

ANALYSIS OF CLASSIFICATION TECHNIQUES IN RANSOMWARE

DETECTION USING MACHINE LEARNING APPROACH

MEIZA CERMELLA BT ABDUL AZIZ

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

i

ANALYSIS OF CLASSIFICATION TECHNIQUES IN RANSOMWARE

DETECTION USING MACHINE LEARNING APPROACH

MEIZA CERMELLA BT ABDUL AZIZ

This report is submitted in partial fulfillment of the requirements for the

Bachelor of Computer Science (Computer Security) with Honours.

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2023

ii

DECLARATION

I hereby declare that this project report entitled

ANALYSIS OF CLASSIFICATION TECHNIQUES IN RANSOMWARE

DETECTION USING MACHINE LEARNING APPROACH

is written by me and is my own effort and that no part has been plagiarized

without citations.

STUDENT : ______________________________________ Date : ________

(MEIZA CERMELLA BT ABDUL AZIZ)

I hereby declare that I have read this project report and found

this project report is sufficient in term of the scope and quality for the award of

 Bachelor of Computer Science (Computer Security) with Honours.

SUPERVISOR : ______________________________________ Date : ________

(PM TS. DR ROBIAH BINTI YUSOF)

iii

DEDICATION

I dedicate this work to my parents, Saniah Binti Husin and Abdul Aziz Bin Hj Bakar

for their love, motivation and support in the aspect of emotional and financial support

that they have provided me throughout this project and as long as I live. My parents

have always believed in me, and their sacrifices have shaped me into the person I am

today. This accomplishment illustrates your unwavering trust in me, and I will be

forever grateful for your unconditional love and guidance.

I also would like to dedicate this work to my inspiring supervisor Profesor Madya Ts.

Dr Robiah Bt Yusof, my evaluator Ts. Haniza Bt. Nahar and especially all educators

at the Universiti Teknikal Malaysia Melaka (UTeM) for their wisdom and guidance

that has helped to shape my intellectual growth during my study. Additionally, I would

like to dedicate this work to my precious sibling, relatives and my friends that have

been with me providing motivational support and have supported me along the way.

Your encouragement, advice, and prayers have meant the world to me.

In the name of Allah, the Most Gracious, the Most Merciful. I dedicate this Final Year

Project to the God, the Almighty, for giving me the strength, wisdom, and guidance to

complete this project. Without His divine intervention, I would not have been able to

complete this Final Year Project. I am truly grateful for all the blessings that He has

bestowed upon me.

iv

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest appreciation to my supervisor

Profesor Madya Ts. Dr Robiah Bt Yusof for her continuous support, advice, and

patience to help me completing this project successfully. Her insights and expertise

have helped me to develop a strong understanding of the topic and she always

motivates me to explore new understanding of certain areas of topic that I’m not

familiar with. I’m grateful and honored to be under her supervision and I enjoy having

meetings and discussions with my supervisor as she always provides her best in

making me understand the discussions topic. In addition to that, I would like to express

my sincere gratitude to the Universiti Teknikal Malaysia Melaka (UTeM) for

providing me with the opportunity to complete my final year project on “Analysis Of

Classification Techniques In Ransomware Detection Using Machine Learning

Approach“ as the requirements for my program of Bachelor of Computer Science

(Computer Security) with Honours.

v

ABSTRACT

Ransomware is one of the most devastating cyberattacks in the malware category

which involves the victim device being locked from accessing the system. The increase

of ransomware attacks may be caused by several factors such as insufficient corporate

security defense and the trends of ransomware as a service known as (RaaS) affiliate

market. Additionally, most of the antivirus that use signature-based detection can be

ineffective especially for detecting new variants of ransomware. There’s also a

challenge in selecting appropriate classification techniques due to the extensive

scientific and technical materials involved. Therefore, taking all these problems into

consideration this project objective is to evaluate the performance of various

classification techniques for detection and classification of ransomware. The research

methodology involves acquiring a comprehensive ransomware dataset from reputable

sources such as Kaggle, UCI Machine Learning Repositories, and Resilient

Information Systems Security (RISS) Ransomware Dataset. The dataset undergoes

preprocessing steps, including data cleaning to handle missing values and noisy data.

Feature selection methods are applied to identify the most informative features,

thereby enhancing the accuracy of the ransomware detection system. Several machines

learning classifiers, including Decision Tree, Random Forest, Support Vector

Machines (SVM), and Naïve Bayes, are employed for training the ransomware

detection model. The resulting models are then evaluated using various evaluation

metrics such as accuracy, precision, recall, F-measure, and True Positive Rate (TPR).

and False Positive Rates (FPR). The outcomes of this study contribute to the

understanding of the performance of different classification techniques in the context

of ransomware detection. The findings illustrate that performance consistently

improves with larger balanced dataset sizes, notably Random Forest highest being

99.30% accuracy, exhibit remarkable accuracy gains when transitioning from

imbalanced to balanced datasets. Future research directions include exploring deep

learning methods, utilizing larger datasets, and conducting real-time testing to further

enhance the accuracy and zero-day attack of ransomware detection systems. This

research can serve as a reference for future work to combat the rising threat of

ransomware attacks.

vi

ABSTRAK

“Ransomware” adalah salah satu serangan siber yang paling dahsyat dalam

kategori perisian hasad yang melibatkan mangsa terkunci dari mengakses peranti.

Peningkatan serangan “ransomware” disebabkan oleh beberapa faktor seperti

pertahanan keselamatan korporat yang tidak mencukupi dan pola “ransomware”

sebagai perkhidmatan yang dikenali sebagai (RaaS). Selain itu, kebanyakan antivirus

yang tidak dapat mengesan varian “ransomware” baru. Terdapat juga cabaran dalam

memilih teknik klasifikasi yang sesuai kerana banyak bahan saintifik dan teknikal yang

terlibat. Oleh itu, dengan mempertimbangkan semua masalah ini, projek ini bertujuan

untuk menilai prestasi pelbagai teknik klasifikasi untuk pengesanan dan klasifikasi

“ransomware”. Metodologi penyelidikan melibatkan memperoleh set data

“ransomware” yang komprehensif dari sumber terkenal seperti Kaggle, Repositori

Pembelajaran Mesin UCI, dan Keselamatan Sistem Maklumat Berdaya Tahan (RISS)

Ransomware Dataset. Set data menjalani langkah-langkah pra-pemprosesan, termasuk

pembersihan data untuk menangani nilai yang hilang. Kaedah pemilihan ciri

digunakan untuk mengenal pasti ciri yang paling bermaklumat, sehingga

meningkatkan ketepatan sistem pengesanan “ransomware”. Beberapa mesin belajar

klasifikasi, termasuk Decision Tree, Random Forest, Support Vector Machines

(SVM), dan Naïve Bayes, digunakan untuk melatih model pengesanan ransomware.

Model yang dihasilkan kemudian dinilai menggunakan pelbagai metrik penilaian

seperti ketepatan, ketepatan, penarikan balik, ukuran F, dan Kadar Positif Sejati (TPR)

dan Kadar Posditif Palsu (FPR). Keputusan kajian ini menggambarkan bahawa

prestasi konsisten bertambah baik dengan saiz set data yang lebih besar, terutamanya

Random Forest tertinggi ketepatan 99.30%, mebuktikan kecekapan bagus apabila

beralih daripada set data tidak seimbang kepada seimbang. Arah penyelidikan masa

depan termasuk meneroka kaedah lain, menggunakan set data yang lebih besar, dan

menjalankan ujian masa nyata untuk meningkatkan lagi ketepatan dan serangan sifar

hari sistem pengesanan perisian tebusan. Penyelidikan ini boleh menjadi rujukan untuk

kerja masa depan dalam bidang pengesanan “ransomware” yang semakin meningkat.

vii

TABLE OF CONTENTS

 PAGE

DECLARATION ... II

DEDICATION .. III

ACKNOWLEDGEMENTS ... IV

ABSTRACT ... V

ABSTRAK .. VI

TABLE OF CONTENTS ... VII

LIST OF TABLES .. XIV

LIST OF FIGURES .. XVI

LIST OF ABBREVIATIONS ..XX

LIST OF ATTACHMENTS ... XXI

CHAPTER 1: INTRODUCTION ... 1

1.1 Introduction .. 1

1.2 Background .. 2

1.3 Problem Statement ... 3

1.4 Project Question ... 3

1.5 Project Objective .. 4

1.6 Project Scope ... 4

1.7 Project Contribution ... 5

viii

1.8 Report Organization ... 6

1.9 Summary .. 7

CHAPTER 2: LITERATURE REVIEW ... 8

2.0 Introduction .. 8

2.1 Ransomware ... 10

2.1.1 Definition ... 10

2.1.2 Categories .. 12

2.1.2.1 Locker .. 12

2.1.2.2 Crypto .. 13

2.1.2.3 Scareware ... 14

2.1.2.4 Leakware .. 14

2.1.2.5 RaaS ... 14

2.1.3 Lifecycle .. 15

2.1.4 Type of Attacks.. 18

2.1.4.1 Exploitable Software Vulnerabilities ... 18

2.1.4.2 Brute-Force Credential attacks .. 18

2.1.4.3 Phishing emails .. 18

2.1.4.4 Remote Desktop Protocol Attack .. 18

2.2 Machine Learning .. 19

2.2.1 Definition ... 19

2.2.2 Types.. 20

2.2.2.1 Supervised.. 20

2.2.2.2 Unsupervised ... 21

ix

2.2.2.3 Semi-supervised ... 21

2.2.2.4 Summary of type of machine learning ... 22

2.2.3 Tools .. 22

2.2.3.1 Weka .. 22

2.2.3.2 Orange.. 23

2.2.3.3 TensorFlow .. 23

2.2.3.4 Azure.. 23

2.2.3.5 Scikit-Learn ... 24

2.2.4 Summary of Machine Learning tools feature 25

2.3 Techniques ... 27

2.3.1 Definition ... 27

2.3.2 Classification Techniques .. 27

2.3.2.1 Decision Tree ... 28

2.3.2.2 Random Forest ... 29

2.3.2.3 Support Vector Machine .. 30

2.3.2.4 Naïve Bayes ... 31

2.3.2.5 Summary of machine learning algorithms 32

2.3.3 Analysis... 35

2.3.3.1 Datasets .. 35

2.3.3.2 Parameters .. 37

2.3.3.3 Train and Test Ratio... 41

2.3.3.4 Evaluation Techniques ... 42

2.4 Critical Review... 48

x

2.5 Proposed solution ... 52

2.6 Summary .. 52

CHAPTER 3: METHODOLOGY .. 53

3.0 Introduction .. 53

3.1 Project Methodology .. 54

3.1.1 Phase I: Identify and Gather Project Requirements 55

3.1.2 Phase II: Select Tools and Datasets ... 55

3.1.3 Phase III: Installing the Tools .. 56

3.1.4 Phase IV: Dataset Preparation ... 56

3.1.5 Phase V: Information Collection ... 57

3.1.6 Phase VI: Analyze the Information ... 57

3.1.7 Phase VII: Document Result ... 58

3.2 Research Milestone .. 58

3.3 Research Gantt Chart ... 59

3.4 Summary .. 60

CHAPTER 4: ANALYSIS AND DESIGN ... 61

4.0 Introduction .. 61

4.1 Research Workflow ... 62

4.2 Project Requirements Analysis .. 64

4.2.1 Hardware Requirements .. 64

4.2.2 Software Requirements .. 64

4.3 Architecture Analysis... 66

4.4 Proposed Research Design ... 67

4.5 Flowchart Design of Research ... 69

xi

4.6 Tools interface ... 71

4.8 Summary .. 72

CHAPTER 5: IMPLEMENTATION ... 73

5.0 Introduction .. 73

5.1 Research Implementation Activities .. 74

5.2 Step 1: Environment Setup based on Requirements 75

5.2.1 Hardware.. 75

5.2.2 Operating System... 76

5.2.3 Software ... 76

5.3 Step 2: Installation and Configurations Machine Learning Setup 78

5.3.1 Installation and Configurations WEKA .. 78

5.4 Step 3: Acquiring Datasets... 81

5.5 Step 4: Pre-Processing ... 82

5.5.1 Steps for Pre-Processing .. 82

5.5.2 Comparison Before and After .. 84

5.6 Step 5: Load Dataset .. 85

5.6.1 Steps to Load Dataset for WEKA .. 85

5.6.2 Steps to Load Dataset for ORANGE ... 87

5.7 Step 6: Classification ... 88

5.7.1 Steps to classify data in WEKA... 89

5.7.2 Steps to classify data in ORANGE .. 90

5.8 Step 7: Generate Result .. 91

5.8.1 Step 7: Generate Result for WEKA ... 91

5.8.2 Step 7: Generate Result for ORANGE .. 92

xii

5.9 Conclusion ... 93

CHAPTER 6: TESTING AND EVALUATION ... 94

6.0 Introduction .. 94

6.1 Testing.. 95

6.1.1 Test for various dataset size and unbalanced vs balanced dataset . 97

6.1.2 Test for various ratio of training and testError! Bookmark not

defined.

6.2 Result and Analysis Dataset I .. 99

6.2.1 Evaluation Metric Result of 1000 BitcoinHeist Ransomware

Samples for Unbalanced and Balanced Ransomware Detection ... 99

6.2.2 Evaluation Metric Result of 5000 BitcoinHeist Ransomware

Samples for Unbalanced and Balanced Dataset Ransomware

Detection .. 102

6.2.3 Evaluation Metric Result of 10 000 BitcoinHeist Ransomware

Samples for Unbalanced and Balanced Dataset Ransomware

Detection .. 105

6.2.4 Accuracy of Classification Model Across Different Sample Sizes .. 108

6.2.5 Accuracy of Classification Model for Different Ratio 109

6.2.6 Comparison between WEKA and Orange 112

6.3 Result and Analysis Dataset II ... 116

6.3.1 Evaluation Metrics Result of 1000 Android Samples for Unbalanced

and Balanced Ransomware Detection ... 116

6.3.2 Evaluation Metric Result of 5000 Android Samples for Unbalanced

and Balanced Dataset Ransomware Detection 119

6.3.3 Evaluation Metric Result of 10 000 Android Samples for

Unbalanced and Balanced Dataset Ransomware Detection 122

6.3.4 Accuracy of Classification Model Across Different Sample Sizes .. 125

6.3.5 Accuracy of Classification Model for Different Ratio 126

6.3.6 Comparison between WEKA and Orange 129

6.4 Result and Analysis Dataset III.. 133

xiii

6.4.1 Evaluation Metrics Result of 1000 File System Behavior

Ransomware dataset for Unbalanced and Balanced Ransomware

Detection .. 133

6.4.2 Evaluation Metrics Result of 5000 File System Behavior

Ransomware dataset for Unbalanced and Balanced Ransomware

Detection .. 137

6.4.3 Evaluation Metrics Result of 10 000 File System Behavior

Ransomware dataset for Unbalanced and Balanced Ransomware

Detection .. 140

6.4.4 Accuracy of Classification Model Across Different Sample Sizes .. 143

6.4.5 Accuracy of Classification Model for Different Ratio 144

6.4.6 Comparison between WEKA and Orange 147

6.5 Tools Comparison .. 151

6.6 Significant Results ... 156

6.7 Summary .. 159

CHAPTER 7: CONCLUSION .. 160

7.0 Introduction .. 160

7.1 Project Summarization ... 161

7.2 Project Contributions ... 162

7.3 Project Limitations ... 162

7.4 Future Work ... 163

7.5 Summary .. 164

REFERENCES ... 165

APPENDIX A ... 172

APPENDIX B ... 175

APPENDIX C ... 182

APPENDIX D ... 184

xiv

LIST OF TABLES

 PAGE

Table 1.1 Summary of Problem Statement .. 3

Table 1.2 Summary of Project Question .. 3

Table 1.3 Summary of Project Objective ... 4

Table 1.4 Summary of Project Contribution .. 5

Table 2.1 Summarization of each Machine Learning tools feature based on reviewed

literatures .. 25

Table 2.2 Summarization Machine Learning algorithms based on previous study ... 32

Table 2.3 indicator to represent the machine learning algorithms 33

Table 2.4 Summarization of each Machine Learning algorithms based on the tools 34

Table 2.5 Ransomware families of dataset 1 mapped to its category 36

Table 2.6 Ransomware of families of dataset 2 mapped to its category 36

Table 2.7 Ransomware of families of dataset 3 mapped to its category 38

Table 2.8 Parameters used in Kaggle Dataset Android Ransomware Detection 39

Table 2.9 Parameters used in Resilient Information Systems Security (RISS)

Ransomware Dataset .. 40

Table 2.10 Parameters used in UCI BitcoinHeistRansomwareAddressDataset Data Set

 .. 40

Table 2.11 Summary review for evaluation metrics based on reviewed literatures .. 46

Table 2.12 Indicator to represent the evaluation metrices ... 47

Table 2.13 Summary of critical review for previous research articles 48

Table 3.1 Summary of Research Milestone ... 58

Table 3.2 Research Gantt Chart .. 9

Table 4.1 Summary of hardware specifications. .. 64

Table 4.2 Summary of software specifications .. 65

 PAGE

Table 6.1 Evaluation Metrics Result of 1000 BitcoinHeist Samples 101

xv

Table 6.2 Evaluation Metrics Result of 5000 BitcoinHeist Samples 104

Table 6.3 Evaluation Metrics Result of 10 000 BitcoinHeist Samples 107

Table 6.4 Summary of results Dataset I for TPR, FPR, Precision, Recall, F-measure

and Accuracy in WEKA... 114

Table 6.5 Summary of results Dataset I for TPR, FPR, Precision, Recall, F-measure

and Accuracy in ORANGE .. 116

Table 6.6 Evaluation Metrics Result of 1000 Android Samples 118

Table 6.7 Evaluation Metrics Result of 5000 Android Samples 121

Table 6.8 Evaluation Metrics Result of 10 000 Android Samples 124

Table 6.9 Summary of results Dataset II for TPR, FPR, Precision, Recall, F-measure

and Accuracy in WEKA (70:30) .. 131

Table 6.10 Summary of results Dataset II for TPR, FPR, Precision, Recall, F-measure

and Accuracy in ORANGE (70:30) ... 133

Table 6.11 Evaluation Metrics Result of 1000 File System Behavior Ransomware

dataset ... 135

Table 6.12 Evaluation Metrics Result of 5000 File System Behavior Ransomware

dataset ... 138

Table 6.13 Evaluation Metrics Result of 10 000 File System Behavior Ransomware

dataset ... 141

Table 6.14 Summary of results Dataset III TPR, FPR, Precision, Recall, F-measure

and Accuracy in WEKA (70:30) .. 148

Table 6.15 Summary of results Dataset III for TPR, FPR, Precision, Recall, F-measure

and Accuracy in ORANGE (70:30) ... 150

Table 6.16 Classifier performance comparison between WEKA and Orange

(10 000 samples ,10:90) ... 152

Table 6.17 Classifier performance comparison between WEKA and Orange

(10 000 samples ,30:70) ... 153

Table 6.18 Classifier performance comparison between WEKA and Orange

(10 000 samples ,50:50) ... 154

Table 6.19 Classifier performance comparison between WEKA and Orange

(10 000 samples ,70:30) ... 155

Table 6.20 Classifier performance comparison between WEKA and Orange

(10 000 samples ,70:30) ... 156

Table 6.21 Significant Results for comparison of previous research....................... 159

xvi

LIST OF FIGURES

 PAGE

Figure 2.1 Research Framework .. 9

Figure 2.2 Known ransomware attacks by gang, March 2023 (Malwarebytes, 2023)

 .. 11

Figure 2.3 Ransom note display at the infected device by the Locker (Avast, 2022) 12

Figure 2.4 Payment method used for retrieving the private key due to the CryptoLocker

(Avast, 2022) .. 13

Figure 2.5 Infection phases of ransomware lifecycle (Abbasi, 2023)........................ 15

Figure 2.6 Categories of machine learning (Naqa et al., 2015) 20

Figure 2.7 Example of decision tree. (SecurityExperts.it) ... 28

Figure 2.8 Example of Random Forest (javatpoint)... 29

Figure 2.9 Example of Support Vector Machine (javatpoint).................................... 30

Figure 2.10 Example of Naïve Bayes (Chaudhuri, 2022) .. 31

Figure 2.11 Accuracy Formula (Kok et al., 2020) ... 42

Figure 2.12 True Positive Rate (TPR) Formula (Kok et al., 2020) 43

Figure 2.13 False Positive Rate (FPR) Formula (Kok et al., 2020) 43

Figure 2.14 True Negative Rate (TPR) Formula (Kok et al., 2020) 43

Figure 2.15 False Negative Rate (FNR) Formula (Kok et al., 2020) 44

Figure 2.16 Precision Formula (Kok et al., 2020).. 44

Figure 2.17 Recall Formula (Kok et al., 2020) .. 45

Figure 2.18 F-measure Formula (Kok et al., 2020).. 45

Figure 3.1 Project methodology ... 54

Figure 3.2 Process to Identify and gather project requirement 55

Figure 3.3 Process of selecting tools and dataset ... 55

Figure 3.4 Process of installing the selected machine learning tools 56

Figure 3.5 Process of Dataset Preparation ... 56

xvii

Figure 3.6 Process of Information collections ... 57

Figure 3.7 Process of analyze the information ... 57

Figure 3.8 Process of document result ... 58

Figure 4.1 Workflow for the preparation of dataset for Phase III of the research 62

Figure 4.2 Dataset “Android Ransomware” from Kaggle ... 63

Figure 4.3 Workflow of the training and testing .. 63

Figure 4.4 Overview of architecture analysis of this project 66

Figure 4.5 Proposed research design for ransomware detection model 67

Figure 4.6 Flowchart of WEKA to visualize possible scenario that might occur 69

Figure 4.7 WEKA GUI chooser ... 71

Figure 4.8 Example of Result when Load the Dataset I Andoroid Ransomware to the

WEKA .. 71

Figure 4.9 Main user interface of Orange .. 72

Figure 5.1 Diagram Outlining Research Implementation Activities 74

Figure 5.2 hardware specifications .. 75

Figure 5.3 Operating System specifications... 76

Figure 5.4 WEKA official website... 76

Figure 5.5 Orange official website ... 77

Figure 5.6 Setup Wizard of WEKA ... 78

Figure 5.7 WEKA License Agreement .. 79

Figure 5.8 WEKA Associate Package Files ... 79

Figure 5.9 WEKA Installation Location .. 80

Figure 5.10 WEKA interface ... 80

Figure 5.11 Android Ransomware Detection dataset .. 81

Figure 5.12 BitcoinHeistRansomwareAddress Dataset ... 81

Figure 5.13 selecting the dataset in csv file format .. 82

Figure 5.14 Categorization of dataset attributes .. 82

Figure 5.15 Categorization of dataset attributes .. 83

Figure 5.16 Categorization of dataset attributes .. 83

Figure 5.17 Dataset 1 before Pre-Processing ... 84

Figure 5.18 Dataset 1 with defined relation and attributes .. 84

Figure 5.19 Dataset 1 with defined data... 85

Figure 5.20 Weka Interface .. 85

Figure 5.21 Loading the .arff file format dataset into WEKA 86

xviii

Figure 5.22 graph for visualize the Ransomware and Benign samples 86

Figure 5.23 Loading dataset into Orange ... 87

Figure 5.24 Data Table representation in Orange .. 87

Figure 5.25 Assigning target class in Orange .. 88

Figure 5.26 WEKA explorer .. 89

Figure 5.27 Selection of classification algorithms in WEKA 89

Figure 5.28 Selection of classification algorithms in Orange 90

Figure 5.29 Connecting each nodes in Orange .. 90

Figure 5.30 Dataset splitting in WEKA ... 91

Figure 5.31 Evaluation Metrics result for Decision Tree in WEKA.......................... 92

Figure 5.32 Dataset splitting in Orange ... 92

Figure 5.33 Completion percentage of Test and Score process 93

Figure 5.34 Evaluation Metrics result for Decision Tree in Orange 93

Figure 6.1 Test Plan Strategy ... 97

Figure 6.2 Flowchart Conducting Test Plan .. 98

Figure 6.3 Command for Sub-sampling the Ransomware dataset using Python

language in Jupyter Notebook .. 99

Figure 6.4 Command to show the Ransomware dataset dimentsion before and after

sub-sampling method ... 100

Figure 6.5 Graph Accuracy for 1000 BitcoinHeist Samples.................................... 103

Figure 6.6 Graph Accuracy for 5000 BitcoinHeist Samples.................................... 106

Figure 6.7 Graph Accuracy for 10 000 BitcoinHeist Samples................................. 109

Figure 6.8 Graph Accuracy for Classification Model Across Different Sample Sizes of

BitcoinHeist Ransomware .. 110

Figure 6.9 Graph Accuracy for 1000 BitcoinHeist Samples across Different

Ratio ... 111

Figure 6.10 Graph Accuracy for 5000 BitcoinHeist Samples across Different

Ratio ... 112

Figure 6.11 Graph Accuracy for 10 000 BitcoinHeist Samples across Different

Ratio .. 113

Figure 6.12 Graph Accuracy for 1000 Android Samples .. 120

Figure 6.13 Graph Accuracy for 5000 Android Samples .. 123

Figure 6.14 Graph Accuracy for Classification Model Across Different Sample Sizes

of FileSystem Behavior Ransomware .. 141

xix

Figure 6.15 Graph Accuracy for Classification Model Across Different Sample Sizes

of Android Ransomware .. 127

Figure 6.16 Graph Accuracy for 1000 Android Samples across Different Ratio 128

Figure 6.17 Graph Accuracy for 5000 Android Samples across Different Ratio 129

Figure 6.18 Graph Accuracy for 10 000 Android Samples across Different Ratio . 130

Figure 6.19 Graph Accuracy for 1000 File System Behavior Ransomware

 ... Dataset 137

Figure 6.20 Graph Accuracy for 5000 File System Behavior Ransomware

 ... Dataset 140

Figure 6.21 Graph Accuracy for 10 000 File System Behavior Ransomware dataset

143

Figure 6.22 Graph Accuracy for Classification Model Across Different Sample Sizes

of Filesystem Behavior Ransomware... 144

Figure 6.23 Graph Accuracy for 1000 File System Behavior Ransomware Dataset

across Different Ratio .. 145

Figure 6.24 Graph Accuracy for 5000 File System Behavior Ransomware Dataset

across Different Ratio ... 146

Figure 6.25 Graph Accuracy for 10 000 File System Behavior Ransomware Dataset

across Different Ratio 1 ... 47

Figure 6.26 Overall Test Plan Findings .. 157

xx

LIST OF ABBREVIATIONS

FYP - Final Year Project

Acc Accuracy

TPR True Positive Rate (also known as Sensitivity, Recall, or Hit Rate)

FPR False Positive Rate

TNR True Negative Rate (also known as Specificity)

FNR False Negative Rate

Prec Precision

Recall Recall

F-m F-measure (also known as F1 Score)

AUC Area Under the ROC Curve

MCC Matthews Correlation Coefficient

PLR Positive Likelihood Ratio

NLR Negative likelihood ratio

DOR Diagnostic odds ratio

J Youden’s index

NND Number needed to diagnose

NNM Number needed to misdiagnose

NB Net benefit

xxi

LIST OF ATTACHMENTS

 PAGE

Appendix A Details of critical review 163

Appendix B Implementation classification models 166

Appendix C Sample of Python code for Sub-

sampling

173

Appendix D Results Generated for WEKA and

Orange

175

1

CHAPTER 1: INTRODUCTION

1.1 Introduction

Ransomware is one of the types of malicious software also known as malware.

It’s one of the most devastating cyberattacks in the malware category which involves

the victim device being locked from accessing the system (Fedor, 2023). According to

(Madani et al., 2023) ransomware has the ability to infect devices through multiple file

format such as .exe, .docx, .ppt and etc. Other issues related to ransomware includes,

it can spread via social engineering using email attachments and compromised

websites links to attack individual and organizations (Mohammad, 2020). In addition,

another issue concerns the financial aspect. According to the Cybersecurity venture

predict, the cost of ransomware will be over $42 billion by the end of 2024 and over

$265 billion by 2031 due to the rising number of cases (Fedor, 2022). The increase of

ransomware attacks is caused by several factors such as insufficient corporate security

defense and trends of RaaS (Ransomware-as-a-Service) affiliate market. Ransomware-

as-a-Service is a business model developed by the ransomware creators which

distributes and sells it to other cybercriminals (Kaspersky, n.d). The subscribers who

take part in the Ransomware-as-a-Service are known as affiliates or users. The model

is derived from the concept such as SaaS (Software-as-a-Service) but in this case it is

being used for malicious purposes. The trades of ransomware can be found especially

on the dark web and one of the famous cases involves the LockBit ransomware. (Antal,

2023) stated that Lockbit is the number one leading for Ransomware attacks by gang

in January 2023. Other deadliest ransomware groups such as Conti, REvil, DarkSide

and DopplePaymer (Antal, 2023).

2

1.2 Background

One of the most significant cases includes President of Costa Rica, Rodrigo

Chaves Robles that announced national state of emergency due to continuing

ransomware attack in May 2022 by the Russian group Conti gang (Security

Intelligence, 2023). Most antivirus that use signature-based detection can be

ineffective especially for detecting new variants of ransomware that can evade

detection using techniques such as polymorphism and code obfuscation. According to

(Gagulic et al., 2023) there has been proposed research for Ransomware detection with

Machine Learning in Storage Systems using the Random Forest classification

technique with 97.3% of F1-Score. Besides, (Horduna et al., 2023) has stated that

machine learning can be implemented to detect and predict ransomware attack

behavior, in order to counter the current issues regarding ransomware. Other than that,

according to (Khalil et al., 2022) there are many machine learning algorithms and

classification techniques for detection of ransomware that have been proposed.

However, there’s still a lack of knowledge on implementing various

classification techniques for analyzing ransomware. According to (Smith et al., 2022)

due to large scientific and technical resources, it’s challenging to identify suitable

machine learning classification techniques for analyzing ransomware. Therefore,

taking all these problems into consideration this project proposed research to study

more about various classification techniques that can be used to analyze ransomware

using machine learning approach. Other than that, this project will also apply the

classification techniques to ransomware dataset and evaluate the accuracy result of

classification techniques using different evaluation metrics tool. The datasets can be

obtained from official dataset repositories such as Kaggle (Chakraborty, 2023), UCI

Machine Learning Repositories (Sgandurra at al., 2016), Resilient Information

Systems Security (RISS) Ransomware Dataset which are collected and analyzed from

the Cuckoo sandbox and others.

3

1.3 Problem Statement

Ransomware attacks are continually evolving which involve new groups of threat

actors to grow and ransomware malware being developed. There is a need for

improvement of previous research in accordance with ransomware attacks being one

of the most significant issues in cybersecurity.

Table 1.1 Summary of Problem Statement

PS Problem Statement

PS1 It’s challenging to identify suitable machine learning classification

techniques for analyzing Ransomware due to large scientific and

technical materials being used.

Table 1.1 shows the problem statements in this project. Several studies (Khalil et al.,

2022) have proposed numerous machine learning algorithms and classification

techniques for ransomware detection. However, there remains a knowledge gap

regarding the practical implementation of different classification techniques for

analyzing ransomware. Additionally, the extensive scientific and technical resources

available make it challenging to identify appropriate machine learning classification

techniques for ransomware analysis, as highlighted by (Smith et al., 2022).

1.4 Project Question

Table 1.2 Summary of Project Question

PS PQ Project Question

PS1

PQ1 What are the different classification techniques in Machine

Learning that can be used to analyze ransomware?

PQ2 How can the classification techniques in Machine Learning be

applied to ransomware datasets to accurately identify

ransomware attacks?

PQ3 How to identify the best classification techniques in detecting

Ransomware.

4

Table 1.2 shows the project question that’s derived based on the problem statement in

Table 1.1. Project question 1 focuses on identifying different classification techniques

in Machine Learning that can be used to analyze ransomware. Project question 2

focuses on the technique to apply the ransomware dataset to identify and categorize

the ransomware attack. The last project question is to identify the best classification

techniques in ransomware detection.

1.5 Project Objective

Based on the project questions above, Table 1.3 shows the summary of project

objective that’s constructed based on each of the project questions.

Table 1.3 Summary of Project Objective

PS PQ PO Project Objective

PS1

PQ1 PO1 To study the classification techniques for analyzing

Ransomware

PQ2 PO2 To apply the classification techniques to

Ransomware dataset.

PQ3 PO3 To evaluate the accuracy result of classification

techniques using different evaluation metrics tool.

1.6 Project Scope

The scope of this project is listed down as below:

1) Data collection involves datasets from various data repositories that will be

used in this project.

• Dataset 1 Ransomware: UCI

BitcoinHeistRansomwareAddress Data Set

https://archive.ics.uci.edu/ml/datasets/BitcoinHeistRansomwareA

ddressDataset#

https://archive.ics.uci.edu/ml/datasets/BitcoinHeistRansomwareAddressDataset
https://archive.ics.uci.edu/ml/datasets/BitcoinHeistRansomwareAddressDataset

5

• Dataset 2 Ransomware: Kaggle Dataset Android

Ransomware Detection

https://doi.org/10.34740/KAGGLE/DSV/4987535

• Dataset 3 Ransomware: Kaggle Dataset Ransomware

Detection File System Behavior

https://www.kaggle.com/datasets/amdj3dax/ransomware-

detection-data-set?resource=download

2) This project will implement various classification techniques in machine

learning such as Decision Tree, Random Forest, Support Vector Machine

and Naïve Bayes to identify the best technique for detection of

Ransomware.

3) Machine Learning tools that will be used in this project are Weka and

Orange.

4) This project will evaluate the accuracy using evaluation metrices such as

True Positive Rate (TPR), False Positive Rate (FPR), Recall, Precision,

Accuracy and F-measure score will be assessed.

1.7 Project Contribution

Table 1.4 shows the project contribution that’s mapped based on the project objectives,

project question and the problem statement.

Table 1.4 Summary of Project Contribution

PS PQ PO PC Project Contribution

PS1

PQ1 PO1 PC1 Taxonomy of Ransomware and its classification

techniques.

PQ2 PO2 PC2 Proposed the best classification technique to be

applied for Ransomware dataset.

PQ3 PO3 PC3 Verified the best classification technique based on

the evaluation of the accuracy result.

https://doi.org/10.34740/KAGGLE/DSV/4987535
https://www.kaggle.com/datasets/amdj3dax/ransomware-detection-data-set?resource=download
https://www.kaggle.com/datasets/amdj3dax/ransomware-detection-data-set?resource=download

6

1.8 Report Organization

This section illustrates the organization of this report, which includes a total of six

chapters.

Chapter 1: Introduction

The first chapter introduces the background of ransomware and its problem statements

based on current issues. This chapter also outlines the research project questions,

project objectives, the scope, project contribution, project organization and conclusion

as the summarization of chapter 1.

Chapter 2: Literature Review

The second chapter will include analysis of previous study regarding ransomware. This

chapter will provide reviewed of research papers to study the approaches used in

machine learning for identifying ransomware attacks.

Chapter 3: Methodology

The third chapter explains the approaches/methodology that will be used to carry out

the research as justified in previous chapter. This chapter will also outline the project

schedule and milestone to ensure completion of the project activities are according to

the timeline.

Chapter 4: Analysis and Design

The fourth chapter will focus on the workflow of the research. This chapter will also

illustrate the architecture design that will be used for the next chapter.

Chapter 5: Implementation

The fifth chapter will focus on the implementation of the project. This chapter will

apply the classification techniques in machine learning to the Ransomware dataset

using tools such as Weka and Orange.

7

Chapter 6: Testing and Evaluation

The sixth chapter will discuss the testing and evaluation of the project. This chapter

will analyze and evaluate the accuracy result of classification techniques using

different evaluation metrics tools.

Chapter 7: Conclusion

This chapter will include the project summarization, the contribution, project

limitation and improvement for future work.

1.9 Summary

In conclusion, this project aims to have a better understanding in implementing

various classification techniques for analyzing Ransomware. A comparison will be

made to propose which classification techniques is the best to be applied for

Ransomware dataset. In addition, this project will also verify the best classification

technique based on the evaluation of the accuracy result. This chapter includes

background of Ransomware, problem statement, project questions, project objective,

project scope, project contribution and the report organization. In the next chapter,

review of various research papers will be analyzed to study the approaches used in

machine learning for identifying ransomware attacks.

CHAPTER 2: LITERATURE REVIEW

2.0 Introduction

The second chapter will include analysis of previous study regarding

ransomware. This chapter will provide reviewed of research papers to study the

approaches used in machine learning for identifying ransomware attacks. In addition

to that, the objective is to provide an overview of existing research and knowledge in

relation to the research. Indirectly it helps in identifying existing research restrictions,

such as the type of classification method used, the type of research method, and the

accuracy of the algorithms. Therefore, this can assist in identifying gaps in the

available literature and help construct the theoretical framework.

Figure 2.1 below shows the framework for this chapter. The framework is

important which will be used as guideline to follow what will be done in this chapter.

The next section will discuss in detail about the ransomware such as the definition,

categories, lifecycle, type of attacks, cases timeline, machine learning types, tools

available, classification techniques and the analysis.

9

Figure 2.1 Research Framework

10

2.1 Ransomware

In this section, it includes the discussion of ransomware definition based on

author from multiple existing journals, different categories of ransomware, its

lifecycle, and the type of ransomware attack that are available. In addition, this section

will discuss and review the ransomware cases based on the timeline. Analysis of these

cases allows us to identify the pattern and common features that contribute to

understanding of ransomware detection in this domain.

2.1.1 Definition

According to (Fernando et al., 2020) ransomware is one of the malware types

that’s designed to prevent user access to the target device files and the entire system.

Most of the threat actors will demand fees in form of cryptocurrency such as Bitcoin

as the bargain to the victim until it’s paid (Horduna et al., 2023). The reason why

bitcoin is the most preferred method of payment is because cryptocurrency

transactions are anonymous and non-reversible. Therefore, this will make the law

enforcement become harder to track down the attacker since the actual identities of the

individual that is involved in the transactions are not revealed. Additionally non-

reversible in this context means once the attacker receives the payment, the transaction

is added to the blockchain which is non-refundable unlike the traditional financial

system that allows it. Therefore, this will eliminate the risk of the victim reversing the

transaction after regaining access to their data.

Other than that, similar to the research work by (Madani et al., 2023) that

defines ransomware as the malware type that causes damage to the system by

encrypting all the files in the victim device. The author also states that, usually to

regain access to the data, the victim will need to pay the ransom fee in exchange of the

decryption key. Additionally, the author specifically states that ransomware has the

ability to infect devices through multiple file formats such as .exe, .doc, .docx, .ppt,

.jpg, .xlsx and others. This can lead to the situation where, the user unintentionally

opens a file that seems harmless but actually infected by the ransomware that can

damage the metadata.

11

In addition to that, (Kaspersky, 2023) mentioned that the word ransom in the

“ransomware” itself conveys the meaning of it. It suggests that ransomware is intended

to hold the victim's file or system captive in exchange for a ransom payment. It also

defines the term “malware” as the malicious software that causes harm to the victim

computer system.

Figure 2.2 Known ransomware attacks by gang, March 2023 (Malwarebytes, 2023)

Figure 2.2 shows the ransomware attack according to the ransomware gang

offender based on the report from Malwarebytes. Based from this figure we can see

that the top three offender is “CLOP”, “LockBit” and “BlackBasta”. According to the

news by BleepingComputer on 28th April 2023, there have been reports on ransomware

activities. Microsoft has linked recent assaults on PaperCut servers to the Clop and

LockBit ransomware operations, which is an intriguing scenario. Clop claims to have

exploited these servers starting from April 13th, which coincided with Microsoft's

observation of active exploitation of vulnerabilities. The ransomware group clarified

that they used these exploits for gaining initial access to corporate networks rather than

stealing archived documents.

12

2.1.2 Categories

In this section, it will include discussion of all categories in ransomware. This section

will compare each type of categories to understand its behavior. As shown in the

framework based on Figure 2.1, ransomware can be in the category of Locker, Crypto,

Scareware, Leakware and RaaS.

2.1.2.1 Locker

Figure 2.3 Locker ransom note shows at the infected device (Avast, 2022)

Figure 2.3 shows the information of the ransom note by Locker v1.7 as stated by

Bleeping Computers. Meanwhile, according to (Horduna et al., 2023) locker

ransomware has a low-level risk which blocks access to the computing resources.

While the interface is locked, the victim can only use the mouse and keyboards to pay

the ransom. On the other hand, (Abbasi, 2023) defines that locker ransomware will

lock the computer in which the victim has limit access or even no functionality.

Usually, the malicious attacker will leave a ransom note on the victim’s device lock

screen. This type of ransomware is also referred as screen-lockers. (Kharraz et al.,

2018) states that type of ransomware only block access to the victim’s system without

using encryption method.

13

2.1.2.2 Crypto

Figure 2.4 Payment method used for retrieving the private key due to the

CryptoLocker (Avast, 2022)

As stated by (Abbasi, 2023) crypto ransomware will use encryption methods in order

to lock the victim’s data. The author notes that, some of the attacker use symmetric

cryptography, however most of the modern ransomware will use hybrid cryptography.

Hybrid cryptography approach means the attacker will encrypt the victim’s file using

symmetric cryptography (single key to both encryption and decryption data), and then

asymmetric cryptography will be used to encrypt the symmetric session keys used for

file encryption.

By implementing this approach, the attacker can send the encrypted symmetric session

keys to the victim while keeping the private key used for encryption secret. In addition,

(Kok et al., 2020) has emphasize that, crypto ransomware is considered to be most

damaging type of ransomware. This is because many organisations have been obliged

to pay in return for the decryption key, owing to the fact that encrypted files will remain

unavailable even after the ransomware has been completely removed. Figure 2.4 above

shows the payment procedure for the victim that has been infected with CryptoLocker

ransomware.

14

2.1.2.3 Scareware

As the name indicates, scareware is a type of malicious software in the category of

ransomware that’s designed to scare the user. According to (Horduna et al., 2023), it

usually uses social engineering to trick the victim into downloading the malware. For

example, a pop-up message that seems legitimate claims that the user's computer is

infected with a virus. This action will intimidate the victim and encourage them to take

further action such as purchasing the fake software.

On the other hand, (Abbasi, 2023) define scareware is a type of ransomware that make

use of people’s fear and demands purchase to be made in order to avoid worse

consequences. Unlike crypto ransomware that encrypt the user system, scareware does

not do anything to the victim data which make it one of the low-level risk ransomware.

2.1.2.4 Leakware

According to (Horduna et al., 2023) leakware is designed not only to encrypt the

victim’s file but it also threatens to release the victim’s data publicly. The author

highlights that leakware is one of the high-risk level ransomwares because the impact

can be severe for organization. (Moussaileb, 2020) states that data is the most valuable

asset as it can lead to millions of dollars in terms of losses if it’s released publicly. In

accordance with that matter, the attacker usually uses leakware or also known as

Doxware to target critical infrastructure such as the bank and other institution that

work with confidential and important data .

2.1.2.5 RaaS

According to (Salvi, 2019) RaaS which means Ransomware-as-a-service is a type of

online subscription that’s based on ransomware model. Third-party criminal

entrepreneurs provide malicious users a platform for the purpose of using ransomware

such as to keep the hostage computer files. The author also highlights that RaaS has

become a trend because it enables attackers who lack coding skills to collaborate with

ransomware developers who might not wish to carry out assaults themselves.

The creators will earn money by writing and adapting the code while the attacker rents

the ransomware. In addition, (Horduna et al., 2023) defines RaaS to be an affiliate

15

scheme that benefits attackers with low technical knowledge about creating

ransomware but are a member of the scheme.

In conclusion, this section helps to understand the difference between each

ransomware category. Specifically for this project, based on the dataset obtained from

official dataset repositories which are Kaggle, UCI Machine Learning Repositories,

Resilient Information Systems Security (RISS) Ransomware Dataset, it will focus on

the Crypto, Locker, Leakware and Ransomware-as-a-service (Raas) type of

ransomware.

2.1.3 Lifecycle

Figure 2.5 Infection phases of ransomware lifecycle (Abbasi, 2023)

According to some existing studies, such as (Abbasi, 2023) and (Silva, 2019) the

ransomware lifecycle also known as the attack kill chain has been proposed. The

ransomware lifecycle refers to the series of stages it requires in performing a typical

ransomware attack. As shown in Figure 2.5, the research (Abbasi, 2023) has

emphasized six stages involved in the ransomware lifecycle which are Distribution,

Infection, Communication, File Search, Encryption and Ransom Demand.

16

i. Distribution Phase

This phase involves the attacker finding ways or vulnerability to deliver the

ransomware to the victim device or network system. According to (Abbasi,

2023) the distribution of ransomware using standard propagation method such

as phishing and drive-by downloads. However, it’s not only limited to that

method, but some of the sophisticated ransomwares can also take advantage of

exploiting different network vulnerabilities. For example, precisely as stated

by (Kharraz et al., 2018) the WannaCry attacks has exploited the EternalBlue

vulnerability contributing as one of the largest ransomware attacks.

ii. Infection Phase

Once the ransomware has been delivered, it can start to infect and compromise

victim system by performing task such as collection the infected device

information and disabling the anti-malware programs (Abbasi, 2023).

iii. Communication Phase

The attacker will communicate using command and control (C&C) server in

order to fetch information and send instructions to the infected device (Cusack,

2018) On the other hand, (Abbasi, 2023) has stated that the command and

control (C&C) server also can be used to get the session keys information that’s

used for the victim’s files encryption process.

iv. File Search Phase

According to (Abbasi, 2023) in this phase the ransomware searches for files to

be encrypted. However, different ransomware families implement different

techniques for searching files to be encrypted. Traversing for files can start

from randomly chosen directory, root directory or user directory (C:/Users/).

As stated by (Lee, 2017) there are two methods, first is by enumerates all the

file types (.ppt, .pptx, .txt, .doc, docx, etc) after scanning all the mounted file

systems and the encryption will be performed. Second method is immediately

encrypting the file when it detects a certain file extension.

17

v. Encryption Phase

In this phase, it will use encryption algorithm to encrypt the files. In addition

to that, (Muslim, 2019) states that aside from encrypting the files it can seek

and damage folder even those that’s hidden and contain backup files. The files

are intentionally damaged in order to impede computer users from conducting

backup restore.

vi. Ransom Demand Phase

After encrypting the files or system, the attacker will demand for payment by

displaying the ransom note in the victim device. According to (Muslim, 2019)

if the ransom is not paid within given time, the price of ransom will increase.

In addition to that, according to (Kharraz et al, 2018) the ransom note can be

generated in different ways. For example, calls to API functions such as

CreateDesktop() will made to create a new desktop as default configuration to

displaying the ransom note while locking the victim. Other method include

using HTML to create a persistent desktop message of the ransom note

(Kharraz et al, 2018).

In conclusion, the above lifecycle are explained to help us in understanding the

behaviour of the ransomware. This is because later in the attribute selection

phase we need to understand the relationship between the API calls according

to its behaviour. For example during the encryption process, one of the API

calls such as “ CryptAcquireContext”. This is because the ransomware might

use this function to generate encryption keys or perform cryptographic

operations during the encryption process.

18

2.1.4 Type of Attacks

This section will explain about different types of attack vector that contribute to

ransomware attacks. The attacker can carry out the ransomware attacks through

various types of attack as explained below.

2.1.4.1 Exploitable Software Vulnerabilities

This type of attack vector takes advantage of the flaws or weakness in the system for

the attacker to gain unauthorize access. According to (Horduna et al, 2023) potential

software vulnerabilities can be buffer overflows, invalidated input and remote desktop

(RDP) servers. (Ilascu, 2022) observes that, in the first quarter of 2022, there was 157

software vulnerabilities was exploited due to ransomware attack.

2.1.4.2 Brute-Force Credential attacks

According to Kaspersky Brute-Force Credential attacks involve the attacker attempts

by forcing which means using all possible combination until the correct credential is

identified. The purpose of this attack is to act as an entry point for the malicious

attacker to get into the victim system or network. Once successful, the attacker can use

ransomware to encrypt the data on the victim’s device.

2.1.4.3 Phishing emails

(Horduna et al., 2023) states that one of the most common ways for ransomware to

spread is through emails. The attacker can achieve this objective by sending emails

that look legitimate which contain files attachments that’s secretly embedded with

malicious executable files. In addition to that, (Humayun et al, 2021) emphasize that

TorrentLocker and Cryptowall which is one of the family of ransomware commonly

spread through spam emails.

2.1.4.4 Remote Desktop Protocol Attack

Remote Desktop Protocol also known as RDP is a popular two-way communication

protocol. (Van, 2023) RDP works by transferring client’s keyboard and mouse input

to the server and transferring the server’s screen output to the client. Moreover, RDP

commonly accept connection requests on port 3389, the attacker can use port-scanners

19

to search for devices with open ports. Thus, exploiting any security vulnerability they

can find in the target device. (Van, 2023)

In conclusion, the above explanation help us to understand the attack vector of the

ransomware. Based on the dataset there are two primary source which are related with

ransomware that’s targeting android mobile device and targeting Bitcoin transactions.

Therefore, possible attack vector according to the source of ransomware sample are

gathered are Exploitable Software Vulnerabilities, Brute-Force Credential Attack and

Phishing Emails.

2.2 Machine Learning

This section will address the definition of machine learning, the different types of

machine learning and available tools based on the research paper that has been

collected and reviewed.

2.2.1 Definition

According to (Abbasi, 2023) machine leaning is a subset artificial intelligence (AI). It

enables computer systems to learn new information and make decisions based on the

developed intelligence (Microsoft Azure, 2023). In accordance with that, (Horduna,

2023) defines machine learning as a process of training algorithms to identify and learn

patterns from collected data. Therefore, based on these identified patterns, it can use

the insights to predict and improve detection of malware.

On the other hand, machine learning described by (Sen, 2021) as a system's capacity

to autonomously collect, integrate, and then create knowledge from enormous volumes

of data by discovering new information without having to be taught to do so. For this

reason, it can be a reliable method for the problem of distinguishing new variants of

malware without relying only on traditional methods such as the signature-based

techniques (Gagulic et al., 2023). In addition to that, as stated by (Gagulic et al., 2023)

20

Random Forest, support vector machines (SVM) and k-nearest neighbors’ algorithm

(KNN) are some of the algorithms that can be used for ransomware detection with

good performance.

2.2.2 Types

Figure 2.6 Categories of machine learning (Naqa et al., 2015)

Figure 2.6 shows the types of machine learning according to (Naqa et al., 2015).

Machine learning can be divided into supervised learning, unsupervised learning and

semi supervised. Based on the existing research, this section will review all of the three

types of machine learning.

2.2.2.1 Supervised

According to (Chumachenko, 2017) supervised learning is based on labelled data. It

requires an initial datasets with labels to mapped it to the correct results. The author

also points out that some of the problems that use supervised learning include

regression and classification.

In accordance with that, (Abbasi, 2023) states that supervised learning main goal is to

generate a model using the training data to accurately predict the outcome. In addition

21

to that, (Naqa et al., 2015) has similar understanding of supervised learning compared

to the other research paper mentioned. The author notes that, supervised learning deals

with pattern recognition in which it’s programmed to learn and distinguish the data

based on its repeated learning experience.

2.2.2.2 Unsupervised

In contrast with supervised learning, the author (Chumachenko, 2017) has states that

unsupervised learning does not deal with labeling of data. The author of that research

paper notes the goal of unsupervised learning is to identify patterns in the unsorted

data rather than predicting the value. In addition to that, (Sen, 2021) states that

algorithms are taught based on unlabelled, unclassified, and uncategorized data.

The author also mentioned that unsupervised learning task are usually anomaly

detection, clustering, feature learning and finding association rules. In addition to that,

(Abbasi, 2023) also mentioned about clustering in his paper. The author explains that

clustering as creating groups of input data based on differences and similarities

identified in the data. The primary goal of using unsupervised learning in clustering is

to group data with similar attributes.

2.2.2.3 Semi-supervised

According to (Naqa et al., 2015) semi-supervised learning makes use of labelled and

unlabelled data. Similar with the research paper by (Abbasi, 2023), the author states

that semi-supervised learning is used when the data class labels are only partially

available. The model is build based on supervised and unsupervised learning model in

order to train the model using both label and unlabelled data.

(Abbasi, 2023) also emphasizes in semi-supervised learning typically, the labelled data

is smaller than the unlabelled data. Text document categorization is one example of

this, as it is almost hard to obtain numerous labelled text documents. Therefore, we

can say that semi-supervised learning learns from small number of labelled instances

while classifying large number of unable instances in training data.

22

2.2.2.4 Summary of type of machine learning

In conclusion, based on the reviewed research papers as discussed above this project

will be using supervised learning. Supervised learning is the most suitable type

because this project will involve in training the model using a labelled dataset. The

datasets can be obtained from official dataset repositories such as Kaggle, UCI

Machine Learning Repositories, Resilient Information Systems Security (RISS)

Ransomware Dataset. Other than that, the supervised learning can also help in

identifying to distinguish between ransomware and benign software. The training

model can learn to recognize the patterns that contributes to ransomware and therefore

detecting it.

2.2.3 Tools

This section will cover all the available tools used in various research papers that relate

to machine learning. The review is important to determine which tools will be using

in this project.

2.2.3.1 Weka

According to (Thampi et al., 2020) WEKA also known as Waikato Environment for

Knowledge Analysis is a popular machine learning tool developed at University of

Waikato, New Zealand. The author proposed using WEKA to classify benign and

malicious categories since the tools contain machine learning algorithms for tasks such

as classification, regression, and clustering. On the other hand (Sharma, 2018)

proposed research on detection of advanced malware using WEKA to study and

compare each classifier. The classifier used such as Random Forest, Logistic Model

Tree (LMT), Naïve Bayes and others. In addition to that, (Norouzi et al., 2016) presents

research on classification methodologies for detecting malware behavior using

WEKA. The author also highlights the research used classification algorithms such as

NaiveBayse, BayseNet, IB1, J48, and regression algorithms. After obtaining the

evaluation result, the author analyzed that regression algorithms have the best

performance for classification method.

23

2.2.3.2 Orange

Orange is an open-source software used for machine learning algorithms. According

to (Mahajan et al., 2019) Orange uses python-based libraries which give optimized

output. Similar with WEKA, orange tools can analyse various classification techniques

such as Random Forest, Naive Bayes, Support Vector Machine. In addition to that,

(Padmavaty et al., 2020) states that Orange tool has multiple components known as

widgets which makes it easier for user to understand the navigation of the software.

Other than that, in the researcher’s paper (Mahajan et al., 2019) they analysed tools

such as Knime, Orange and RapidMiner. Based on the researcher study, it’s found that

Orange presented better result compared to the others.

2.2.3.3 TensorFlow

According to (Prakash, 2021) TensorFlow is a free and open-source end-to-end

platform for developing and deploying machine learning models. Tensorflow.org

states that TensorFlowe gives flexibility because it has features such as Keras

Functional API and Model Subclassing API to handle large amounts of data and

complex models. Other than that, TensorFlow has the ability to work with various

machine learning algorithms, such as classification, linear regression, deep learning

wipe, deep learning classification, boosted tree classification, and boosted tree

regression.

2.2.3.4 Azure

Azure Machine Learning (Azure ML) is a cloud-based machine learning released by

Microsoft (Jainani, 2021). Azure ML Studio has a number of modules for training,

scoring, and validation. Users may obtain up to 10GB of model data storage per

account, but they can also link their own Azure storage to the service for bigger

models. For creating with Azure services, programmers can utilize either the R or

Python programming languages. The machine learning algorithm that are popular

include regression, anomaly detection, clustering, and classification.

24

2.2.3.5 Scikit-Learn

Scikit-learn is a Python open-source machine learning package that provides a variety

of tools and methods for data mining and analysis. According to (Fabian, 2011) Scikit-

Learn based on the three primary Python libraries such as Numpy, Spicy and Cython.

It’s explain that Numpy is the base data structure used for data and model parameters,

while Spicy provides useful algorithms for special functions and basic statistical

functions. It can also easily integrate with other numerical packages, making it easy to

install and use. On the other hand, Cython is a programming language that allows users

to combine C and Python for better performance.

2.2.4 Summary of Machine Learning tools feature

Table 2.1 Summarization of each Machine Learning tools feature based on reviewed literatures

Tools Machine Learning features

Usage

GUI/

Command

Line

OS

Classification

Regression

Clustering

Authors

WEKA Data mining tasks Both Cross-platform

(Windows, Linux,

MacOS)

Yes

Yes

Yes

(Qolomany et al.,

2019)

(Sipra, 2021)

TensorFlow

Focus on deep learning

neural network

Command

line

Cross-platform

(Windows, Linux,

MacOS)

No

No

No

(Qolomany et al.,

2019)

Orange

Visual programming tool

for data mining and machine

learning

GUI Cross-platform

(Windows, Linux,

MacOS)

Yes

Yes

Yes

(Qolomany et al.,

2019)

(Padmavaty, .

2020)

Azure Open-source data analytics

platform

GUI Not Cross-platform.

Only Windows and

Linux.

Yes

Yes

Yes

(Qolomany et al.,

2019)

(Jainani, 2021)

Scikit-

Learn

Machine learning library for

Python

Command

line

Cross-platform

(Windows, Linux,

MacOS)

Yes

Yes

Yes

(Qolomany et al.,

2019)

(Gupta, 2023)

In conclusion, based on reviews of the existing research articles and

summarization as shown in table 2.1, the machine learning tools that will be used in

this project are WEKA and Orange. WEKA and Orange are the best options because

they provide a user-friendly interface using a GUI (Graphical User Interface) using

widgets as navigation. On the other hand, other tools such as Scikit-learn and

TensorFlow use command lines so it might be challenging for users that’s beginners

in machine learning tools and not expert in programming language such as Python. In

comparison with Azure that’s not a cross-platform, both WEKA and Orange supported

various Operating System such as Microsoft Windows, Linux and MacOS. Therefore,

WEKA and Orange are considered the best options as they also provide features to

apply many different algorithms to the dataset to determine which one will give the

best results.

2.3 Techniques

This section will go through several techniques and how they will be used in this

project. There are a lot of classification techniques available in machine learning and

this section will only discuss techniques such as Decision Tree, Random Forest and

Naive Bayes.

2.3.1 Definition

According to the Cambridge Dictionary, the technique is defined as a way of

performing activity or tasks. Technique can also mean the basic method for making or

doing something, such as an artistic work or scientific. Therefore, in the context of

machine learning techniques refer to the method that will be used for the classification

task. Below is the explanation about definition of classification techniques in detail.

2.3.2 Classification Techniques

According to (Brownlee, 2020), classification is a job that involves employing

machine learning algorithms to figure out how to assign a class label to problem

domain occurrences. The author, (Abbasi, 2023), states that classification in machine

learning uses the information gained during the training phase, when training examples

with associated class labels are mapped, to predict the class labels of a collection of

test instances in the data. There are many different types of classification tasks that can

be applied in machine learning.

28

2.3.2.1 Decision Tree

Figure 2.7 Example of decision tree (SecurityExperts.it)

Figure 2.7 illustration the search process in the decision tree. As the name indicates,

decision trees are data structures with a tree structure. According to (Chumachenko,

2017), the purpose of decision trees is to produce the most accurate outcome with the

fewest amount of decisions. Furthermore, the author says that it may be utilised for

classification and regression issues. According to (Horduna, et al., 2023) the most used

algorithm in decision tree classification technique is ID3 and it uses the concepts of

Information Gain and Entropy.

According to research of (Ahmed, 2020), the author proposed a behaviour-based

ransomware detection method using Windows API calls. The call sequences were split

into N-grams. Based on his research, their method achieved 98.10% accuracy on

average using Decision Tree classification algorithm.

29

2.3.2.2 Random Forest

Figure 2.8 Example of Random Forest (javatpoint)

Figure 2.8 shows the visualization of random forest techniques by javapoint.

According to (Gagulic et al., 2023), the Random Forest model is an addition to the

conventional decision tree approach that entails iteratively splitting the dataset at each

decision node until a leaf node with the proper label is obtained.

Other than that, the author also mentioned his opinion on Decision Tree compared with

Random Forest. It's said by (Gagulic et al., 2023) decision trees are extremely

sensitive to their training data, which can lead to large variation. Random Forest, on

the other hand, is a collection of multiple random decision trees, making it less

susceptible to training data and greatly improving the accuracy.

30

2.3.2.3 Support Vector Machine

Figure 2.9 Example of Support Vector Machine (javatpoint,2023)

Figure 2.9 shows the visualization of Support Vector Machine by javapoint to

understand about the theory of hyperplane in details. According to (Horduna et al.,

2023) Support Vector Machine is one of the well-known machine learning algorithms

that can be used in binary classification. For example, detection of benign software or

ransomware. It implements the concept of a hyper-plane that divides the points in an

n-dimensional space, representing the data into two different groups. In addition to

that, (Chumachenko, 2017) describes the purpose of Support Vector Machines (SVM)

as finding the optimum hyperplane to split the classes.

(Chumachenko, 2017) also highlights that, the term ’support vectors’ refers to points

closest to the hyperplane that would change its position if removed, and the distance

between the support vector and the hyperplane is known as the margin. Intuitively, the

further away from the hyperplane our classes lie, the more accurate predictions we can

make.

31

2.3.2.4 Naïve Bayes

Figure 2.10 Example of Naïve Bayes (Chaudhuri, 2022)

Figure 2.10 shows the illustration of Naïve Bayes classifier according to (Chaudhuri,

2022). According to (Herrera-Silva et al., 2023) this algorithm produces probabilistic

models based on target variables. It assumes that input characteristics are independent

without pairwise correlation, however this is not always true. This method is labelled

"naive" because of the assumption of uncorrelated characteristics. This is because real-

world problems often have a correlation between features. In addition. the term Bayes

is derived from the well-known probabilistic theory upon which this method generates

the probabilistic model. Similar with research by (Chumachenko, K. 2017) defines

Naive Bayes is classification based on the Bayes Theorem. The author notes that it

predicts the probability of each feature without relations.

2.3.2.5 Summary of machine learning algorithms

Table 2.2 Summarization of each Machine Learning algorithms based on previous study

Included (✓), Not Included (X)

No

Research

DT RF SVM NB KNN LR RLR SNN JRip

1

(Khalil et al.,

2022)

X

✓

✓

✓

✓

✓

X

X

X

2

(Kok et al.,

2020)

X

✓

X

X

X

X

X

X

X

3

(Ibrahim, et al.,

2020)

✓

X

X

✓

X

X

X

X

✓

4

(Khammas,

2020)

X

✓

X

X

X

X

X

X

X

5

(Abbasi, 2023) ✓ ✓ ✓ X ✓ X ✓ X X

33

6

(Al-Haija et al.,

2021)

✓

X

X

X

X

X

✓

✓

X

7

(Chumachenko,

K. 2017)

✓

✓

✓

✓

✓

X

X

X

X

Occurrences 4 5 3 3 3 1 2 1 1

Table 2.3 Indicator to represent the machine learning algorithms

Indicator

DT Decision Tree (J48) KNN K-Nearest Neighbors

RF Random Forest LR Logistic Regression

SVM Support Vector Machine RLR Regularized Logistic Regression

NB Naïve Bayes SNN Shallow Neural Networks

34

Table 2.4 Summarization of each Machine Learning algorithms

Included (✓), Not Included (X)

Tools Machine Learning Algorithms

Decision Tree Random Forest Support Vector

Machine

Naïve Bayes

WEKA
✓ ✓ ✓ ✓

TensorFlow

X ✓ X X

Orange
✓ ✓ ✓ ✓

Azure
✓ ✓ ✓ ✓

Scikit-Learn
✓ ✓ ✓ ✓

In conclusion, after conducting the review of existing literature, the machine learning algorithms that will be used with the high

number of occurrences are Decision Tree (J48), Random Forest, Support Vector Machine (SVM) and Naïve Bayes. Although K-Nearest

Neighbors (KNN) has the same number of occurrences as Naïve Bayes and Support Vector Machine, according (Alalousi et al., 2016) K-

Nearest Neighbors (KNN) are mainly used as the unsupervised classifier. The author also states that its not suitable for smaller dataset as

its susceptible to overfitting because of noise in the training data. Therefore, we will not be using KNN since our scope focus on the

supervised learning with accordance to the type of dataset that we acquired.

2.3.3 Analysis

This section will cover the parameters that will be implemented in this project. This

research will also compare the three datasets and use only five parameters to analyze

the data. The explanations of parameters, dataset, metric, and critical review are

presented below.

2.3.3.1 Datasets

According to Javatpoint a dataset is a collection of data that is organized. In the case

of tabular data, a dataset refers to one or more database tables, with each row referring

to a specific record in the relevant data set and each column referring to a single

variable. A dataset can include any type of data, from a collection of arrays to a

database table. "Comma Separated File," or CSV, is the most often used file format

for tabular datasets.

 (Maigida al., 2019) states that most issue in analysis is acquiring the dataset. Most

research articles also faced lack of recent dataset for their research. Indirectly this can

affect the training model because they are not using an updated dataset which can

affect the result. In accordance with the issues mentioned above, in this project we

have gathered an updated open-source ransomware dataset obtained from official

dataset repositories such as Kaggle, UCI Machine Learning Repositories, File System

Behavior Ransomware Dataset which are collected and analyzed from the Cuckoo

sandbox.

a) Dataset 1 Ransomware: UCI BitcoinHeistRansomwareAddressDataset

Data Set

The third dataset is “UCI BitcoinHeistRansomwareAddressDataset Data Set”.

The dataset is taken from UC Irvine Machine Learning Repository. The dataset

consists of 2916697 samples or instances in total with 10 attributes. The types

of ransomware family in the sample includes montrealCryptoLocker,

36

princetonCerber and paduaCryptoWall. The BitcoinHeist dataset was collected

from the Bitcoin transaction that are associated with the ransomware payments.

Table 2.5 Ransomware of families of dataset 3mapped to its category

Included (✓), Not Included (X)

Family Locker Crypto Scareware Leakware RaaS

montrealCryptoLocker
✓ X X X X

princetonCerber X ✓ X X X

paduaCryptoWall X ✓ X X X

b) Dataset 2 Ransomware: Kaggle Dataset Android Ransomware Detection

The first dataset that will be used, which is “Kaggle Dataset Android

Ransomware Detection”, consist of 203,556 samples and 85 columns,

encompassing 10 different types of Android Ransomware and Benign traffic.

The type of Ransomware includes such as SVpeng, PornDroid, Koler,

RansomBO, Charger, Simplocker, WannaLocker, Jisut, Lockerpin and Pletor.

Table 2.6 Ransomware families of dataset 1 mapped to its category

Included (✓), Not Included (X)

Family Locker Crypto Scareware Leakware RaaS

WannaLocker
✓ X X X X

Simplocker
✓ X X X X

SVpeng X X ✓ X X

PornDroid X X X ✓ X

Koler, X X ✓ X X

RansomBO
✓ X X X X

Charger
✓ X X X X

Jisut
✓ X X X X

Lockerpin
✓ X X X X

37

Pletor
✓ X X X X

c) Dataset 3 Ransomware: Kaggle Ransomware Detection File System

Behavior

Dataset III, authored by (Bensalah, 2022), is a ransomware detection dataset

designed for research purposes. It consists of 62,485 samples, with 27,119

classified as benign and the remaining samples labeled as ransomware. This

dataset encompasses various columns, including FileName, md5Hash,

Machine, DebugSize, DebugRVA, MajorImageVersion, MajorOSVersion,

ExportRVA, ExportSize, IatVRA, MajorLinkerVersion, MinorLinkerVersion,

NumberOfSections, SizeOfStackReserve, DllCharacteristics, ResourceSize,

and Label. These attributes provide essential information about the files, their

characteristics, and whether they are benign or potentially malicious.

2.3.3.2 Parameters

According to (Kizito ,2022) parameters or attributes are learned or estimated solely

from the data during the training process, as the algorithm aims to understand the

relationship between the input features and the corresponding labels or targets. As a

38

result, choosing the optimal parameter values is crucial since it has a direct impact on

the model's performance when used during model training.

Table 2.7 Parameters used in UCI BitcoinHeistRansomwareAddressDataset

Dataset

Parameters Description

ADDRESS Addresses are used for sending and receiving Bitcoin

transactions.

YEAR Value that indicates the year in which the transaction

related to the Bitcoin address occurred.

DAY Representing the day of the year

LENGTH Length attribute of the transaction

WEIGHT Represents information on the amount

COUNT Information on the number of transactions

LOOPED Number of transactions i) separate their coins; ii) transport

these coins through the network via multiple pathways;

and eventually, iii) combine them into a single address

INCOME Amount of Bitcoin associated with the transaction.

LABEL Name of ransomware family/ white (goodware)

Table 2.8 Parameters used in Kaggle Dataset Android Ransomware

Detection

Parameters Description

Flow ID Identifier for the network flow

39

Source IP IP address of the source (sender) of the flow

Source Port Port number used by the source IP

Destination IP IP address of the destination (receiver) of the flow

Destination

Port

Port number used by the destination IP

Protocol Network protocol used in the flow (e.g., TCP, UDP)

Timestamp Time when the flow occurred

Flow

Duration

Flow duration

Total Fwd

Packets

Total number of packets sent in the forward direction

Total

Backward

Packets

Total number of packets sent in the backward direction

Total Length

of Fwd

Packets

Total length of packets in the forward direction

Total Length

of Bwd

Packets

Total length of packets in the backward direction

Flow Bytes/s Data transfer rate in bytes per second

Flow

Packets/s

Packet transfer rate in packets per second

Flag counts Indicating the presence of specific flags (e.g., FIN, SYN,

RST, PSH, ACK, URG)

Network

parameters

and

characteristics

Window size, active and idle times

40

Table 2.9 Parameters used in Kaggle Ransomware Detection File System

Behavior

Parameters Description

FILENAME
Represent ames of the files including the file

extension (e.g., .dll)

MD5HASH MD5 hash value associated with each file

Machine
Information about the type of machine or architecture

for which the file is intended

DebugSize Size of debug information within the file

DebugRVA

Relative Virtual Address. It contain the RVA

associated with debug information within the file.

RVAs are used to specify locations within a file's

virtual address space.

MajorImageVersion

Major version number associated with the image or

executable file to indicate significant updates or

changes in the software.

MajorOSVersion
Indicate the major version number of the operating

system for which the file is intended.

ExportRVA
Stores the RVA associated with exported functions

or symbols within the file.

ExportSize

size of the exported functions or symbols within the

file. It provides information about the resources

exposed to other programs.

IatVRA Represent the RVA of the Import Address Table

(IAT) within the file. The IAT is essential for

41

dynamically linking functions from external libraries

or DLLs.

MajorLinkerVersion

Major version of the linker used during the file's

compilation or linking process. Linkers combine

object files into executables or libraries.

MinorLinkerVersion Minor version of the linker used during compilation.

NumberOfSections

Stores the number of sections or segments within the

file. Sections are distinct parts of an executable, each

with specific characteristics and permissions.

SizeOfStackReserve
Size of the stack reserved for the file. The stack is a

memory region used for managing function calls.

DllCharacteristics

Store characteristics or flags associated with the file,

indicating its behavior as a dynamic link library

(DLL). DLLs are shared libraries used by programs.

ResourceSize

Information about the size of resources embedded

within the file. Resources can include data such as

images, icons, or strings.

Label

Specifies the classification label for each file whether

the file is benign (not malicious) or categorized as

ransomware (malicious).

2.3.3.3 Train and Test Ratio

According to the author (Khalil et al., 2022) focuses on static analysis for detecting

and classifying ransomware utilizing five machine learning algorithms which are

Support Vector Machines (SVM), K-Nearest Neighbors (KNN), Random Forest (RF),

Logistic Regression (LR) and Naive Bayes (NB). However, the result may be

42

inaccurate because in his research, the author stated that the dataset was split into 50:50

ratio to train and test the detection model. This is not a good method of splitting the

dataset. According to the research by (Dobbin and Simon, 2011) the optimal fraction

of data splitting is 2/3 which can be applied to any dataset. Therefore, in our research

we will expand the testing by evaluating various train and test ratios which are 50:50,

70:30 and 90:10. Purpose of expanding test is to observe behavior classification

algorithms under several conditions.

2.3.3.4 Evaluation Techniques

According to (Khalil, 2022) True Positive refers to the ransomware instances that are

accurately identified as ransomware (TP). The total amount of benign files is

categorized accurately as benign (True Negative, or TN). False Positive (FP): a small

number of benign files were mistakenly detected as ransomware. False Negative (FN):

the number of ransomwares that are incorrectly categorized as benign.

1) Accuracy

Figure 2.11 Accuracy Formula (Kok et al., 2020)

Figure 2.11 shows the calculation of accuracy. According to (Kok et al., 2020)

accuracy indicates the number of correctly classified samples over the total

samples on dataset.

2) True Positive Rate (TPR)

43

Figure 2.12 True Positive Rate (TPR)

 Formula (Kok et al., 2020)

Figure 2.12 shows the formula for True Positive Rate (TPR). The TPR is the

ratio of accurately anticipated positive conditions to the total number of actual

positive conditions. This statistic measures how successfully the predictive

model predicts positive values.

3) False Positive Rate (FPR)

Figure 2.13 False Positive Rate (FPR)

 Formula (Kok et al., 2020)

Figure 2.13 shows the formula for False Positive Rate (FPR). The FPR is the

ratio of mistakenly projected positive predictions to the total number of actual

negative circumstances. This indicator determines the extent to which the

predictive model predicts positive values inaccurately.

4) True Negative Rate (TNR)

Figure 2.14 True Negative Rate (TPR)

Formula (Kok et al., 2020)

Figure 2.14 shows the formula for True Negative Rate (TNR). The TNR is the

ratio of accurately anticipated negative conditions to the total number of actual

negative conditions. This statistic measures how well the predictive model

predicts negative values.

44

5) False Negative Rate (FNR)

Figure 2.15 False Negative Rate (FNR)

Formula (Kok et al., 2020)

Figure 2.15 shows the formula for the False Negative Rate (FNR). The FNR is

the ratio of mistakenly anticipated negative conditions to the total number of

actual positive conditions. This indicator determines the extent to which the

predictive model predicts negative values inaccurately.

6) Precision

Figure 2.16 Precision Formula (Kok et al., 2020)

Figure 2.16 shows the formula for the precision. The precision measure

represents the proportion of positive predictions that were accurately

anticipated over the total number of positive forecasts. When the forecast is

positive, this indicator determines how much the predictive model may be

believed.

45

7) Recall

Figure 2.17 Recall Formula (Kok et al., 2020)

Figure 2.17 shows the formula for Recall. Recall, also known as the true

positive rate, is an estimate to measure the detection rate of the positive class.

8) F-measure

Figure 2.18 F-measure Formula (Kok et al., 2020)

Figure 2.18 shows the formula for F-measure. The F-measure, often known as

the F-score or F1-score, is the average of TPR and accuracy. This statistic

measures how effectively the predictive model predicts positive values while

taking both into account.

2.3.3.4.1 Summary of the evaluation metrices

Table 2.11 Summary review for evaluation metrics based on reviewed literatures.

Applied (✓), Not Applied (X)

No

Research

Acc TPR FPR TNR FNR Prec Recall
F-

m
AUC MCC PLR NLR DOR J NND NNM NB

1

(Khalil et al.,

2022)

✓

✓

✓

✓

✓

✓

✓

✓

X

X

X

X

✓

✓

X

X

X

2

(Kok et al.,

2020)

✓

✓

✓

✓

✓

✓

X

✓

X

X

✓

✓

✓

✓

✓

✓

✓

3

(Ibrahim, et al.,

2020)

X

X

✓

X

X

✓

✓

✓

X

✓

X

X

X

X

X

X

X

4

(Khammas,

2020)

X

X

X

X

X

✓

✓

✓

X

X

X

X

X

X

X

X

X

5

(Abbasi, 2023)

✓

X

X

X

X

✓

✓

✓

X

X

X

X

X

X

X

X

X

47

6

(Al-Haija et al.,

2021)

✓

X

X

X

X

✓

✓

✓

✓

X

X

X

X

X

X

X

X

7 (Chumachenko,

K. 2017)

✓

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Occurrences 5 3 2 2 2 5 4 5 1 1 2 2 2 2 1 1 1

Table 2.12 Indicator to represent the evaluation metrices.

Indicator

Acc Accuracy MCC Matthews Correlation Coefficient

TPR True Positive Rate (also known

as Sensitivity, Recall, or Hit

Rate)

PLR Positive Likelihood Ratio

FPR False Positive Rate NLR Negative likelihood ratio

TNR True Negative Rate (also known

as Specificity)

DOR Diagnostic odds ratio

FNR False Negative Rate J Youden’s index

Prec Precision NND Number needed to diagnose

Recall Recall NNM Number needed to misdiagnose

F-m F-measure (also known as F1

Score)

NB Net benefit

AUC Area Under the ROC Curve

48

In conclusion, after conducting a thorough review of existing literature the evaluation metrices that will be used in

this project are Accuracy, TPR (True Positive Rate), Precision, Recall and F-measure. These evaluation metrices are

chosen based on the number of occurrences as shown in table 2.9 with accordance to the reviewed literature reviews.

2.4 Critical Review

Table 2.13 Summary of critical review for previous research articles

Research

Type of Tools

Type of Algorithms

Type of

Techniques

Problems +

Objective

(Khalil et al., 2022)

• WEKA

• MATLAB

• Support Vector
Machines (SVM)

• K-Nearest
Neighbors (KNN)

• Random Forest
(RF)

• Logistic Regression
(LR)

• Naive Bayes (NB)

• Classification

P: 1) How can static analysis be used to overcome the

constraints of dynamic analysis in order to construct a

detection model?

O: 1) To propose a new technique based on static analysis

for detecting and classifying ransomware utilizing five

machine learning algorithms.

49

(Kok et al., 2020)

• PEDA (Pre-
encryption
detection
algorithm
(PEDA)
Cuckoo for

generating

datasets

• Random Forest

• Classification

P: 1) How to detect presence of crypto-ransomware before

any encryption occurs?

O: 1) To propose development of pre-encryption detection

algorithm (PEDA) for early detection of crypto-

ransomware.

2) To propose new metrics for the evaluation of a predictive

model used in ransomware detection.

(Ibrahim, et al., 2020)

• WEKA

• Orange

Scikit

• NaiveBayse

• JRip

• Decision Tree

• Classification

P: How to address the challenges and problems associated

with ransomware behavior detection and classification.

O: To produce solutions for feature selection in machine

learning for drive-by download problem

(Khammas, 2020)

• WEKA

• Random Forest
(RF)

• Classification

P: How can we overcome the issue of complicated

disaasemble process when detecting ransomware attacks?

O: To propose a new method of ransomware detection

using Random Forest technique based on static analysis.

50

(Abbasi, 2023)

• Cuckoo
Sandbox

• Tensorflow

• Regularized
Logistic Regression
(RLR)

• Random Forest
(RF)

• Decision Tree (DT)

• Support Vector
Machines (SVM)

• k-Nearest
Neighbors (KNN)

• Classification

P: How can the challenges of high-dimensional data and

time-intensive manual inspection in behavior-based

ransomware detection be overcome?

O: To propose a new representation of API call sequences,

for early ransomware detection.

(Al-Haija et al., 2021)

• MATLAB

• shallow neural
networks (SNNs)

• Decision Tree (DT)

• Classification

P: How to identify and detect ransomware attacks in early

detection of bitcoin transaction.

O: To develop a predictive system that can classify

ransomware payments for heterogeneous bitcoin networks.

Table 2.11 above shows the summary of the critical review. The table is

generated from reviews based on the existing research papers. The author (Khalil et

al., 2022) proposed a new technique based on static analysis for detecting and

classifying ransomware utilizing five machine learning algorithms which are Support

Vector Machines (SVM), K-Nearest Neighbors (KNN), Random Forest (RF), Logistic

Regression (LR), Naive Bayes (NB). According to the experimental result, the

Random Forest achieved the highest detection accuracy. However, the result may be

inaccurate because in his research, the author stated that the dataset was split into 50:50

ratio to train and test the detection model. This is not a good method of splitting the

dataset. According to the research by (Dobbin and Simon, 2011) the optimal fraction

of data splitting is 2/3 which can be applied to any dataset.

On the other hand, the research by (Kok et al., 2020) proposes development of

pre-encryption detection algorithm (PEDA) for early detection of crypto-ransomware.

In the author research (Kok et al., 2020) produces six new metrics for the evaluation

of a predictive model used in ransomware detection. The metrices are Likelihood

ratio(LR), Diagnostic odds ratio (DOR), Youden’s index (J), Number needed to

diagnose (NND), Number needed to misdiagnose (NNM) and Net benefit (NB).

According to the result and discussion of the research, the author stated that proposed

metrics include PLR, NNM, DOR, J Index, and NND is difficult to represent into one

graph, as proposed metrics (DOR,PLR) may have an infinite value. This may result in

a misunderstanding of the true metric value and the new metrics has not yet been tested

for various research domain.

In the research work by (Abbasi, 2023) the author propose a new representation

of API call sequences, for early ransomware detection. The research has proof that

identifying critical call arguments alongside API call names in sequences can help

improve the classification performance. However, there are limitation in this work

because the scope of the analysis environment is limited. The research excludes

ransomware that targets multiple operating systems such as Linux and Mac, as well as

devices such as mobile phones. The findings are limited to ransomware that’s

compatible with Windows 7 PCs only.

Therefore, for our research we will only focus on the common evaluation

metrics as provided by the WEKA program to calculate the accuracy of the classifier

52

performance. Other than that, we will be using a cross validation method using a 2/3

fraction to split the dataset as recommended by (Dobbin and Simon, 2011) in our

research to improve the previous research work. In addition to that, to improve the

previous issues of not using ransomware sample of a bigger environment because the

author only use ransomware that’s compatible with Windows 7 PCs. We will be

evaluating ransomware that’s targeted the mobile devices as well by using the dataset

provided by Kaggle.

2.5 Proposed solution

Based on the reviews of existing literature and a comprehensive evaluation for the

critical analysis, this project will be using supervised learning. Supervised learning is

the most suitable type because this project will involve training the model using a

labelled dataset. Dataset will be downloaded from Kaggle, UCI Machine Learning

Repositories and (RISS) Ransomware Dataset. It’s chosen because they are the most

often utilized open-source sites by researchers for getting datasets for their research on

ransomware detection. In addition to that, the machine learning tools that will be used

in this project are WEKA and Orange. WEKA and Orange are the best options because

they provide a user-friendly interface. On the other hand, other tools such as Scikit-

learn use command lines so it might be challenging for users that’s beginners in

machine learning tools. It also provides feature to apply many different algorithms to

the dataset. According to the critical review, the classification technique that will be

used with the most occurrence is Decision Tree, Random Forest, Support Vector

Machines (SVM) and Naïve Bayes. Other than that, to evaluate the performance of the

experiments conducted in this study, the chosen evaluation metric is Accuracy, TPR

(True Positive Rate), Precision, Recall and F-measure.

2.6 Summary

In conclusion, the project will focus on analysis of ransomware detection using

machine learning. Based on the discussion above the classification techniques that will

be use are Decision Tree, Random Forest, Support Vector Machines (SVM) and Naïve

Bayes. The evaluation metric are Accuracy, TPR (True Positive Rate), Precision,

53

Recall and F-measure. The next chapter will focus on the methodology that will be

implemented.

CHAPTER 3: METHODOLOGY

3.0 Introduction

The research methodology used to carry out the study are defined in this

chapter. This chapter describes the process used to gather, present, and

analyses the data and information required to address the research purpose and

question. Additionally, this chapter explicitly defines the project's phase,

timetable, and milestones, as well as the project approach. The project

methodology for this project is explained as follows.

54

3.1 Project Methodology

Figure 3.1 Project methodology

This section explains the project methodology based on Figure 3.1. The

methodology that will be implemented in this project is inspired by (Yusof et al., 2019)

and additional steps were added to improve the previous methodology used by the

author. Figure 3.1 shows the analysis methodology for ransomware detection which

consists of 7 phases. The phases include Phase 1 of this project which is identifying

and gathering project requirements.

55

It involves justifying problem statements based on the reviews of research

papers and submission of the project requirements. Phase 2 involves choosing the tools

and dataset and Phase 3 involves installing the tools that will be used in the project. In

addition to that, Phase 4 involves dataset preparation, Phase 5 involves information

collection, Phase 6 involves information analysis, and Phase 7 involves documenting

the outcomes.

3.1.1 Phase I: Identify and Gather Project Requirements

Figure 3.2 Process to Identify and gather project requirement

Figure 3.2 shows the activity to conduct Phase 1 which is identifying and gather

project requirements. Initially, before the research can begin the first step of the

research is to identify common problems in the ransomware domain. This can be done

by analyzing existing research papers to gain insight into current challenges in the

targeted domain. This step is important for us to gain a clear understanding of the issue

that we aim to address throughout the entire research is conducted. The project

requirement will be documented in the proposal, which will outline the problem

statement, research objectives, methodology and expected outcomes. The proposal is

then submitted and approved to proceed to the next step.

3.1.2 Phase II: Select Tools and Datasets

Figure 3.3 Process of selecting tools and dataset

Figure 3.3 shows the process of selecting tools and dataset. A comprehensive

literature review is conducted so that we can identify the most suitable machine

learning tools that will be used in the project for ransomware detection. Based on the

gathered information of available machine learning tools, the features, its usage, type

of operating system that its compatible and task that it performs will be evaluated to

56

identify the best tool. In our case, based on the literature review in the Chapter 2, the

machine learning tools that will be used in this research are WEKA and Orange.

3.1.3 Phase III: Installing the Tools

Figure 3.4 Process of installing the selected machine learning tools

Figure 3.4 shows the process of installing the chosen machine learning tools.

Before the installation can begin, first the hardware and software specifications will

be reviewed to ensure our system meets the necessary specifications. The selected

machine learning tools which are WEKA and Orange are downloaded and installed

according to the installation guide at their official website. After the installation is

completed, the tools will be verified to ensure the functionalities.

3.1.4 Phase IV: Dataset Preparation

Figure 3.5 Process of Dataset Preparation

Figure 3.5 shows the process of Dataset preparation. In this step, the dataset

will be acquired and downloaded from official datasets repositories. In our case, the

dataset will be acquired from Kaggle and UCI Machine Learning Repositories.

Additionally, in this phase it involves identifying a suitable feature selection method.

This is important because by applying the chosen feature selection methods, it can

remove noisy or irrelevant features from the datasets. Once it’s chosen we will apply

method to remove the irrelevant features. Sub-sampling will also be done using Jupyter

Notebook.

57

3.1.5 Phase V: Information Collection

Figure 3.6 Process of Information collections

Figure 3.6 shows the process of information collection. Once the datasets has

been processed as explained in the previous step, then we can proceed with training

the ransomware detection model using various machine learning classification

techniques. According to the literature review, the selected classification technique

that will be used with the most occurrence is Decision Tree, Random Forest, Support

Vector Machines (SVM) and Naïve Bayes. After applying the classification

techniques, we will collect the information generated from the machine learning tool.

3.1.6 Phase VI: Analyze the Information

Figure 3.7 Process of analyze the information

Figure 3.7 shows the process of information analysis. This step includes

analyzing the information generated from the ransomware detection model. It involves

capturing the output that will serve to evaluate the performance of the model. Various

evaluation metrics will be applied to evaluate the accuracy result of the machine

learning classification techniques. This is a crucial step because these evaluation

metrices will provide information of different aspect of the classifier's performance

such as its ability to correctly classify ransomware instances and its ability to minimize

false positives or false negatives. To be specific, the research will apply evaluation

metrics such as True Positive Rate (TPR), False Positive Rate (FPR), Precision and

accuracy.

58

3.1.7 Phase VII: Document Result

Figure 3.8 Process of document result

Figure 3.8 shows the process documenting the result. Based on the accuracy

result of classification techniques using different evaluation metrics tool, comparison

will be made. Therefore, we can identify the best classification techniques based on

the accuracy. Lastly the result and analysis will be documented.

3.2 Research Milestone

Table 3.1 Summary of Research Milestone

Start Week End Week Activities

W1 W2 • Identify Project Requirements (Research Problems

and Objectives)

• Proposal Assessment and Project Consultation

W2 W2 • Gather Project Requirements.

• Proposal Improvement

W3 W4 • Introduction Of Report Writing

W4 W6 • Select Machine Learning Tools and Datasets

• Conduct Literature Review

W6 W7 • Construct Methodology of Project

W8 W9 • Design Project Architecture

• Installing Tools (Weka and Orange)

W10 W12 • Datasets Preparation

W13 W15 • Information Collections

• Testing Features in The Machine Learning Tools

W15 W17 • Train The Machine Learning Classifier

W18 W24 • Information Analysis

• Applying Evaluation Metric to The Classifier

• Identify Best Performance

W25 W26 • Documenting Result

3.3 Research Gantt Chart

Table 3.2 Research Gantt Chart

ACTIVITIES

WEEKS

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

24

25

26

IDENTIFY AND GATHER

REQUIREMENTS

                           ```````` 

 

SELECT TOOLS AND DATASETS  

                         

 

INSTALLING TOOLS 

                         

 

DATASET PREPARATION 

                         

 

INFORMATION COLLECTIONS  

                         

 

ANALYZE THE INFORMATION 

                         

 

DOCUMENT RESULT 

                         



 

 

 

 

 

 

3.4 Summary 

This chapter has addressed the methodology that will be used in the research. As 

discussed above the phases include Phase 1 identifying and gathering project 

requirements, Phase 2 involves choosing the tools and dataset and Phase 3 involves 

installing the tools that will be used in the project, Phase 4 involves dataset preparation, 

Phase 5 involves information collection, Phase 6 involves information analysis, and 

Phase 7 involves documenting the outcomes. This section also outlines the research 

milestones and Gantt chart. The next section will discuss further about the analysis and 

design according to the phases of the methodology that will be implemented for this 

research.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



61 

 

 

 

 

 

 

 

CHAPTER 4: ANALYSIS AND DESIGN 

 

 

 

 

4.0 Introduction  

This chapter focuses on the analysis and design phase of this project. The analysis 

phase involves understanding the research workflow. It includes identifying problem 

domain, reviewing existing literature reviews, requirement identification and 

submission.  In addition to that, the design phase will focus on choosing the suitable 

dataset, machine learning tools, algorithms, and evaluation metrices. The design phase 

is essential for establishing the procedures that must be taken to analyze the 

ransomware dataset. This is to ensure the project goal will be achieved, thus the 

recommended design will be thoroughly analyzed and studied. Below are the details 

for the research workflow, project requirement analysis, architecture analysis, and 

parameter measurement. The section of project requirements analysis will include both 

software and hardware requirements that will be followed for conducting the project 

in order to ensure smooth project execution.  



62 

 

 

 

4.1 Research Workflow 

 

Figure 4.1 Workflow for preparation of dataset for Phase III of the research 

 

Based on the previous chapter, we have discussed the methodology that will 

be implemented in the research. In this section, we will identify and design the 

structure of the workflow to conduct the dataset preparation phase. According to 

(Mazumdar, 2023) it’s important to process the dataset to prevent data dimensionality. 

This is because by identifying a subset of new attributes we can effectively minimize 

the impact of noisy or irrelevant attributes.  

As shown in Figure 4.1, the datasets will be filtered using filter method that’s 

based on the measure of degree association between each feature and target variable. 

(Mazumdar, 2023) states that, the higher the F-value the more important the feature is 

for the task. In addition to that, (Brownlee, 2020) also mentioned that the best method 

to choose feature selection method for numerical input variables associated with 

categorical output variable is using Information Gain. 

 

 



63 

 

 

 

 

Figure 4.2 Dataset II “Android Ransomware” from Kaggle 

 

Figure 4.2 shows the content of the Android Ransomware dataset that will be used in 

this research. We can see the input variables consist of numerical values while the 

target variable which is the “label” is defined as categorical output.   

 

 

Figure 4.3 Workflow of the training and testing 

 

As discussed in the previous chapter, Phase IV includes information collection In the 

information collection phase, it involves training the machine learning classifiers. 

Figure 4.3 shows the illustration of how the model can be trained. (Dobbin and Simon, 

2011) states that the recommended amount to split the dataset is 2/3 fraction split. Once 

the data is split as shown in Figure 4.2, the model will be train and we will test the 

model using the test set to evaluate new samples of ransomware for the predictive 

model.  



64 

 

 

 

4.2 Project Requirements Analysis  

The project requirement is a specific requirement that is followed for conducting the 

project in order to ensure a smooth functioning of the project. This section contains a 

reference to the project specification, which will be implemented throughout the 

project.  

4.2.1 Hardware Requirements 

This section focuses on determining the project's hardware prerequisites. Hardware 

requirements in the context of ransomware detection using machine learning using 

tools like WEKA and Orange will include the specifications of the computer systems 

and hardware requirements to run the program. This might include aspects such as the 

minimum CPU speed, RAM capacity, storage capacity, and network connectivity 

necessary to use machine learning tools efficiently. Below are the details of the 

hardware requirements:  

Table 4.1 Summary of hardware requirements 

Requirements Details 

Processor Intel Dual-Core Processor or advance 

RAM 
A minimum of 8GB of RAM is recommended. (For larger 

dataset more RAM will be required) 

Type of storage Solid-state drives (SSDs) 

Graphic Card NVIDIA’s / Intel’s GPU 

 

4.2.2 Software Requirements 

Software requirements include the version numbers and specific configurations of the 

tools, such as WEKA and Orange, that will be used in the project. Additionally, this 

section will specify the operating system requirements or dependencies necessary for 

the software to function properly. Below are the details of the software requirements: 

 

 



65 

 

 

 

Table 4.2 Summary of software requirements 

Requirements Details 

Operating System Windows 7/8/10 

Java Version 8 or latest 

Python Version 3.4 or latest 

Miniconda Version miniconda3 v4.12.0 

Machine Learning tool 
WEKA 

Orange 

 

a) WEKA  

 WEKA is a well-known open-source software package for data mining and 

machine learning. It offers a set of machine learning tools and methods that 

enable users to carry out operations including feature selection, grouping, 

regression, and data preparation. WEKA supports a number of file types 

for data entry and has an intuitive graphical user interface. For data analysis 

and model creation, it is widely utilised by academics and practitioners in 

the field of machine learning. 

 

b) Orange 

Orange is an open-source software which also for data mining and machine 

learning. Both specialists and non-experts in the area can use it because it 

is designed to be user-friendly and aesthetically pleasing. Classification, 

regression, clustering, and association rule mining are just a few of the data 

visualisation, preprocessing, and modelling methods that Orange provides. 

Additionally, it provides interactive data exploration and features a visual 

programming interface that enables users to build processes for data 

analysis without writing any code. 

 

c) Java 

Java is a general-purpose programming language with robust libraries and 

frameworks for machine learning. It provides implementations of machine 

learning algorithms and utilities for data processing and model building. 

Java is known for its platform independence, scalability, and performance. 



66 

 

 

 

d) Python 

Python is a versatile programming language widely used for data analysis 

and machine learning. It has a rich ecosystem of libraries and frameworks 

dedicated to these domains. It offers tools for data manipulation, statistical 

analysis, visualization, and building machine learning models. 

 

e) Miniconda 

Miniconda is a lightweight distribution of the Python programming 

language. It allows users to easily create and manage Python environments 

for specific project requirements. It simplifies package management and is 

useful for setting up customized Python environments. 

4.3 Architecture Analysis 

 

Figure 4.4 Overview of architecture analysis of this project 

 

Figure 4.4 shows the overview architecture analysis for this project that’s 

developed based on the proposed solution as stated in Chapter 2 of this report. The 

architecture analysis briefly consists of four major crucial components which are the 

ransomware dataset, machine learning tools, the classification techniques that will be 

used and evaluation of those classifiers.  



67 

 

 

 

4.4 Proposed Research Design  

 

Figure 4.5 Proposed research design for ransomware detection model 

 

Figure 4.5 visualizes the proposed research design for our ransomware 

detection model.  The dataset will be obtained from official dataset repositories in this 

case such as the Kaggle Dataset Android Ransomware Detection. The dataset will then 

pre-process to ensure the dataset file can be loaded into the WEKA program. Pre-

process in this context means defining the attributes and its instances and ensuring the 

data are all comma separated.  

According to (Srivastava, 2014) preprocessing  must include attributes 

selection which is important because some attribute may be redundant and noisy which 

can impact the performance of the classifier. Therefore, for this research, we will be 

using infoGainEvaluation as the ranker for the attribute selection in WEKA. After the 

dataset is processed and able to be loaded successfully into the WEKA program, the 



68 

 

 

 

dataset will be split into training and testing. The training set will be used to train the 

ransomware detection model whereas the testing set will be used to evaluate the 

model’s performance. This step ensures that the model will be trained on the subset of 

the data and tested on the unseen data to determine its performance capability for the 

ransomware detection.  

As for the process of model classification, four classification techniques were chosen 

based on the critical review in Chapter 2. The classification techniques are Decision 

Tree (DT), Random Forest (RF), Naive Bayes (NB), and Support Vector Machine 

(SVM) where each technique has a different approach in building the classification 

model. Random Forest creates a group of decision trees then combines the prediction 

to make a final decision. Naïve Bayes is a probabilistic classifier that uses Bayes' 

theorem to calculate the probability of a data point belonging to a particular class. 

Support Vector Machine (SVM) will separate data points using hyperplanes in high-

dimensional space. Decision tree on the other hand, 

Lastly for the performance evaluation, the ransomware classification model will be 

evaluated using the testing set. The evaluation metrices that will be used include 

Accuracy, Precision, Recall, F-measure, and True Positive Rate (TPR). By analyzing 

the result of the evaluation metrices, the efficiency and accuracy of the ransomware 

model performance can be assessed.   

 

 

 



69 

 

 

 

4.5 Flowchart Design of Research 

 

Figure 4.6 Flowchart of WEKA/ORANGE to visualize  

possible scenario that might occur 

 



70 

 

 

 

Figure 4.6 above shows the flowchart for the machine learning tools. Once the 

dataset has been downloaded, there can be 2 possibilities. If the dataset cannot be 

loaded into WEKA program, then we have to check the datasets if there’s any missing 

values. If the dataset is not in the ARFF file format, then we will convert it by defining 

the attributes and data of the old dataset.  Using the same step, which is loading the 

dataset, when it’s successful the attribute selection will be performed to minimize 

noisy and irrelevant data using the filter method as discussed in the previous chapter.  

Once new datasets of best feature are finalized then we will use the dataset for 

training and testing the model. The same phase will iterate three times since we will 

evaluate four types of machine learning classifiers which are Decision Tree, Random 

Forest, Support Vector Machines (SVM) and Naïve Bayes. The classifiers 

performance will be evaluated using evaluation metric are Accuracy, TPR (True 

Positive Rate), FPR (False Positive Rate)Precision, Recall and F-measure. After 

capturing the result then the WEKA program will be exit.  

 

 

 

 

 

 

 

 

 

 



71 

 

 

 

4.6 Tools interface  

 

Figure 4.7 WEKA GUI chooser 

 

 

Figure 4.8 Example of result when load the Dataset II Android Ransomware 

to the WEKA  

 

Figure 4.7 shows the interface for the WEKA application. First launch the WEKA 

application then we can see the WEKA GUI chooser which includes option for 

Explorer, Experimenter, KnowledgeFlow, Workbench and Simple CLI. In addition to 

that, at the top section it has important features such as downloading a new package 

manager especially for new algorithms using the “tool”. Second WEKA also can load 

and transform dataset from CSV to ARFF file format. Figure 4.8 shows the data 

visualization when we load the Dataset 1 Ransomware:  Kaggle Dataset Android 

Ransomware Detection to the WEKA application. 



72 

 

 

 

 

 

Figure 4.9 Main user interface of Orange 

 

Based on Figure 4.9, the toolbox on the left shows the widgets available while the 

white canvas on the left is the working area. In order to add the widget to the canvas, 

we can either drag, double click or right click on the canvas menu. Datasets can be 

loaded using the file option or from the csv widgets in the toolbox.  

 

4.8 Summary 

In conclusion, this chapter summarizes the analysis and design of the research. 

The proposed research design is visualized to illustrate the possible scenario for the 

project execution that will be conducted in Chapter 4 for implementation phase. This 

section also identifies the hardware and software requirements which are important to 

ensure the implementation of the research can be carried out without issues such as 

compatibility or not enough resources to load the dataset. The next chapter will discuss 

in detail about the implementation of this project.   

 

 



73 

 

 

 

 

 

 

 

CHAPTER 5: IMPLEMENTATION 

 

 

 

 

5.0 Introduction  

This chapter focuses on the implementation phase of this project. The implementation 

of Chapter 5 includes Phase 3, Phase 4 and Phase 5 of project methodology. Based on 

the design consideration from the previous Chapter 4, this chapter involves applying 

various classification algorithms to the dataset, each of which is designed to identify 

patterns that distinguish ransomware samples and benign samples. The 

implementation process also involves configuring the machine learning tools to align 

with the designated algorithms, processing the dataset and starting the learning process 

by building the machine learning model. The implementation phase is important to see 

the performance of the classification algorithms chosen applied on the dataset. The 

result of this chapter will be used as the foundation for the next chapter, by evaluating 

the accuracy result of classification techniques using different evaluation metrics tools. 

 

 

 



 

 

 

 

 

 

5.1 Research Implementation Activities    

 

Figure 5.1 Diagram Outlining Research Implementation Activities 

  

 Figure 5.1 shows the activities involved in the research implementation, which is constructed to align and implement the research 

design in the previous Chapter 4. It involves 7 steps which are, Step 1: Environment Setup based on Requirements, Step 2: Installation and 

Configurations Machine Learning tools, Step 3: Acquiring Dataset, Step 4: Pre-Processing, Step 5: Load dataset, Step 6: Classification and 

Step 7: Generate Result. It’s very important to outline the research implementation activities to ensure a systematic guide and organized 

execution of the research project. In addition to that, constructing these steps ensures minimization of error from occurring during the 

implementation of the research. 



 

 

 

 

 

 

 

5.2 Step 1: Environment Setup based on Requirements 

The environment setup for this project is a critical factor in ensuring a smooth 

execution of the research workflow. This section provides an overview of the essential 

tools, software, and hardware configurations required for the successful execution of 

the ransomware detection analysis using machine learning. In addition to the tools and 

software, the operating system is also an important consideration for the environment 

setup. 

5.2.1 Hardware  

 

Figure 5.2 hardware specifications 

 

Figure 5.2 shows the device specifications from the hardware aspect. This 

research will be conducted using a laptop with 12 GB of RAM installed. The 

processor being used by the laptop is the quad-core processor Intel Core i5-

8265U CPU, which operates at a base frequency of 1.60 GHz. This frequency 

indicates the CPU's standard processing speed. When greater computing power 

is required, the CPU will dynamically raise its speed up to a maximum turbo 

frequency of 1.80 GHz. This brings advantages to the device because it can 

manage tasks efficiently and provide higher performance.  

 



76 

 

 

 

5.2.2 Operating System  

 

 

Figure 5.3 Operating System specifications 

 

Figure 5.3 shows the device specifications from the operating system aspect. 

The Windows operating system installed on the laptop is Windows 10 Home 

Single Language. Its specific version is 22H2 and the system type is 64-bit 

operating system. In addition to that, the system type 64-bit means the 

computer's processor architecture is capable of handling 64-bit instructions. 

Therefore, it’s beneficial because the device can use more memory than a 32-

bit operating system which enables it to run both 32-bit and 64-bit applications 

efficiently.  

5.2.3 Software 

1) WEKA  

 

Figure 5.4 WEKA official website 



77 

 

 

 

Figure 5.4 shows the official website of WEKA and its package installation. 

Weka is an open-source program created by academics at the University of 

Waikato in New Zealand. WEKA is an abbreviation for Waikato Environment 

for Knowledge Analysis. It was created by the international scientific 

community and is freely available under the GNU GPL license. WEKA is 

written entirely in Java. It integrates with the SQL database using Java 

Database connection. It includes various machine learning algorithms for 

implementing data mining jobs.  

2) Orange 

 

Figure 5.5 Orange official website 

 

Figure 5.5 shows the official website of Orange with three version for 

Windows, macOS and Linux operating system. Orange is an open-source data 

mining and machine learning platform. It is intended to be user-friendly so it 

can be used by both specialists and non-experts in the field. Orange offers a 

variety of data visualization, preprocessing, and modelling approaches, 

including classification, regression, clustering, and association rule mining. It 

also offers interactive data exploration and a visual programming interface.  

 

 



78 

 

 

 

5.3  Step 2: Installation and Configurations Machine Learning Setup 

This section will focus on the setup and configuration for both WEKA and ORANGE. 

This requires aligning the device to its baseline specifications, configuration settings, 

and operational complexities, assuring consistent and intended performance 

throughout time. It's to establish an environment which is conducive to achieving the 

objectives of our study by precisely configuring WEKA and ORANGE. This 

management strategy protects against any inconsistencies or mistakes caused by 

insufficient Machine Learning tools setup. 

5.3.1 Installation and Configurations WEKA 

1) Download the WEKA installation file according to the type of 

operating system. Launch the setup and click “Next” as shown in 

Figure 5.6 below. 

 

Figure 5.6 Setup Wizard of WEKA 

 

 

 

 

 

 

 



79 

 

 

 

 

2) Read the License Agreement and click “I Agree” as shown in Figure 

5.7 below. 

 

Figure 5.7 WEKA License Agreement 

 

3) Select the Associated Files since Full component installation is 

recommended to prevent issues during the data mining tasks as shown 

in Figure 5.8 below. 

 

Figure 5.8 WEKA Associate Package Files 

 

 



80 

 

 

 

 

4) Browse for the installation file location and click Next to start the 

installation as shown in Figure 5.9 below. 

 

Figure 5.9 WEKA Installation Location 

 

5) After installation is completed, WEKA will be launched as show in 

Figure 5.10 below.  

 

Figure 5.10 WEKA interface 

 

 



81 

 

 

 

5.4 Step 3: Acquiring Datasets   

The dataset will be acquired and downloaded from official datasets 

repositories. In our case, the dataset will be acquired from Kaggle and UCI Machine 

Learning Repositories.  

 

Figure 5.11 Android Ransomware Detection dataset 

 

Figure 5.11 shows the Android Ransomware Detection dataset from Kaggle. 

It’s distributed under the GNU Affero General Public License and serves as a 

resource for analyzing Android ransomware and benign traffic types. 

 

Figure 5.12 BitcoinHeistRansomwareAddress Dataset 

 

Figure 5.12 shows the BitcoinHeistRansomwareAddress Dataset. The dataset 

is designed for identifying ransomware payments on the Bitcoin network. It 

contains features related to addresses involved in the Bitcoin network, 

particularly focusing on detection ransomware-related transactions. 



82 

 

 

 

5.5 Step 4: Pre-Processing 

5.5.1 Steps for Pre-Processing  

1) Select the csv file of the chosen dataset as shown in Figure 5.13 below.  

 

Figure 5.13 selecting the dataset in csv file format 

 

2) The ARFF-viewer tool of WEKA will automatically categorize each 

attribute based on the sample type whether it’s Numerical or Nominal as 

shown in Figure 5.14 below.  

 

Figure 5.14 Categorization of dataset attributes 



83 

 

 

 

3) Navigate to the File tab and click “Save as” shown in Figure 5.15 below.  

 

Figure 5.15 Categorization of dataset attributes 

 

4) Save the previous dataset with extension .csv file to convert it into an .arff 

file format shown in the Figure 5.16 below. Now the dataset is ready to be 

loaded and processed into WEKA and Orange.  

 

Figure 5.16 Categorization of dataset attributes 

 



84 

 

 

 

5.5.2 Comparison Before and After  

 

Figure 5.17 Dataset 1 before Pre-Processing 

 

Figure 5.17 shows the dataset before pre-processing. The provided data is in CSV 

format and contains network traffic information. Each row represents a network 

communication instance. The columns contain various attributes related to 

communication, such as source IP, source port, destination IP, destination port, 

protocol and so on. The dataset that is in CSV format, is not a standard format for 

machine learning datasets. Although Weka can read CSV data, it requires manual 

conversion. This can be a time-consuming and error-prone process. 

 

 

Figure 5.18 Dataset 1 with defined relation and attributes 

 

Figure 5.18 shows the dataset is in ARFF (Attribute-Relation File Format), which is a 

standard file format used to represent datasets in machine learning and data mining. 



85 

 

 

 

This format includes both the data attributes and their corresponding values, making it 

easier for machine learning tools like WEKA to process and analyze the data. 

 

 

Figure 5.19 Dataset 1 with defined data 

 

Figure 5.19 shows Dataset 1 with defined data. The structured ARFF format defines 

the attributes and their types using the @attribute section, followed by the actual data 

values using the @data section. This structure makes it clear how the data is organized 

and what each attribute represents. In addition to that, each attribute is assigned a 

specific type (numeric, nominal, etc) which is essential for machine learning 

algorithms to understand how to treat each attribute during analysis. 

5.6 Step 5: Load Dataset 

5.6.1  Steps to Load Dataset for WEKA  

1) Launch WEKA and navigate to the Explorer tab as shown in Figure 5.20 

below.  

 

Figure 5.20 Weka Interface 



86 

 

 

 

2) Another terminal “WEKA Explorer” will be popup as shown Figure 5.21. 

Navigate to “open file” and choose the dataset that has been processed as 

an .arff file format in order to load the dataset. Click open to proceed.  

 

Figure 5.21 Loading the .arff file format dataset into WEKA 

 

3) Wait for WEKA to load the dataset as it might take some time especially 

for dataset with large number of samples/instances. The result is shown as 

Figure 5.22 below. The graph visualizes the target class which is Label into 

2 categories which are Ransomware samples and Benign samples.  

 

Figure 5.22 graph for visualize the Ransomware and Benign samples 



87 

 

 

 

5.6.2  Steps to Load Dataset for ORANGE  

1) Once Orange has been launched, navigate to the menu bar at the left section 

and choose “File” widget as shown in Figure 5.23 below.  

 

Figure 5.23 Loading dataset into Orange 

 

2) Select the dataset that has been processed as an .arff file format from the 

provided folder. Orange will show all the attributes presented in the chosen 

dataset and view it using the “Data Table” widget as shown in Figure 5.24 

below.  

 

Figure 5.24 Data Table representation in Orange 

 

 



88 

 

 

 

3) In Orange, we have to manually choose which attribute will be our target 

class. In this case, change the Role value for attribute label as the target 

class that will be categorized into 2 categories which are Ransomware 

samples and Benign samples as shown in Figure 5.25 below.  

 

Figure 5.25 Assigning target class in Orange 

 

5.7 Step 6: Classification  

This step focuses on choosing machine learning classification techniques. 

According to the literature review in the previous Chapter 3, the selected 

classification techniques that will be used with the most occurrence are 

Decision Tree, Random Forest, Support Vector Machines (SVM) and Naïve 

Bayes. Below demonstration will show examples of steps for Decision Tree 

for both WEKA and Orange. Note that the same steps will be applied for the 

other types of classification techniques. Refer Appendix B for demonstration 

of Random Forest, Support Vector Machines (SVM) and Naïve Bayes.  

 

 



89 

 

 

 

5.7.1 Steps to classify data in WEKA 

1) Once the dataset has been loaded, navigate to the “Classify” tab as 

shown in Figure 5.26 below.  

 

Figure 5.26 WEKA explorer 

 

 

2) Under the “Classifier” section, click choose to select the machine 

learning classification algorithms as shown in Figure 5.27 below. In 

this case, we try to classify using one of the decision trees classification 

algorithms specifically J48. 

 

Figure 5.27 Selection of classification algorithms in WEKA 

 



90 

 

 

 

5.7.2 Steps to classify data in ORANGE   

1) To start the classification process on the dataset, navigate to the 

“Model” section and select the “Tree” widget which represents the 

Decision Tree classification algorithm as shown in Figure 5.28 below.  

 

Figure 5.28 Selection of classification algorithms in Orange 

 

2) Connect the nodes to start training the model using the Decision Tree 

classification algorithms as shown in Figure 5.29 below.  

 

Figure 5.29 Connecting each nodes in Orange 

 

 



91 

 

 

 

5.8 Step 7: Generate Result 

This step focuses on generating the result based on the machine learning 

classification algorithm chosen. The output for this step will be used for the 

next chapter to evaluate the accuracy result of classification techniques using 

different evaluation metrics tool.  

5.8.1 Step 7: Generate Result for WEKA  

1) Once the classification algorithm has been chosen, for this 

demonstration we will split the dataset into 70:30 ratio for training and 

testing the model. Note that the same steps will be repeated for other 

ratios such as 50:50 and 90:10.  

 

Figure 5.30 Dataset splitting in WEKA 

 

 

 

 

 

 

 

 

 

 



92 

 

 

 

2) Click start and wait for WEKA to generate the result as it may take 

some time. As shown in Figure 5.31 below, the information generated 

such as the time taken for the model to be build, Summary for each 

instance, Performance for each evaluation metrics and the Confusion 

Matrix.  

 

Figure 5.31 Evaluation Metrics result for Decision Tree in WEKA 

5.8.2 Step 7: Generate Result for ORANGE 

1) Once the classification algorithm has been chosen, we will evaluate it 

using the evaluation metrics. Navigate to the “Evaluate” section and 

connect the node to the “Test and Score” widget as shown in Figure 

5.32 below. Click on the Test and Score to edit the configuration of the 

model and set the training to be 70:30 ratio.  

 

Figure 5.32 Dataset splitting in Orange 



93 

 

 

 

2) The percentage shows the progress of building and evaluation of the 

chosen classification model as shown in Figure 5.33 below.  

 

Figure 5.33 Completion percentage of Test and Score process 

 

3) After reaching 100% of completion the result will be generated as 

shown in Figure 5.34 below.  

 

Figure 5.34 Evaluation Metrics result for Decision Tree in Orange 

5.9 Conclusion 

This chapter focuses on the activities to implement the research. Same steps 

will be taken for other classification algorithm Random Forest, Support Vector 

Machines (SVM), Naïve Bayes and each dataset splitting ratio 50:50, 70:30, 

90:10. The reason for various dataset splitting as discussed in previous Chapter 

3 critical review section, which is to improve the previous research work that 

only using 50:50 ratio. Other than using the method of 2/3 fraction equivalent 

to 70:30 for splitting the dataset as recommended by (Dobbin and Simon, 

2011), we will expand the research by considering various ratios and 

classification algorithms. Each comparison will be discussed and evaluated in 

the next Chapter 6.  



94 

 

 

 

 

 

 

CHAPTER 6: TESTING AND EVALUATION 

 

 

 

 

6.0 Introduction  

The previous chapter focuses on the implementation of the research which 

involves configuring the machine learning tools to align with the designated 

algorithms, processing the dataset and starting the learning process by building the 

machine learning model. This chapter will explain about the testing and analysis after 

the machine learning model is created. The testing includes a comprehensive 

evaluation that involves experimenting with diverse dataset testing samples. It's a 

crucial step as it allows us to analyze the model performance towards different dataset 

characteristics. Following the experimental results, analysis will be made to evaluate 

the model performance according to the evaluation metrics. This chapter is crucial to 

measure the performance of the model and discuss whether different datasets size may 

influence the accuracy of the model. Chapter 6 activities are mapped based on the 

research methodology Phase 6 Analyze the information and Phase 7 Documenting 

Result. 

 

 

 

 

 



95 

 

 

 

6.1 Test Plan Strategy  

 

Figure 6.1 Test Plan Strategy 

 

Based on Figure 6.1 we have constructed three test plan with purpose 

to observe the classification techniques behavior under diverse condition. To 

be specific, the aspects include testing for a) unbalance vs balanced dataset b) 

various sample sizes c) various ratio of training and test. Test Plan A is 

expanded to consider not only the unbalanced dataset but also the balanced 

dataset which is inspired by (Alsoghyer et al., 2020), (Almomani et al., 2021), 

and (Mercaldo, 2021). Previous authors only consider 1000 balanced samples 

precisely 500 Ransomware samples and 500 Benign samples. Therefore, we 

will improve the previous research by considering to expand the dataset for 

1000, 5000 and 10 000 samples. This is because, according to the findings of 

research by (Ajiboye et al., 2015) in the paper titled "Evaluating The Effect Of 

Dataset Size On Predictive Model Using Supervised Learning Technique," it 

is evident that enhancing the results can be achieved through dataset size which 

motivates our research plan B. For test plan C, as suggested by (Dobbin and 

Simon, 2011) the recommended amount of training and testing ratio is 70:30. 

However, an additional ratio was added to the experiment with the purpose of 

expanding our testing scope.   

 

 

 

 

 



96 

 

 

 

6.1.1 Test Plan Flowchart 

 

Figure 6.2 Flowchart Conducting Test Plan  

 

The suggested flowchart illustrates an approach for improving the accuracy of 

machine learning models based on combining ideas from previous research, as 

discussed in section 6.1. It begins by determining whether a balanced or imbalanced 

dataset produces greater results and proceed Test Plan B with outcome/conclusion of 

Test Plan A. Based on conclusion B, we will proceed with Test Plan C and make 

overall conclusion which is explain in section 6.6 Significant Results.  



97 

 

 

 

6.1.2 Sub-sampling Ransomware Dataset 

 

Figure 6.3 Command for Sub-sampling the Ransomware dataset using 

Python language in Jupyter Notebook. 

 

Figure 6.3 shows the command for sub-sampling method for Dataset I. The 

method is conducted using Python language in Jupyter Notebook. The testing 

is done in Kali Linux VMWare workstation since it has a better environment 

for Jupyter Sever configuration setup compared to the Windows environment. 

In the provided code snippet, the Python panda’s library is utilized to handle a 

dataset named BitcoinHeistRansomware.csv.  

This dataset is filtered into two categories: 'Ransomware' and 'white' as the 

benign sample. Subsequently, a subset is created by randomly sampling 700 

instances from the 'Ransomware' class and 300 instances from the 'white' class. 

The resulting sampled dataset, comprising 1000 instances, is then saved as 

'1000_Unbalanced_BitcoinHeist_RANSOMWARE_.csv'. Same code is run 

by adjuster the parameter for sampled_ransomware and sample_benign as the 

following for Dataset I ( BitcoinHeist Ransomware) :  

 

a) 1000_Unbalanced_BitcoinHeist_ RANSOMWARE_.csv 

b) 1000_Balanced_BitcoinHeist_ RANSOMWARE_.csv 



98 

 

 

 

c) 5000_Unbalanced_BitcoinHeist_ RANSOMWARE_.csv 

d) 5000_Balanced_BitcoinHeist_ RANSOMWARE_.csv 

e) 10 000_Unbalanced_BitcoinHeist_ RANSOMWARE_.csv 

f) 10 000_Balanced_BitcoinHeist_ RANSOMWARE_.csv 

 

 

Figure 6.4 Command to show the Ransomware dataset dimension 

before and after sub-sampling method 

 

Figure 6.4 shows the command displaying the dimensions for number 

of rows and columns of the original dataset which comprises of 1048575 

million samples with 10 attributes. The purpose of the sub-sampling is to 

counter against the heap size error when loading the dataset into WEKA. 

Therefore, this strategy involves working with smaller datasets initially and 

gradually increasing the size. Line 10 of the Python code shows the result 

distribution of classes in the newly created balanced subset. Sample of code 

can be found in Appendix C. Same sub-sampling method is done for all 

datasets, BitcoinHeist Ransomware dataset (Dataset I), Android Ransomware 

dataset (Dataset II) and File System Behavior Ransomware Detection dataset 

(Dataset III). Each parameter has been discussed in the previous Chapter 2 

section 2.3.3.2 for further understanding. 



 

 

 

 

 

 

6.2 Result and Analysis Dataset I 

In this section, the results from the project implementation phase are presented. The analysis focuses on identifying the performance of 

machine learning algorithms by evaluating the accuracy result using different evaluation metrics tools by expanding the test plan. All the 

results for Dataset I focuses on BitcoinHeist and discussion are shown below. Refer Appendix D for others results.  

6.2.1 Evaluation Metric Result of 1000 BitcoinHeist Ransomware Samples for Unbalanced and Balanced Ransomware Detection  

Table 6.1 Evaluation Metrics Result of 1000 BitcoinHeist Samples (50:50) 

Dataset Algorithms 
True Positive 

Rate 

False Positive 

Rate 
Precision Recall F-Measure Overall Accuracy 

1000_Unbalanced_

BitcoinHeist 

Decision Tree 0.930 0.075 0.932 0.930 0.931 93.00%  

Random Forest 0.810 0.424 0.843 0.810 0.781 81.00% 

Naïve Bayes 0.770 0.518 0.820 0.770 0.719 77.00% 

LibSVM 0.690 0.696 0.481 0.690 0.567 69.00%  

SMO 0.916 0.161 0.917 0.916 0.914 91.60% 

1000_Balanced_ 

BitcoinHeist 

Decision Tree 0.938 0.065 0.940 0.938 0.938 93.80% 

Random Forest 0.926 0.078 0.935 0.926 0.925 92.60% 

Naïve Bayes 0.828 0.165 0.862 0.828 0.825 82.80% 

LibSVM 0.642 0.373 0.730 0.642 0.599 64.20% 

SMO 0.940 0.059 0.941 0.940 0.940 94.00%(Best) 



100 

 

 

 

 

Table 6.1 shows the evaluation metrics result of 1000 BitcoinHeist Samples. In this experiment the machine learning classifiers are 

tested for two scenarios: unbalanced and balanced ransomware samples. 1000_Unbalanced_BitcoinHeist Dataset consists of 700 

ransomware samples and 300 benign samples (referred to as "white"). Whereas 1000_Balanced_BitcoinHeist Dataset consists of 500 

ransomware samples and 500 benign samples (referred to as "white"). The purpose of these two datasets is to identify the performance 

between balanced and unbalanced ransomware datasets of 1000 samples. For each case, the following classification algorithms were 

applied, and their related evaluation metrics were calculated.  

Based on the result as shown in Table 6.1, for the unbalanced scenario, the Decision Tree achieved the highest True Positive Ratio 

among all classifiers which is 0.930. The result indicated its effectiveness to correctly identified ransomware samples thus giving the highest 

precision of 0.932. The False Positive is relatively lowest among all at 0.075% suggesting that it is classifying non-ransomware (white) 

instances with a high level of accuracy which is 93.00 %.  

For the case of balanced scenario, it shows that the Support Vector Machine with Polynomial Kernel (SMO) is the best classifier 

with highest accuracy 94.00%. It achieved the highest True Positive Ratio among all classifiers which is 0.940 which indicated its 

effectiveness to correctly identified ransomware sample. The False Positive is relatively lowest among all at 0.059 suggesting that it is 

classifying non-ransomware (white) instances with a high level of precision of 0.941.



 

 

 

 

 

 

 

 

Figure 6.5 Graph Accuracy for 1000 BitcoinHeist Samples (50:50) 

 

Figure 6.5 shows the Graph Accuracy for 1000 BitcoinHeist Samples for 

both cases. The graph is important to provide a clear visual representation of 

the model performance between the unbalanced and balanced scenarios. The 

graph illustrates a noticeable increase in accuracy across four models, 

specifically Decision Tree J48, Random Forest, Naïve Bayes, and Support 

Vector Machine with Polynomial Kernel (SMO), for transition from the 

unbalanced scenario to the balanced scenario. As conclusion machine learning 

algorithms perform better across multiple metrics in the balanced case, where 

the class distribution is equal. This is because a balanced dataset gives 

classifiers a more equal representation of both classes, allowing the model to 

learn and classify more successfully. 

 

 

 

 



 

 

 

 

 

 

6.2.2 Evaluation Metric Result of 5000 BitcoinHeist Ransomware Samples for Unbalanced and Balanced Dataset Ransomware Detection 

Table 6.2 Evaluation Metrics Result of 5000 BitcoinHeist Samples (50:50) 

Dataset Algorithms 
True Positive 

Rate 

False Positive 

Rate 
Precision Recall F-measure Overall Accuracy 

5000_Unbalanced_

BitcoinHeist 

Decision Tree 0.939 0.045 0.944 0.939 0.940 93.88 % 

Random Forest 0.810 0.430 0.847 0.810 0.779 81.00% 

Naïve Bayes 0.887 0.239 0.895 0.887 0.880 88.68% 

LibSVM 0.698 0.667 0.662 0.698 0.596 69.84% 

SMO 0.962 0.074 0.962 0.962 0.962 96.2% 

5000_Balanced_ 

BitcoinHeist 

Decision Tree 0.950 0.051 0.952 0.950 0.950 95.04% 

Random Forest 0.959 0.043 0.962 0.959 0.959 95.88% 

Naïve Bayes 0.908 0.092 0.908 0.908 0.908 90.76% 

LibSVM 0.637 0.373 0.691 0.637 0.606 63.72% 

SMO 0.966 0.034 0.966 0.966 0.966 96.56%(Best) 

 

 

 

 



103 

 

 

 

Table 6.2 shows the evaluation metrics result of 5000 BitcoinHeist Samples. In this experiment the machine learning classifiers are 

tested for two scenarios: unbalanced and balanced ransomware samples. 5000_Unbalanced_BitcoinHeist Dataset consists of 3500 

ransomware samples and 1500 benign samples (referred to as "white"). Whereas 5000_Balanced_BitcoinHeist Dataset consists of 2500 

ransomware samples and 2500 benign samples (referred to as "white"). The purpose of these two datasets is to identify the performance 

between balanced and unbalanced ransomware datasets of 5000 samples. For each case, the following classification algorithms were 

applied, and their related evaluation metrics were calculated.  

Based on the result as shown in Table 6.2, for the unbalanced scenario, Support Vector Machine with Polynomial Kernel (SMO) 

achieved the highest True Positive Ratio among all classifiers which is 0.962. The result indicated its effectiveness to correctly identified 

ransomware samples thus giving the highest precision of 0.962 as well. Despite the False Positive for SMO being the second lowest among 

all at 0.074, it has the highest Precision, Recall and F-measure value at 0.962 which contributes to its being the highest accuracy of 96.2% 

among all models. 

For the case of the balanced scenario, it is noticeable that the Support Vector Machine with Polynomial Kernel (SMO) maintains its 

position as the most effective classifier, reaching the accuracy of 96.56. It achieved the highest True Positive Ratio among all classifiers 

which is 0.966 which indicated its effectiveness to correctly identified ransomware sample. The False Positive is relatively lowest among 

all at 0.034 suggesting that it is classifying non-ransomware (white) instances with a high level of precision of 0.966.  

 

 

 



 

 

 

 

 

 

 

 

Figure 6.6 Graph Accuracy for 5000 BitcoinHeist Samples (50:50) 

Figure 6.6 shows the Graph Accuracy for 5000 BitcoinHeist Samples for 

both cases. The graph illustrates a noticeable increase in accuracy across four 

models, specifically Decision Tree J48, Random Forest, Naïve Bayes, and 

Support Vector Machine with Polynomial Kernel (SMO), for transition from 

the unbalanced scenario to the balanced scenario. It can be highlight that the 

performance of Naïve Bayes has significantly increase for 5000 samples 

(88.68% and 90.76%) compared to the previous 1000 samples (77% and 

82.8%). This shows that the Naïve Bayes model performance increases as the 

sample size increase to 5000 samples. Whereas for three others, Decision Tree 

J48, Random Forest, SMO maintain its good performance with slight 

increments in accuracy. As conclusion most of machine learning algorithms 

which are Decision Tree J48, Random Forest, Naïve Bayes, and SMO perform 

better across multiple metrics in the balanced case, where the class distribution 

is equal. This is because a balanced dataset gives classifiers a more equal 

representation of both classes, allowing the model to learn and classify more 

successfully. 



 

 

 

 

 

 

6.2.3 Evaluation Metric Result of 10 000 BitcoinHeist Ransomware Samples for Unbalanced and Balanced Dataset Ransomware 

Detection 

Table 6.3 Evaluation Metrics Result of 10 000 BitcoinHeist Samples (50:50) 

Dataset Algorithms 
True Positive 

Rate 

False Positive 

Rate 
Precision Recall F-measure 

Overall 

Accuracy 

10 000_Unbalanced_ 

BitcoinHeist 

Decision Tree 0.941 0.032 0.949 0.941 0.942 94.06% 

Random Forest 0.775 0.521 0.830 0.775 0.723 77.46% 

Naïve Bayes 0.912 0.142 0.912 0.912 0.911 91.24% 

LibSVM 0.701 0.665 0.661 0.701 0.603 70.14% 

SMO 0.972 0.053 0.972 0.972 0.972 97.18% 

10 000_Balanced_ 

BitcoinHeist 

Decision Tree 0.952 0.047 0.954 0.952 0.952 95.2% 

Random Forest 0.965 0.035 0.967 0.965 0.965 96.46% 

Naïve Bayes 0.548 0.460 0.713 0.548 0.436 54.84% 

LibSVM 0.650 0.346 0.704 0.650 0.626 64.98% 

SMO 0.982 0.018 0.982 0.982 0.982 98.16%(Best) 

 

 

 



106 

 

 

 

Table 6.3 shows the evaluation metrics result of 10 000 BitcoinHeist Samples. In this experiment the machine learning classifiers 

are tested for two scenarios: unbalanced and balanced ransomware samples. 10 000_Unbalanced_BitcoinHeist Dataset consists of 7000 

ransomware samples and 3000 benign samples (referred to as "white"). Whereas 10 000_Balanced_BitcoinHeist Dataset consists of 5000 

ransomware samples and 5000 benign samples (referred to as "white"). The purpose of these two datasets is to identify the performance 

between balanced and unbalanced ransomware datasets of 10 000 samples. For each case, the following classification algorithms were 

applied, and their related evaluation metrics were calculated.  

Based on the result as shown in Table 6.3, for the unbalanced scenario, Support Vector Machine with Polynomial Kernel (SMO) 

still maintains its position as the most effective classifier, with the highest True Positive Ratio among all classifiers which is 0.972. The 

result indicated its effectiveness to correctly identified ransomware samples. Despite the False Positive for SMO being the second lowest 

among all at 0.053, it has the highest Precision, Recall and F-measure value at 0.972 which contributes to its being the highest accuracy of 

97.18% among all models. 

For the case of the balanced scenario, it is noticeable that the Support Vector Machine with Polynomial Kernel (SMO) remains its 

position as the most effective classifier, reaching the greatest accuracy of 98.16%. It achieved the highest True Positive Ratio among all 

classifiers which is 0.982 which indicated its effectiveness to correctly identified ransomware sample. The False Positive is relatively lowest 

among all at 0.018 suggesting that it is classifying non-ransomware (white) instances with a highest level of precision at 0.982.  

 

 

 



 

 

 

 

 

 

 

Figure 6.7 Graph Accuracy for 10 000 BitcoinHeist Samples (50:50) 

 

Figure 6.7 shows the Graph Accuracy for 10 000 BitcoinHeist Samples for 

both cases. The graph illustrates a noticeable increase in accuracy across three 

models, specifically Decision Tree J48, Random Forest and Support Vector 

Machine with Polynomial Kernel (SMO), for transition from the unbalanced 

scenario to the balanced scenario. On the other hand, Naïve Bayes and LibSVM 

shows inconsistency of result as the sample size increase from 5000 to 10 000 

samples. Whereas for three others, Decision Tree J48, Random Forest, SMO 

maintain its good performance with slight increments in accuracy.  

As conclusion most of machine learning algorithms which are Decision 

Tree J48, Random Forest, Naïve Bayes, and SMO perform better across 

multiple metrics in the balanced scenario, where the class distribution is equal. 

This is because a balanced dataset gives classifiers a more equal representation 

of both classes, allowing the model to learn and classify more successfully. It 

also can be concluded that, the Support Vector Machine with Polynomial 

Kernel (SMO) has achieved the best performance for all sample size 1000, 

5000 and 10 000 BitcoinHeist samples.  

 



108 

 

 

 

6.2.4 Accuracy of Classification Model Across Different Sample Sizes 

 

Figure 6.8 Graph Accuracy for Classification Model Across Different Sample 

Sizes of BitcoinHeist Ransomware (50:50) 

 

Figure 6.8 shows the Graph Accuracy for Classification Model Across 

Different Sample Sizes of BitcoinHeist Ransomware. The results allow us to visualize 

the behavior of classification models for the sample of 1000, 5000 and 10 000 by doing 

the sub-sampling method to prevent heap size issues in WEKA. Based on the results, 

as the samples increases from 1000 to 5000 and then to 10 000, Decision Tree J48 

Random Forest and Support Vector Machine with Polynomial Kernel (SMO) display 

an incremental rise in accuracy. To be specific Decision Tree J48 shifted from 93.8% 

up to 95.05% and peaked at 95.20%. Random Forest on the other hand, started with 

92.60% increase up to 95.88% and peaked at 96.46%. It can be seen that, Naïve Bayes 

and LibSVM displays sensitivity to class distributions with poor performance. In this 

test plan, the Support Vector Machine with Polynomial Kernel (SMO) performed best 

compared to others starting with 94.00% increase up to 96.56% and peaked at 98.16%. 

 



109 

 

 

 

6.2.5 Accuracy of Classification Model for Different Ratio  

 

Figure 6.9 Graph Accuracy for 1000 BitcoinHeist Samples across Different 

Ratio  

Figure 6.9 shows the Graph Accuracy for 1000 BitcoinHeist samples across 

different ratios. The results allow us to visualize the behavior of classification models 

for the ratio of 50:50, 70:30 and 90:10 train and test ratio. Based on the results, as the 

class ratios move from 50:50 to 70:30 and then to 90:10, both Decision Tree J48 and 

Support Vector Machine with Polynomial Kernel (SMO) display an incremental rise 

in accuracy. To be specific Decision Tree J48 shifted from 93.8% up to 94% and 

peaked at 95%. Whereas SMO experienced a slight increase from 94% up to 94.67% 

and peaked at 96%. On the other hand, LibSVM displays sensitivity to class 

distributions with limited improvements as the performance are all below 70% of 

accuracy. While it’s true that both Random Forest (RF) and Naïve Bayes (NB) 

experience increase in accuracy when transitioning from 50:50 to 70:30 ratio. 

However, decrease in accuracy can be seen when moving to the 90:10 ratio, which 

Random Forest and Naïve Bayes scored down to 94% and 68% respectively.  



110 

 

 

 

 

Figure 6.10 Graph Accuracy for 5000 BitcoinHeist Samples across Different 

Ratio  

Figure 6.9 shows the Graph Accuracy for 5000 BitcoinHeist samples across 

different ratios. The results allow us to visualize the behavior of classification models 

for the ratio of 50:50, 70:30 and 90:10 train and test ratio. Based on the result, the 

SMO model regularly outperforms in all class ratios. It can be highlighted that Support 

Vector Machine with Polynomial Kernel (SMO) consistently leads with the highest 

accuracy levels across all ratios. On the other hand, the performance of Naïve Bayes 

(NB) and LibSVM display sensitivity to class distributions. Their accuracy shows 

limited improvements with Naïve Bayes decreasing for each ratio and LibSVM 

performance are all below 70% of accuracy. Whereas both the Decision Tree J48 and 

Random Forest models improve in accuracy as the 50:50 ratio is changed to 70:30. 

Decision Tree J48 improved from 95.04% to 95.33%, while Random Forest improved 

from 95.88% to 96.27%. However, a slight decrease in accuracy can be seen when 

moving to the 90:10 ratio, with Decision Tree J48 scoring down to 95.20%. 

 



111 

 

 

 

 

Figure 6.11 Graph Accuracy for 10 000 BitcoinHeist Samples across 

Different Ratio 

Figure 6.11 shows the Graph Accuracy for 10 000 BitcoinHeist samples across 

different ratios. The results allow us to visualize the behavior of classification models 

for the ratio of 50:50, 70:30 and 90:10 train and test ratio. Based on the result, the 

SMO model regularly outperforms in all class ratios. Specifically, SMO achieves a 

98.16% accuracy at a 50:50 ratio. This pattern continues with an accuracy of 98.47% 

at a 70:30 ratio and peaks at 99.1% at a 90:10 ratio. On the other hand, the performance 

of Naïve Bayes (NB) and LibSVM display sensitivity to class distributions, with their 

accuracy showing limited improvements which are all below 70% of accuracy. Both 

Decision Tree J48 and Random Forest models exhibit an increase in accuracy as the 

transition progresses from the 50:50 ratio to the 70:30 ratio. However, a slight decrease 

in accuracy is observed when moving to the 90:10 ratio. Consequently, considering 

the accuracy trends observed in all samples (1000, 5000 and 10 000) it can be 

concluded that, most machine learning classification model achieve better 

performance for testing ratio starting with 70% and above. 

 

 



 

 

 

 

 

 

6.2.6 Comparison between WEKA and Orange  

Table 6.4 Summary of results for Dataset I TPR, FPR, Precision, Recall, F-measure and Accuracy in WEKA (70:30) 

Sample Size Algorithms 
True Positive 

Rate 

False Positive 

Rate 
Precision Recall F-measure Overall Accuracy 

1000 

Decision Tree 0.940 0.059 0.940 0.940 0.940 94.00% 

Random Forest 0.957 0.046 0.957 0.957 0.957 95.67% (Best) 

Naïve Bayes 0.833 0.144 0.877 0.833 0.831 83.33% 

LibSVM 0.663 0.381 0.732 0.663 0.626 66.33% 

SMO 0.947 0.048 0.950 0.947 0.947 94.67% 

5000 

Decision Tree 0.953 0.047 0.955 0.953 0.953 95.33% 

Random Forest 0.963 0.037 0.965 0.963 0.963 96.27% 

Naïve Bayes 0.846 0.154 0.876 0.846 0.843 84.60% 

LibSVM 0.632 0.368 0.680 0.632 0.606 63.20% 

SMO 0.967 0.033 0.968 0.967 0.967 96.73% (Best) 

10 000 

Decision Tree 0.953 0.048 0.954 0.953 0.953 95.27% 

Random Forest 0.987 0.014 0.987 0.987 0.987 98.67% (Best) 

Naïve Bayes 0.553 0.440 0.716 0.553 0.453 55.33% 

LibSVM 0.660 0.344 0.709 0.660 0.637 65.97% 

SMO 0.985 0.015 0.985 0.985 0.985 98.47% 



 

 

 

 

 

 

 

Table 6.4 shows an in-depth overview of the evaluation's results in WEKA 

obtained by using balanced BitcoinHeist datasets with sample sizes of 1000, 5000, and 

10,000, all with a 70:30 ratio. The aim of this table is to present a comprehensive 

summary of several classification algorithms' performance measures, with a focus on 

True Positive Rate (TPR), False Positive Rate (FPR), precision, recall, F-measure, and 

overall accuracy.  It can be highlighted that, Random Forest obtains the highest True 

Positive Rate (TPR) of 0.957 and the lowest False Positive Rate (FPR) of 0.046 with 

1000 samples. These numbers represent the algorithm's ability to detect positive cases 

correctly while minimizing false positives. As the dataset size increases to 5000 

samples, Random Forest experienced a slight increase from 95.67% to 96.27% and 

peaked at 98.67% for 10 000 BitcoinHeist samples as the best classification 

algorithms.  

It can be concluded that, for WEKA Random Forest (RF) approach consistently 

outperforms other classification algorithms on balanced BitcoinHeist datasets with 

variable sample sizes and a 70:30 ratio. With accuracy scores of 95.67%, 96.27%, and 

98.67% for 1000, 5000, and 10,000 samples, respectively remains the best 

classification algorithms. Following closely behind, the Support Vector Machine with 

Polynomial Kernel (SMO) performs successfully, with the highest accuracy of 96.73% 

for 5000 samples. These findings highlight the reliability of Random Forest and the 

flexibility of SMO for effective ransomware detection over an extensive selection of 

dataset sizes. 

 

 



 

 

 

 

 

 

Table 6.5 Summary of results for Dataset I TPR, FPR, Precision, Recall, F-measure and Accuracy in ORANGE (70:30) 

Sample Size Algorithms 
True Positive 

Rate 

False Positive 

Rate 
Precision Recall F-measure Overall Accuracy 

1000 

Decision Tree 0.908 0.088 0.910 0.910 0.910 91.00% 

Random Forest 0.892 0.044 0.926 0.924 0.924 92.40% (Best) 

Naïve Bayes 0.892 0.142 0.875 0.875 0.875 87.50% 

SVM 0.802 0.026 0.900 0.887 0.887 88.70% 

5000 

Decision Tree 0.940 0.045 0.948 0.948 0.948 94.80% 

Random Forest 0.933 0.030 0.952 0.951 0.951 95.10% (Best) 

Naïve Bayes 0.910 0.185 0.866 0.862 0.862 86.20% 

SVM 0.693 0.089 0.817 0.802 0.800 80.20% 

10 000 

Decision Tree 0.936 0.046 0.945 0.945 0.945 94.50% 

Random Forest 0.936 0.028 0.955 0.955 0.955 95.50% (Best) 

Naïve Bayes 0.912 0.183 0.868 0.864 0.864 86.40% 

SVM 0.619 0.073 0.802 0.773 0.767 77.30% 

 

 

 

 

 

 

 



 

 

 

 

 

 

Table 6.5 shows an in-depth overview of the evaluation's results in ORANE 

obtained by using balanced BitcoinHeist datasets with sample sizes of 1000, 5000, and 

10,000, all with a 70:30 ratio. The aim of this table is to present a comprehensive 

summary of several classification algorithms' performance measures, with a focus on 

True Positive Rate (TPR), False Positive Rate (FPR), precision, recall, F-measure, and 

overall accuracy. It can be highlighted that, the ORANGE examination of balanced 

BitcoinHeist datasets with a 70:30 ratio across three sample sizes demonstrates the 

consistent increase of the Random Forest classifier performance. Its accuracy, in 

particular, gradually rises by around at the beginning at 92.40% for 1000 samples, 

progressing to 95.10% for 5000 samples, and finally peaked at 95.50% accuracy for 

10,000 samples. This rise in accuracy reflects its ability to consistently perform 

accurate classification as the dataset size grows. 

The Decision Tree classifier follows in second best performance in ORANGE 

closely followed by the Random Forest, and its accuracy shows a similar rising trend 

across various sample sizes. It begins with an accuracy of 91.00% for 1000 samples, 

gradually increases to 94.80% for 5000 samples, and then maintains a little lower 

accuracy of 94.50% for 10,000 samples. This pattern shows a continuous 3.8% 

increase from the smallest to the largest sample. This development emphasizes the 

Decision Tree's ability to make accurate predictions. In conclusion, Random Forest 

performance outperform all others in ORANGE and followed by the Decision Tree. 

 

 



 

 

 

 

 

 

6.3 Result and Analysis Dataset II 

In this section, the results from the project implementation phase are presented. All the results for Dataset II focuses on Android 

Ransomware and discussion are shown below: 

6.3.1 Evaluation Metrics Result of 1000 Android Samples for Unbalanced and Balanced Ransomware Detection  

Table 6.6 Evaluation Metrics Result of 1000 Android Samples (50:50) 

Dataset Algorithms 
True Positive 

Rate 

False Positive 

Rate 
Precision Recall F-Measure Overall Accuracy 

1000_Unbalanced_

Android 

Decision Tree 0.578 0.437 0.615 0.578 0.532 57.80% 

Random Forest 0.706 0.296 0.706 0.706 0.706 70.60%  

Naïve Bayes 0.552 0.466 0.539 0.552 0.481 55.20% 

LibSVM 0.502 0.476 0.592 0.502 0.369 50.20% 

SMO 0.652 0.352 0.654 0.652 0.649 65.20% 

1000_Balanced_ 

Android 

Decision Tree 0.694 0.694 0.694 0.694 0.694 69.40% 

Random Forest 0.722 0.550 0.700 0.722 0.676 72.20% (Best) 

Naïve Bayes 0.560 0.344 0.676 0.560 0.574 56.00% 

LibSVM 0.696 0.671 0.652 0.696 0.590 69.60% 

SMO 0.710 0.614 0.688 0.710 0.637 71.00% 

  



117 

 

 

 

 

 

Table 6.6 shows the evaluation metrics result of 1000 Android Samples. In this experiment the machine learning classifiers are 

tested for two scenarios: unbalanced and balanced Android Ransomware samples. 1000_Unbalanced_Android Dataset consists of 700 

ransomware samples and 300 benign samples (referred to as "Benign"). Whereas 1000_Balanced_Android Dataset consists of 500 

ransomware samples and 500 benign samples (referred to as "Benign"). The purpose of these two datasets is to identify the performance 

between balanced and unbalanced ransomware datasets of 1000 Android samples. For each case, the following classification algorithms 

were applied, and their related evaluation metrics were calculated.  

Based on the result as shown in Table 6.6, for the unbalanced scenario, the Random Forest achieved the highest True Positive Ratio 

among all classifiers which is 0.706. The result indicated its effectiveness to correctly identified ransomware samples thus giving the highest 

precision of 0.706. The False Positive is relatively lowest among all at 0.296 suggesting that it is classifying non-ransomware (Benign) 

instances with a high level of accuracy which is 70.60 %.  

For the case of balanced scenario, Random Forest maintains its good performance as the best classifier with highest accuracy 

72.20%. It achieved the highest True Positive Ratio among all classifiers which is 0.722 which indicated its effectiveness to correctly 

identified ransomware sample. Despite the False Positive being the second lowest among all at 0.550, it has the highest Precision and Recall 

values which contributes to its being the highest accuracy of 72.20% among all models. 

 

 



 

 

 

 

 

 

 

Figure 6.12 Graph Accuracy for 1000 Android Samples (50:50) 

 

Figure 6.12 shows the Graph Accuracy for 1000 Android Samples for both 

cases. The tabular result has been transformed into a graph which is important to 

provide a clear visual representation of the model performance between the 

unbalanced and balanced scenarios. The graph illustrates a noticeable increase in 

accuracy across all five models, specifically Decision Tree J48, Random Forest, 

Naïve Bayes, LibSVM and Support Vector Machine with Polynomial Kernel 

(SMO), for transition from the unbalanced scenario to the balanced scenario.  

To be specific, a significant improvement in accuracy can be seen for 

Decision Tree J48 and LibSVM which are 57.80% to 69.40% and 50.20% to 

69.60%. On the other hand, support Vector Machine with Polynomial Kernel 

(SMO) experience increased in accuracy by 5.8%. Both Random Forest and Naïve 

Bayes experience slight increase in accuracy 1.6% and 0.8% respectively. 

As conclusion machine learning algorithms perform better across multiple 

metrics in the balanced case, where the class distribution is equal for all 

classification model of 1000 Android samples. This is because a balanced dataset 

gives classifiers a more equal representation of both classes, allowing the model to 

learn and classify more successfully.  



 

 

 

 

 

 

6.3.2 Evaluation Metric Result of 5000 Android Samples for Unbalanced and Balanced Dataset Ransomware Detection 

Table 6.7 Evaluation Metrics Result of 5000 Android Samples (50:50) 

Dataset Algorithms 
True Positive 

Rate 

False Positive 

Rate 
Precision Recall F-Measure Overall Accuracy 

5000_Unbalanced_

Android 

Decision Tree 0.584 0.421 0.587 0.584 0.577 58.36% 

Random Forest 0.704 0.299 0.706 0.704 0.702 70.36%  

Naïve Bayes 0.602 0.409 0.663 0.602 0.556 60.2% 

LibSVM 0.506 0.476 0.557 0.506 0.390 50.56% 

SMO 0.674 0.328 0.676 0.674 0.673 67.44% 

5000_Balanced_ 

Android 

Decision Tree 0.695 0.695 0.695 0.695 0.695 69.48% 

Random Forest 0.747 0.439 0.732 0.747 0.730 74.72% (Best) 

Naïve Bayes 0.541 0.303 0.701 0.541 0.547 54.08% 

LibSVM 0.692 0.689 0.592 0.692 0.575 69.16% 

SMO 0.740 0.489 0.723 0.740 0.711 74.00% 

 

 

 

 



120 

 

 

 

 

Table 6.7 shows the evaluation metrics result of 5000 Android Samples. In this experiment the machine learning classifiers are 

tested for two scenarios: unbalanced and balanced ransomware samples. 5000_Unbalanced_Android Dataset consists of 3500 ransomware 

samples and 1500 benign samples (referred to as "Benign"). Whereas 5000_Balanced_Android Dataset consists of 2500 ransomware 

samples and 2500 benign samples (referred to as "Benign"). The purpose of these two datasets is to identify the performance between 

balanced and unbalanced ransomware datasets of 5000 samples. For each case, the following classification algorithms were applied, and 

their related evaluation metrics were calculated.  

Based on the result as shown in Table 6.7, for the unbalanced scenario, Random Forest achieved the highest True Positive Ratio 

among all classifiers which is 0.704. The result indicated its effectiveness to correctly identified ransomware samples thus giving the highest 

precision of 0.706 as well. The False Positive is relatively lowest among all at 0.299 suggesting that it is classifying non-ransomware 

(Benign) instances with a high level of precision of 0.706. 

For the case of the balanced scenario, it is noticeable that the Random Forest maintains its position as the most effective classifier, 

reaching the accuracy of 74.72%. It achieved the highest True Positive Ratio among all classifiers which is 0.747 which indicated its 

effectiveness to correctly identified ransomware sample. Despite the False Positive being the second lowest among all at 0.439, it has the 

highest Precision at 0.732 which contributes to its being the highest accuracy of 74.72% among all models. 

 

 

 



 

 

 

 

 

 

 

Figure 6.13 Graph Accuracy for 5000 Android Samples (50:50) 

 

Figure 6.13 shows the Graph Accuracy for 5000 Android Samples for both 

cases. The tabular result has been transformed into a graph which is important to 

provide a clear visual representation of the model performance between the 

unbalanced and balanced scenarios. The graph illustrates a noticeable increase in 

accuracy across four models, specifically Decision Tree J48, Random Forest, 

LibSVM and Support Vector Machine with Polynomial Kernel (SMO), for 

transition from the unbalanced scenario to the balanced scenario.  

To be specific, Naïve Bayes performance shows inconsistency as it 

decreases from 60.20% down to 54.08%. On the other hand, an increase in 

accuracy can be seen for Decision Tree J48 from 58.36% up to 69.48%, Random 

Forest from 70.36% up to 74.72%, significant increase for LibSVM from 50.56% 

up to 69.16% and SMO from 67.44% up to 74.00%.  

As conclusion machine learning algorithms perform better across multiple 

metrics in the balanced case, where the class distribution is equal for four 

classification models specifically Decision Tree J48, Random Forest, LibSVM and 

Support Vector Machine with Polynomial Kernel (SMO) for 5000 Android 

Samples.  



 

 

 

 

 

 

6.3.3 Evaluation Metric Result of 10 000 Android Samples for Unbalanced and Balanced Dataset Ransomware Detection 

Table 6.8 Evaluation Metrics Result of 10 000 Android Samples (50:50) 

Dataset Algorithms 
True Positive 

Rate 

False Positive 

Rate 
Precision Recall F-Measure Overall Accuracy 

10000_Unbalanced_

Android 

Decision Tree 0.660 0.336 0.711 0.660 0.640 66.00% 

Random Forest 0.726 0.273 0.729 0.726 0.726 72.62%  

Naïve Bayes 0.637 0.358 0.704 0.637 0.606 63.68% 

LibSVM 0.510 0.483 0.537 0.510 0.420 51.02% 

SMO 0.690 0.306 0.730 0.690 0.677 69.00% 

10000_Balanced_ 

Android 

Decision Tree 0.698 0.698 0.698 0.698 0.698 69.80% 

Random Forest 0.762 0.398 0.751 0.762 0.751 76.24% 

Naïve Bayes 0.571 0.294 0.713 0.571 0.583 57.14% 

LibSVM 0.697 0.688 0.623 0.697 0.583 69.66% 

SMO 0.765 0.469 0.759 0.765 0.736 76.52% (Best) 

 

 

 

 



123 

 

 

 

 

 

Table 6.8 shows the evaluation metrics result of 10 000 Android Samples. In this experiment the machine learning classifiers are 

tested for two scenarios: unbalanced and balanced ransomware samples. 10 000_Unbalanced_Android Dataset consists of 7000 ransomware 

samples and 3000 benign samples (referred to as "Benign"). Whereas 10 000_Balanced_Android Dataset consists of 5000 ransomware 

samples and 5000 benign samples (referred to as "Benign"). The purpose of these two datasets is to identify the performance between 

balanced and unbalanced ransomware datasets of 10 000 samples. For each case, the following classification algorithms were applied, and 

their related evaluation metrics were calculated.  

Based on the result as shown in Table 6.8, for the unbalanced scenario Random Forest still maintains its position as the most effective 

classifier, with the highest True Positive Ratio among all classifiers which is 0.726. The result indicated its effectiveness to correctly 

identified ransomware samples. The False Positive is relatively lowest among all at 0.273 suggesting that it is classifying non-ransomware 

(Benign) instances with a high level of precision of 0.706. 

For the case of the balanced scenario, it is noticeable that the Support Vector Machine with Polynomial Kernel (SMO) remains its 

position as the most effective classifier, reaching the greatest accuracy of 76.52%. It achieved the highest True Positive Ratio among all 

classifiers which is 0.765 which indicated its effectiveness to correctly identified ransomware sample. It has the highest Precision, Recall 

and F-measure which contributes to its being the highest accuracy at 76.52%



 

 

 

 

 

 

 

Figure 6.14 Graph Accuracy for 10 000 Android Samples (50:50) 

 

Figure 6.14 shows the Graph Accuracy for 10 000 Android Samples for 

both cases. The tabular result has been transformed into a graph which is important 

to provide a clear visual representation of the model performance between the 

unbalanced and balanced scenarios. The graph illustrates a noticeable increase in 

accuracy across four models similar with previous test 5000 samples, specifically 

Decision Tree J48, Random Forest, LibSVM and Support Vector Machine with 

Polynomial Kernel (SMO), for transition from the unbalanced scenario to the 

balanced scenario.  

To be specific, Naïve Bayes performance shows inconsistency again as it 

decreases from 63.68% down to 57.14%. On the other hand, an increase in 

accuracy can be seen for Decision Tree J48 from 66.00% up to 69.8%, Random 

Forest from 72.62% up to 76.24%, significant increase for LibSVM from 

51.02%% up to 69.66% and SMO from 69.00% up to 76.52%.  

As conclusion machine learning algorithms perform better across multiple 

metrics in the balanced case, where the class distribution is equal for four 

classification models specifically Decision Tree J48, Random Forest, LibSVM and 

Support Vector Machine with Polynomial Kernel (SMO) for 5000 Android 

Samples.  



125 

 

 

 

6.3.4 Accuracy of Classification Model Across Different Sample Sizes 

 

Figure 6.15 Graph Accuracy for Classification Model Across Different 

Sample Sizes of Android Ransomware (50:50) 

 

Figure 6.15 shows the Graph Accuracy for Classification Model Across 

Different Sample Sizes of Android Ransomware. The results allow us to visualize the 

behavior of classification models for the sample of 1000, 5000 and 10 000 by doing 

the sub-sampling method to prevent heap size issues in WEKA. Based on the results, 

as the samples increases from 1000 to 5000 and then to 10 000, four out of five model 

experience increase in accuracy. It includes Decision Tree J48, Random Forest, 

LibSVM and Support Vector Machine with Polynomial Kernel (SMO). On the other 

hand, the performance of Naïve Bayes shows inconsistencies as it deacrease slightly 

before increasing up to 57.14%. It can be highlighted that, Support Vector Machine 

with Polynomial Kernel (SMO) performance is the best out of all starting at 71.00% 

and increasing to 74.00% and peaked at 76.52% as the sample size increases.  

 



126 

 

 

 

6.3.5 Accuracy of Classification Model for Different Ratio  

 

Figure 6.16 Graph Accuracy for 1000 Android Samples across Different 

Ratio 

 

Figure 6.16 shows the Graph Accuracy for 1000 Android samples across 

different ratios. The results allow us to visualize the behavior of classification models 

for the ratio of 50:50, 70:30 and 90:10 train and test ratio. Based on the results, as the 

class ratios move from 50:50 to 70:30 and then to 90:10, Random Forest shows the 

best performance as it consistently displays an incremental rise in accuracy. To be 

specific Random Forest shifted from 72.2% up to 72.67% and peaked at 77%. Whereas 

Decision Tree J48, LibSVM and SMO experienced a slight decrease when 

transitioning from 50:50 to 70:30 ratio before increasing for 90:10 ratio. On the other 

hand, Naïve Bayes displays sensitivity to class distributions with limited 

improvements as the performance is all below 60% of accuracy for all ratio 50:50, 

70:30 and 90:30.  

 

 

 



127 

 

 

 

 

Figure 6.17 Graph Accuracy for 5000 Android Samples across Different 

Ratio 

 

Figure 6.17 shows the Graph Accuracy for 5000 Android samples across 

different ratios. The results allow us to visualize the behavior of classification models 

for the ratio of 50:50, 70:30 and 90:10 train and test ratio. Based on the results, as the 

class ratios move from 50:50 to 70:30 and then to 90:10, Support Vector Machine with 

Polynomial Kernel (SMO), shows the best performance as it consistently displays an 

incremental rise in accuracy. To be specific SMO shifted from 74.00% up to 75.07% 

and peaked at 78.20%. Whereas Decision Tree J48, Random Forest experienced a 

slight decrease 0.28% and 0.12% when transitioning from 50:50 to 70:30 ratio before 

accuracy increases for 90:10 ratio. It can be highlighted that LibSVM displays constant 

decrease from 69.16% down to 68.87% and 68.60%. On the other hand, Naïve Bayes 

still displays sensitivity to class distributions with limited improvements as the 

performance is all below 60% of accuracy for all ratio 50:50, 70:30 and 90:30. 

 

 



128 

 

 

 

 

 

Figure 6.18 Graph Accuracy for 10 000 Android Samples across Different 

Ratio 

Figure 6.18 shows the Graph Accuracy for 10 000 Android samples across 

different ratios. The results allow us to visualize the behavior of classification models 

for the ratio of 50:50, 70:30 and 90:10 train and test ratio. Based on the results, as the 

class ratios move from 50:50 to 70:30 and then to 90:10, Support Vector Machine with 

Polynomial Kernel (SMO), shows the best performance as it consistently displays an 

incremental rise in accuracy. To be specific SMO shifted from 76.52% up to 77.13% 

and peaked at 78.60%. Whereas Random Forest experienced a slight decrease by 

0.17% when transitioning from 50:50 to 70:30 ratio before accuracy increases for 

90:10 ratio. It can be highlighted that Naïve Bayes finally improves its accuracy 

compared to previous 1000 and 5000 samples as it displays constant increase from 

57.14% up to 69.00% and 69.9%. While it’s true that both Decision Tree J48 and 

LibSVM experience increase in accuracy when transitioning from 50:50 to 70:30 ratio. 

However, decrease in accuracy can be seen when moving to the 90:10 ratio, which 

Decision Tree J48 and LibSVM scored down to 69.60% and 69.90% respectively.  



 

 

 

 

 

 

6.3.6 Comparison between WEKA and Orange  

Table 6.9 Summary of results Dataset II  for TPR, FPR, Precision, Recall, F-measure and Accuracy in WEKA (70:30)  

Sample Size Algorithms 
True Positive 

Rate 

False Positive 

Rate 
Precision Recall F-measure Overall Accuracy 

1000 

Decision Tree 0.663 0.663 0.663 0.663 0.663 66.33% 

Random Forest 0.727 0.509 0.747 0.727 0.675 72.67% (Best) 

Naïve Bayes 0.560 0.350 0.658 0.560 0.567 56.00% 

LibSVM 0.660 0.646 0.592 0.660 0.550 66.00% 

SMO 0.707 0.549 0.721 0.707 0.642 70.67% 

5000 

Decision Tree 0.692 0.692 0.692 0.692 0.692 69.20% 

Random Forest 0.746 0.409 0.733 0.746 0.735 74.60% 

Naïve Bayes 0.525 0.301 0.699 0.525 0.527 52.53% 

LibSVM 0.689 0.680 0.606 0.689 0.577 68.87% 

SMO 0.751 0.474 0.740 0.751 0.722 75.07% (Best) 

10 000 

Decision Tree 0.702 0.702 0.702 0.702 0.702 70.20% 

Random Forest 0.761 0.386 0.750 0.761 0.753 76.07% 

Naïve Bayes 0.690 0.369 0.711 0.690 0.698 69.00% 

LibSVM 0.701 0.683 0.637 0.701 0.596 70.10% 

SMO 0.771 0.462 0.765 0.771 0.744 77.13% (Best) 



 

 

 

 

 

 

 

Table 6.9 shows an in-depth overview of the evaluation's results in WEKA 

obtained by using balanced Android datasets with sample sizes of 1000, 5000, and 

10,000, all with a 70:30 ratio. The aim of this table is to present a comprehensive 

summary of several classification algorithms' performance measures, with a focus on 

True Positive Rate (TPR), False Positive Rate (FPR), precision, recall, F-measure, and 

overall accuracy.  It can be highlighted that, Random Forest obtains the highest True 

Positive Rate (TPR) of 0.727 and which contributes to the highest precision of 0.747 

with 1000 samples. These numbers represent the algorithm's ability to detect positive 

cases correctly while minimizing false positives. As the dataset size increases to 5000 

samples, it can be seen Support Vector Machine with Polynomial Kernel (SMO) 

emerge as the best performance from 70.67% to 75.07% and peaked at 77.13% for 

10000 Android datasets samples as the best classification algorithms.  

It can be concluded that, for WEKA Support Vector Machine with Polynomial 

Kernel (SMO) approach consistently outperforms other classification algorithms on 

balanced Android datasets with variable sample sizes and a 70:30 ratio. Wit h accuracy 

scores of 70.67% to 75.07% up to 77.13% for 1000, 5000, and 10,000 samples, 

respectively remains the best classification algorithms. Following closely behind, 

Random Forest performs successfully, with the highest accuracy of 72.67% for 1000 

samples. These findings highlight the reliability of Support Vector Machine with 

Polynomial Kernel (SMO) and Random Forest for effective ransomware detection 

over an extensive selection of dataset sizes. 

 



 

 

 

 

 

 

Table 6.10 Summary of results for Dataset II for TPR, FPR, Precision, Recall, F-measure and Accuracy in ORANGE (70:30) 

Sample Size Algorithms 
True Positive 

Rate 

False Positive 

Rate 
Precision Recall F-measure Overall Accuracy 

1000 

Decision Tree 0.615 0.462 0.574 0.573 0.573 57.30% 

Random Forest 0.630 0.426 0.615 0.615 0.615 61.50% (Best) 

Naïve Bayes 0.513 0.486 0.584 0.584 0.584 58.40% 

SVM 0.375 0.346 0.514 0.511 0.450 51.10% 

5000 

Decision Tree 0.606 0.457 0.575 0.574 0.574 57.40% 

Random Forest 0.611 0.416 0.598 0.598 0.598 59.80% (Best) 

Naïve Bayes 0.522 0.518 0.502 0.502 0.502 50.20% 

SVM 0.267 0.259 0.505 0.504 0.475 50.40% 

10 000 

Decision Tree 0.618 0.452 0.583 0.583 0.582 58.30% 

Random Forest 0.627 0.400 0.614 0.614 0.614 61.40% (Best) 

Naïve Bayes 0.555 0.537 0.509 0.509 0.508 50.90% 

SVM 0.368 0.365 0.502 0.502 0.492 50.20% 

 

 

 

 

 

 

 



 

 

 

 

 

 

Table 6.10 shows an in-depth overview of the evaluation's results in ORANGE 

obtained by using balanced Android datasets with sample sizes of 1000, 5000, and 

10,000, all with a 70:30 ratio. The aim of this table is to present a comprehensive 

summary of several classification algorithms' performance measures, with a focus on 

True Positive Rate (TPR), False Positive Rate (FPR), precision, recall, F-measure, and 

overall accuracy. It can be highlighted that, the ORANGE examination of balanced 

Android datasets with a 70:30 ratio across three sample sizes demonstrates slight 

increase of the Random Forest classifier performance. Its accuracy gradually rises 

around the beginning at 61.50% for 1000 samples, slightly decrease to 59.80% for 

5000 samples, and finally peaked at 61.40% accuracy for 10,000 samples.  

The Decision Tree classifier follows in second best performance in ORANGE 

closely followed the Random Forest, and its accuracy shows a consistent rising trend 

across various sample sizes. It begins with an accuracy of 57.30% for 1000 samples, 

slightly increases to 57.30% for 5000 samples, and then peaked at accuracy of 58.30% 

for 10,000 samples. This pattern shows a continuous 3.8% increase from the smallest 

to the largest sample. This development emphasizes the Decision Tree's ability to make 

accurate predictions. In conclusion, Random Forest performance outperform all others 

in ORANGE and followed by the Decision Tree. 

 

 



 

 

 

 

 

 

6.4 Result and Analysis Dataset III 

In this section, the results from the project implementation phase are presented. All the results for Dataset III focuses on File System 

Behavior Ransomware dataset and discussion are shown below: 

6.4.1 Evaluation Metrics Result of 1000 File System Behavior Ransomware dataset for Unbalanced and Balanced Ransomware 

Detection 

Table 6.11 Evaluation Metrics Result of 1000 File System Behavior Ransomware dataset (50:50) 

Dataset Algorithms 
True Positive 

Rate 

False Positive 

Rate 
Precision Recall F-Measure Overall Accuracy 

1000_Unbalanced_

FileSystem 

Decision Tree 0.956 0.034 0.959 0.956 0.957 95.60%  

Random Forest 0.904 0.218 0.916 0.904 0.898 90.40% 

Naïve Bayes 0.812 0.353 0.810 0.812 0.799 81.20% 

LibSVM 0.738 0.594 0.810 0.738 0.661 73.80% 

SMO 0.894 0.215 0.899 0.894 0.889 89.40% 

1000_Balanced_ 

FileSystem 

Decision Tree 0.954 0.045 0.955 0.954 0.954 95.40% 

Random Forest 0.960 0.040 0.960 0.960 0.960 96.00% (Best) 

Naïve Bayes 0.736 0.253 0.800 0.736 0.723 73.60% 

LibSVM 0.680 0.336 0.803 0.680 0.640 68.00% 

SMO 0.828 0.166 0.853 0.828 0.826 82.80% 



134 

 

 

 

  

  

 

 

Table 6.11 shows the evaluation metrics result of 1000 File System Behavior Ransomware dataset samples. In this experiment the 

machine learning classifiers are tested for two scenarios: unbalanced and balanced File System Behavior Ransomware samples. 

1000_Unbalanced_FileSystem Dataset consists of 700 ransomware samples and 300 benign samples (referred to as "Benign"). Whereas 

1000_Balanced_ FileSystem Dataset consists of 500 ransomware samples and 500 benign samples (referred to as "Benign"). The purpose 

of these two datasets is to identify the performance between balanced and unbalanced ransomware datasets of 1000 File System Behavior 

Ransomware samples. For each case, the following classification algorithms were applied, and their related evaluation metrics were 

calculated.  

Based on the result as shown in Table 6.11, for the unbalanced scenario, the Decision Tree achieved the highest True Positive Ratio 

among all classifiers which is 0.956. The result indicated its effectiveness to correctly identified ransomware samples thus giving the highest 

precision of 0.959. The False Positive is relatively lowest among all at 0.034 suggesting that it is classifying non-ransomware (Benign) 

instances with a high level of accuracy which is 95.60%.  

For the case of balanced scenario, Random Forest maintains its good performance as the best classifier with highest accuracy 

96.00%. It achieved the highest True Positive Ratio among all classifiers which is 0.960 which indicated its effectiveness to correctly 

identified ransomware sample. The False Positive is relatively lowest among all at 0.040 suggesting that it is classifying non-ransomware 

(Benign) instances with a high level of accuracy which is 96.00 %. 

 



135 

 

 

 

 



 

 

 

 

 

 

 

Figure 6.19 Graph Accuracy for 1000 File System Behavior Ransomware dataset 

(50:50) 

 

Figure 6.19 shows the Graph Accuracy for 1000 File System Behavior 

Ransomware dataset samples for both cases. The tabular result has been 

transformed into a graph which is important to provide a clear visual representation 

of the model performance between the unbalanced and balanced scenarios. The 

graph illustrates a noticeable increase in accuracy across all five models, 

specifically Decision Tree J48, Random Forest, Naïve Bayes, LibSVM and 

Support Vector Machine with Polynomial Kernel (SMO), for transition from the 

unbalanced scenario to the balanced scenario.  

To be specific, for the unbalanced dataset, Decision Tree J48 demonstrated 

its good performance by achieving highest accuracies of 95.6% but slightly 

decreased to 95.4% when transitioning to balanced dataset. Naïve Bayed, LibSVM 

and Support Vector Machine with Polynomial Kernel (SMO) also shows 

inconsistencies as the dataset transition to balanced state.  

On the other hand, a significant improvement in accuracy can be seen for 

Random Forest which from 90.40% and peaked at 96.00% as the highest accuracy 

of for 1000 File System Behavior Ransomware dataset samples.



 

 

 

 

 

 

 

6.4.2 Evaluation Metrics Result of 5000 File System Behavior Ransomware dataset for Unbalanced and Balanced Ransomware 

Detection 

Table 6.12 Evaluation Metrics Result of 5000 File System Behavior Ransomware dataset (50:50) 

Dataset Algorithms 
True Positive 

Rate 

False Positive 

Rate 
Precision Recall F-Measure Overall Accuracy 

5000_Unbalanced_

FileSystem 

Decision Tree 0.991 0.017 0.991 0.991 0.991 99.08%  

Random Forest 0.855 0.331 0.880 0.855 0.839 85.48% 

Naïve Bayes 0.737 0.226 0.786 0.737 0.747 73.68% 

LibSVM 0.763 0.539 0.823 0.763 0.705 76.32% 

SMO 0.880 0.241 0.885 0.880 0.874 88.04% 

5000_Balanced_ 

FileSystem 

Decision Tree 0.989 0.008 0.991 0.991 0.991 99.10% (Best) 

Random Forest 0.952 0.049 0.952 0.952 0.952 95.16% 

Naïve Bayes 0.845 0.152 0.854 0.845 0.845 84.52% 

LibSVM 0.771 0.237 0.841 0.771 0.758 77.12% 

SMO 0.834 0.162 0.853 0.834 0.832 83.36% 

  

 



138 

 

 

 

Table 6.12 shows the evaluation metrics result of 5000 File System Behavior Ransomware dataset samples. In this experiment the 

machine learning classifiers are tested for two scenarios: unbalanced and balanced File System Behavior Ransomware samples. 

5000_Unbalanced_FileSystem Dataset consists of 3500 ransomware samples and 1500 benign samples (referred to as "Benign"). Whereas 

5000_Balanced_ FileSystem Dataset consists of 2500 ransomware samples and 2500 benign samples (referred to as "Benign"). The purpose 

of these two datasets is to identify the performance between balanced and unbalanced ransomware datasets of 1000 File System Behavior 

Ransomware samples. For each case, the following classification algorithms were applied, and their related evaluation metrics were 

calculated. 

Based on the result as shown in Table 6.12, for the unbalanced scenario, Decision Tree J48 achieved the highest True Positive Ratio 

among all classifiers which is 0.991. The result indicated its effectiveness to correctly identified ransomware samples thus giving the highest 

precision of 0.991 as well. The False Positive is relatively lowest among all at 0.017 suggesting that it is classifying non-ransomware 

(Benign) instances with a high level of accuracy at 99.08%.  

For the case of the balanced scenario, it is noticeable that the Decision Tree J48 maintains its position as the most effective classifier, 

reaching the accuracy of 99.10%. It achieved the highest True Positive Ratio among all classifiers which is 0.981which indicated its 

effectiveness to correctly identified ransomware sample. The False Positive is relatively lowest among all at 0.019 suggesting that it is 

classifying non-ransomware (Benign)) instances with a high level of precision of 0.981.  

 

 



 

 

 

 

 

 

 

 

Figure 6.20 Graph Accuracy for 5000 File System Behavior Ransomware 

dataset (50:50) 

 

Figure 6.20 shows the Graph Accuracy for 5000 File System Behavior 

Ransomware Dataset Samples for both cases. The graph illustrates a noticeable 

increase in accuracy across three models, specifically Random Forest, Naïve 

Bayes, and LibSVM for transition from the unbalanced scenario to the 

balanced scenario. It can be highlight that the performance of Naïve Bayes has 

significantly increase for 5000 samples (73.68%% and 84.52%%) compared to 

the previous 1000 samples (81.2% and 73.6%).  

This shows that the Naïve Bayes model performance increases as the 

sample size increase to 5000 samples. Whereas Decision Tree J48 experience 

a slight increment in accuracy precisely 99.08% for unbalanced. For the case 

of balanced scenario, Decision Tree J48 still maintains its good performance 

increase up to accuracy of 99.10%.



 

 

 

 

 

 

 

6.4.3 Evaluation Metrics Result of 10 000 File System Behavior Ransomware dataset for Unbalanced and Balanced Ransomware 

Detection 

Table 6.13 Evaluation Metrics Result of 10 000 File System Behavior Ransomware dataset (50:50) 

Dataset Algorithms 
True Positive 

Rate 

False Positive 

Rate 
Precision Recall F-Measure Overall Accuracy 

10 000_ 

Unbalanced_ 

FileSystem 

Decision Tree 0.989 0.018 0.989 0.989 0.989 98.86%(Best) 

Random Forest 0.883 0.271 0.899 0.883 0.873 88.26% 

Naïve Bayes 0.843 0.205 0.845 0.843 0.844 84.32% 

LibSVM 0.767 0.538 0.823 0.767 0.711 76.68% 

SMO N/A N/A N/A N/A N/A N/A 

10 000_ 

Balanced_ 

FileSystem 

Decision Tree 0.984 0.016 0.984 0.984 0.984 98.36%  

Random Forest 0.954 0.046 0.954 0.954 0.954 95.38% 

Naïve Bayes 0.801 0.202 0.831 0.801 0.796 80.10% 

LibSVM 0.823 0.174 0.869 0.823 0.817 82.28% 

SMO N/A N/A N/A N/A N/A N/A 

  

 



141 

 

 

 

Table 6.13 shows the evaluation metrics result of 10 000 File System Behavior Ransomware dataset samples. In this experiment the 

machine learning classifiers are tested for two scenarios: unbalanced and balanced File System Behavior Ransomware samples. 

10000_Unbalanced_FileSystem Dataset consists of 7000 ransomware samples and 3000 benign samples (referred to as "Benign"). Whereas 

10000_Balanced_ FileSystem Dataset consists of 5000 ransomware samples and 5000 benign samples (referred to as "Benign"). The 

purpose of these two datasets is to identify the performance between balanced and unbalanced ransomware datasets of 10000 File System 

Behavior Ransomware samples. For each case, the following classification algorithms were applied, and their related evaluation metrics 

were calculated. 

Based on the result as shown in Table 6.13, for the unbalanced scenario, Decision Tree J48 achieved the highest True Positive Ratio 

among all classifiers which is 0.989. The result indicated its effectiveness to correctly identified ransomware samples thus giving the highest 

precision of 0.989 as well. The False Positive is relatively lowest among all at 0.018 suggesting that it is classifying non-ransomware 

(Benign) instances with a high level of accuracy at 98.86% 

For the case of the balanced scenario, it is noticeable that the Decision Tree J48 maintains its position as the most effective classifier, 

reaching the accuracy of 98.36%. It achieved the highest True Positive Ratio among all classifiers which is 0.984 which indicated its 

effectiveness to correctly identified ransomware sample. The False Positive is relatively lowest among all at 0.016 suggesting that it is 

classifying non-ransomware (Benign)) instances with a high level of precision of 0.984.  

 

 

 



 

 

 

 

 

 

 

Figure 6.21 Graph Accuracy for 10 000 File System Behavior 

Ransomware dataset (50:50) 

 

Figure 6.2 shows the Graph Accuracy for 10 000 File System Behavior 

Ransomware Dataset Samples for both cases. The graph illustrates a noticeable 

increase in accuracy across two models, specifically Random Forest and 

LibSVM for transition from the unbalanced scenario to the balanced scenario. 

In this case Support Vector Machine with Polynomial Kernel (SMO) labelled 

as N/A since it didn’t show result even after running more than 3 hours in 

WEKA. In addition to that. Random Forest experiences a slight increment in 

accuracy as it increases from 88.26% for Unbalanced sampled and up to 

95.38% when transitioning to balanced sampled.  Based   on the result above, 

it can be highlighted that Decision Tree J48 maintains its position as the most 

effective classifier for both unbalanced and balanced samples.   

 

 



143 

 

 

 

 

6.4.4 Accuracy of Classification Model Across Different Sample Sizes 

Figure 6.22 Graph Accuracy for Classification Model Across Different Sample Sizes 

of FileSystem Behavior Ransomware (50:50) 

Figure 6.22 shows the Graph Accuracy for Classification Model Across 

Different Sample Sizes of FileSystem Behavior Ransomware. The results allow us to 

visualize the behavior of classification models for the sample of 1000, 5000 and 10 

000 by doing the sub-sampling method to prevent heap size issues in WEKA. Based 

on the results, as the samples increases from 1000 to 5000 and 10 000, four out of five 

model experience increase in accuracy. It includes Decision Tree J48, Naïve Bayes, 

LibSVM and Support Vector Machine with Polynomial Kernel (SMO). However, 

Naïve Bayes shows inconsistencies as it decreases for transition from 5000 to 10 000. 

In this case it can be highlighted that, Decision Tree J48 shows the best performance 

out of all starting at 98.00% and increasing to 98.33% and peaked at 98.60% as the 

sample size increases.



 

 

 

 

 

 

6.4.5 Accuracy of Classification Model for Different Ratio  

 

Figure 6.23 Graph Accuracy for 1000 File System Behavior Ransomware Dataset 

across Different Ratio 

 

Figure 6.23 shows the Graph Accuracy for 1000 File System Behavior Ransomware 

Dataset samples across different ratios. The results allow us to visualize the behavior 

of classification models for the ratio of 50:50, 70:30 and 90:10 train and test ratio. 

Based on the results, as the class ratios move from 50:50 to 70:30 and then to 90:10, 

Random Forest and Decision Tree J48 shows the best performance as it consistently 

displays an incremental rise in accuracy. To be specific Random Forest shifted from 

96.00% for 50:50, experiences a slight increase to 96.33% for 70:30, and reaches an 

impressive 99.00% for 90:10. Whereas Decision Tree J48 also shows a consistent 

increase from 95.4% up to 98% for both 70:30 and 90:10 ratios. On the other hand, 

Naïve Bayes, LibSVM and SMO displays sensitivity to class distributions with limited 

improvements in accuracy.  

 

 

 



145 

 

 

 

 

 

 

 

Figure 6.24 Graph Accuracy for 5000 File System Behavior Ransomware Dataset 

across Different Ratio 

 

Figure 6.24 shows the Graph Accuracy for 5000 File System Behavior Ransomware 

Dataset samples across different ratios. The results allow us to visualize the behavior 

of classification models for the ratio of 50:50, 70:30 and 90:10 train and test ratio. 

Based on the results, as the class ratios move from 50:50 to 70:30 and then to 90:10,  

It can be highlighted that Decision Tree J48 consistently leads with the highest 

accuracy levels across all ratios. To be specific, Decision Tree shifted from 98.12% 

for 50:50, experiences a slight increase to 98.33% for 70:30, and peaked at 99.40% for 

90:10. Random Forest followed closely as the second-best classifier with its best 

performance at 95.53% for 70:30 ratio.  

 

 

 

 

 



146 

 

 

 

 

 

Figure 6.25 Graph Accuracy for 10 000 File System Behavior Ransomware Dataset 

across Different Ratio 

 

Figure 6.25 shows the Graph Accuracy for 10 000 File System Behavior Ransomware 

Dataset samples across different ratios. The results allow us to visualize the behavior 

of classification models for the ratio of 50:50, 70:30 and 90:10 train and test ratio. 

Based on the results, as the class ratios move from 50:50 to 70:30 and then to 90:10,  

It can be highlighted that Decision Tree J48 consistently leads with the highest 

accuracy levels across all ratios. To be specific, Decision Tree shifted from 98.36% 

for 50:50, experiences a slight increase to 98.60% for 70:30, and slightly decrease to 

98.20% for 90:10. Random Forest followed closely as the second-best classifier with 

its best performance after Decision Tree. Random Forest shifted from 95.38% for 

50:50, decrease 86.83% for 70:30 and increase again to 94.90% for 90:10. On the other 

hand, Support Vector Machine with Polynomial Kernel (SMO) didn’t show result even 

after running more than 3 hours using WEKA. In addition to that, LibSVM shows 

consistent increase as the ratio transition, which start at 82.28% for 50:50, slightly 

increase up t0 83.80% for 70:30 and peaked at 85.70% for 90:10.  

 



 

 

 

 

 

 

6.4.6 Comparison between WEKA and Orange  

Table 6.14 Summary of results Dataset III TPR, FPR, Precision, Recall, F-measure and Accuracy in WEKA (70:30)  

Sample Size Algorithms 
True Positive 

Rate 

False Positive 

Rate 
Precision Recall F-measure Overall Accuracy 

1000 

Decision Tree 0.980 0.017 0.981 0.980 0.980 98.00% (Best) 

Random Forest 0.963 0.038 0.963 0.963 0.963 96.33% 

Naïve Bayes 0.697 0.264 0.803 0.697 0.677 69.97% 

LibSVM 0.713 0.332 0.813 0.713 0.679 71.33% 

SMO 0.810 0.169 0.847 0.810 0.808 81.00% 

5000 

Decision Tree 0.983 0.017 0.983 0.983 0.983 98.33% (Best) 

Random Forest 0.955 0.045 0.956 0.955 0.955 95.53% 

Naïve Bayes 0.839 0.161 0.845 0.839 0.838 83.87% 

LibSVM 0.783 0.217 0.848 0.783 0.773 78.33% 

SMO 0.838 0.162 0.856 0.838 0.836 83.80% 

10 000 

Decision Tree 0.986 0.014 0.986 0.986 0.986 98.60% (Best) 

Random Forest 0.868 0.131 0.875 0.868 0.868 86.83% 

Naïve Bayes 0.756 0.247 0.812 0.756 0.744 75.60% 

LibSVM 0.838 0.165 0.877 0.838 0.833 83.80% 

SMO N/A N/A N/A N/A N/A N/A 



 

 

 

 

 

 

 

Table 6.14 shows an in-depth overview of the evaluation's results in WEKA 

obtained by using balanced File System Behavior Ransomware Dataset with sample 

sizes of 1000, 5000, and 10,000, all with a 70:30 ratio. The aim of this table is to 

present a comprehensive summary of several classification algorithms' performance 

measures, with a focus on True Positive Rate (TPR), False Positive Rate (FPR), 

precision, recall, F-measure, and overall accuracy.  It can be highlighted that, Decision 

Tree J48 obtains the highest True Positive Rate (TPR) of 0.980 and which contributes 

to the highest precision of 0.981 with 1000 samples. These numbers represent the 

algorithm's ability to detect positive cases correctly while minimizing false positives.  

As the dataset size increases to 5000 samples, it can be seen Decision Tree J48 

for WEKA still maintains as the best performance from 98.00% to 98.33% and peaked 

at 98.60% for 10 000 File System Behavior Ransomware Dataset samples as the best 

classification algorithms. Following closely behind, the Random Forest performs, 

starting with accuracy of 96.33% for 1000 samples, slightly decreases 95.53% for 5000 

samples and accuracy of 86.83% for 10 000 samples. These findings highlight the 

reliability of Decision Tree J48 and Random Forest for effective ransomware detection 

over an extensive selection of dataset sizes. 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

Table 6.15 Summary of results Dataset III for TPR, FPR, Precision, Recall, F-measure and Accuracy in ORANGE (70:30) 

Sample Size Algorithms 
True Positive 

Rate 

False Positive 

Rate 
Precision Recall F-measure Overall Accuracy 

1000 

Decision Tree 0.961 0.026 0.968 0.968 0.968 96.80% 

Random Forest 0.986 0.009 0.988 0.988 0.988 98.80% (Best) 

Naïve Bayes 0.810 0.067 0.877 0.872 0.871 87.20% 

SVM 0.888 0.040 0.926 0.924 0.924 92.40% 

5000 

Decision Tree 0.959 0.020 0.969 0.969 0.969 96.90% 

Random Forest 0.989 0.008 0.991 0.991 0.991 99.10% (Best) 

Naïve Bayes 0.683 0.057 0.882 0.876 0.875 87.60% 

SVM 0.810 0.059 0.836 0.813 0.810 81.30% 

10 000 

Decision Tree 0.964 0.018 0.973 0.973 0.973 97.30% 

Random Forest 0.991 0.005 0.933 0.933 0.933 99.30% (Best) 

Naïve Bayes 0.826 0.044 0.898 0..891 0..891 89.10% 

SVM 0.764 0.115 0.829 0.824 0.824 82.40% 

 

 



 

 

 

 

 

 

Table 6.15 shows an in-depth overview of the evaluation's results in ORANGE 

obtained by using balanced File System Behavior Ransomware Dataset with sample 

sizes of 1000, 5000, and 10,000, all with a 70:30 ratio. The aim of this table is to 

present a comprehensive summary of several classification algorithms' performance 

measures, with a focus on True Positive Rate (TPR), False Positive Rate (FPR), 

precision, recall, F-measure, and overall accuracy. It can be highlighted that, the 

ORANGE examination of balanced File System Behavior Ransomware Dataset with 

a 70:30 ratio across three sample sizes demonstrates a good increase of the Random 

Forest as the best classifier performance. Its accuracy gradually rises around 

the beginning at 98.80%% for 1000 samples, significantly increase to 99.10% for 5000 

samples, and finally peaked at 99.30%% accuracy for 10,000 samples.  

The Decision Tree classifier follows in second best performance in ORANGE 

closely followed the Random Forest, and its accuracy shows a consistent rising trend 

across various sample sizes. It begins with an accuracy of 96.80% for 1000 samples, 

slightly increases to 96.90% for 5000 samples, and then peaked at accuracy of 97.30% 

for 10,000 samples. This pattern shows a continuous increase from the smallest to the 

largest sample. This development emphasizes the Decision Tree's ability to make 

accurate predictions. In conclusion, Random Forest performance outperform all others 

as the sample size increases in ORANGE and followed by the Decision Tree. 

 

 

 

 

 

 



151 

 

 

 

6.5 Tools Comparison  

Table 6.16 Classifier performance comparison between WEKA and Orange  

(10 000 samples ,10:90)  

Dataset Tools Decision 

Tree 

Random 

Forest 

Naïve 

Bayes 

Support 

Vector 

Machines 

I Weka 95.04% 94.06% 66.79% 63.34% 

Orange 93.80% 94.10% 86.70% 90.40% 

 

II Weka 69.86% 68.27% 58.12% 69.51% 

Orange 54.20% 55.40% 50.60% 50.60% 

  

III Weka 96.67% 95.08% 82.49% 73.65% 

Orange 95.60% 98.60% 88.30% 95.40% 

Occurrences 3 3 0 0 

 

Average 

Accuracy 

Weka 87.19%(Best) 85.80% 69.13% 68.83% 

Orange 81.20% 82.70%(Best) 75.20% 78.80 

 

Table 6.16 shows comparison of classification techniques performance 

between WEKA and Orange for 10 000 samples using 10:90 train and test ratio. 

The classification techniques were applied to the Dataset I (BitcoinHeist 

Ransomware), Dataset II (Android Ransomware) and Dataset III (File System 

Behavior Ransomware). Based on the result, it can be highlighted, Decision 

Tree performs the best among all classifiers in WEKA, achieving an average 

accuracy of 87.19%. On the other hand, when using Orange, Random Forest 

with an average accuracy of 82.70% outperforms other classifiers. These 

findings highlight the effectiveness of Decision Tree and Random Forest with 

same number of occurrences in ransomware detection when using a 10:90 

training and test ration for 10,000 samples. 

 

 



152 

 

 

 

 

Table 6.17 Classifier performance comparison between WEKA and Orange  

(10 000 samples ,30:70)  

Dataset Tools Decision 

Tree 

Random 

Forest 

Naïve 

Bayes 

Support 

Vector 

Machines 

I Weka 94.96% 96.46% 53.54% 64.40% 

Orange 94.40% 95.10% 86.70% 80.40% 

 

II Weka 69.94% 74.61% 51.99% 69.50% 

Orange 57.60% 60.10% 50.60% 50.10% 

 

III Weka 98.53% 95.40% 79.01% 80.01% 

Orange 97.30% 98.90% 88.00% 83.80% 

Occurrences 1 5 0 0 

 

Average 

Accuracy 

Weka 87.81% 88.82% (Best) 61.51% 71.30% 

Orange 83.10% 84.70% (Best) 75.10% 71.43% 

 

Table 6.17 shows comparison of classification techniques performance 

between WEKA and Orange for 10 000 samples using 30:70 train and test ratio. 

The classification techniques were applied to the Dataset I (BitcoinHeist 

Ransomware), Dataset II (Android Ransomware) and Dataset III (File System 

Behavior Ransomware). Based on the result, it can be concluded that Random 

Forest is the best classification technique, in both WEKA and Orange with 

most occurrences as the average best classifier for this case. Specifically, 

Random Forest achieved an average accuracy of 88.82% in WEKA and 

84.70% in Orange. These findings highlight the effectiveness of Random 

Forest with better accuracy than previous 10:90 ratio for ransomware detection 

when using a 30:70 dataset split with 10,000 samples. 

 

 



153 

 

 

 

 

 

 

Table 6.18 Classifier performance comparison between WEKA and Orange  

(10 000 samples ,50:50)  

Dataset Tools Decision 

Tree 

Random 

Forest 

Naïve 

Bayes 

Support 

Vector 

Machines 

I Weka 95.2% 95.46% 54.84% 64.98% 

Orange 94.30% 95.30% 86.70% 76.80% 

 

II Weka 69.80% 76.24% 57.14% 69.66% 

Orange 57.60% 60.10% 50.60% 50.10% 

 

III Weka 98.36% 95.38% 80.10% 82.28% 

Orange 97.20% 99.20% 89.10% 82.00% 

Occurrences 1 5 0 0 

 

Average 

Accuracy 

Weka 87.78% 89.03% 

(Best) 

64.02% 72.31% 

Orange 83.03% 84.86% 

(Best) 

75.46% 69.63% 

 

Table 6.18 shows comparison of classification techniques performance 

between WEKA and Orange for 10 000 samples using 50:50 train and test ratio. 

The classification techniques were applied to the Dataset I (BitcoinHeist 

Ransomware), Dataset II (Android Ransomware) and Dataset III (File System 

Behavior Ransomware). Based on the result, it can be concluded that Random 

Forest is the best classification technique, in both WEKA and Orange with 

most occurrences as the average best classifier. Specifically, Random Forest 

achieved an average accuracy of 89.03% in WEKA and 84.86% in Orange. 

These findings highlight the effectiveness of Random Forest in ransomware 

detection when using a 50:50 dataset split with 10,000 samples. 



154 

 

 

 

 

 

 

 

 

Table 6.19 Classifier performance comparison between WEKA and Orange  

(10 000 samples ,70:30)  

Dataset Tools Decision 

Tree 

Random 

Forest 

Naïve 

Bayes 

Support 

Vector 

Machines 

I Weka 95.27% 98.67% 55.33% 65.97% 

Orange 94.50% 95.50% 86.40% 77.30% 

 

II Weka 70.20% 76.07% 69.00% 70.10% 

Orange 58.30 61.40% 50.90% 50.20% 

 

III Weka 98.60% 86.83% 75.60% 83.80% 

Orange 97.30% 99.30% 89.10% 82.40% 

Occurrences 1 5 0 0 

 

Average 

 

Weka 88.02%(Best) 87.19% 66.64% 78.29% 

Orange 83.37% 85.40% 

(Best) 

75.47% 69.97% 

 

Table 6.19 shows comparison of classification techniques performance 

between WEKA and Orange for 10 000 samples using 70:30 train and test ratio. 

The classification techniques were applied to the Dataset I (BitcoinHeist 

Ransomware), Dataset II (Android Ransomware) and Dataset III (File System 

Behavior Ransomware). In this scenario, when using WEKA, Decision Tree 

emerges as the best classifier with an average accuracy of 88.02%. Orange on 

the other hand, has an average accuracy of 85.40% with Random Forest being 

the highest. It can be highlighted, while Decision Tree emerges as the best-

performing classifier for WEKA in this scenario, it's important to note that 



155 

 

 

 

Random Forest maintains its status as the overall best classifier due to the 

highest number of occurrences across different scenarios when using a 50:50 

dataset split with 10,000 samples. 

 

 

 

 

 

Table 6.20 Classifier performance comparison between WEKA and Orange  

(10 000 samples, 90:10) 

Dataset Tools Decision 

Tree 

Random 

Forest 

Naïve 

Bayes 

Support 

Vector 

Machines 

I Weka 95.30% 98.40% 56.40% 66.60 % 

Orange 94.20% 95.40% 86.50% 77.00% 

 

II Weka 69.60% 78.20% 71.90% 69.90% 

Orange 59.10% 61.30% 50.60% 50.10% 

 

III Weka 98.20% 94.90% 55.60% 85.70% 

Orange 97.60% 99.30% 89.40% 78.00% 

Occurrences 1 5 0 0 

 

Average Weka 87.70% 90.50% 

(Best) 

61.30% 74.07 

Orange 83.63% 85.33% 

(Best) 

75.5% 68.37 

 

Table 6.20 shows comparison of classification techniques performance 

between WEKA and Orange for 10 000 samples using 90:10 train and test ratio. 

Based on the result, it can be concluded that Random Forest is the best 

classification technique, in both WEKA and Orange with most occurrences as 

the average best classifier. Specifically, Random Forest achieved an average 



156 

 

 

 

accuracy of 90.50% in WEKA and 85.33% in Orange. These findings highlight 

the effectiveness of Random Forest in ransomware detection when using a 

50:50 dataset split with 10,000 samples.  

In conclusion, Random Forest shows best accuracy in most scenario of 

all train and test ratio (10:90, 30:70, 50:50, 70:30, 90:10). This result aligns 

with previous research by (Almomani et al., 2021), (Alsoghyer et al., 2020) 

and (Ahmed et al., 2020) which achieve Random Forest as the best 

classification technique in their ransomware domain research. According to,  

 

6.6 Significant Results 

 

Figure 6.26 Overall Test Plan Findings 



157 

 

 

 

 

Figure 6.26 shows the conclusion based on the outcomes of each test 

plan. By conducting test plan A, we can conclude the classification algorithms 

increases when transition from unbalanced to balanced dataset. This is 

supported by (Mooijman et al.,2023) in his research “The effects of data 

balancing approaches” which states that, imbalance dataset tends to influence 

classifiers, causing them to prioritize the majority class when performing 

classification tasks thereby affecting the performance. In this context, 

imbalance dataset refers to a dataset with a significant difference in the number 

of samples among its classifications, as stated by (Dehkordy,2021).  

In addition to that, there has been research using the same method for 

balanced cased (Alsoghyer et al., 2020), (Almomani et al., 2021), and 

(Mercaldo, 2021). However, previous authors only consider 1000 balanced 

samples precisely 500 Ransomware samples and 500 Benign samples. 

Therefore, we were able to produce a better accuracy 99.30% by expanding the 

balanced sample size up to 10 000 samples which indirectly justified our Test 

Plan B. Not only that, according to (Ajiboye et al., 2015) in the paper titled 

"Evaluating The Effect Of Dataset Size On Predictive Model Using Supervised 

Learning Technique," it is evident that enhancing the results can be achieved 

through dataset size which supports our findings.  

For test Plan C, as suggested by (Dobbin and Simon, 2011) the 

recommended amount of training and testing ratio is 70:30. By expanding the 

ratio, 10:90, 30:70, 50:50, 70:30 and 90:10 we were able to identify Random 

Forest as the best classification techniques for training ratio 70% and above 

with 99.30% accuracy. This result aligns with previous research by (Almomani 

et al., 2021), (Alsoghyer et al., 2020) and (Ahmed et al., 2020) which achieve 

Random Forest as the best classification technique in their ransomware domain 

research.  

 

 

 

 

 

 



158 

 

 

 

 

 

 

 

 

 

 

 

Table 6.21 Significant Results for comparison of previous research 

Ransomware (R)=Malicious (M), Benign (B)=White (W) 

Research 
Train Test 

Ratio 

Studied 

Dataset 

Balance

d 
Accuracy 

(Almomani et al., 

2021) 
N/A 500 R 500 B Yes 98.30% 

(Alsoghyer, S, 

2020) 
N/A 500 R 500 B Yes 96.90% 

(Khammas, B. M. 

2020) 
50:50 840 R 840B Yes 97.74% 

(Alzahrani et al., 

2015) 
N/A 100R 200 B No 91.00% 

(Popryho, 2023) N/A 1056 R 399 B No 97.00% 

(Coronado-De-

Alba et al., 2017) 
N/A 1531 M 765 B No 97.56% 

(Victoriano, 2019) N/A 668 R 1255 B No 98.05% 

Proposed Work 

Dataset I 

70:30 
5000 R 5000 

W 
Yes 98.67% 

90:30 
5000 R 5000 

W 
Yes 99.10% 

Proposed Work 

Dataset II 

70:30 
5000 R 5000 

B 
Yes 78.20% 

90:10 
5000 R 5000 

B 
Yes 78.60% 



159 

 

 

 

Proposed Work 

Dataset III 

70:30 
5000 R 5000 

B 
Yes 

99.30% 

(Best) 

90:10 
5000 R 5000 

B 
Yes 

99.30% 

(Best) 

 

Based on table 6.17, in comparison to previous studies, the study 

presented in this research marks significant improvements in the field of 

ransomware detection. It can be highlighted, utilization of balanced datasets 

with higher number of samples as justified previously able to show outstanding 

accuracy rates of up to 99.30%. From the result, most machine learning 

classification models achieve better performance for testing ratio starting with 

70% and above. In conclusion, expanding the test set to encompass three 

distinct aspects is a commendable approach, enabling an in-depth investigation 

into the performance behavior across various scenarios.  

 

 

6.7 Summary 

In this chapter, an in-depth examination of ransomware detection using various 

machine learning algorithms is performed on the BitcoinHeist Ransomware dataset 

(Dataset I),  Android Ransomware dataset (Dataset II) and File System Behavior 

Ransomware Detection dataset (Dataset III). In addition to that, various aspects of 

testing has been expanded and covered in this research such as in aspect of the a) 

various dataset sizes, b) unbalanced versus balanced datasets, and c) various training 

and test ratios. The aim of expanding the scope is to study the behavior of the 

ransomware detection model under a variety of scenarios. To sum up, our test plan has 

shown that balanced datasets, a sample size of 10,000, and a training ratio of 70% and 

above consistently yield the best Random Forest (RF) results, achieving an impressive 

accuracy rate of 99.30%. Random Forest has also shown as the best classification 

model with most number of occurrences in both WEKA and Orange for all datasets. 



 

 

 

 

 

 

 

 

 

CHAPTER 7: CONCLUSION 

 

 

 

 

7.0 Introduction  

The previous chapter focuses on testing and evaluation of the dataset. The 

machine learning model performance has been evaluated and discussed according to 

the evaluation metrics in the previous chapter. As a result, this chapter will be the final 

chapter for the project conclusion. This chapter will go through the project summary, 

project contributions, project limitations, and future work to improve the current 

research. This concluding chapter holds significant importance as it provides a 

comprehensive overview of our project, "Analysis of Ransomware Detection Based 

on Machine Learning Approach." Its primary function is to serve as a practical guide 

for future researchers aiming to refine and build upon our model by summarizing its 

limitations and offering suggestions for enhancement. 

 

 

 

 

 

 



161 

 

 

 

7.1 Project Summarization  

This project has been designed to analyze the performance of various 

machine learning classification models for ransomware detection. Overall, our 

research has successfully accomplished all three stated objectives, providing 

significant insights into the area of ransomware detection. Our first objective, 

which was to study classification techniques for ransomware detection, has 

been accomplished by an extensive review of the existing literature in the area 

of interest. We thoroughly researched and analyzed a wide variety of 

ransomware detection methods, getting insights into their strengths, 

limitations, and applicability for different types of situations. In response to our 

first objective, we discovered that a variety of machine learning classification 

models have been used for ransomware detection, including Decision Tree, 

Random Forest, Support Vector Machines (SVM) and Naïve Bayes.  

During the execution of the second objective, valuable experience in 

the practical application of classification techniques to ransomware dataset is 

gained. The hands-on process involved extensive data preprocessing conducted 

through Jupiter Notebook, providing an opportunity to learn and apply the 

Python programming language for data preparation.  Furthermore, we 

developed and executed a comprehensive test plan that included three critical 

components, all of which were carried out by employing the WEKA and 

Orange platforms. 

To address our third objective a comprehensive evaluation process was 

conducted using various evaluation metrics tools. The accuracy of each 

classification technique was extensively assessed, taking into account metrics 

such as True Positive Rate (TPR), False Positive Rate (FPR), Precision, Recall, 

F-measure, and Overall Accuracy. As conclusion, it’s shown that balanced 

datasets, a sample size of 10,000, and a training ratio of 70% and above 

consistently yield the best Random Forest (RF) results, achieving an 

impressive accuracy rate of 99.30%. 

 



162 

 

 

 

7.2 Project Contributions  

The results of the test in Chapter 6 provided in this research paper 

demonstrate that, the proposed approaches outperform the existing research in 

the same domain. A comprehensive review of this research is carried out to 

further highlight their accuracy and effectiveness. We've not only implemented 

and tested various ransomware detection datasets category (Dataset I, II, III), 

as showcased in the results of Chapter 6. We’ve also conducted a meticulous 

comparative analysis which is inspired from (Ajiboye et al., 2015) research on 

dataset size's impact on predictive models using supervised learning 

techniques, exploring various testing scenarios: a) unbalance vs balanced 

dataset b) various sample sizes c) various ratio of training and test. 

In our research, we discovered an interesting trend in which 

performance constantly improves as dataset size increases using the balanced 

scenario. This occurrence occurs across all three datasets, which are Dataset I, 

Dataset II, and Dataset III. In addition to that, another interesting finding is that 

certain machine learning algorithms, such as Random Forest, have a 

remarkable performance in its accuracy while migrating from imbalanced to 

balanced datasets. It also can be highlighted that, most machine learning 

classification models achieve better performance for training ratio starting with 

70% and above.  

This significant improvement highlights the ability of these algorithms 

to efficiently adapt to varied data distributions, which is critical in the domain 

of ransomware detection. Furthermore, we managed idenn. Furthermore, we 

were successful in finding a solution for heap size constraints encountered 

during the execution of machine learning algorithms. We constructed an 

effective sub-sampling approach by using the capability of Jupyter Notebook 

in the Python programming language. 

7.3 Project Limitations  

Several challenges occurred throughout the span of our research, 

including heap size constraints in WEKA during the execution of several 

machine learning algorithms. Although we have tried to maximize heap size 

(up to 8GB) WEKA by overriding the initial value using command 



163 

 

 

 

%JAVA_OPTS% -Xms8192m. Heap size successfully changed but error 

persist on WEKA. Subsequent problems have led us to explore sub-sampling 

as a potential solution to WEKA-related problems. Another aspect to consider 

is data processing and model training times increased with larger datasets and 

more complex attributes. This can be shown as we were only able to evaluate 

a maximum of 10 000 samples which WEKA took more than 2 hours to 

generate the results. Therefore consideration needs to be given, to address these 

computational constraints that would allow for the exploration of even larger 

datasets and more intricate machine learning models.  

7.4 Future Work 

Future work should broaden the scope of our research in order to further 

expand on the project. Most importantly, expanding the dataset size is critical 

for improving model resilience. A broader range of classifiers and tools that 

are more suitable should also be studied to increase the diversity of techniques. 

To be specific as we only focus on the supervised machine learning technique, 

future researchers may also explore deep learning methods, browser plugin 

development, zero-day ransomware detection and most importantly the 

utilization of larger datasets to advance ransomware detection.  

 

 

 

 

 

 

 



164 

 

 

 

7.5 Summary  

In conclusion, our study has shown significant findings in the field of 

ransomware detection, indicating a substantial advancement above typical 

antivirus systems that rely on signature-based detection approaches. This research 

has been constructed with the objective of investigating various classification 

techniques for the analysis of ransomware. The second objective has been achieved 

by applying the classification techniques to Ransomware dataset after 

preprocessing conducted through Jupiter Notebook. The third objective has been 

addressed by evaluating the accuracy result of classification techniques using 

different evaluation metrics tools.  

The test is executed repeatedly to study the behavior of the classifications 

model performance under different conditions such as, balanced vs unbalanced, 

various dataset size and ratios. Based on the results it can be concluded that 

Random Forest performs as the best classification techniques for both WEKA and 

Orange with most number of occurrences. This research can serve as a guide for 

future studies and improvement of applications in ransomware detection.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



165 

 

 

 

REFERENCES 

 

A. Khalil, & M. Khammas, B. (2022). An effective and efficient features vectors for  

ransomware detection via machine learning technique. Iraqi Journal of 

Information and Communication Technology, 5(3), 23–33. Accessed 20 March 

2023, https://doi.org/10.31987/ijict.5.3.205  

 

Antal, G. (2023, February 15). Lockbit ransomware: Here's what you need to know.  

Heimdal Security Blog. Accessed 20 March, 

https://heimdalsecurity.com/blog/what-is-lockbit-ransomware/ 

 

Abbasi, M. S. (2023). Automating Behavior-Based Ransomware Analysis, Detection,  

and Classification Using Machine Learning. Accessed 10 May 2023, 

https://doi.org/10.26686/wgtn.22180858 

 

Abdullah, Z., Muhadi, F. W., Saudi, M. M., Hamid, I. R., &amp; Foozy, C. F. (2019).  

Android Ransomware Detection Based on Dynamic Obtained Features. 

Advances in Intelligent Systems and Computing, 121–129. Accessed 18 

September 2023, https://doi.org/10.1007/978-3-030-36056-6_12 

 

Ahmed, Y. A., Koçer, B., Huda, S., Saleh Al-rimy, B. A., & Hassan, M. M. (2020). A  

system call refinement-based enhanced minimum redundancy maximum 

relevance method for ransomware early detection. Journal of Network and 

Computer Applications, 167, 102753. Accessed 14 May 2023, 

https://doi.org/10.1016/j.jnca.2020.102753 

 

Al-Haija, Q. A., & Alsulami, A. A. (2021). High performance classification model to  

identify ransomware payments for heterogeneous bitcoin networks. 

Electronics, 10(17), 2113. Accessed 10 May 2023, 

https://doi.org/10.3390/electronics10172113 

 

Alalousi, A., Razif, R., AbuAlhaj, M., Anbar, M., & Nizam, S. (2016). A  

preliminary performance evaluation of K-means, KNN and EM unsupervised 

machine learning methods for network flow classification. International 

Journal of Electrical and Computer Engineering (IJECE), 6(2), 778. Accessed 

20 May 2023, https://doi.org/10.11591/ijece.v6i2.pp778-784 

Ajiboye, A. R., Abdullah-Arshah, R., Qin, H., & Isah-Kebbe, H. (2015). Evaluating 

the effect of dataset size on predictive model using supervised learning 

technique. International Journal of Computer Systems &amp; Software 

Engineering, 1(1), 75–84. Accessed 10 August 2023, 

https://doi.org/10.15282/ijsecs.1.2015.6.0006  

Alzahrani, A., Alshehri, A., Alshahrani, H., Alharthi, R., Fu, H., Liu, A., &amp; Zhu, 

Y. (2018). Randroid: Structural similarity approach for detecting ransomware 

applications in Android platform. 2018 IEEE International Conference on 

https://doi.org/10.31987/ijict.5.3.205
https://heimdalsecurity.com/blog/what-is-lockbit-ransomware/
https://doi.org/10.1016/j.jnca.2020.102753
https://doi.org/10.3390/electronics10172113


166 

 

 

 

Electro/Information Technology (EIT). Accessed 9 September 2023, 

https://doi.org/10.1109/eit.2018.8500161 

Alsoghyer, S., &; Almomani, I. (2020). On the Effectiveness of Application 

Permissions for Android Ransomware Detection. 2020 6th Conference on Data 

Science and Machine Learning Applications (CDMA). Accessed 18 September 

2023, https://doi.org/10.1109/cdma47397.2020.00022 

Almomani, I., AlKhayer, A., &amp; Ahmed, M. (2021). An Efficient Machine  

Learning-based Approach for Android v.11 Ransomware Detection. 2021 1st 

International Conference on Artificial Intelligence and Data Analytics 

(CAIDA). Accessed 18 September 2023, 

https://doi.org/10.1109/caida51941.2021.9425059 

 

Almomani, I., Alkhayer, A., &amp; El-Shafai, W. (2023). E2E-RDS: Efficient End- 

to-End Ransomware Detection System Based on Static-Based ML and Vision-

Based DL Approaches. Sensors, 23(9), 4467. Accessed 18 September 2023, 

https://doi.org/10.3390/s23094467 

 

Bensalah, A. (2022, July 31). Ransomware detection data set. Kaggle.  

Accessed 4 May 2023, 

https://www.kaggle.com/datasets/amdj3dax/ransomware-detection-data-

set?resource=download 

 

Belcic, I. (2022, May 19). What is CryptoLocker ransomware and how to remove it.  

Accessed 10 May 2023, https://www.avast.com/c-cryptolocker 

 

Chakraborty, S. (2023). Android Ransomware Detection [Data set]. Kaggle.  

Accessed 4 May 2023, https://doi.org/10.34740/KAGGLE/DSV/4987535 

 

Cusack, G., Michel, O., & Keller, E. (2018). Machine learning-based detection of  

ransomware using SDN. Proceedings of the 2018 ACM International 

Workshop on Security in Software Defined Networks & Network Function 

Virtualization. Accessed 26 May 2023, 

https://doi.org/10.1145/3180465.3180467 

 

Chumachenko, K. (2017). Machine Learning Methods for Malware Detection and  

Classification. Proceedings of the 21st Pan-Hellenic Conference on 

Informatics - PCI 2017, 93 

 

Chaudhuri, K. D. (2022, March 25). Building naive Bayes classifier from scratch to  

perform sentiment analysis. Analytics Vidhya. Accessed 26 May 2023,  

https://www.analyticsvidhya.com/blog/2022/03/building-naive-bayes-

classifier-from-scratch-to-perform-sentiment-analysis/ 

 

Coronado-De-Alba, L. D., Rodriguez-Mota, A., &amp; Escamilla-Ambrosio, P. J.  

https://doi.org/10.1109/eit.2018.8500161
https://doi.org/10.34740/KAGGLE/DSV/4987535
https://doi.org/10.1145/3180465.3180467


167 

 

 

 

(2016). Feature selection and ensemble of classifiers for android malware 

detection. 2016 8th IEEE Latin-American Conference on Communications 

(LATINCOM). Accessed 9 September 2023, 

https://doi.org/10.1109/latincom.2016.7811605 

 

Dobbin, K. K., &amp; Simon, R. M. (2011). Optimally splitting cases for training and  

testing high dimensional classifiers. BMC Medical Genomics, 4(1). Accessed 

6 June 2023, https://doi.org/10.1186/1755-8794-4-31 

 

Dehkordy, D. T., &amp; Rasoolzadegan, A. (2021). A new machine learning-based  

method for android malware detection on imbalanced dataset. Multimedia 

Tools and Applications. Accessed 19 September 2023, 

https://doi.org/10.1007/s11042-021-10647-z 

 

El Naqa, I., &amp; Murphy, M. J. (2015). What is machine learning? Machine  

Learning in Radiation Oncology, 3–11. Accessed 20 May 2023, 

https://doi.org/10.1007/978-3-319-18305-3_1 

 

Fedor, O. (2022, November 3). 93 must-know ransomware statistics.  

AntivirusGuide. Accessed 20 March 2023,  

https://www.antivirusguide.com/cybersecurity/ransomware-statistics/ 

 

Fernando, D. W., Komninos, N., & Chen, T. (2020). A Study on the Evolution of  

Ransomware Detection Using Machine Learning and Deep Learning 

Techniques. IoT, 1(2), 551–604. Accessed 10 May 2023, 

https://doi.org/10.3390/iot1020030 

 

Gagulic, D., Lynn Zumtaugwald, & Siddhant Sahu. (February 2023). Ransomware  

Detection with Machine Learning in Storage Systems. Universität Zürich, 

Communication Systems Group, Department of Informatics, Zürich, 

Switzerland. Accessed 20 March 2023, 

https://files.ifi.uzh.ch/CSG/staff/vonderassen/extern/theses/map-gagulic-

zumtaugwald-sahu.pdf 

 

Gupta, A. (2023, January 30). An introduction to scikit-learn: Machine learning in  

Python. Simplilearn.com. Retrieved from Accessed 20 May 2023, 

https://www.simplilearn.com/tutorials/python-tutorial/scikit-learn 

 

Herrera Silva, J. A., Barona López, L. I., Valdivieso Caraguay, Á. L., & Hernández- 

Álvarez, M. (2019). A survey on situational awareness of ransomware 

attacks—detection and prevention parameters. Remote Sensing, 11(10), 1168. 

Accessed 10 May 2023, https://doi.org/10.3390/rs11101168 

 

Horduna, M., Lăzărescu, S.-M., & Simion, E. (2023). A note on machine learning  

applied in ransomware detection. Accessed 20 March 2023, 

https://eprint.iacr.org/2023/045 

 

https://www.antivirusguide.com/cybersecurity/ransomware-statistics/
https://doi.org/10.3390/iot1020030
https://files.ifi.uzh.ch/CSG/staff/vonderassen/extern/theses/map-gagulic-zumtaugwald-sahu.pdf
https://files.ifi.uzh.ch/CSG/staff/vonderassen/extern/theses/map-gagulic-zumtaugwald-sahu.pdf
https://www.simplilearn.com/tutorials/python-tutorial/scikit-learn
https://doi.org/10.3390/rs11101168
https://eprint.iacr.org/2023/045


168 

 

 

 

Humayun, M., Jhanjhi, N. Z., Alsayat, A., & Ponnusamy, V. (2021). Internet of things  

and Ransomware: Evolution, mitigation and prevention. Egyptian Informatics 

Journal, 22(1), 105–117. Accessed 10 May 2023, 

https://doi.org/10.1016/j.eij.2020.05.003 

 

Javatpoint. (2023). How to get datasets for Machine Learning.  

Accessed 13 May 2023 https://www.javatpoint.com/how-to-get-datasets-for-

machine-learning 

 

Ilascu, Ionut. (2022, May 19). Ransomware gangs rely more on weaponizing  

vulnerabilities. BleepingComputer. Accessed May 5 2023, 

https://www.bleepingcomputer.com/news/security/ransomware-gangs-rely-

more-on-weaponizing-vulnerabilities/ 

 

Ibrahim, S., Herami, N. A., Naqbi, E. A., & Aldwairi, M. (2020). Detection and  

analysis of drive-by downloads and malicious websites. Communications in 

Computer and Information Science, 72–86. Accessed 20 May 2023, 

https://doi.org/10.1007/978-981-15-4825-3_6 

 

Jainani, P. (2021, April 30). Azure machine learning service - part 1: An introduction.  

Medium. Accessed 15 May 2023, https://towardsdatascience.com/azure-

machine-learning-service-part-1-an-introduction-739620d1127b 

 

Kharraz, A., Robertson, W., & Kirda, E. (2018). Protecting against ransomware: A new  

line of research or restating classic ideas? IEEE Security & Privacy, 16(3), 

103–107. Accessed 10 May 2023, https://doi.org/10.1109/msp.2018.2701165 

 

Kok, S. H., Azween, A., & Jhanjhi, N. (2020). Evaluation metric for crypto- 

ransomware detection using machine learning. Journal of Information Security 

and Applications, 55, 102646. Accessed 10 May 2023, 

https://doi.org/10.1016/j.jisa.2020.102646 

 

Kaspersky. (2023, April 19). What is ransomware. Accessed 10 May 2023,  

https://www.kaspersky.com/resource-center/threats/ransomware  

 

Khalil, N. A., & M. Khammas, B. (2022). An effective and efficient feature vector for  

ransomware detection via machine learning techniques. Iraqi Journal of 

Information and Communication Technology, 5(3), 23–33. Accessed 20 May 

2023, https://doi.org/10.31987/ijict.5.3.205 

 

Khammas, B. M. (2020). Ransomware detection using random forest technique. ICT  

Express, 6(4), 325–331. Accessed 20 May 2023, 

https://doi.org/10.1016/j.icte.2020.11.001 

 

Kaspersky IT Encyclopedia. (2023). What is RaaS (Ransomware-as-a-Service)?  

Accessed 20 March 2023, 

https://encyclopedia.kaspersky.com/glossary/ransomware-as-a-service-raas/ 

https://doi.org/10.1016/j.eij.2020.05.003
https://www.javatpoint.com/how-to-get-datasets-for-machine-learning
https://www.javatpoint.com/how-to-get-datasets-for-machine-learning
https://www.bleepingcomputer.com/news/security/ransomware-gangs-rely-more-on-weaponizing-vulnerabilities/
https://www.bleepingcomputer.com/news/security/ransomware-gangs-rely-more-on-weaponizing-vulnerabilities/
https://doi.org/10.1007/978-981-15-4825-3_6
https://towardsdatascience.com/azure-machine-learning-service-part-1-an-introduction-739620d1127b
https://towardsdatascience.com/azure-machine-learning-service-part-1-an-introduction-739620d1127b
https://doi.org/10.1109/msp.2018.2701165
https://doi.org/10.1016/j.jisa.2020.102646
https://doi.org/10.1016/j.icte.2020.11.001
https://encyclopedia.kaspersky.com/glossary/ransomware-as-a-service-raas/


169 

 

 

 

 

Kizito, N. (2022, March 28). Parameters and hyperparameters in machine learning and  

deep learning. Medium. Accessed 20 May 2023, 

https://towardsdatascience.com/parameters-and-

hyperparametersaa609601a9ac#:~:text=Simply%20put%2C%20parameters%

20in%20machine,choice%20of%20hyperparameters%20you%20provide. 

 

Lee, J., Lee, J., & Hong, J. (2017). How to make efficient decoy files for ransomware  

detection? Proceedings of the International Conference on Research in 

Adaptive and Convergent Systems. Accessed 20 May 2023, 

https://doi.org/10.1145/3129676.3129713 

 

Madani, H., Ouerdi, N., & Azizi, A. (2023). Ransomware: Analysis of Encrypted Files.  

International Journal of Advanced Computer Science and Applications, 14(1). 

Accessed 20 March 2023, https://doi.org/10.14569/ijacsa.2023.0140124 

 

Maigida, A. M., Abdulhamid, S. M., Olalere, M., Alhassan, J. K., Chiroma, H., &  

Dada, E. G. (2019). Systematic literature review and metadata analysis of 

ransomware attacks and detection mechanisms. Journal of Reliable Intelligent 

Environments, 5(2), 67–89. Accessed 10 May 2023, 

https://doi.org/10.1007/s40860-019-00080-3 

 

Mercaldo, F. (2021). A framework for supporting ransomware detection and  

prevention based on hybrid analysis. Journal of Computer Virology and 

Hacking Techniques, 17(3), 221–227. Accessed 18 September 2023, 

https://doi.org/10.1007/s11416-021-00388-w 

 

Microsoft Azure. (2023). Artificial Intelligence vs. Machine Learning. 

Accessed 6 May 2023, https://azure.microsoft.com/en-us/resources/cloud-

computing-dictionary/artificial-intelligence-vs-machine-

learning/#introduction 

 

Mohammad, A. H. (2020). Analysis of Ransomware on Windows Platform.  

Accessed 20 March 2023, https://doi.org/10.13140/RG.2.2.11150.59202 

 

Moussaileb, R., Navas, R. E., & Cuppens, N. (2020). Watch out! Doxware on the  

way. Journal of Information Security and Applications, 55, 102668. Accessed 

10 May 2023, https://doi.org/10.1016/j.jisa.2020.102668 

 

Mooijman, P., Catal, C., Tekinerdogan, B., Lommen, A., &amp; Blokland, M.  

(2023). The effects of data balancing approaches: A case study. Applied Soft 

Computing, 132, 109853. Accessed 18 September 2023, 

https://doi.org/10.1016/j.asoc.2022.109853 

 

 

 

 

https://doi.org/10.1145/3129676.3129713
https://doi.org/10.1007/s40860-019-00080-3
https://doi.org/10.13140/RG.2.2.11150.59202
https://doi.org/10.1016/j.jisa.2020.102668


170 

 

 

 

Muslim, A. K., Mohd Dzulkifli, D. Z., Nadhim, M. H., & Abdellah, R. H. (2019). A  

study of ransomware attacks: Evolution and prevention. Journal of Social 

Transformation and Regional Development, 1(1). Accessed 20 May 2023, 

https://doi.org/10.30880/jstard.2019.01.01.003 

 

Mahajan, G., Saini, B., & Anand, S. (2019). Malware classification using machine  

learning algorithms and Tools. 2019 Second International Conference on 

Advanced Computational and Communication Paradigms (ICACCP). 

Accessed 10 May 2023, https://doi.org/10.1109/icaccp.2019.8882965 

 

Norouzi, M., Souri, A., & Samad Zamini, M. (2016). A data mining classification  

approach for behavioral malware detection. Journal of Computer Networks and 

Communications, 2016, 1–9. Accessed 10 May 2023, 

https://doi.org/10.1155/2016/8069672 

 

Prakash, K. B., Kannan, R., Alexander, S. A., & Kanagachidambaresan, G. R. (2021).  

Advanced deep learning for engineers and scientists. EAI/Springer Innovations 

in Communication and Computing. Accessed 10 May 2023, 

https://doi.org/10.1007/978-3-030-66519-7 

 

P. Fabian, V. Gael, and G. Alexandre (2012), “Scikit-learn: machine learning in  

python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011. 

Accessed 26 May 2023, https://doi.org/10.48550/arXiv.1201.0490 

 

Padmavaty, V., Geetha, C., & Priya, N. (2020). Analysis of data mining tool Orange.  

International Journal of Modern Agriculture, 9(4), 1146-1150. Retrieved from 

Accessed 20 May 2023, http://www.modern-

journals.com/index.php/ijma/article/view/485 

 

Popryho, Y., (2023). Behaviour-based detection of ransomware attacks in the Cloud 

using machine learning. Accessed 19 September 2023, https://www.diva-

portal.org/smash/get/diva2:1773681/FULLTEXT02.pdf 

 

Qolomany, B., Al-Fuqaha, A., Gupta, A., Benhaddou, D., Alwajidi, S., Qadir, J., &  

Fong, A. C. (2019). Leveraging machine learning and big data for Smart 

Buildings: A comprehensive survey. IEEE Access, 7, 90316–90356. Accessed 

20 May 2023, https://doi.org/10.1109/access.2019.2926642 

 

Salvi, H. U. (2019). Raas ransomware-as-a-service. International Journal of Computer  

Sciences and Engineering, 7(6), 586–590.  

Accessed 10 May 2023, https://doi.org/10.26438/ijcse/v7i6.586590 

 

Smith, D., Khorsandroo, S., &amp; Roy, K. (2022). Machine learning algorithms and  

frameworks in ransomware detection. IEEE Access, 10, 117597–117610. 

Accessed 4 May 2023, https://doi.org/10.1109/access.2022.3218779 

 

Security Intelligence. (2023, March 15). Costa Rica State of emergency declared after 

https://doi.org/10.30880/jstard.2019.01.01.003
https://doi.org/10.1109/icaccp.2019.8882965
http://www.modern-journals.com/index.php/ijma/article/view/485
http://www.modern-journals.com/index.php/ijma/article/view/485
https://doi.org/10.1109/access.2019.2926642
https://doi.org/10.26438/ijcse/v7i6.586590
https://doi.org/10.1109/access.2022.3218779


171 

 

 

 

ransomware attacks. Accessed 20 March 2023, 

https://securityintelligence.com/news/costa-rica-state-emergency-

ransomware/ 

 

Sgandurra, D., Muñoz-González, L., Mohsen, R., & Lupu, E. C. (2016). Automated  

Dynamic Analysis of Ransomware: Benefits, Limitations and Use for 

Detection. arXiv preprint arXiv:1609.03020. Accessed 4 May 2023, 

https://arxiv.org/abs/1609.03020 

 

Srivastava, S. (2014). Weka: A tool for data preprocessing, classification, Ensemble,  

clustering and association rule mining. International Journal of Computer 

Applications, 88(10), 26–29. Accessed 6 June 2023, 

https://doi.org/10.5120/15389-3809 

 

Sipra, V. (2021, May 14). Machine learning for newbies. Medium. Retrieved from  

Accessed 20 May 2023, https://towardsdatascience.com/machine-learning-for-

newbies-7dd33dd6b764 

 

Sharma, S., Rama Krishna, C., & Sahay, S. K. (2018). Detection of advanced malware  

by Machine Learning Techniques. Advances in Intelligent Systems and 

Computing, 333–342. Accessed 10 May 2023, https://doi.org/10.1007/978-

981-13-0589-4_31 

 

Thampi, S., Perez, G., Ko, R., & Rawat, D. B. (2020). Security in computing and  

communications. Communications in Computer and Information Science. 

Accessed 10 May 2023, https://doi.org/10.1007/978-981-15-4825-3 

 

Victoriano, O. B. (2019). Exposing Android ransomware using machine learning.  

Proceedings of the 2019 International Conference on Information System and 

System Management. Accessed 9 September 2023, 

https://doi.org/10.1145/3394788.3394923 

 

Malwarebytes.(2023). What is a brute force attack. Accessed 10 May 2023,  

https://www.malwarebytes.com/cybersecurity/business/brute-force-attack 

 

Yusof, R., Adnan, N. S., Abd. Jalil, N., & Abdullah, R. S. (2019). Analysis of data  

mining tools for Android malware detection. Journal of Advanced Computing 

Technology and Application (JACTA), 1(2), 21-24. Accessed 30 May 2023, 

https://jacta.utem.edu.my/jacta/article/view/5196 

 

 

 

 

 

 

https://securityintelligence.com/news/costa-rica-state-emergency-ransomware/
https://securityintelligence.com/news/costa-rica-state-emergency-ransomware/
https://arxiv.org/abs/1609.03020
https://doi.org/10.5120/15389-3809
https://towardsdatascience.com/machine-learning-for-newbies-7dd33dd6b764
https://towardsdatascience.com/machine-learning-for-newbies-7dd33dd6b764
https://www.malwarebytes.com/cybersecurity/business/brute-force-attack


 

 

 

 

 

 

 

APPENDIX A 

 

 

Research  

 

 

Type of Tools 

 

Type of Algorithms 

 

 

Type of 

Techniques 

 

Problems + 

Objective 

 

 

Advantages 

 

Limitation 

 

(Kok et al., 

2020) 

 

• PEDA (Pre-
encryption 
detection 
algorithm 
(PEDA) 

• Cuckoo for 
generating 
datasets  

 

• Random Forest 
 

 

• Classification 

 

P: 1) How to detect presence of 

crypto-ransomware before any 

encryption occurs?  

 

O: 1) To propose development 

of pre-encryption detection 

algorithm (PEDA) for early 

detection of crypto-

ransomware. 

 

2) To propose new metrics for 

the evaluation of a predictive 

model used in ransomware 

detection. 

 

 

Combination of two 

detection level 

which is signature 

repository(SR) and 

learning algorithm 

(LA) enables PEDA 

to detect known 

crypto-ransomware 

faster and also 

detect  

similar behavioural 

crypto-ransomware 

with unknown 

signature. 

 

The proposed metrics include 

PLR, NNM, DOR, J Index, and 

NND is difficult to represent 

into one graph, as proposed 

metrics (DOR,PLR) may have 

an infinite value. 

This may result in a 

misunderstanding of the true 

metric value. 

 

(Khalil et al., 

2022) 

 

• WEKA 

• MATLAB 

 

• Support Vector 
Machines (SVM) 

• K-Nearest 
Neighbors 
(KNN) 

 

• Classification 
 

P: 1) How can static analysis be 

used to overcome the 

constraints of dynamic analysis 

in order to construct a detection 

model?  

 

 

According to the 

experimental result, 

the Random Forest 

achieved the highest 

detection accuracy 

compared to others. 

 

This method is not extensively 

explored in the current existing 

literature, so it’s recommended 

that the future study to 

concentrate on the development 

of a revolutionary static 

analysis-based approach for 



173 

 

 

 

• Random Forest 
(RF) 

• Logistic 
Regression (LR) 

• Naive Bayes 
(NB) 

 

O: 1) To propose a new 

technique based on static 

analysis for detecting and 

classifying ransomware 

utilising five machine learning 

algorithms. 

identifying and distinguishing 

ransomware.  

 

(Abbasi, 2023) 

 

  

• Cuckoo 
Sandbox 

• Tensorflow 
 

 

• Regularized 
Logistic 
Regression 
(RLR) 

• Random Forest 
(RF) 

• Decision Tree 
(DT) 

• Support Vector 
Machines (SVM) 

• k-Nearest 
Neighbors (KNN 

 

• Classification 
 

 

 

P: How can the challenges of 

high-dimensional data and 

time-intensive manual 

inspection in behavior-based 

ransomware detection be 

overcome? 

 

O: To propose a new 

representation of API call 

sequences, for early 

ransomware detection.  

 

The research proof 

that identifying 

critical call 

arguments alongside 

API call names in 

sequences can help 

improve the 

classification 

performance.  

 

 

The scope of the analysis 

environment is limited. The 

research excludes ransomware 

that targets multiple operating 

systems such as Linux and Mac, 

as well as devices such as 

mobile phones. As a result, the 

findings are limited to 

ransomware compatible with 

Windows 7 PCs only. 

 

 

(Khammas, 

2020) 

 

  

• WEKA 
 

 

• Random Forest 
(RF) 

 

 

 

 

 

 

 

 

• Classification 
 

 

P: How can we overcome the 

issue of complicated 

disaasemble process when 

detecting ransomware attacks?  

 

O: To propose a new method of 

ransomware detection using 

Random Forest technique 

based on static analysis. 

 

According to the 

research result it 

shows good 

performance of 

random forest 

classifier with the 

byte level static 

analysis for 

ransomware attack 

detection 

 

 

The classification time is 

directly proportional with 

increasing in tree numbers. 

Therefore, it can be complex to 

determine the best number of 

tree that provides high accuracy 

with acceptable time for 

classification.  

       



174 

 

 

 

(Al-Haija et 

al., 2021) 

 

MATLAB • shallow neural 
networks 
(SNNs) 

• optimizable 
decision trees 
(ODT) 

 

Classification P: How to identify and detect 

ransomware attacks in early 

detection of bitcoin transaction.  

 

O: To develop a predictive 

system that can classify 

ransomware payments for 

heterogeneous bitcoin 

networks. 

Produced high 

performance 

classification model   

Lack of in-depth analysis of 

quality measure for future ML 

development especially dealing 

with imbalanced dataset.  

 

(Ibrahim, et al., 

2020) 

 

WEKA 

Orange 

Scikit 

 

• NaiveBayse 

• JRip 

• J48 

 

 

Classification 

P: How to address the 

challenges and problems 

associated with malicious 

website detection. 

 

O: To produce solutions for 

feature selection in machine 

learning for drive-by download 

problem. 

 

The research is able 

to distinguish 

benign and 

malicious websites 

through URL-based 

analysis. The 

suggested approach 

focuses on 

protecting users 

against browser 

vulnerability-related 

attacks.  

 

The research has limitations 

including a small scope of 

datasets. The research also uses 

limited classifier which in 

WEKA.   

 

 

 

 

 

 

 

 



 

 

 

 

 

 

APPENDIX B 

 

a) Steps to classify data for Random Forest, Support Vector Machines (SVM) 

and Naïve Bayes in WEKA.  

 

1) Navigate to the “Classify” tab as shown in Figure 1 below. Under the 

“Classifier” section, click choose to select the machine learning classification 

algorithms.  

 

Figure 1 WEKA explorer 

 

2) To implement the Random Forest classification algorithms, choose the 

“RandomForest” under the trees section of the classifier as shown in Figure 2 

below.   

 

Figure 2 Selection of Random Forest in WEKA 

 



176 

 

 

 

3) To implement the Support Vector Machines (SVM) classification 

algorithms, there are two options available which are using the default 

package SMO or the external package LibSVM. To implement the SMO click 

“SMO” under the functions section of the classifier as shown in Figure 3 below.  

 

Figure 3 Selection of Support Vector Machines (SVM) in WEKA using SMO  

 

4) For the LibSVM, we have to install the external package first. Navigate to tools 

as shown in Figure 4 below. Select the Package manager.  

 

Figure 4 Package Manager in WEKA  

 

 

 

 

 



177 

 

 

 

5) Search LibSVM and click install to start downloading the package as shown in 

Figure 5 below. Close any open WEKA application windows before 

proceeding with the installation.  

 

Figure 5 Installation of LibSVM in WEKA 

 

6)  To implement the Support Vector Machines (SVM) classification algorithms 

using the LibSVM, select the LibSVM under the functions section as shown in 

Figure 6 below.  

 

Figure 6 Selection of Support Vector Machines (SVM) in WEKA using 

LibSVM 

 

 

 

 



178 

 

 

 

 

7) To implement the Naïve Bayes classification algorithms, choose the 

“NaïveBayes” under the bayes section of the classifier as shown in Figure 7 

below.   

 

Figure 7 Selection of Naïve Bayes in WEKA 

 

b) Steps to classify data for Random Forest, Support Vector Machines (SVM) 

and Naïve Bayes in Orange.  

 

1) To implement the Random Forest, select the “Random Forest” widget which 

represents the Random Forest classification algorithm as shown in Figure 8 

below.  

 

Figure 8 Selection of Random Forest classification algorithms in Orange 

 

 



179 

 

 

 

2) Connect the nodes to start training the model using the Random Forest 

classification algorithms as shown in Figure 9 below.  

 

Figure 9 Connecting each node for Random Forest in Orange 

s 

3) To implement the Support Vector Machines (SVM), select the “SVM” widget 

which represents the Support Vector Machines (SVM) classification algorithm 

as shown in Figure 10 below.  

 

Figure 10 Selection of Support Vector Machines (SVM) classification 

algorithms in Orange 

 

 

 

 

 



180 

 

 

 

4) Connect the nodes to start training the model using the Support Vector 

Machines (SVM) classification algorithms as shown in Figure 11 below.  

 

Figure 11 Connecting each node for Support Vector Machines (SVM) 

classification algorithms in Orange 

 

 

5) To implement the Naïve Bayes select the “Naïve Bayes” widget which 

represents the Naïve Bayes classification algorithm as shown in Figure 12 

below.  

 

Figure 12 Selection of Naïve Bayes classification algorithms in Orange 

 

 

 



181 

 

 

 

6) Connect the nodes to start training the model using the Naïve Bayes 

classification algorithms as shown in Figure 13 below.  

 

Figure 13 Connecting each node for Naïve Bayes classification algorithms in 

Orange  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

APPENDIX C 

Sample of code for Sub-sampling using Python language in Jupyter Notebook 

 



183 

 

 

 

 

 
 

 

 



184 

 

 

 

APPENDIX D 

1) BitcoinHeist Ransomware Detection Result (Dataset I) 

Table 1 Summary of evaluation metrics results in WEKA Dataset I (10:90) 

Sample Size Algorithms 
True Positive 

Rate 

False Positive 

Rate 
Precision Recall F-measure Overall Accuracy 

1000 

Decision Tree 0.860 0.139 0.866 0.860 0.859 86.00% 

Random Forest 0.892 0.107 0.911 0.892 0.891 89.22% 

Naïve Bayes 0.829 0.172 0.838 0.829 0.828 82.89% 

LibSVM 0.561 0.435 0.689 0.561 0.474 56.11% 

SMO 0.901 0.098 0.910 0.910 0.910 90.11% 

5000 

Decision Tree 0.941 0.059 0.941 0.941 0.941 94.11% 

Random Forest 0.928 0.073 0.937 0.928 0.927 92.78% 

Naïve Bayes 0.885 0.115 0.887 0.885 0.885 88.51% 

LibSVM 0.612 0.391 0.700 0.612 0.562 61.16% 

SMO 0.964 0.036 0.964 0.964 0.964 96.38%  

10 000 

Decision Tree 0.950 0.050 0.954 0.950 0.950 95.04% 

Random Forest 0.941 0.060 0.947 0.941 0.941 94.06 

Naïve Bayes 0.668 0.331 0.775 0.668 0.633 66.79% 

LibSVM 0.633 0.368 0.687 0.633 0.605 63.34% 

SMO N/A N/A N/A N/A N/A N/A 

 



185 

 

 

 

Table 2 Summary of evaluation metrics results in WEKA Dataset I (30:70) 

Sample Size Algorithms 
True Positive 

Rate 

False Positive 

Rate 
Precision Recall F-measure Overall Accuracy 

1000 

Decision Tree 0.939 0.062 0.942 0.939 0.938 93.86% 

Random Forest 0.947 0.054 0.951 0.947 0.947 94.75% 

Naïve Bayes 0.869 0.131 0.869 0.869 0.869 86.86% 

LibSVM 0.611 0.397 0.707 0.611 0.557 61.14% 

SMO 0.937 0.062 0.938 0.937 0.937 93.71% 

5000 

Decision Tree 0.949 0.051 0.951 0.949 0.949 94.94% 

Random Forest 0.973 0.027 0.974 0.973 0.973 97.26% 

Naïve Bayes 0.880 0.120 0.882 0.880 0.880 88.03% 

LibSVM 0.635 0.365 0.703 0.635 0.601 68.49% 

SMO 0.962 0.038 0.963 0.962 0.962 96.22% 

10 000 

Decision Tree 0.950 0.050 0.953 0..950 0.949 94.96% 

Random Forest 0.965 0.035 0.967 0.965 0.965 96.46%  

Naïve Bayes 0.535 0.467 0.702 0.535 0.413 53.54% 

LibSVM 0.644 0.354 0.704 0.644 0.616 64.40% 

SMO N/A N/A N/A N/A N/A N/A 

 

 



186 

 

 

 

Table 3 Summary of evaluation metrics results in WEKA Dataset I (50:50) 

Sample Size Algorithms 
True Positive 

Rate 

False Positive 

Rate 
Precision Recall F-measure Overall Accuracy 

1000 

Decision Tree 0.938 0.065 0.940 0.938 0.938 93.80% 

Random Forest 0.926 0.078 0.935 0.926 0.925 92.60% 

Naïve Bayes 0.828 0.165 0.862 0.828 0.825 82.80% 

LibSVM 0.642 0.373 0.730 0.642 0.599 64.20% 

SMO 0.940 0.059 0.941 0.940 0.940 94.00% 

5000 

Decision Tree 0.950 0.051 0.952 0.950 0.950 95.04% 

Random Forest 0.959 0.043 0.962 0.959 0.959 95.88% 

Naïve Bayes 0.908 0.092 0.908 0.908 0.908 90.76% 

LibSVM 0.637 0.373 0.691 0.637 0.606 63.72% 

SMO 0.966 0.034 0.966 0.966 0.966 96.56% 

10 000 

Decision Tree 0.952 0.047 0.954 0.952 0.952 95.2% 

Random Forest 0.965 0.035 0.967 0.965 0.965 96.46% 

Naïve Bayes 0.548 0.460 0.713 0.548 0.436 54.84% 

LibSVM 0.650 0.346 0.704 0.650 0.626 64.98% 

SMO 0.982 0.018 0.982 0.982 0.982 98.16% 

 

 



187 

 

 

 

Table 4 Summary of evaluation metrics results in WEKA Dataset I (70:30) 

Sample Size Algorithms 
True Positive 

Rate 

False Positive 

Rate 
Precision Recall F-measure Overall Accuracy 

1000 

Decision Tree 0.940 0.059 0.940 0.940 0.940 94.00% 

Random Forest 0.957 0.046 0.957 0.957 0.957 95.67%  

Naïve Bayes 0.833 0.144 0.877 0.833 0.831 83.33% 

LibSVM 0.663 0.381 0.732 0.663 0.626 66.33% 

SMO 0.947 0.048 0.950 0.947 0.947 94.67% 

5000 

Decision Tree 0.953 0.047 0.955 0.953 0.953 95.33% 

Random Forest 0.963 0.037 0.965 0.963 0.963 96.27% 

Naïve Bayes 0.846 0.154 0.876 0.846 0.843 84.60% 

LibSVM 0.632 0.368 0.680 0.632 0.606 63.20% 

SMO 0.967 0.033 0.968 0.967 0.967 96.73%  

10 000 

Decision Tree 0.953 0.048 0.954 0.953 0.953 95.27% 

Random Forest 0.987 0.014 0.987 0.987 0.987 98.67%  

Naïve Bayes 0.553 0.440 0.716 0.553 0.453 55.33% 

LibSVM 0.660 0.344 0.709 0.660 0.637 65.97% 

SMO 0.985 0.015 0.985 0.985 0.985 98.47% 

 

 

 



188 

 

 

 

Table 5 Summary of evaluation metrics results in WEKA Dataset I (90:10) 

Sample Size Algorithms 
True Positive 

Rate 

False Positive 

Rate 
Precision Recall F-measure Overall Accuracy 

1000 

Decision Tree 0.950 0.062 0.951 0.950 0.950 95.00% 

Random Forest 0.940 0.083 0.946 0.940 0.939 94.00% 

Naïve Bayes 0.680 0.232 0.818 0.680 0.663 68.00% 

LibSVM 0.670 0.423 0.689 0.670 0.635 67.00% 

SMO 0.960 0.036 0.961 0.960 0.960 96.00% 

5000 

Decision Tree 0.952 0.047 0.952 0.052 0.952 95.20% 

Random Forest 0.968 0.029 0.970 0.968 0.968 96.80% 

Naïve Bayes 0.852 0.161 0.877 0.852 0.848 85.20% 

LibSVM 0.626 0.350 0.687 0.626 0.602 62.6% 

SMO 0.974 0.028 0.975 0.974 0.974 97.4%  

10 000 

Decision Tree 0.953 0.047 0.954 0.953 0.953 95.30% 

Random Forest 0.984 0.016 0.984 0.984 0.984 98.40% 

Naïve Bayes 0.564 0.431 0.720 0.564 0.241 56.40% 

LibSVM 0.666 0.337 0.723 0.666 0.642 66.60 % 

SMO 0.991 0.009 0.991 0.991 0.991 99.10%  

 

 

 



189 

 

 

 

Table 6 Summary of evaluation metrics results in ORANGE Dataset I (10:90) 

Sample Size Algorithms 
True Positive 

Rate 

False Positive 

Rate 
Precision Recall F-measure Overall Accuracy 

1000 

Decision Tree 0.808 0.192 0.868 0.858 0.857 85.80% 

Random Forest 0.892 0.108 0.888 0.888 0.888 88.80% 

Naïve Bayes 0.843 0.157 0.860 0.859 0.859 85.90% 

SVM 0.821 0.179 0.840 0.893 0.893 83.90% 

5000 

Decision Tree 0.931 0.070 0.930 0.930 0.930 93.00% 

Random Forest 0.922 0.045 0.939 0.939 0.939 93.90% 

Naïve Bayes 0.894 0.166 0.865 0.864 0.864 86.40% 

SVM 0.928 0.056 0.936 0.936 0.936 93.60% 

10 000 

Decision Tree 0.930 0.053 0.938 0.938 0.938 93.80% 

Random Forest 0.922 0.040 0.942 0.941 0.941 94.10% 

Naïve Bayes 0.904 0.171 0.869 0.867 0.866 86.70% 

SVM 0.830 0.023 0.912 0.904 0.903 90.40% 

 

 

 

 

 

 



190 

 

 

 

Table 7 Summary of evaluation metrics results in ORANGE Dataset I (30:70) 

Sample Size Algorithms 
True Positive 

Rate 

False Positive 

Rate 
Precision Recall F-measure Overall Accuracy 

1000 

Decision Tree 0.880 0.064 0.909 0.908 0.908 90.80% 

Random Forest 0.869 0.051 0.911 0.909 0.908 90.90% 

Naïve Bayes 0.855 0.122 0.876 0.866 0.866 86.60% 

SVM 0.872 0.067 0.904 0.902 0.902 90.20% 

5000 

Decision Tree 0.943 0.057 0.939 0.939 0.939 93.90% 

Random Forest 0.973 0.027 0.946 0.944 0.944 94.40% 

Naïve Bayes 0.849 0.151 0.870 0.869 0.869 86.90% 

SVM 0.981 0.019 0.891 0.871 0.871 87.10% 

10 000 

Decision Tree 0.951 0.049 0.944 0.944 0.944 94.40% 

Random Forest 0.971 0.029 0.952 0.951 0.951 95.10% 

Naïve Bayes 0.836 0.164 0.870 0.867 0.867 86.70% 

SVM 0.804 0.145 0.865 0.800 0.798 80.40% 

 

 

 

 

 

 



191 

 

 

 

Table 8 Summary of evaluation metrics results in ORANGE Dataset I (50:50) 

Sample Size Algorithms 
True Positive 

Rate 

False Positive 

Rate 
Precision Recall F-measure Overall Accuracy 

1000 

Decision Tree 0.916 0.081 0.917 0.917 0.917 91.70% 

Random Forest 0.892 0.054 0.920 0.918 0.918 91.80% 

Naïve Bayes 0.896 0.162 0.868 0.867 0.867 86.70% 

SVM 0.876 0.046 0.918 0.915 0.915 91.50% 

5000 

Decision Tree 0.949 0.051 0.941 0.941 0.941 94.10% 

Random Forest 0.968 0.032 0.951 0.950 0.950 95.00% 

Naïve Bayes 0.838 0.162 0.866 0.864 0.864 86.40% 

SVM 0.915 0.085 0.839 0.822 0.820 82.20% 

10 000 

Decision Tree 0.950 0.050 0.943 0.943 0.943 94.30% 

Random Forest 0.971 0.029 0.953 0.953 0.953 95.30% 

Naïve Bayes 0.836 0.164 0.871 0.867 0.867 86.70% 

SVM 0.892 0.108 0.798 0.768 0.762 76.80% 

 

 

 

 

 

 



192 

 

 

 

Table 9 Summary of evaluation metrics results in ORANGE Dataset I (70:30) 

Sample Size Algorithms 
True Positive 

Rate 

False Positive 

Rate 
Precision Recall F-measure Overall Accuracy 

1000 

Decision Tree 0.908 0.088 0.910 0.910 0.910 91.00% 

Random Forest 0.888 0.038 0.927 0.925 0.925 92.50% 

Naïve Bayes 0.892 0.142 0.875 0.875 0.875 87.50% 

SVM 0.802 0.026 0.900 0.887 0.887 88.70% 

5000 

Decision Tree 0.940 0.045 0.948 0.948 0.948 94.80% 

Random Forest 0.933 0.030 0.952 0.951 0.951 95.10% 

Naïve Bayes 0.910 0.185 0.866 0.862 0.862 86.20% 

SVM 0.693 0.089 0.817 0.802 0.800 80.20% 

10 000 

Decision Tree 0.936 0.046 0.945 0.945 0.945 94.50% 

Random Forest 0.936 0.028 0.955 0.955 0.955 95.50% 

Naïve Bayes 0.912 0.183 0.868 0.864 0.864 86.40% 

SVM 0.619 0.073 0.802 0.773 0.767 77.30% 

 

 

 

 

 

 



193 

 

 

 

 

Table 10 Summary of evaluation metrics results in ORANGE Dataset I (90:10) 

Sample Size Algorithms 
True Positive 

Rate 

False Positive 

Rate 
Precision Recall F-measure Overall Accuracy 

1000 

Decision Tree 0.918 0.074 0.922 0.922 0.922 92.20% 

Random Forest 0.906 0.041 0.933 0.932 0.932 93.20%  

Naïve Bayes 0.908 0.170 0.872 0.870 0.870 87.00% 

SVM 0.795 0.043 0.885 0.874 0.873 88.40% 

5000 

Decision Tree 0.937 0.054 0.941 0.941 0.941 94.10% 

Random Forest 0.930 0.025 0.954 0.953 0.953 95.30%  

Naïve Bayes 0.915 0.189 0.867 0.862 0.862 86.20% 

SVM 0.702 0.105 0.810 0.800 0.798 80.0% 

10 000 

Decision Tree 0.931 0.046 0.943 0.942 0.942 94.20% 

Random Forest 0.933 0.025 0.955 0.954 0.954 95.40%  

Naïve Bayes 0.907 0.176 0.868 0.865 0.865 86.50% 

SVM 0.635 0.095 0.791 0.770 0.766 77.00% 

 

 

 

 

 



194 

 

 

 

2) Android Ransomware Detection Result (Dataset II) 

Table 11 Summary of evaluation metrics results in WEKA Dataset II (10:90) 

Sample Size Algorithms 
True Positive 

Rate 

False Positive 

Rate 
Precision Recall F-measure Overall Accuracy 

1000 

Decision Tree 0.697 0.697 0.697 0.697 0.697 69.67% 

Random Forest 0.654 0.628 0.594 0.654 0.607 65.44% 

Naïve Bayes 0.532 0.390 0.642 0.532 0.548 53.22% 

LibSVM 0.699 0.689 0.714 0.699 0.579 69.89% 

SMO 0.683 0.649 0.614 0.683 0.608 68.33% 

5000 

Decision Tree 0.699 0.699 0.699 0.699 0.699 69.93% 

Random Forest 0.716 0.544 0.686 0.716 0.679 71.58% 

Naïve Bayes 0.532 0.368 0.656 0.532 0.547 53.20% 

LibSVM 0.698 0.697 0.589 0.698 0.577 69.80% 

SMO N/A N/A N/A N/A N/A N/A 

10 000 

Decision Tree 0.699 0.699 0.699 0.699 0.699 69.86% 

Random Forest 0.683 0.544 0.651 0.683 0.658 68.27% 

Naïve Bayes 0.581 0.431 0.640 0.581 0.598 58.12% 

LibSVM 0.695 0.698 0.607 0.695 0.584 69.51% 

SMO N/A N/A N/A N/A N/A N/A 

 



195 

 

 

 

Table 12 Summary of evaluation metrics results in WEKA Dataset II (30:70) 

Sample Size Algorithms 
True Positive 

Rate 

False Positive 

Rate 
Precision Recall F-measure Overall Accuracy 

1000 

Decision Tree 0.697 0.697 0.697 0.697 0.697 69.71% 

Random Forest 0.723 0.590 0.709 0.723 0.660 72.29% 

Naïve Bayes 0.657 0.581 0.618 0.657 0.628 65.71% 

LibSVM 0.694 0.685 0.614 0.694 0.584 69.42% 

SMO 0.697 0.614 0.651 0.697 0.634 69.71% 

5000 

Decision Tree 0.704 0.704 0.704 0.704 0.704 70.43% 

Random Forest 0.738 0.478 0.718 0.738 0.717 73.83% 

Naïve Bayes 0.518 0.292 0.710 0.518 0.512 51.77% 

LibSVM 0.701 0.700 0.592 0.701 0.586 70.11% 

SMO N/A N/A N/A N/A N/A N/A 

10 000 

Decision Tree 0.699 0.699 0.699 0.699 0.699 69.94% 

Random Forest 0.746 0.419 0.733 0.746 0.735 74.61% 

Naïve Bayes 0.520 0.306 0.696 0.520 0.524 51.99% 

LibSVM 0.695 0.687 0.607 0.695 0.587 69.50% 

SMO N/A N/A N/A N/A N/A N/A 

 

 

 



196 

 

 

 

Table 13 Summary of evaluation metrics results in WEKA Dataset II (50:50) 

Sample Size Algorithms 
True Positive 

Rate 

False Positive 

Rate 
Precision Recall F-measure Overall Accuracy 

1000 

Decision Tree 0.694 0.694 0.694 0.694 0.694 69.40% 

Random Forest 0.722 0.550 0.700 0.722 0.676 72.20%  

Naïve Bayes 0.560 0.344 0.676 0.560 0.574 56.00% 

LibSVM 0.696 0.671 0.652 0.696 0.590 69.60% 

SMO 0.710 0.614 0.688 0.710 0.637 71.00% 

5000 

Decision Tree 0.695 0.695 0.695 0.695 0.695 69.48% 

Random Forest 0.747 0.439 0.732 0.747 0.730 74.72%  

Naïve Bayes 0.541 0.303 0.701 0.541 0.547 54.08% 

LibSVM 0.692 0.689 0.592 0.692 0.575 69.16% 

SMO 0.740 0.489 0.723 0.740 0.711 74.00% 

10 000 

Decision Tree 0.698 0.698 0.698 0.698 0.698 69.80% 

Random Forest 0.762 0.398 0.751 0.762 0.751 76.24% 

Naïve Bayes 0.571 0.294 0.713 0.571 0.583 57.14% 

LibSVM 0.697 0.688 0.623 0.697 0.583 69.66% 

SMO 0.765 0.469 0.759 0.765 0.736 76.52%  

 

 



197 

 

 

 

Table 14 Summary of evaluation metrics results in WEKA Dataset II (70:30) 

Sample Size Algorithms 
True Positive 

Rate 

False Positive 

Rate 
Precision Recall F-measure Overall Accuracy 

1000 

Decision Tree 0.663 0.663 0.663 0.663 0.663 66.33% 

Random Forest 0.727 0.509 0.747 0.727 0.675 72.67% (Best) 

Naïve Bayes 0.560 0.350 0.658 0.560 0.567 56.00% 

LibSVM 0.660 0.646 0.592 0.660 0.550 66.00% 

SMO 0.707 0.549 0.721 0.707 0.642 70.67% 

5000 

Decision Tree 0.692 0.692 0.692 0.692 0.692 69.20% 

Random Forest 0.746 0.409 0.733 0.746 0.735 74.60% 

Naïve Bayes 0.525 0.301 0.699 0.525 0.527 52.53% 

LibSVM 0.689 0.680 0.606 0.689 0.577 68.87% 

SMO 0.751 0.474 0.740 0.751 0.722 75.07% (Best) 

10 000 

Decision Tree 0.702 0.702 0.702 0.702 0.702 70.20% 

Random Forest 0.761 0.386 0.750 0.761 0.753 76.07% 

Naïve Bayes 0.690 0.369 0.711 0.690 0.698 69.00% 

LibSVM 0.701 0.683 0.637 0.701 0.596 70.10% 

SMO 0.771 0.462 0.765 0.771 0.744 77.13% (Best) 

 

 

 



198 

 

 

 

Table 15 Summary of evaluation metrics results in WEKA Dataset II (90:10) 

Sample Size Algorithms 
True Positive 

Rate 

False Positive 

Rate 
Precision Recall F-measure Overall Accuracy 

1000 

Decision Tree 0.700 0.700 0.700 0.700 0.700 70.00% 

Random Forest 0.770 0.480 0.770 0.770 0.737 77.00%(Best) 

Naïve Bayes 0.540 0.388 0.648 0.540 0.557 54.00% 

LibSVM 0.690 0.685 0.591 0.690 0.588 69.00% 

SMO 0.770 0.480 0.770 0.770 0.737 77.00% 

5000 

Decision Tree 0.690 0.690 0.690 0.690 0.690 69.00% 

Random Forest 0.794 0.355 0.787 0.794 0.783 79.40%(Best) 

Naïve Bayes 0.566 0.302 0.704 0.566 0.575 56.60% 

LibSVM 0.686 0.678 0.601 0.686 0.575 68.60% 

SMO 0.782 0.418 0.781 0.782 0.760 78.20% 

10 000 

Decision Tree 0.690 0.690 0.690 0.690 0.690 69.60% 

Random Forest 0.782 0.353 0.774 0.782 0.775 78.20% 

Naïve Bayes 0.719 0.362 0.725 0.719 0.722 71.90% 

LibSVM 0.699 0.674 0.664 0.669 0.592 69.90% 

SMO 0.786 0.429 0.786 0.786 0.762 78.60%(Best) 

 

 

 



199 

 

 

 

Table 16 Summary of results evaluation metrics results in ORANGE Dataset II (10:90) 

Sample Size Algorithms 
True Positive 

Rate 

False Positive 

Rate 
Precision Recall F-measure Overall Accuracy 

1000 

Decision Tree 0.551 0.449 0.549 0.548 0.548 54.80% 

Random Forest 0.553 0.447 0.549 0.549 0.548 54.90% 

Naïve Bayes 0.551 0.449 0.555 0.556 0.555 55.60% 

SVM 0.554 0.446 0.543 0.541 0.534 54.10% 

5000 

Decision Tree 0.525 0.475 0.530 0.529 0.528 52.90% 

Random Forest 0.531 0.469 0.535 0.534 0.534 53.40% 

Naïve Bayes 0.499 0.501 0.500 0.500 0.500 50.00% 

SVM 0.518 0.482 0.513 0.510 0.468 51.00% 

10 000 

Decision Tree 0.540 0.460 0.542 0.542 0.542 54.20% 

Random Forest 0.554 0.446 0.554 0.554 0.554 55.40% 

Naïve Bayes 0.505 0.495 0.505 0.506 0.505 50.60% 

SVM 0.513 0.487 0.508 0.506 0.463 50.60% 

 

 

 

 



200 

 

 

 

Table 17 Summary of evaluation metrics results in ORANGE Dataset II (30:70) 

Sample Size Algorithms 
True Positive 

Rate 

False Positive 

Rate 
Precision Recall F-measure Overall Accuracy 

1000 

Decision Tree 0.572 0.428 0.575 0.575 0.575 57.50% 

Random Forest 0.590 0.410 0.591 0.591 0.591 59.10% 

Naïve Bayes 0.577 0.423 0.574 0.574 0.574 57.40% 

SVM 0.602 0.398 0.560 0.532 0.471 53.20% 

5000 

Decision Tree 0.551 0.449 0.555 0.554 0.554 55.40% 

Random Forest 0.569 0.431 0.570 0.570 0.570 57.00% 

Naïve Bayes 0.499 0.501 0.499 0.499 0.499 49.90% 

SVM 0.502 0.498 0.501 0.501 0.498 50.10% 

10 000 

Decision Tree 0.570 0.430 0.577 0.576 0.575 57.60% 

Random Forest 0.597 0.403 0.601 0.601 0.601 60.10% 

Naïve Bayes 0.505 0.495 0.506 0.506 0.505 50.60% 

SVM 0.500 0.500 0.501 0.501 0.497 50.10% 

 

 

 

 

 

 



201 

 

 

 

Table 18 Summary of evaluation metrics results in ORANGE Dataset II (50:50) 

Sample Size Algorithms 
True Positive 

Rate 

False Positive 

Rate 
Precision Recall F-measure Overall Accuracy 

1000 

Decision Tree 0.566 0.434 0.583 0.579 0.575 57.90% 

Random Forest 0.592 0.408 0.600 0.599 0.598 59.90% 

Naïve Bayes 0.581 0.419 0.575 0.575 0.574 57.50% 

SVM 0.587 0.413 0.548 0.517 0.422 51.70% 

5000 

Decision Tree 0.559 0.441 0.563 0.563 0.562 56.30% 

Random Forest 0.578 0.422 0.579 0.579 0.579 57.90% 

Naïve Bayes 0.501 0.499 0.501 0.501 0.501 50.10% 

SVM 0.501 0.499 0.501 0.501 0.501 50.10% 

10 000 

Decision Tree 0.570 0.430 0.577 0.576 0.575 57.60% 

Random Forest 0.597 0.403 0.601 0.601 0.601 60.10% 

Naïve Bayes 0.505 0.495 0.506 0.506 0.505 50.60% 

SVM 0.500 0.500 0.501 0.501 0.497 50.10% 

 

 

 

 



202 

 

 

 

Table 19 Summary of evaluation metrics results in ORANGE Dataset II (70:30) 

Sample Size Algorithms 
True Positive 

Rate 

False Positive 

Rate 
Precision Recall F-measure Overall Accuracy 

1000 

Decision Tree 0.615 0.462 0.574 0.573 0.573 57.30% 

Random Forest 0.630 0.426 0.615 0.615 0.615 61.50%  

Naïve Bayes 0.513 0.486 0.584 0.584 0.584 58.40% 

SVM 0.375 0.346 0.514 0.511 0.450 51.10% 

5000 

Decision Tree 0.606 0.457 0.575 0.574 0.574 57.40% 

Random Forest 0.611 0.416 0.598 0.598 0.598 59.80%  

Naïve Bayes 0.522 0.518 0.502 0.502 0.502 50.20% 

SVM 0.267 0.259 0.505 0.504 0.475 50.40% 

10 000 

Decision Tree 0.618 0.452 0.583 0.583 0.582 58.30% 

Random Forest 0.627 0.400 0.614 0.614 0.614 61.40%  

Naïve Bayes 0.555 0.537 0.509 0.509 0.508 50.90% 

SVM 0.368 0.365 0.502 0.502 0.492 50.20% 

 

 

 

 

 

 

 

 

 



203 

 

 

 

 

Table 20 Summary of evaluation metrics results in ORANGE Dataset II (90:10) 

Sample Size Algorithms 
True Positive 

Rate 

False Positive 

Rate 
Precision Recall F-measure Overall Accuracy 

1000 

Decision Tree 0.572 0.480 0.546 0.545 0.545 54.50% 

Random Forest 0.641 0.408 0.617 0.616 0.616 61.60% 

Naïve Bayes 0.158 0.094 0.580 0.580 0.579 58.00% 

SVM 0.527 0.369 0.572 0.541 0.465 54.10% 

5000 

Decision Tree 0.596 0.435 0.581 0.581 0.581 58.10% 

Random Forest 0.615 0.414 0.601 0.601 0.601 60.10% 

Naïve Bayes 0.559 0.531 0.514 0.515 0.514 51.50% 

SVM 0.218 0.189 0.522 0.510 0.463 51.00% 

10 000 

Decision Tree 0.585 0.415 0.591 0.591 0.590 59.10% 

Random Forest 0.611 0.389 0.613 0.613 0.613 61.30% 

Naïve Bayes 0.507 0.493 0.506 0.506 0.506 50.60% 

SVM 0.503 0.497 0.502 0.501 0.500 50.10% 

 

 

 

 

 

 



204 

 

 

 

3) File System Behavior Ransomware Detection Result (Dataset III) 

Table 21 Summary of evaluation metrics results in WEKA Dataset III (10:90) 

Sample Size Algorithms 
True Positive 

Rate 

False Positive 

Rate 
Precision Recall F-measure Overall Accuracy 

1000 

Decision Tree 0.950 0.050 0.951 0.950 0.950 95.00% 

Random Forest 0.944 0.055 0.944 0.944 0.944 94.44% 

Naïve Bayes 0.793 0.207 0.795 0.793 0.793 79.33% 

LibSVM 0.617 0.380 0.783 0.617 0.552 61.67% 

SMO 0.873 0.127 0.873 0.873 0.873 87.33 

5000 

Decision Tree 0.970 0.030 0.970 0.970 0.970 97.00% 

Random Forest 0.955 0.045 0.956 0.955 0.955 95.53% 

Naïve Bayes 0.792 0.207 0.807 0.792 0.790 79.22% 

LibSVM 0.692 0.309 0.809 0.692 0.660 69.24% 

SMO N/A N/A N/A N/A N/A N/A 

10 000 

Decision Tree 0.967 0.033 0.967 0.967 0.967 96.67% 

Random Forest 0.951 0.049 0.951 0.951 0.951 95.09% 

Naïve Bayes 0.825 0.174 0.847 0.825 0.822 82.48% 

LibSVM 0.737 0.265 0.827 0.737 0.717 73.65% 

SMO N/A N/A N/A N/A N/A N/A 

 



205 

 

 

 

Table 22 Summary of evaluation metrics results in WEKA Dataset III (30:70) 

Sample Size Algorithms 
True Positive 

Rate 

False Positive 

Rate 
Precision Recall F-measure Overall Accuracy 

1000 

Decision Tree 0.953 0.047 0.954 0.953 0.953 95.29% 

Random Forest 0.944 0.056 0.944 0.944 0.944 94.43% 

Naïve Bayes 0.716 0.279 0.791 0.716 0.697 71.57% 

LibSVM 0.657 0.351 0.796 0.657 0.610 65.71% 

SMO 0.830 0.167 0.853 0.830 0.827 83.00% 

5000 

Decision Tree 0.980 0.020 0.980 0.980 0.980 98.02% 

Random Forest 0.953 0.047 0.954 0.953 0.953 95.31% 

Naïve Bayes 0.843 0.157 0.847 0.843 0.843 84.31% 

LibSVM 0.746 0.254 0.831 0.746 0.729 74.60% 

SMO N/A N/A N/A N/A N/A N/A 

10 000 

Decision Tree 0.985 0.015 0.985 0.985 0.985 98.53%  

Random Forest 0.954 0.046 0.955 0.954 0.954 95.40% 

Naïve Bayes 0.790 0.211 0.812 0.790 0.786 79.01% 

LibSVM 0.800 0.199 0.857 0.800 0.792 80.01% 

SMO N/A N/A N/A N/A N/A N/A 

 

 



206 

 

 

 

Table 23 Summary of evaluation metrics results in WEKA Dataset III (50:50) 

Sample Size Algorithms 
True Positive 

Rate 

False Positive 

Rate 
Precision Recall F-measure Overall Accuracy 

1000 

Decision Tree 0.954 0.045 0.955 0.954 0.954 95.40% 

Random Forest 0.960 0.040 0.960 0.960 0.960 96.00% (Best) 

Naïve Bayes 0.736 0.253 0.800 0.736 0.723 73.60% 

LibSVM 0.680 0.336 0.803 0.680 0.640 68.00% 

SMO 0.828 0.166 0.853 0.828 0.826 82.80% 

5000 

Decision Tree 0.989 0.008 0.991 0.991 0.991 99.10% (Best) 

Random Forest 0.952 0.049 0.952 0.952 0.952 95.16% 

Naïve Bayes 0.845 0.152 0.854 0.845 0.845 84.52% 

LibSVM 0.771 0.237 0.841 0.771 0.758 77.12% 

SMO 0.834 0.162 0.853 0.834 0.832 83.36% 

10 000 

Decision Tree 0.984 0.016 0.984 0.984 0.984 98.36%  

Random Forest 0.954 0.046 0.954 0.954 0.954 95.38% 

Naïve Bayes 0.801 0.202 0.831 0.801 0.796 80.10% 

LibSVM 0.823 0.174 0.869 0.823 0.817 82.28% 

SMO N/A N/A N/A N/A N/A N/A 

 

 

 



207 

 

 

 

Table 24 Summary of evaluation metrics results in WEKA Dataset III (70:30) 

Sample Size Algorithms 
True Positive 

Rate 

False Positive 

Rate 
Precision Recall F-measure Overall Accuracy 

1000 

Decision Tree 0.980 0.017 0.981 0.980 0.980 98.00%  

Random Forest 0.963 0.038 0.963 0.963 0.963 96.33% 

Naïve Bayes 0.697 0.264 0.803 0.697 0.677 69.97% 

LibSVM 0.713 0.332 0.813 0.713 0.679 71.33% 

SMO 0.810 0.169 0.847 0.810 0.808 81.00% 

5000 

Decision Tree 0.983 0.017 0.983 0.983 0.983 98.33% 

Random Forest 0.955 0.045 0.956 0.955 0.955 95.53% 

Naïve Bayes 0.839 0.161 0.845 0.839 0.838 83.87% 

LibSVM 0.783 0.217 0.848 0.783 0.773 78.33% 

SMO 0.838 0.162 0.856 0.838 0.836 83.80% 

10 000 

Decision Tree 0.986 0.014 0.986 0.986 0.986 98.60%  

Random Forest 0.868 0.131 0.875 0.868 0.868 86.83% 

Naïve Bayes 0.756 0.247 0.812 0.756 0.744 75.60% 

LibSVM 0.838 0.165 0.877 0.838 0.833 83.80% 

SMO N/A N/A N/A N/A N/A N/A 

 

 

 



208 

 

 

 

Table 25 Summary of evaluation metrics results in WEKA Dataset III (90:10) 

Sample Size Algorithms 
True Positive 

Rate 

False Positive 

Rate 
Precision Recall F-measure Overall Accuracy 

1000 

Decision Tree 0.980 0.014 0.981 0.980 0.980 98.00%  

Random Forest 0.990 0.007 0.990 0.990 0.990 99.00%  

Naïve Bayes 0.800 0.145 0.865 0.800 0.798 80.00% 

LibSVM 0.670 0.456 0.790 0.670 0.600 67.00% 

SMO 0.820 0.130 0.874 0.820 0.819 82.00% 

5000 

Decision Tree 0.994 0.006 0.994 0.994 0.994 99.40%  

Random Forest 0.950 0.048 0.951 0.950 0.950 95.00% 

Naïve Bayes 0.840 0.167 0.844 0.840 0.839 84.00% 

LibSVM 0.798 0.183 0.858 0.798 0.792 79.80% 

SMO 0.840 0.170 0.853 0.840 0.838 84.00% 

10 000 

Decision Tree 0.982 0.018 0.982 0.982 0.982 98.20%  

Random Forest 0.949 0.051 0.950 0.949 0.868 94.90% 

Naïve Bayes 0.556 0.449 0.701 0.556 0.456 55.60% 

LibSVM 0.857 0.145 0.889 0.857 0.854 85.70% 

SMO N/A N/A N/A N/A N/A N/A 

 

 

 



209 

 

 

 

Table 26 Summary of evaluation metrics results in ORANGE Dataset III (10:90) 

Sample Size Algorithms 
True Positive 

Rate 

False Positive 

Rate 
Precision Recall F-measure Overall Accuracy 

1000 

Decision Tree 0.949 0.075 0.937 0.937 0.937 93.70% 

Random Forest 0.945 0.038 0.954 0.954 0.954 95.40% 

Naïve Bayes 0.777 0.048 0.876 0.865 0.864 86.50% 

SVM 0.792 0.078 0.863 0.857 0.856 85.70% 

5000 

Decision Tree 0.957 0.040 0.959 0.959 0.959 95.90% 

Random Forest 0.977 0.034 0.971 0.971 0.971 97.10% 

Naïve Bayes 0.814 0.057 0.885 0.879 0.878 87.90% 

SVM 0.951 0.080 0.936 0.936 0.936 93.60% 

10 000 

Decision Tree 0.939 0.026 0.957 0.956 0.956 95.60% 

Random Forest 0.983 0.011 0.986 0.986 0.986 98.60%  

Naïve Bayes 0.816 0.049 0.890 0.883 0.883 88.30% 

SVM 0.943 0.035 0.954 0.954 0.954 95.40% 

 

 

 

 



210 

 

 

 

Table 27 Summary of evaluation metrics results in ORANGE Dataset III (30:70) 

Sample Size Algorithms 
True Positive 

Rate 

False Positive 

Rate 
Precision Recall F-measure Overall Accuracy 

1000 

Decision Tree 0.953 0.047 0.953 0.953 0.953 95.30% 

Random Forest 0.967 0.033 0.968 0.968 0.968 96.80% 

Naïve Bayes 0.933 0.067 0.878 0.870 0.870 87.00% 

SVM 0.900 0.100 0.914 0.913 0.913 91.30% 

5000 

Decision Tree 0.955 0.023 0.966 0.966 0.966 96.60% 

Random Forest 0.984 0.014 0.985 0.985 0.985 98.50% 

Naïve Bayes 0.815 0.052 0.888 0.881 0.881 88.10% 

SVM 0.676 0.048 0.840 0.814 0.810 81.40% 

10 000 

Decision Tree 0.956 0.011 0.973 0.973 0.973 97.30% 

Random Forest 0.989 0.010 0.989 0.989 0.989 98.90%  

Naïve Bayes 0.819 0.058 0.886 0.880 0.880 88.00% 

SVM 0.738 0.062 0.852 0.838 0.836 83.80% 

 

 

 

 



211 

 

 

 

Table 28 Summary evaluation metrics results in ORANGE Dataset III (50:50) 

Sample Size Algorithms 
True Positive 

Rate 

False Positive 

Rate 
Precision Recall F-measure Overall Accuracy 

1000 

Decision Tree 0.948 0.030 0.959 0.959 0.959 95.90% 

Random Forest 0.979 0.016 0.981 0.981 0.981 98.10% 

Naïve Bayes 0.794 0.058 0.876 0.868 0.867 86.80% 

SVM 0.936 0.075 0.931 0.931 0.931 93.10% 

5000 

Decision Tree 0.960 0.019 0.971 0.971 0.971 97.10% 

Random Forest 0.990 0.008 0.991 0.991 0.991 99.10% 

Naïve Bayes 0.813 0.059 0.884 0.877 0.877 87.70% 

SVM 0.675 0.057 0.833 0.809 0.805 80.90% 

10 000 

Decision Tree 0.962 0.018 0.972 0.972 0.972 97.20% 

Random Forest 0.990 0.005 0.992 0.992 0.992 99.20% 

Naïve Bayes 0.826 0.045 0.898 0.891 0.891 89.10 

SVM 0.744 0.105 0.827 0.820 0.819 82.00 

 

 

 

 



212 

 

 

 

Table 29 Summary of evaluation metrics results in ORANGE Dataset III (70:30) 

Sample Size Algorithms 
True Positive 

Rate 

False Positive 

Rate 
Precision Recall F-measure Overall Accuracy 

1000 

Decision Tree 0.961 0.026 0.968 0.968 0.968 96.80% 

Random Forest 0.986 0.009 0.988 0.988 0.988 98.80% 

Naïve Bayes 0.810 0.067 0.877 0.872 0.871 87.20% 

SVM 0.888 0.040 0.926 0.924 0.924 92.40% 

5000 

Decision Tree 0.959 0.020 0.969 0.969 0.969 96.90% 

Random Forest 0.989 0.008 0.991 0.991 0.991 99.10% 

Naïve Bayes 0.683 0.057 0.882 0.876 0.875 87.60% 

SVM 0.810 0.059 0.836 0.813 0.810 81.30% 

10 000 

Decision Tree 0.964 0.018 0.973 0.973 0.973 97.30% 

Random Forest 0.991 0.005 0.933 0.933 0.933 99.30%  

Naïve Bayes 0.826 0.044 0.898 0..891 0..891 89.10% 

SVM 0.764 0.115 0.829 0.824 0.824 82.40% 

 

 

 

 

 

 

 

 



213 

 

 

 

Table 30 Summary of evaluation metrics results in ORANGE Dataset III (90:10) 

Sample Size Algorithms 
True Positive 

Rate 

False Positive 

Rate 
Precision Recall F-measure Overall Accuracy 

1000 

Decision Tree 0.957 0.035 0.961 0.961 0.961 96.10% 

Random Forest 0.986 0.010 0.988 0.988 0.988 98.80% 

Naïve Bayes 0.838 0.074 0.885 0.883 0.883 88.30% 

SVM 0.814 0.021 0.908 0.898 0.898 89.80% 

5000 

Decision Tree 0.969 0.019 0.974 0.974 0.974 97.40 

Random Forest 0.991 0.006 0.993 0.993 0.993 99.30%  

Naïve Bayes 0.715 0.075 0.834 0.818 0.816 81.80% 

SVM 0.822 0.046 0.894 0.887 0.887 88.70% 

10 000 

Decision Tree 0.964 0.013 0.976 0.976 0.976 97.60% 

Random Forest 0.991 0.006 0.993 0.933 0.993 99.30%  

Naïve Bayes 0.831 0.042 0.901 0..894 0..894 89.40% 

SVM 0.737 0.177 0.782 0.780 0.779 78.00% 

 

 

 

 

 

 

 

 

  




