domain of precision agriculture. Through the integration of advanced image 

processing and machine learning techniques, the system showcases a commendable ability 

to enhance, cluster, and classify greenhouse leaf images, enabling early detection and 

analysis of potential diseases. 

The research contributions are twofold. Firstly, the system provides a practical tool 

for farmers and agronomists, offering a means to monitor and manage leaf health with 

greater efficiency. Secondly, the project contributes to the broader academic and 

technological landscape by demonstrating the efficacy of combining image-based analysis 

and machine learning for plant health monitoring. 

As we look towards the future, several avenues for improvement and expansion 

emerge. The refinement of machine learning models, the inclusion of a more diverse dataset, 

and continuous optimization of image processing algorithms are crucial aspects for further 

enhancing the system's accuracy and applicability. Additionally, considering collaborative 

efforts with domain experts and incorporating real-time monitoring capabilities could propel 

the system towards broader adoption. 

The realization of this greenhouse leaf health monitoring system sparks hope for a 

future where technology plays a pivotal role in sustainable agriculture. The potential to 

revolutionize disease management, optimize resource utilization, and enhance overall crop 

yield underscores the importance of such technological interventions in addressing critical 

challenges in modern agriculture. 

In conclusion, while this project marks a significant milestone, it is also a stepping 

stone towards a future where innovative solutions continue to evolve. The hope is that this 

system not only addresses current challenges in greenhouse leaf health monitoring but 
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inspires ongoing advancements in precision farming, contributing to the sustainable growth 

of agriculture in the years to come. 

5.1.1 Contribution of Research 

In retrospect, the research endeavors invested in the development and evaluation of 

the greenhouse leaf health monitoring system have yielded valuable insights and 

contributions. The integration of image processing and machine learning techniques has 

proven instrumental in enhancing the system's capability to discern and interpret leaf 

characteristics, facilitating the early detection and classification of diseases. The clustering 

and analysis processes have provided a nuanced understanding of affected regions within 

the leaves. The outcomes contribute not only to the field of agricultural technology but also 

to the broader landscape of image-based plant health monitoring. 

5.1.2 Future Work 

The conclusion of this research marks a transition to potential future endeavors aimed 

at refining and expanding the capabilities of the greenhouse leaf health monitoring system. 

Opportunities for further exploration include the refinement of machine learning models for 

disease classification, the incorporation of real-time monitoring capabilities, and the 

extension of the system's applicability to diverse plant species. Additionally, exploring 

collaborative efforts with domain experts and incorporating more advanced image 

processing algorithms could pave the way for a more nuanced and accurate monitoring 

system. 

5.1.3 Areas for Improvement 

Acknowledging the achievements of the current system also invites reflection on 

areas for improvement. Enhancements could be made to the image enhancement and 

clustering algorithms to ensure adaptability to a broader range of environmental conditions 

and leaf variations. Moreover, fine-tuning the disease classification model with a more 

extensive and diverse dataset can contribute to increased accuracy and robustness. 
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5.1.4 Hope for Agricultural Advancements 

As this research concludes, there is optimism for the profound impact the greenhouse 

leaf health monitoring system can have on agriculture. The potential to revolutionize disease 

management, optimize resource utilization, and improve crop yield offers a glimpse into a 

future where technology plays a pivotal role in sustainable and efficient agricultural 

practices. The hope is that this system will not only address current challenges but also 

inspire further innovation in the realm of precision farming and plant health monitoring. 

In essence, the conclusion of this research is not an endpoint but a gateway to a future 

where technology continues to be a catalyst for positive change in agriculture. As the seeds 

of this endeavor take root, it is with anticipation and commitment that we look forward to 

the continued growth and evolution of technology-driven solutions in the realm of 

greenhouse leaf health monitoring. 
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APPENDICES 

 

  

 

% Project Title: Plant Leaf Disease Detection & Classification 

% Author: Cley Alexsius Jarius 

% Contact: cleyalexsiusjarius01@gmail.com 

  

function varargout = DetectDisease_GUI(varargin) 

% DETECTDISEASE_GUI MATLAB code for DetectDisease_GUI.fig 

%      DETECTDISEASE_GUI, by itself, creates a new DETECTDISEASE_GUI or 

raises the existing 

%      singleton*. 

% 

%      H = DETECTDISEASE_GUI returns the handle to a new 

DETECTDISEASE_GUI or the handle to 

%      the existing singleton*. 

% 

%      DETECTDISEASE_GUI('CALLBACK',hObject,eventData,handles,...) 

calls the local 

%      function named CALLBACK in DETECTDISEASE_GUI.M with the given 

input arguments. 

% 

%      DETECTDISEASE_GUI('Property','Value',...) creates a new 

DETECTDISEASE_GUI or raises the 

%      existing singleton*.  Starting from the left, property value 

pairs are 

%      applied to the GUI before DetectDisease_GUI_OpeningFcn gets 

called.  An 

%      unrecognized property name or invalid value makes property 

application 

%      stop.  All inputs are passed to DetectDisease_GUI_OpeningFcn via 

varargin. 

% 

%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only 

one 

%      instance to run (singleton)". 

% 

% See also: GUIDE, GUIDATA, GUIHANDLES 

  

% Edit the above text to modify the response to help DetectDisease_GUI 

  

% Last Modified by GUIDE v2.5 11-Jan-2024 10:56:31 

  

% Begin initialization code - DO NOT EDIT 

gui_Singleton = 1; 

gui_State = struct('gui_Name',       mfilename, ... 

                   'gui_Singleton',  gui_Singleton, ... 

                   'gui_OpeningFcn', @DetectDisease_GUI_OpeningFcn, ... 

                   'gui_OutputFcn',  @DetectDisease_GUI_OutputFcn, ... 

                   'gui_LayoutFcn',  [] , ... 

                   'gui_Callback',   []); 

if nargin && ischar(varargin{1}) 

    gui_State.gui_Callback = str2func(varargin{1}); 

end 

  

if nargout 

    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 

else 

    gui_mainfcn(gui_State, varargin{:}); 

end 

% End initialization code - DO NOT EDIT 

  

  

% --- Executes just before DetectDisease_GUI is made visible. 

function DetectDisease_GUI_OpeningFcn(hObject, eventdata, handles, 
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  % --- Executes just before DetectDisease_GUI is made visible. 

function DetectDisease_GUI_OpeningFcn(hObject, eventdata, handles, 

varargin) 

% This function has no output args, see OutputFcn. 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

% varargin   command line arguments to DetectDisease_GUI (see 

VARARGIN) 

  

% Choose default command line output for DetectDisease_GUI 

handles.output = hObject; 

ss = ones(300,400); 

axes(handles.axes1); 

imshow(ss); 

axes(handles.axes2); 

imshow(ss); 

axes(handles.axes3); 

imshow(ss); 

% Update handles structure 

guidata(hObject, handles); 

  

% UIWAIT makes DetectDisease_GUI wait for user response (see 

UIRESUME) 

% uiwait(handles.figure1); 

  

  

% --- Outputs from this function are returned to the command line. 

function varargout = DetectDisease_GUI_OutputFcn(hObject, 

eventdata, handles)  

% varargout  cell array for returning output args (see VARARGOUT); 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

% Get default command line output from handles structure 

varargout{1} = handles.output; 

  

  

% --- Executes on button press in pushbutton1. 

function pushbutton1_Callback(hObject, eventdata, handles) 

% hObject    handle to pushbutton1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

%clear all 

%close all 

clc 

[filename, pathname] = uigetfile({'*.*';'*.bmp';'*.jpg';'*.gif'}, 

'Pick a Leaf Image File'); 

I = imread([pathname,filename]); 

I = imresize(I,[256,256]); 

I2 = imresize(I,[300,400]); 

axes(handles.axes1); 

imshow(I2);title('Query Image'); 

ss = ones(300,400); 

axes(handles.axes2); 

imshow(ss); 

axes(handles.axes3); 

imshow(ss); 

handles.ImgData1 = I; 

guidata(hObject,handles); 

  

% --- Executes on button press in pushbutton3. 

function pushbutton2_Callback(hObject, eventdata, handles) 

I3 = handles.ImgData1; 

I4 = imadjust(I3,stretchlim(I3)); 

I5 = imresize(I4,[300,400]); 

axes(handles.axes2); 
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  % --- Executes on button press in pushbutton3. 

function pushbutton3_Callback(hObject, eventdata, handles) 

% hObject    handle to pushbutton3 (see GCBO) 

% eventdata  reserved - to be defined in a future version of 

MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

I6 = handles.ImgData2; 

I = I6; 

%% Extract Features 

  

% Step 1: Allow the user to select a folder 

selectedFolder = uigetdir(); 

  

% Check if the user clicked Cancel 

if isequal(selectedFolder, 0) 

    disp('User cancelled the operation.'); 

    return; % Exit the script 

else 

    [~, folderName] = fileparts(selectedFolder); % Extract folder 

name 

end 

  

% Step 2: List of items and their representations 

items = { 

    'Alternaaria Alternata' 'Fungal Pathogen: Infects plants, 

causes leaf spots and blights.'; 

    'Anthracnose'           'Caused by Colletotrichum fungi; 

infects many plants.'; 

    'Bacterial Blight'      'Caused by various bacteria; affects 

different plants.'; 

    'Cercospora Leaf Spot'  'Fungal infection by Cercospora 

species.'; 

    'Healthy leaves'        'Healthy leaves'; 

    % Add other items as needed 

}; 

  

% Display the available items 

disp('List of Items:'); 

for i = 1:size(items, 1) 

    fprintf('%d. %s\n', i, items{i, 1}); 

end 

  

% Step 3: Select an item 

choice = input('x: '); 

  

if choice >= 1 && choice <= size(items, 1) 

    selectedItem = items{choice, 2}; 

    fprintf('Disease cause: %s\n', selectedItem); 

    associatedItem = items{choice, 1}; 

else 

    disp('Invalid choice.'); 

    return; % Exit the script 

end 

  

% Display the selected folder and associated disease 

classification 

disp(['Selected Folder: ', folderName]); 

disp(['Associated Disease Classification: ', associatedItem]); 

  

% Continue with the remaining steps (selecting an image and 

displaying it) 

% ... 

  

  

% Step 2: Allow the user to select an image file from the 

selected folder 

[fileName, pathname] = uigetfile({'*.*';'*.bmp';'*.jpg';'*.gif'}, 

'Pick a Leaf Image File'); 
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% Step 2: Allow the user to select an image file from the selected 

folder 

[fileName, pathname] = uigetfile({'*.*';'*.bmp';'*.jpg';'*.gif'}, 

'Pick a Leaf Image File'); 

  

% Check if the user clicked Cancel 

if isequal(fileName, 0) || isequal(pathname, 0) 

    disp('User cancelled the operation.'); 

    return; % Exit the script 

end 

  

% Step 3: Display the name of the selected image file and the 

folder name 

disp(['Selected image: ', fileName]); 

disp(['Disease Classificaiton: ', folderName]); 

  

% Step 4: Display the selected image 

fullImagePath = fullfile(pathname, fileName); 

imageData = imread(fullImagePath); % Read the image data 

imshow(imageData); % Display the image 

title(['Selected Image: ', fileName], 'Interpreter', 'none'); % 

Display the image title 

  

% ... (rest of your code for image segmentation, feature 

extraction, and GUI updating) 

  

% Function call to evaluate features 

%[feat_disease seg_img] =  EvaluateFeatures(I) 

  

% Color Image Segmentation 

% Use of K Means clustering for segmentation 

% Convert Image from RGB Color Space to L*a*b* Color Space  

% The L*a*b* space consists of a luminosity layer 'L*', 

chromaticity-layer 'a*' and 'b*'. 

% All of the color information is in the 'a*' and 'b*' layers. 

cform = makecform('srgb2lab'); 

% Apply the colorform 

lab_he = applycform(I,cform); 

  

% Classify the colors in a*b* colorspace using K means clustering. 

% Since the image has 3 colors create 3 clusters. 

% Measure the distance using Euclidean Distance Metric. 

ab = double(lab_he(:,:,2:3)); 

nrows = size(ab,1); 

ncols = size(ab,2); 

ab = reshape(ab,nrows*ncols,2); 

nColors = 3; 

[cluster_idx cluster_center] = 

kmeans(ab,nColors,'distance','sqEuclidean', ... 

                                      'Replicates',3); 

%[cluster_idx cluster_center] = 

kmeans(ab,nColors,'distance','sqEuclidean','Replicates',3); 

% Label every pixel in tha image using results from K means 

pixel_labels = reshape(cluster_idx,nrows,ncols); 

%figure,imshow(pixel_labels,[]), title('Image Labeled by Cluster 

Index'); 

  

% Create a blank cell array to store the results of clustering 

segmented_images = cell(1,3); 

% Create RGB label using pixel_labels 

rgb_label = repmat(pixel_labels,[1,1,3]); 

  

for k = 1:nColors 

    colors = I; 

    colors(rgb_label ~= k) = 0; 

    segmented_images{k} = colors; 

end 

  

  

  


