## DOOR LOCK USING HAND GESTURE RECOGNITION



## UNIVERSITI TEKNIKAL MALAYSIA MELAKA

#### **BORANG PENGESAHAN STATUS TESIS**

JUDUL: Home Lock using hand gesture recognition

SESI PENGAJIAN: 2016 / 2017

NUR HAZWANI BINTI HASAN Saya \_\_\_\_\_ (HURUF BESAR)

mengaku membenarkan tesis (PSM/Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dengan syarat-syarat kegunaan seperti berikut:

- 1. Tesis dan projek adalah hakmilik Universiti Teknikal Malaysia Melaka.
- 2. Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dibenarkan membuat Salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dibenarkan membuat Salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. \*\* Sila tandakan ( / )

**SULIT** 

TERHAD

TIDAK TERHAD

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)

(Mengandungi maklumat TERHAD TEKNIKAL Myang telah ditentukan oleh organisasi/ badan di mana penyelidikan dijalankan)

(TANDATANGAN PENULIS)

No 48, Jalan Flora 2, Taman Saujana

Utama 47000 Sungai Buloh

Selangor

Tarikh: <u>18/08/2017</u>

(TANDATANGAN PENYELIA)

En Mohd Zaki bin Mas'ud

Tarikh: <u>18/08/2017</u>

#### DECLARATION

## I hereby declare that this project report entitled **DOOR LOCK USING HAND GESTURE RECOGNITION**



SUPERVISOR: MOHDIART BIN MAS'UD DATE: 18/08/2017

is written by me and is my own effort and that no part has been plagiarized

#### **DEDICATION**

To my parents, thank you for your encouragemant, financial support and your true love towards me. Promise I will never let you down.

> Aina & Faghaa, thanks forcing me to further my study. Azila Harun, thank you so much.

Last but not least my classmate for past 3 years, #BITZMafia For sharing your knowledge, help me and encourage each other



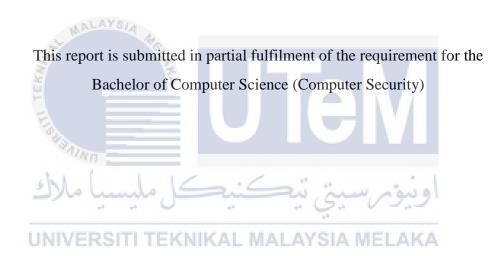
#### ACKNOWLEDGEMENTS

Praise to Allah, with His willing I manage to complete my Final Year Project, Home Lock using Hand Gesture Recognition. I would like to express my infinate thanks to my supervisor, Sir Mohd Zaki bin Mas'ud who guide and help me finishing my final year project. Without him, I may not complete my project. To my parents and family who always encourage me and support me from many sides. Thank you to the member of Faculty of Information Communication and Technology UTeM, for your commitment and cooperation during the completion of my project. Last but not least to 3Bitz, my classamate, for sharing knowledege, teach me, and help me to finish this Final Year Project

ونيوم سيتي تيكنيكل مليسيا ملاك

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

#### ABSTRACT


A great product can be produce by combining hardware and software integrated with other devices. Door locking method today also can be enhance from its traditional way to more interesting method. In fact, there are many company have built new type of locking system such as implementing password to open door. Exchanging traditional way of home lock such as using key to using human physical body is one of the idea to enhancing the usage of traditional lock. The idea to enhance home locking system by developing hand gesture recognition that can act to lock door or unlock it. As for the security features the development of hand gesture can also be used for authentication. Developing this project need a Raspberry Pi board integrated with other addition devices such as Pi camera, other product by the Raspberry Pi production company or a webcam. Project objectives come out by referring problem statements. Thus, objective of developing home lock system using hand gesture are to explore about motion detection and tracking to be used in hand gesture recognition, to design a locking system using hand gesture and to develop a hand gesture detection for authentication as security features. Developing this project used waterfall methodology that consist several phases that are requirement analysis, design, development phase, testing and lastly maintenance phase. Project significant or project contribution is about developing a low-cost home locking system with the development of hand gesture using Raspberry Pi. The development of hand gesture can act as security features besides locking methods. The motion detection and tracking can help in identifying entity. Improving new interesting method of locking door by using hand gesture recognition as key to unlock and look a door.

#### ABSTRAK

Produk yang hebat boleh dihasilkan dengan menggabungkan perkakasan dan perisian bersepadu dengan peranti lain. Cara mengunci pintu hari ini juga boleh diubah dari cara tradisional kepada kaedah lebih menarik. Malah, terdapat banyak syarikat telah membina sistem mengunci seperti melaksanakan kata laluan untuk membuka pintu. Bertukar cara tradisional mengunci rumah seperti mengunakan fizikal badan manusia sebagai kunci adalah salah satu idea untuk meningkatkan penggunaan kunci tradisional. Idea untuk meningkatkan sistem rumah mengunci dengan membangunkan tangan pengecaman gerak isyarat yang boleh bertindak untuk mengunci pintu atau membuka kuncinya. Bagi keselamatan pembangunan isyarat tangan juga boleh digunakan untuk pengesahan. Membangunkan projek ini memerlukan papan Raspberry Pi bersepadu dengan peranti tambahan lain seperti kamera Pi, produk lain oleh syarikat produksi Raspberry Pi atau kamera web. Objektif projek keluar dengan merujuk pernyataan masalah. Oleh itu, objektif membangunkan sistem kunci rumah dengan menggunakan isyarat tangan adalah untuk meneroka mengenai pengesanan gerakan dan pengesanan yang akan digunakan dalam tangan pengecaman gerak isyarat, untuk mereka bentuk sistem kunci yang menggunakan isyarat tangan dan untuk membangunkan pengesanan isyarat tangan untuk pengesahan sebagai ciri-ciri keselamatan. Membangunkan projek menggunakan ini metodologi air terjun yang terdiri beberapa fasa yang analisis keperluan, reka bentuk, fasa pembangunan, pengujian dan fasa penyelenggaraan akhir sekali. Sumbangan projek ini adalah membangunkan sistem rumah mengunci kos rendah dengan pembangunan isyarat tangan menggunakan Raspberry Pi. Pembangunan isyarat tangan boleh bertindak sebagai ciri-ciri keselamatan di samping mengunci kaedah. Pengesanan gerakan dan pengesanan boleh membantu dalam mengenal pasti entiti. Meningkatkan kaedah baru yang menarik mengunci pintu dengan menggunakan tangan dan pengiktirafan isyarat sebagai kunci untuk membuka kunci dan mengunci pintu.

### DOOR LOCK USING HAND GESTURE RECOGNITION

### NUR HAZWANI BINTI HASAN



## FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2017

## TABLE OF CONTENTS

| CHAPTER     | SUBJECT                                                                          |                                                                                                                                                             | PAGE                                       |
|-------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
|             | DED<br>ACK<br>ABS<br>ABS<br>TAB<br>LIST<br>LIST<br>LIST                          | LARATION<br>ICATION<br>NOWLEDGEMENT<br>TRACT<br>TRAK<br>LE OF CONTENTS<br>T OF TABLES<br>T OF FIGURES<br>T OF ABBREVIATION                                  | I<br>III<br>IV<br>V<br>VI<br>IX<br>X<br>XI |
| CHAPTER I   | SIA                                                                              | RODUCTION                                                                                                                                                   |                                            |
| - JAC       | $ \begin{array}{c} 1.1\\ 1.2\\ 1.3\\ 1.4\\ 1.5\\ 1.6\\ 1.7\\ 1.8\\ \end{array} $ | Introduction<br>Problem statement<br>Project Question<br>Project Objective<br>Project Scope<br>Project Significant<br>Thesis Organization<br>Conclusion     | 1<br>2<br>2<br>3<br>4<br>4<br>5            |
| CHAPTER II  |                                                                                  | ERATURE REVIEW                                                                                                                                              | -                                          |
| UNIVERS     | 2.2<br>2.3<br>2.4                                                                | Introduction<br>Related Work / Previous Work<br>2.2.1 Terms<br>2.2.2 Previous Project research<br>Critical review<br>Proposed solution / further<br>Project | 6<br>6<br>8<br>11<br>12                    |
| CHAPTER III | 2.5                                                                              | Conclusion<br>JECT METHODOLOGY                                                                                                                              | 14                                         |
|             | 3.1<br>3.2                                                                       | Introduction<br>Methodology<br>3.2.1 Requirement Analysis<br>3.2.2 Design<br>3.2.3 Development<br>3.2.4 Testing                                             | 15<br>15<br>16<br>16<br>17<br>17           |
| CHAPTER IV  | 3.3<br>3.4<br><b>ANA</b><br>4.1                                                  | Project Milestones<br>Conclusion<br>LYSIS AND DESIGN<br>Introduction                                                                                        | 17<br>20<br>21                             |
|             |                                                                                  |                                                                                                                                                             | <u>~ +</u>                                 |

|             | 4.2 Problem Analysis                    | 21  |
|-------------|-----------------------------------------|-----|
|             | 4.3 Requirement Analysis                | 22  |
|             | 4.3.1 Data Requirement                  | 22  |
|             | 4.3.2 Functional Requirement            | 23  |
|             | 4.3.3 Non-functional                    | 25  |
|             | Requirement                             |     |
|             | 4.3.4 Others Requirement                | 26  |
|             | 4.4 High Level Design                   | 26  |
|             | 4.4.1 System Architecture               | 26  |
|             | 4.5 Detailed Design                     | 28  |
|             | 4.6 Conclusion                          | 28  |
| CHAPTER V   | IMPLEMENTATION                          |     |
|             | 5.1 Introduction                        | 29  |
|             | 5.2 Software Development Enviroment     | 29  |
|             | Setup                                   |     |
|             | 5.3 Software Configuration              |     |
|             | Management                              | 31  |
|             | 5.3.1 Configuration Enviroment          |     |
|             | Setup                                   | 31  |
| MALAY       | 5.4 Implementation Status               | 34  |
| S           | 5.5 Conclusion                          | 47  |
| CHAPTER VI  | TESTING                                 |     |
|             | 6.1 Introduction                        | 48  |
| 2           | 6.2 Test plan                           | 48  |
| Te.         | 6.2.1 Test Organization                 | 49  |
| S Aller     | 6.2.2 Test Enviroment                   | 49  |
| -an         | 6.2.3 Test Schedule                     | 50  |
| 5Mal.       | 6.3 Test Strategy                       | 51  |
|             | 6.3.1 Classes of test                   | 52  |
|             | 6.4 Test Design                         | 53  |
| UNIVERS     | ITI T 6.4.1 Test Description SIA MELAKA | 53  |
|             | 6.4.2 Test Data                         | 54  |
|             | 6.5 Test Result and analysis            | 56  |
|             | 6.6 Conclusion                          | 60  |
| CHAPTER VII | PROJECT CONCLUSION                      |     |
|             | 7.1 Introduction                        | 62  |
|             | 7.2 Project summarization               | 62  |
|             | 7.3 Project Contibution                 | 63  |
|             | 7.4 Project Limitataion                 | 64  |
|             | 7.5 Future Works                        | 64  |
|             | 7.6 Conclusion                          | 65  |
|             | DEEDEMORG                               | ~ ~ |
|             | REFERENCES                              | 66  |
|             | APPENDIX                                | 67  |

## LIST OF TABLES

| TABLE  | TITLE                                        | PAGE |
|--------|----------------------------------------------|------|
| 1.1    | Summary of Problem Statement                 | 2    |
| 1.2    | Summary of Project Question                  | 2    |
| 1.3    | Summary of Problem Objective                 | 3    |
| 1.4    | Chapter summary                              | 4    |
| 2.1    | Summary of critical review                   | 11   |
| 2.2    | Comparison of previous projects and proposed | 13   |
|        | project features                             |      |
| 4.1    | Software and hardware requirements           | 26   |
| 6.1    | The component involve in testing phase       | 49   |
| 6.2    | Project's modules                            | 51   |
| 6.3    | Classes of test                              | 52   |
| 6.4    | Test description                             | 5.3  |
| 6.5    | Test data for running program in OpenCV      | 54   |
| 6.6    | Test data for hand gesture development       | 55   |
| 6.7    | Test data for image processing               | 55   |
| 6.8    | Test data for event triggering               | 56   |
| 6.9    | Test result for module UK01                  | 57   |
| 6.10 — | Test data for module UK02                    | 58   |
| 6.11 U | Test data for module UK03 – MALAYSIA MELAKA  | 59   |
| 6.12   | Test data for module UK04                    | 60   |

## LIST OF FIGURES

| FIGU       | JRE | TITLE                                                      | PAGE     |
|------------|-----|------------------------------------------------------------|----------|
| 2.1        |     | Raspberry Pi Model B+                                      | 7        |
| 2.2        |     | Raspberry Pi Model B+ component                            | 7        |
| 2.3        |     | NoIR camera                                                | 8        |
| 2.4        |     | Diagram purposed by (Aldrich et al., 2016) in their        | 9        |
|            |     | project home automation system using Raspberry Pi          |          |
| 2.5        |     | Diagram purposed by (Khedkar, 2016) in his project         | 10       |
| 2.6        |     | Figure of proposed project                                 | 14       |
| 3.1        |     | Waterfall methodology architecture                         | 16       |
| 3.2        |     | Gantt chart of project activities                          | 18       |
| 3.3        |     | Flow chart of project activities                           | 19       |
| 4.1        |     | Data requirement flow chart                                | 23       |
| 4.2        |     | Use Case for home lock using hand gesture                  | 24       |
| 4.3        |     | System architecture                                        | 27       |
| 5.1        | 5   | OpenCV logo                                                | 30       |
| 5.2        | Y   | Command to install wrapper packages                        | 32       |
| 5.3        | N.  | /.profile file updated                                     | 32       |
| 5.4        | E C | Test the OpenCV-Python environment by using                | 33       |
|            | -   | terminal                                                   |          |
| 5.5        | No. | Step to accessing cv virtual environment                   | 33       |
| 5.6        | 0   | Workstation illustration setup                             | 34       |
| 5.7        |     | Image processing flow to detect a hand                     | 36       |
| 5.8        | ah  | Coding to done filtering and thresholding                  | 37       |
| 5.9        |     | Defining hand contour                                      | 38       |
| 5.10       |     | Defining hand contour and threshold result                 | 38       |
| 5.11       | LIM | eliminating defects and finger counting                    | 39       |
| 5.12       | OT1 | Home lock using hand gesture                               | 39       |
| 5.13       |     | Door Open when defects count equal to one                  | 40       |
| 5.14       |     | Door Open when defects count equal to one                  | 40       |
| 5.15       |     | Door lock when defects count is four                       | 41       |
| 5.16       |     | GPIO pin on Raspberry Pi B+                                | 42       |
| 5.17       |     | Light-emitting diode (LED)                                 | 43       |
| 5.18       |     | Light-emitting diode (LED)                                 | 43       |
| 5.19       |     | Light-emitting diode (LED)                                 | 44       |
| 5.20       |     | LED circuit                                                | 44       |
| 5.21       |     | Connection of breadboard to GPIO pins                      | 45       |
| 5.22       |     | Running Python script for LED                              | 45       |
| 5.23       |     | LED blinking<br>Test result for module UK01                | 46<br>57 |
| 6.1        |     | Test result for module UK01<br>Test result for module UK02 | 57<br>58 |
| 6.3<br>6.2 |     | Test result for module UK02<br>Test result for module UK03 | 58<br>59 |
| 6.2<br>6.4 |     | Test result for module UK05                                | 59<br>60 |
| 0.4        |     |                                                            | 00       |

## LIST OF ABBREVIATIONS

| GPIO    | General-purpose input/output         |
|---------|--------------------------------------|
| HDMI    | High-Definition Multimedia Interface |
| VGA     | Video graphic array                  |
| SD Card | Secure Digtital Card                 |
| RAM     | Random access memory                 |
| LED     | Light-emitting diode                 |



#### **CHAPTER I**

#### **INTRODUCTION**

#### 1.1 Introduction

As per today, the technology has growth fast, rapidly build and become sophisticated. A combination of hardware and software integrated with other devices can produce a great product. Door locking system today can also be enhance from the traditional way to more sophisticated system. We can convert the traditional way locking door such as padlocks and key using other methods. In fact, there are many company have built new type of locking system such as implementing password to open door. Exchanging the traditional methods to more interesting method using a human physical body is one of the idea to enhance the usage of traditional lock. Many part of our body can be used, such as hand gesture.

Nowadays any projects can be build using today sophisticated minicomputer Raspberry Pi. The idea to enhance home locking system by developing hand gesture recognition that can act to lock door or unlock it. As for the security features the development of hand gesture can also be used for authentication. Developing this project need a Raspberry Pi board integrated with other addition devices such as Pi camera, other product by the Raspberry Pi production company or a webcam.

#### **1.2 Problem Statement**

Every development must be based on problems arising. Table 1.1 below show the problems that occur triggering the idea of developing this project.

|  | <b>Table 1.1:</b> | Summary | of proble | ems statement |
|--|-------------------|---------|-----------|---------------|
|--|-------------------|---------|-----------|---------------|

| No | Problem Statement                                          |
|----|------------------------------------------------------------|
| 1  | The usage of traditional lock door such as key and padlock |
| 2  | No security features for authentications                   |
| 3  | Low quality of image to identify entities                  |

#### **1.3 Project Question**

Project questions are arise based on problem statements. Each question is creating to identify problem statement. Table 1.2 show the summary of project questions.

## Table 1.2: Summary of project questions UNIVERSITI TEKNIKAL MALAYSIA MELAKA

| No | Problem Statement                                                             |
|----|-------------------------------------------------------------------------------|
| 1  | What are the weakness of the usage of traditional locks?                      |
| 2  | Does others product have or provide any security features for authentication? |
| 3  | Does the visual captured have a good quality?                                 |

#### **1.4 Project Objective**

Once problems statement and project questions are detect, next is to identify project objectives. Project objectives come out by referring problem statements. Each project objective can be refer on Table 1.3 below.

| No  | Objective                                                                              |
|-----|----------------------------------------------------------------------------------------|
| PO1 | To explore about motion detection and tracking to be used in hand gesture recognition. |
| PO2 | To design a locking system using hand gesture.                                         |
| PO3 | To develop a hand gesture detection for authentication as security features.           |

#### Table 1.3: Summary of project objectives

Three main objectives that been identified in developing home locking system and the description of each objective which are listed as below:

PO1: To explore about motion detection and tracking to be used in hand gesture recognition

Study and exploring about of motion detection and tracking in helping to identifying an entity.

## PO2: To design a locking system using hand gesture Enhancing the traditional way of locking door with new interesting methods that can be implement in such a small premise like home.

## **PO3:** To develop a hand gesture detection for authentication as security features

Implementing the development that can be used as security features besides the origin functions.

## 1.5 Project Scope

The scope of development will be focusing on some issues as stated below:

- 1. The development will be focused on Raspberry Pi as a new controller.
- 2. The development of home locking system using hand gesture is can be used in a

small premise such as a home.

- 3. This project can also detect a motion under its range.
- 4. The detection of hand up to for hand gesture only.

#### **1.6 Project significant**

The project is about developing a low-cost home locking system with the development of hand gesture using Raspberry Pi. The Raspberry Pi will be configured with Raspbian as image tool. All of the configuration will be stored on SD card that will plug into the Raspberry Pi board. The project will need other integrated devices to operate such as Pi infrared camera and PIR sensor. PIR sensor will detect motion under its radius and Pi infrared camera will capture image. The development of hand gesture can act as security features besides locking methods. The motion detection and tracking can help in identifying entity.

## 1.7 Thesis Organization

In this section are the summary of each chapter from chapter 1 until chapter 7. Table 1.4 below are the description summary of each chapter:

#### Table 1.4: Chapter summary

| Chapter No   | Chapter Summary                                                              |  |  |
|--------------|------------------------------------------------------------------------------|--|--|
| Chapter 1:   | This chapter will discuss about overall project                              |  |  |
| Introduction | development background, including problem statemen<br>and project objectives |  |  |

| Chapter 2:           | Chapter two will discuss about literature review of the       |  |  |
|----------------------|---------------------------------------------------------------|--|--|
| Literature Review    | project. Contains about related work, past research,          |  |  |
|                      | critical review proposed solution and conclusion.             |  |  |
|                      |                                                               |  |  |
| Chapter 3:           | This chapter explain approach methodology that have           |  |  |
| Methodology          | been implement in this project. Discussing about              |  |  |
|                      | selection methodology, methods and techniques so that         |  |  |
|                      | project are completely done according to schedule             |  |  |
| Chapter 4:           | In chapter 4, discuss about elements that need in order to    |  |  |
| Design               | develop project. All of the element including hardware        |  |  |
|                      | specification, software, logical and physical design.         |  |  |
| Chapter 5:           | This chapter will explain more about the implementation       |  |  |
| Implementation       | process of the project. Discussing how the                    |  |  |
| Str In               | implementation take place and the environment setup to        |  |  |
| Kull                 | develop project.                                              |  |  |
| Chapter 6:           | Once the project been developed, chapter 6 will show          |  |  |
| Testing              | testing process to test the whether the project are           |  |  |
| **Amn                | successful or failed. In this chapter also discuss how we     |  |  |
| Mo lund              | test and analyse project. All of the testing result will show |  |  |
|                      | at the end of the chapter.                                    |  |  |
| Chapter 7: VERSITI T | The phase will discuss the overall of the project, the        |  |  |
| Project conclusion   | contribution of the project, constraints project and future   |  |  |
|                      | works to enhance this project.                                |  |  |

### 1.8 Conclusion

At the end, this chapter will help to understand project's background, problem statement, project objectives, scope of the project and project significant. The expected result is developing home locking system using Raspberry Pi platform and with the development of hand gesture as authentication. The development of hand gesture can also act as controller that can lock and unlock the door.

#### **CHAPTER II**

#### LITERATURE REVIEW

#### 2.1 Introduction

This chapter will discuss more on literature review of locking system using hand gesture project. Literature review is a good approach to understand more about subject being research. The main objectives of doing literature review are combine information and make it into a summary, critical analysis can identify limitation of the theories, and it will present what have been found in organized way. Once finished all the information gathering, next step is proposing the solution and make overall conclusion which conclude all about the project.

#### 2.2 Related work / previous work

2.2.1 Terms

#### **Raspberry Pi**

Living in the high technology era today, there are many kind of computer have been build. From the biggest computer to the smallest all of it gives almost same functionality. One of the great invention today, develop by Eben Upton is Raspberry Pi. Raspberry Pi is a credit-card sized computer designed for education. Eben Upton goal was creating low costing devices that can improve programming skills and hardware understanding.



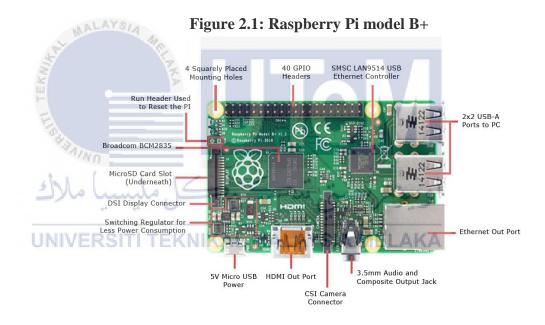
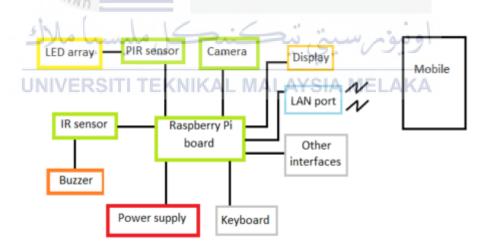



Figure 2.2: Raspberry Pi model B+ component

Figure 2.1 and figure 2.2 show the design of Raspberry Pi model B+ and its component. In developing this project, Raspberry Pi model B+ been choose as the main component. It is an inexpensive and low power consumption microcomputer. Very flexible computer run python programming language and it is also easy to use.

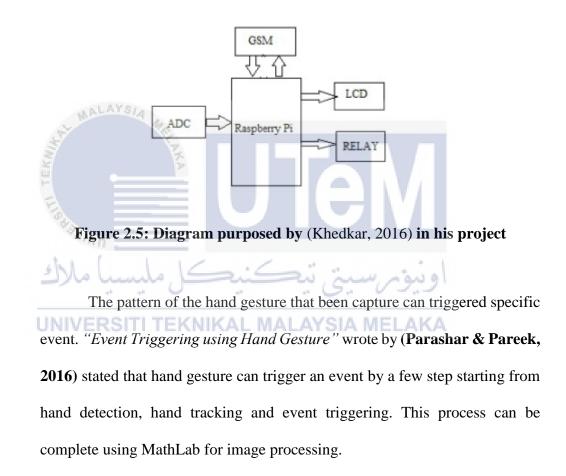
#### Pi infrared camera

The Raspberry Pi NoIR camera is another device build same company as Raspberry Pi board. It is a custom designed add-on device. To use this camera, a user must have attached it to the Raspberry Pi board using short ribbon cable. The board itself is 25mm x 24 mm x 9mm and it weight is only 3g. This camera supports the latest version of Raspbian, the Raspberry Pi operating system. The camera resolution is 5 megapixels which is good in capturing image.




UNIVERSITI TEKNIFigure 2.3: Pi NoIR camera

#### 2.2.2 Previous project research


Based on a book title as "*Programming the Raspberry Pi: getting started with python*" wrote by **Simon Monk (2013)**, Raspberry Pi began to impetrate market end of February 2012 and often been said since then. Raspberry Pi is computer that come in with a few port such as USB port, HDMI, Ethernet port and running a Linux operating system. It is a small board computer, specifically a size of a credit card and super cheap. The reason why Raspberry Pi is affordable, because not all components were included example its case. Raspberry Pi coming in a bare board without its case. The casing of the Raspberry Pi can be purchased individually same goes the power adapter. Simon Monk stated on his writing that we do can pretty much everything using raspberry pi just like using a Linux computer. Editing document, browsing internet and playing games are some of activity that can be done using Raspberry Pi. It can also act as media centre to play video.

Aldrich et al, 2016 used Raspberry Pi in their project. The idea is to build a home automation system using Raspberry Pi. The project allowing user monitor and controlling their house using mobile devices such as energy management, access control and media. It is including monitoring home appliances and security. Using Raspberry Pi as the platform and the project can be customized because of its multiple GPIO ports.



# **Figure 2.4: Diagram purposed by** (Aldrich et al., 2016) **in their project home automation system using Raspberry Pi**

Raspberry Pi might as well act as controller that can do something and using others medium to trigger besides mobile devices. Since most of previous project used devices approach like (**Khedkar, 2016**) used a GSM module with Raspberry Pi on his automation project, a behavioural pattern approach can substitute uses of the devices **F.Mod Ma'asum et al, 2015** on their journal entitle as "*An Overview of Hand Gesture Recognition System Technique*" have stated that the functions and usage of touch screen displays can be replaced with new evolvement of human computer interaction. As be specific the uses of hand gesture.



## 2.3 Critical review

| Research Title                                                                                     | Purpose                                                                                                                                                                                        | Description                                                                                                                                                    | Problems                                                                                                                                    |
|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Programming the<br>Raspberry Pi:<br>Getting Started with<br>Python<br>Author:<br>Simon Monk        | Raspberry Pi is a mini<br>computer that come in<br>with a few port such<br>as USB port, HDMI,<br>Ethernet port and<br>running a Linux<br>operating system. It is<br>a small board<br>computer. | Editing document,<br>browsing internet<br>and playing games<br>are some tasks that<br>can be done using<br>Raspberry Pi.                                       | Do Raspberry Pi act<br>as controller besides<br>providing a basic<br>task like others<br>computer.                                          |
| Home Automation<br>using Raspberry Pi<br>Authors:<br>Aldrich, Deshmukh,<br>Murudkar, &<br>Tripathi | The idea is to build a<br>home automation<br>system using<br>Raspberry Pi. The<br>user is given an<br>option to open or<br>closed door using<br>their smart phone.<br>TEKNIKAL MAL             | The project<br>allowing user<br>monitor and<br>controlling their<br>house using mobile<br>devices such as<br>energy<br>management, access<br>control and media | Project could be<br>complex with the<br>presence of<br>additional devices<br>such as smart phone.                                           |
| Using Raspberry Pi<br>and GSM Survey on<br>Home Automation<br>Author:<br>Shrikrushna Khedkar       | The main objective of<br>the project is to<br>control the home<br>automation appliances<br>using SMS services<br>with the help of<br>Raspberry Pi.                                             | Focusing more on<br>controlling<br>appliances and send<br>alert via SMS.                                                                                       | Can the uses of<br>additional devices as<br>medium to trigger be<br>replace with<br>something else like<br>behavioural pattern<br>approach. |
| Event Triggering<br>using Hand Gesture<br>Authors:<br>Parashar & Pareek                            | Hand gesture can be<br>classified as identical<br>expression that<br>contain meaningful<br>messages. Purpose of                                                                                | Step to identify or<br>detect hand gesture<br>recognition can be<br>start by hand<br>detection, hand                                                           | Is it possible to<br>detect hand pattern<br>with high successful<br>rate using step been                                                    |

## Table 2.1 Summary of critical review