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ABSTRACT 

 

 

 

 

Overall equipment effectiveness (OEE) is a standard of performance measure 
on equipment productivity especially in manufacturing process.  This metrics will 
helps the company to evaluate the performance of machines by identifying the 
underlying losses and operational effectiveness. Anomaly occurs when an instance 
deviates from a normal behaviour, in this case we meant when an OEE spike is being 
detected. A real time anomaly detection analytics is important for a business because 
some anomalies required immediate action, this will helps the management level for 
better and faster decision making especially on manufacturing scheduling. The 
methodology in this project involved 6 parts, preliminary studies, data preparation, 
attribute selection, model development, comparison analysis, and results validation. 
First, preliminary studies were done by reviewing literatures and self-questioning on 
the upcoming problems. Next, real industrial data is collected, compiled and undergo 
discretization to prepare the data for model training and testing process. After that, 
attribute selection was done by intuition, by expertise selection and wrapper methods 
such as Recursive Feature elimination (RFE) to reduce the dimensionality of dataset. 
In the model development process, Support Vector Regression (SVR), Linear 
Regression (LR) and Regression Tree (RT) classifiers were selected to develop a 
model for OEE value prediction and OEE spike prediction. The results shows that 
LR model by RFE selected attributes was performing best among others because it 
was able to achieved Root Mean Squared Error (RMSE) of 0.0013 and accuracy of 
0.9892 when doing OEE value prediction and OEE spike classification respectively. 
In conclusion, the proposed model was able to predict OEE value and detect OEE 
spike (undesirable OEE drop), but the model can only tested with limited data (5 
shifts) due to data constraints. Furthermore, this model is suggested to embed in 
smart manufacturing data analytics dashboard for operational monitoring purpose. 
Further work is suggested to collect actual real-time industrial data to test on the 
robustness of the proposed model. Last but not least, if the suitable dataset is 
successfully obtained, the next step is suggested propose a predictive analytic model 
where the model will be able to forecast future (one day ahead) OEE spike in real 
time, and provide actionable insights to notify user based on the causes of the spike 
occurrence. 
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Keberkesanan peralatan keseluruhan (OEE) adalah ukuran prestasi yang 
standard dalam produktiviti peralatan terutamanya proses pembuatan. Metrik ini 
akan membantu syarikat menilai prestasi mesin dengan mengenal pasti kerugian asas 
dan keberkesanan operasi. Anomali berlaku apabila suatu kejadian menyimpang dari 
tingkah laku biasa, dalam kes ini kita maksudkan apabila spek OEE dikesan. Analitik 
pengesanan anomali masa sebenar adalah penting untuk perniagaan kerana beberapa 
anomali memerlukan tindakan serta-merta, ini akan membantu tahap pengurusan 
untuk mendapat keputusan yang lebih baik dan cepat terutama pada pembuatan 
penjadualan. Metodologi dalam projek ini melibatkan 6 bahagian, kajian awal, 
penyediaan data, pemilihan atribut, pembangunan model, analisis perbandingan, dan 
pengesahan hasil. Pertama, kajian awal dilakukan dengan mengkaji literatur dan 
menyoal diri tentang masalah yang akan datang. Seterusnya, data perindustrian 
sebenar dikumpulkan, disusun dan menjalani pembicaraan untuk menyediakan data 
untuk latihan dan proses ujian model. Selepas itu, pemilihan atribut dilakukan 
dengan intuisi, melalui pemilihan kepakaran dan kaedah pembungkus seperti 
penghapusan Ciri Rekursif (RFE) untuk mengurangkan dimensi dataset. Dalam 
proses pembangunan model, Regresi Vektor Sokongan (SVR), Klasifikasi Regresi 
Linear (LR) dan Regresi Tree (RT) dipilih untuk membangunkan model untuk 
ramalan nilai OEE dan ramalan spek OEE. Hasilnya menunjukkan bahawa model LR 
oleh atribut terpilih RFE telah melakukan yang terbaik antara lain kerana ia dapat 
mencapai kesilapan akar min kesilapan (RMSE) 0.0013 dan ketepatan 0.9892 ketika 
melakukan ramalan nilai OEE dan klasifikasi spek OEE masing-masing. 
Kesimpulannya, model yang dicadangkan dapat meramalkan nilai OEE dan 
mengesan OEE spike (keturunan OEE yang tidak diingini), tetapi model hanya boleh 
diuji dengan data terhad (5 shift) disebabkan oleh kekangan data. Tambahan lagi, 
model ini dicadangkan untuk membenamkan dalam papan pemuka analisis data 
pintar untuk tujuan pemantauan operasi. Kerja lebih lanjut disarankan untuk 
mengumpul data perindustrian sebenar untuk menguji keteguhan model yang 
dicadangkan. Akhir sekali, sekiranya dataset yang sesuai berjaya diperoleh, langkah 
seterusnya dalam projek ini akan mencadangkan model analitik ramalan di mana 
model akan dapat meramalkan masa depan (satu hari ke depan) OEE spike dalam 
masa nyata, dan memberikan wawasan yang dapat dilihat Untuk memberitahu 
pengguna berdasarkan sebab-sebab kejadian spek. 
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CHAPTER I 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction 

 

In recent years, smart manufacturing has been discussed among the industrial 

sectors especially in production and manufacturing industry. This term was actually 

came from the fourth industrial revolution where the Germany government first 

r

technology, Internet of Things (IoT) via cyber physical systems and cloud computing. 

The process where the current physical system in the factory that communicate each 

other and form a network called Internet of Things, this network will monitor by the 

cyber physical system and cooperate with human in real time to do decentralized 

decision making. To be simplified, the computers and automations in the industry 

will all be connected together to form an internet, and remotely control by the 

decentralized computer operator that equipped with artificial intelligence and 

machine learning algorithms, making the computer decision as autonomous as 

possible, this will obviously reduce the efforts from the human operators.  
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The process that introduced by Industrial 4.0 is smart manufacturing, in order 

for a current manufacturing factory to achieve the latest industrial revolution, a lot of 

manpower is required to implement the system and a group of investors is needed to 

invest heavily to the project because of the new technologies that involved in the 

development, either side is indispensable. In realising the smart manufacturing 

process, big data and data analytics are playing important role in helping the decision 

making in the manufacturing process. This is because the analytic results were able 

to help in early detection of machine defects, production failures, forecasting future 

performances and etc. This will generates huge competitive values to the company 

such as helps in early prevention, operation scheduling and increase productivity of 

the manufacturing process. The intelligent from the raw data either from machines, 

logs or processes will help to illustrate a more informed and actionable decision, this 

will let the decision makers to have trust from the data and have higher confident in 

making a decision. Also, this decision making in a data-driven way will helps the 

process of manufacturing plants to operate better. 

 

ufacturing industrial, the management is bombarded with data 

and information that generated from the business line, this makes the management to 

heavily rely on some Business Intelligent (BI) software to track the performance of 

their organization, to improve visibility and efficiency of the business process, and to 

gain competitive intelligence and actionable information from the raw data in real 

time. It is important to understand the company requirement and objective to select 

the manufacturing metrics indicators to achieve the goal, the business objective is 

basically following the SMART concept  Specific, Measurable, Actionable, 

Realistic, and Time-Based. The Manufacturing Enterprise Solutions Association 

(MESA) organization has conducted research and 28 manufacturing metrics were 

identified to be the metrics that matter most in manufacturing industry, and the list of 

each metrics is shown in the table below. 
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Table 1.1 List of Manufacturing Metrics 

Improving Customer Experience & Responsiveness 

1 On-Time Delivery to Commit 

2 Manufacturing Cycle Time 

3 Time to Make Changeovers 

Improving Quality 

4 Yield 

5 Customer Rejects/Return Material Authorizations/Returns 

6  

Improving Efficiency 

7 Throughput 

8 Capacity Utilization 

9 Overall Equipment Effectiveness (OEE) 

10 Schedule or Production Attainment 

Reducing Inventory 

11 WIP Inventory/Turns 

Ensuring Compliance 

12 Reportable Health and Safety Incidents 

13 Reportable Environmental Incidents 

14 Number of Non-Compliance Events / Year 

Reducing Maintenance 

15 Percentage Planned vs. Emergency Maintenance Work Orders 

16 Downtime in Proportion to Operating Time 

Increasing Flexibility & Innovation 

17 Rate of New Product Introduction 

18 Engineering Change Order Cycle Time 

Reducing Costs & Increasing Profitability 

19 Total Manufacturing Cost per Unit Excluding Materials 

20 Manufacturing Cost as a Percentage of Revenue 

21 Net Operating Profit 

22 Productivity in Revenue per Employee 

23 Average Unit Contribution Margin 
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24 Return on Assets / Return on Net Assets 

25 Energy Cost per Unit 

26 Cash-to-Cash Cycle Time 

27 EBITDA 

28 Customer Fill Rate/On-Time delivery/Perfect Order Percentage 

 

In our case, the requirement is to verify the Overall Equipment Effective 

(OEE) values, so we will use OEE as the manufacturing metrics in this project. 

Nakajima (1988) introduced Total Productive Maintenance (TPM), the metric in 

TPM is called Overall Equipment Effectiveness (OEE). OEE has three generic 

elements, Availability, Performance Efficiency, and Rate of Quality. The classic 

definition of Overall Equipment Effectiveness is shown below where A=Availability, 

PE=Performance Efficiency and RQ=Rate of Quality. 

OEE = (A) * (PE) * (RQ) 

OEE management shows an effective tool to improve manufacturing performance, a 

micro factory modelling process that defines workstation capabilities and tool 

theoretical outputs is required in OEE management process. Also, OEE management 

provides insight into the TPM losses, which identifies the improvement opportunities 

available. OEE is one of the Key Performance Indicator (KPI) that measure the 

overall throughput performance of production and test equipment in manufacturing, 

it used to monitor and understand the changes of equipment productivity by 

collecting the operating data. Not only that, OEE also important for other purposes 

such as to identify losses, identify available resources, improve the productivity of 

manufacturing equipment and provide support in making decision. The table below 

shows the six big losses which are the underlying losses from the OEE value. In this 

project, the OEE loss will be considered as there is spike occurs on the OEE metrics 

inside. 
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Table 1.2 Six Big Losses 

OEE 

Metrics 

Six Big Losses Example Loss 

Availability Breakdown Equipment failure 

Unexpected machine breakdown 

General Maintenance 

Setup and adjustment Machine shortage 

Machine warm-up 

Performance Speed losses  Speed reduced during operation 

Operation efficiency 

Slow cycle 

Small stops and idling Jams, Blocks, Obstructions 

Cleaning 

Quality Production defects Product damage 

Scraps 

Repair 

Start-up rejects Start-up product damage 

Improper Assembly 

 

Since real time feedback is also a significant issue in Business Intelligent, 

because organizations need actionable insights faster than ever before to stays 

competitive, reduce risks, and capitalize on time-sensitive opportunities. Basically, 

real time analytics is analytics on live operational database and up to date to the 

current moment, so that the data can discover insights faster and act immediately 

upon problem occurs. Thus, we will considered real time data streaming in our case 

as well. Based on the above scenarios, in order to provide useful actionable insights 

to the company operation process, the obtained data have to be processed and run 

through some data analytic algorithms to generate useful and decisive information. 

Data analytics have 2 types of methodology, one is Confirmatory Data Analysis 

(CDA) and the other one is Exploratory Data Analysis (EDA). CDA do conventional 

analytical modelling by using traditional statistical metrics like confidences, 

significance and hypothesis to draw an estimated conclusion or to evaluate the 

hypothesis, examples such as Regression analysis, Analysis of Variance, and 


