DEEP FAKE AUDIO DETECTION BASED ON DEEP LEARNING

BORANG PENGESAHAN STATUS LAPORAN

JUDUL: DEEP FAKE AUDIO DETECTION BASED ON DEEP LEARNING

SESI PENGAJIAN: <u>2022 / 2023</u>

Saya: ATHALLAH ARIQ WIJAYA

4. * Sila tandakan (✓)

mengaku membenarkan tesis Projek Sarjana Muda ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka dengan syarat-syarat kegunaan seperti berikut:

1. Tesis dan projek adalah hakmilik Universiti Teknikal Malaysia Melaka.

Q

- 2. Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dibenarkan membuat salinan unituk tujuan pengajian sahaja.
- 3. Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.

SULIT	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
TERHAD Size	(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi / badan di mana penyelidikan dijalankan)
UVERS TIDAK TERHAD	MALAYSIA MELAKA
APIQ N	Prod
(TANDATANGAN PELAJAR)	(TANDATANGAN PENYELIA)
Alamat tetap: Jalan Damai II, Ciganjur,	Dr. Nur Fadzilah binti Othman
•	Nama Penyelia
Jagakarsa, Jakarta Selatan, Indonesia	

CATATAN: * Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa.

DEEP FAKE AUDIO DETECTION BASED ON DEEP LEARNING

ATHALLAH ARIQ WIJAYA

This report is submitted in partial fulfillment of the requirements for the Bachelor of Computer Science (Computer Security) with Honours.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DECLARATION

I hereby declare that this project report entitled

DEEP FAKE AUDIO DETECTION BASED ON DEEP LEARNING

is written by me and is my own effort and that no part has been plagiarized without citations.

STUDENT	Ani Q W	Date : 25/9/2023
TEK IN	ereby declare that I have read this project	M
this project Bach	report is sufficient in term of the scope are elor of Computer Science (Computer Section Section 1997)	nd quality for the award of urity) with Honours.
SUPERVISOR	:	Date : 25/9/2023

(DR NUR FADZILAH BINTI OTHMAN)

DEDICATION

This research project is devoted to my parents' persistent love and support, who have been the foundation of my academic path. Their sacrifices and encouragement developed my character and contributed to my personal progress. This accomplishment is a testimonial to their unwavering dedication and the ideals they instilled in me.

I would like to express my heartfelt appreciation to my outstanding supervisor, Dr. Nur Fadzilah Binti Othman, for their tremendous mentorship and advice. Their knowledge, unwavering desire for learning, and unshakable belief in my abilities have consistently encouraged me to strive for excellence and attain new heights.

Finally, I commit my research project to myself. It represents my unwavering determination, resilience, and dedication to personal and intellectual growth. It is a daily reminder of my capacity to overcome obstacles and achieve my goals. I am extremely proud of the time and effort I have put in.

I want to thank my parents, my supervisor, and myself for your invaluable contributions to this research study. Your constant support, invaluable advice, and unshakable faith in my talents have been the driving force behind my achievements.

ACKNOWLEDGEMENTS

I am deeply grateful to Universiti Teknikal Malaysia Melaka (UTeM) for providing us, undergraduate students from the Faculty of Information and Communication Technology (FICTS), with an excellent opportunity to embark on our final year project journey.

In addition, I want to thank my supervisor, Dr. Nur Fadzilah Binti Othman, for their constant support, helpful guidance, and excellent mentorship throughout the course of this study. Their considerable knowledge, critical input, and persistent commitment to quality have all contributed significantly to the trajectory and calibre of this research endeavour. I am really grateful for their constant encouragement and unwavering faith in my ability.

In addition, I am grateful to my classmates and friends for their strong support, encouragement, and stimulating talks, which have substantially improved my understanding of the subject. Their companionship and shared experiences made this study journey even more rewarding and left indelible memories.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Finally, I want to thank my parents, Eka Wijaya Adi Endra and Diana Hidayati, for their constant love, encouragement, and understanding throughout my academic journey. Their unshakable faith in my skills, as well as the sacrifices they have made, have been the driving force behind my achievements.

ABSTRACT

With the advance of technology, especially in the field of AI, new and recent threats have emerged called deep fake audio. Instead of using a video to create a convincing, legit video, this threat only relies on audio. An example of this threat in action is using it to call for social engineering or to create fake audio propaganda by broadcasting it on the radio or other streaming services that only use audio as the bridge. Although this threat only relies on the audio, it can be hard to distinguish between the real and fake because the listener cannot see the source of the audio or speaker of the voice. Many previous studies have proposed a novel approach by using deep learning models, from simple ones like CNN to complex ones like ResNet and combinations of two or more models. In addition, with the many approaches proposed by many researchers, it is hard to choose which model can be used efficiently and easily. By using the dataset provided by ASV Spoof 2019, a dataset that has been used by many research papers to research deep fake audio, we investigated three deep learning models: CNN, ResNet, and ResNet+LSTM, and how to implement those models using the Python language and PyTorch framework. Out of the three chosen models, the ResNet model has achieved the best performance against the other two models by using macro-F1 as the measurement of performance. The CNN model has the lowest performance, and the ResNet+LSTM model performance is between the CNN model and the ResNet model. Even though the performance of the ResNet+LSTM model in terms of macro-F1 is lower than that of the ResNet model, the accuracy when the model predicts the data in the evaluation dataset is greater than that obtained by the ResNet model because the ResNet+LSTM model tends to choose the spoof data, which also means that the model needs more training to be flexible to choose the correct label of data.

اونيونر سيتي تيكنيكل مليسيا ملاك UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ABSTRAK

Dengan kemajuan teknologi, terutamanya dalam bidang Kecerdasan Buatan (AI), ancaman baru dan terkini telah muncul yang dikenali sebagai audio palsu mendalam. Berbeza daripada menggunakan video untuk mencipta video yang meyakinkan dan sah, ancaman ini hanya bergantung kepada audio. Contoh ancaman ini dalam tindakan adalah dengan menggunakannya untuk tujuan kejuruteraan sosial atau mencipta propaganda audio palsu dengan menyiarkannya di radio atau perkhidmatan streaming lain yang hanya menggunakan audio sebagai penghubung. Walaupun ancaman ini hanya bergantung kepada audio, ia boleh sukar untuk membezakan antara yang sebenar dan palsu kerana pendengar tidak dapat melihat sumber audio atau pembicara suara. Banyak kajian terdahulu telah mencadangkan pendekatan baharu dengan menggunakan model pembelajaran mendalam, dari yang ringkas seperti CNN hingga yang kompleks seperti ResNet dan gabungan dua atau lebih model. Selain itu, dengan banyak pendekatan yang dicadangkan oleh ramai penyelidik, sukar untuk memilih model yang boleh digunakan secara cekap dan dengan mudah. Dengan menggunakan dataset yang disediakan oleh ASV Spoof 2019, dataset yang telah digunakan oleh banyak makalah penyelidikan untuk mengkaji audio palsu mendalam, kami mengkaji tiga model pembelajaran mendalam: CNN, ResNet, dan ResNet+LSTM, serta bagaimana melaksanakan model-model tersebut dengan menggunakan bahasa Python dan rangka kerja PyTorch. Daripada tiga model yang dipilih, model ResNet telah mencapai prestasi terbaik berbanding dua model lain dengan menggunakan nilai macro-F1 sebagai ukuran prestasi. Model CNN mempunyai prestasi terendah, dan prestasi model ResNet+LSTM berada di antara model CNN dan model ResNet. Walaupun prestasi model ResNet+LSTM dalam hal macro-F1 lebih rendah daripada model ResNet, ketepatan apabila model meramalkan data dalam dataset penilaian adalah lebih tinggi daripada yang diperoleh oleh model ResNet kerana model ResNet+LSTM cenderung memilih data palsu, yang juga bermakna bahawa model memerlukan latihan lebih banyak untuk menjadi fleksibel dalam memilih label data yang betul.

PAGE

TABLE OF CONTENTS

DFCI	LARATION	п
	ICATION	
ACK	NOWLEDGEMENTS	IV
ABST	TRACT ALAYSIA	V
ABST	ΓRAK	VI
	LE OF CONTENTS	
LIST	OF TABLES	XII
LIST	OF FIGURES OF ABBREVIATIONS	XIII
LIST	OF ABBREVIATIONS	XVII
LIST	OF ATTACHMENTS	XVIII
CHA	PTER 1: INTRODUCTION	1
1.1	Introduction	1
1.2	Problem Statement	2
1.3	Research Question	2
1.4	Research Objective	3
1.5	Research Summary Matrix	3

1.6

1.6.1

	1.6.2	Report Organization	5
	1.6.3	Chapter 1: Introduction	5
	1.6.4	Chapter 2: Literature Review	5
	1.6.5	Chapter 3: Project Methodology	5
	1.6.6	Chapter 4: Design	5
	1.6.7	Chapter 5: Implementation	6
	1.6.8	Chapter 6: Testing & Analysis	6
	1.6.9	Chapter 7: Conclusion	6
1.7	Conclu	sion	6
СНА	PTER 2. 1	LITERATURE REVIEW	7
2.1	Introdu	ction	7
2.2	3	l Work	_
2.2	Related		
	2.2.1	Deepfake	7
	2.2.1	Бееріаке	/
	2.2.2	Deepfake Audio	8
	2.2.3	Spectrogram	8
	2.2.4	M 16	1.0
	-2.2.4 UNIVE	Mel Spectrogram	10
	2.2.5	Deep Learning	10
	2.2.6	CNN	13
	2.2.7	RNN	16
	2.2.8	ResNet	17
	2.2.9	LSTM	18
	2.2.10	Google Colab	19
	2.2.11	Kaggle Kernel	19
	2.2.12	PyTorch	20
2.3	Critical	l Review of Existing Algorithm/Technique	20
2.4	Proiect	Solution	21

2.5	Conclusion	21
СНА	APTER 3: RESEARCH METHODOLOGY	22
3.1	Introduction	22
3.2	Methodology	22
	3.2.1 Data Collection	22
	3.2.2 Data Pre-processing	23
	3.2.3 Implement model	23
	3.2.4 Training and Testing	23
	3.2.5 Evaluation and Analysis	24
3.3	Research Milestone	25
СНА	APTER 4: DESIGN	28
4.1	Introduction	28
4.2	Research Workflow	28
	4.2.1 Stage 1: Tool and Dataset Selection	29
	4.2.2 Stage 2: Identify Model	30
	4.2.3 Stage 3: Framework selection and implement model	30
	4.2.4 Stage 4: Model Training, Testing, and Evaluation	30
	4.2.5 Stage 5: Collect Information and Analyze	31
	4.2.6 Stage 6: Compare the Result	31
	4.2.7 Stage 7: Identify the most effective model	31
4.3	Project Requirement Analysis	32
	4.3.1 Hardware Analysis	32
	4.3.2 Software Analysis	33
4.4	High Level Design	33
	4.4.1 Analysis Architecture	33

	4.4.2	Tools Interface	34
	4.4.3	The Use of Kaggle Kernel	37
CHA	PTER 5: 1	IMPLEMENTATION	39
5.1	Introdu	ection	39
5.2	Acquir	ing Dataset	39
5.3	Enviro	nment Set Up	41
5.4	Dataset	t Preparation	44
5.5	Data Pr	reprocessing	49
5.6		Implementation	
	5.6.1	CNN	
	5.6.2	ResNet	
	5.6.3	ResNet + LSTM.	62
5.7	Model	Training	64
СНА	PTER 6:	TESTING & ANALYSIS	70
6.1	Introdu	ction RSITI TEKNIKAL MALAYSIA MELAKA	70
6.2		Testing	
6.3	Model	Evaluation	74
6.4	Analys	is on Training Dataset	76
6.5	Analys	is on Testing Dataset	77
	6.5.1	CNN	78
	6.5.2	ResNet	78
	6.5.3	ResNet+LSTM	79
6.6	Analys	is on Evaluation Dataset	80
	6.6.1	CNN	80

	6.6.2 ResNet	81
	6.6.3 ResNet+LSTM	82
6.7	Comparison of Three Deep Learning Models	83
6.8	Analysis on Graph Format	85
СНА	APTER 7: CONCLUSION	87
7.1	Introduction	87
7.2	Research Summarization	87
	7.2.1 Strength	87
	7.2.2 Weakness	88
7.3	Research Contribution	88
7.4	Research Limitation	88
7.5		89
7.6	Conclusion	
REFI	اوينوم سين تيكنيكل مليسيا ERENCE	91
	ENDIX A	

LIST OF TABLES

	PAGE
Table 1.1: Table of Research Question	2
Table 1.2 Table of Research Objective	3
Table 1.3: Table of Research Summary Matrix	3
Table 2.1: Existing Algorithms/Technique	20
Table 3.1: ASV Spoof 2019 Logical Access Dataset	23
Table 3.2 Milestones	25
Table 3.3: Gantt Chart FYP 1	26
Table 3.4: Gantt Chart FYP 2	27
Table 4.1: Host Machine Hardware Analysis	32
Table 4.2: Kaggle Kernel Hardware Analysis	
Table 4.3: Kaggle Kernel Software Analysis	
Table 4.4: Host Machine Software Analysis	
Table 6.1: Comparison of The Three Deep Learning Models	

LIST OF FIGURES

	PAGI
Figure 2.1: Spectrogram Amplitude & Frequency	8
Figure 2.2: Spectrogram Fundamental	9
Figure 2.3 Machine Learning and Deep Learning Process	11
Figure 2.4: Example of Single Perceptron	
Figure 2.5: CNN Layers	
Figure 2.6: Input image matrix multiplied by filter	
Figure 2.7 Stride in CNN process multiplication	
Figure 2.8 Stride in CNN process multiplication	15
Figure 2.9 RNN Diagram	
Figure 2.10 Residual Learning: Building Block	29
Figure 4.2: Stage 1.II. TEKNIKAL MALAYSIA MELAKA	
Figure 4.3: Stage 2	30
Figure 4.4: Stage 3	30
Figure 4.5: Stage 4	31
Figure 4.6: Stage 5	31
Figure 4.7: Stage 6	31
Figure 4.8: Stage 7	32
Figure 4.9: Overview of Analysis Architecture	34
Figure 4.10: Kaggle Kenel Home Page	
Figure 4.11: Kaggle Kernel Interface Overview	
Figure 4.12: Kaggle Kernel Interface Python Code	
Figure 4.13: Kaggle Kernel Accelerator	
Figure 4.14: The Use of Google Colab	37

Figure 5.1: ASV Spoof Index Website	40
Figure 5.2: ASV Spoof 2019 Interface	40
Figure 5.3: ASV Spoof 2019 Download interface	41
Figure 5.4: ASV Spoof 2019 Interface Kaggle	41
Figure 5.5: Google Collab First Interface	42
Figure 5.6: Kaggle Register & Login	42
Figure 5.7: Google Collab create new notebook	43
Figure 5.8 Kaggle Kernel change runtime first	43
Figure 5.9: Kaggle Kernel change runtime second	43
Figure 5.10: Dataset Preparation 1	44
Figure 5.11: Dataset Preparation 2	45
Figure 5.12: Dataset Preparation 3	45
Figure 5.13: Dataset Preparation 4	46
Figure 5.14: Dataset Preparation 5	
Figure 5.15: Dataset Preparation 6	47
Figure 5.16: Dataset Preparation 7	47
Figure 5.17: Dataset Preparation 8	
Figure 5.18: Dataset Preparation 9	
Figure 5.19: Data Pre-Processing 1	49
Figure 5.20: Data Pre-Processing 2	50
Figure 5.21: Data Pre-Processing 3	51
Figure 5.22: Data Pre-Processing 4	51
Figure 5.23: Data Pre-Processing 5	52
Figure 5.24: Data Pre-Processing 6	52
Figure 5.25: Data Pre-Processing 7	53
Figure 5.26: Data Pre-Processing 8	53
Figure 5.27: Data Pre-Processing 9	53
Figure 5.28: Data Pre-Processing 10	54
Figure 5.29: Data Pre-Processing 11	54
Figure 5.30: Data Pre-Processing 12	54
Figure 5.31: Data Pre-Processing 13	55
Figure 5.32: Data Pre-Processing 14	56
Figure 5.33: Data Pre-Processing 15	56
Figure 5.34: CNN Model Implementation 1	57

Figure 5.35: Model Implementation 2	57
Figure 5.36: Model Implementation 3	58
Figure 5.37: Model Implementation 4	58
Figure 5.38: Model Implementation 5	59
Figure 5.39: Model Implementation 6	59
Figure 5.40: Model Implementation 7	60
Figure 5.41: ResNet Implementation 1	60
Figure 5.42: ResNet Implementation 2	61
Figure 5.43: ResNet Implementation 3	62
Figure 5.44: ResNet Implementation 4	62
Figure 5.45: ResNet Implementation 5	62
Figure 5.46: ResNet + LSTM Implementation 1	62
Figure 5.47: ResNet + LSTM Implementation 2	63
Figure 5.48: ResNet + LSTM Implementation 3	
Figure 5.49: Model Training 1	
Figure 5.50: Model Training 2	65
Figure 5.51: Model Training 3	
Figure 5.52: Model Training 4	67
Figure 5.53: Model Training 5	67
Figure 5.54: Model Training 6	68
Figure 5.55: Model Training 7	69
Figure 6.1" Model Testing 1	71
Figure 6.2: Model Testing 2	72
Figure 6.3: Model Testing 3	73
Figure 6.4: Model Evaluation 1	74
Figure 6.5: Model Evaluation 2	75
Figure 6.6: Model Evaluation 3	75
Figure 6.7: Loss Over Training Analysis	76
Figure 6.8: Testing Macro F1 Scores	77
Figure 6.9: Testing Accuracy	77
Figure 6.10: CNN Confusion Matrix Testing	78
Figure 6.11: ResNet Confusion Matrix Testing	79
Figure 6.12: ResNet+LSTM Confusion Matrix Testing	79
Figure 6.13: Evaluation Macro F1 Scores	80

Figure 6.14: Evaluation Accuracy	80
Figure 6.15: CNN Confusion Matrix Evaluation	81
Figure 6.16: ResNet Confusion Matrix Evaluation	82
Figure 6.17: ResNet+LSTM Confusion Matrix Evaluation	83
Figure 6.18: Macro-F1 Summary	86
Figure 6.19: Accuracy Summary	86

LIST OF ABBREVIATIONS

FYP - Final Year Project

CNN - Convolutional Neural Networks

ResNet - Residual Network

LSTM - Long Short-Term Memory

ResNet+LSTM AYS - Residual Network + Long Short-Term Memory

CPU

GPU

Computational Processing Unit

Graphical Processing Unit

LIST OF ATTACHMENTS

PAGE

Appendix A Source Code 95

CHAPTER 1: INTRODUCTION

1.1 Introduction

With the advancement of technology, people were introduced to many novel technologies that can help people with everything from a small task like planning a trip to a big task like helping humans go to outer space. Of course, there are many more amazing technologies that can help humans or even be used as a tool to do negative things such as share fake information or misinformation.

The spread of false information, which is made possible by the creation of sophisticated algorithms and tools, is one important issue that has surfaced in recent years. This misinformation includes the development of bogus audio, image, and video content in addition to fake news. In order to produce a convincing video of the target person saying or doing things they never actually did, these AI-generated works of art, known as deepfakes (Camacho et al., 2021).

Deepfakes are merely one type of synthetic media that can be produced in text, image, video, and audio formats. Concerns about the abuse of AI technology have been highlighted because of how easily manipulated or fraudulent multimedia content may be produced (Bartusiak & Delp, 2021). In several events involving the dissemination of false information and the fabrication of fabricated content, deepfakes in particular have emerged as a major strategy (Lim et al., 2022b).

We have barely begun to explore the potential repercussions of synthetic media. Deepfakes and other types of fabricated information have yet to be fully understood for the genuine harm they can cause. At the individual, societal, and global levels, this ticking time bomb has the potential to cause devastation (Bartusiak

& Delp, 2021). In addition, a deep fake audio can be used to commit fraud for example, A-K Energy's CEO was instructed to transfer 220,000 Euros to a Hungarian supplier when he believed he was speaking with his German supervisor (Khanjani et al., 2023).

1.2 Problem Statement

With the rise of deepfake technology, criminals are using it to create fake audio that can be used to spread false information, such as conduct phishing scams through phone calls. The challenge lies in developing effective methods to detect and differentiate between genuine and manipulated audio recordings.

The main problem is that these fake audio recordings can sound incredibly realistic, making it difficult for people to determine whether they are listening to a genuine voice or a manipulated one. This poses a significant risk to individuals' privacy and security, as well as the trustworthiness of audio content.

The goal is to develop robust and reliable techniques that can accurately identify deepfake audio. By doing so, the goal can minimize people from falling victim to fake information, fraudulent phone calls, and other malicious activities that exploit manipulated audio. This will help ensure the authenticity and reliability of audio content, providing individuals with the necessary tools to make informed decisions and maintain their trust in the audio they encounter in their daily lives. In addition, many deep learning algorithms has been proposed by many researchers around the world, this study also need to find which model has the better accuracy.

1.3 Research Question

Based on the aforementioned issue on problem statement, a few research questions have been developed, as shown in Table 1.1.

Table 1.1: Table of Research Question

No	Research Question	
1	What type of deep learning algorithm used to detect deepfake audio?	
2	Which deep learning algorithm is effective to detect deepfake audio?	
3	How is the performance and the accuracy of the model?	

1.4 Research Objective

Based on the aforementioned issue on problem statement, a few research questions have been developed, as shown in Table 1.2.

Table 1.2 Table of Research Objective

No	Research Objective		
1	To investigate the different types of deep learning models.		
2	To compare deep learning algorithms in detecting deepfake audio.		
3	To propose the deep learning algorithm that has better accuracy in		
	detecting deepfake audio.		

1.5 Research Summary Matrix

Table 1.3: Table of Research Summary Matrix

No	Research question	Research objective
1	What type of deep learning	To investigate the different types of
	algorithm used to detect	deep learning models.
	deepfake audio?	اه نبذه سيد تبك
2	Which deep learning algorithm	To compare deep learning algorithms in
	is effective to detect deepfake	detecting deepfake audio.
	audio?	
3	How is the performance and	To propose the deep learning algorithm
	the accuracy of the model?	that has better accuracy in detecting
		deepfake audio.

1.6 Scope of Research

Three deep learning algorithm methods will be used in this research to detect deepfake audio. Although they are popular and good in terms of performance and accuracy, the fundamental reason uses three different deep learning model such as CNN, ResNet50, and resnet50 combine with LSTM is to know how to implement it

and to know which model is the best among the three. These three models are closely related to each other especially CNN and ResNet50.

Convolutional Neural Networks (CNNs) are highly popular and frequently applied deep learning algorithms. They have shown effectiveness in a variety of computer vision applications, such as face detection, facial recognition, object detection, and others. In the other hand, Residual Network (ResNet) is also popular and well known as one of the go-to-go solution for image related problem.

ResNet is similar to Convolution Neural Network (CNN) but with additional special step or layer that make it better than traditional Convolutional Neural Network. This layer or special is enable researcher to solve a problem when employing deep layer in CNN which is vanishing gradient. The name of ResNet50 comes from the name of the model itself and the number comes from how many layers that the model has. LSTM or long short-term memory is an enhanced version of Recurrent Neural Network (RNN) algorithm. LSTM itself has a capability to learn dependencies in the data and make prediction based on the dependencies in the data. LSTM itself usually utilize for stock prediction, NLP (Natural Language Processing), language translation and more.

Python is another important tool in this study because it is the core component to implement those three models. Python is and high-level programming language where human can understand by studying the syntax and how they read. Python is a programming language that based on object-oriented programming (OOP) language. Meaning python supposedly use by creating a class and an object of the class, one advantage of OOP is the code can be modular, which is fixing and troubleshooting the code is easier because it the code consist of small chuck of code that user can manage piece by piece.

Another tool used in this study is Pytorch. Pytorch is an open-source deep learning framework that can help researcher in making deep learning model. Pytorch is an OOP like approach to make the model. Thus, making it easy to maintain and experiment.

The last tool used in this study is Kaggle kernel. Kaggle kernel is a cloud service provided by Kaggle targeted for people who want to try and build a machine learning or deep learning model. They offer a ready to go environment that people