ANALYSIS OF CLASSIFICATION TECHNIQUES IN RANSOMWARE
DETECTION USING MACHINE LEARNING APPROACH

MEIZA CERMELLA BT ABDUL AZIZ

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ANALYSIS OF CLASSIFICATION TECHNIQUES IN RANSOMWARE
DETECTION USING MACHINE LEARNING APPROACH

MEIZA CERMELLA BT ABDUL AZIZ

This report is submitted in partial fulfililment of the requirements for the
Bachelor of Computer Science (Computer Security) with Honours.

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY
UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2023

DECLARATION

I hereby declare that this project report entitled
ANALYSIS OF CLASSIFICATION TECHNIQUES IN RANSOMWARE
DETECTION USING MACHINE LEARNING APPROACH
is written by me and is my own effort and that no part has been plagiarized
without citations.
We

STUDENT : Date : 20 [4/2023
(MEIZA CERMELLA BT ABDUL AZ1Z)

I hereby declare that I have read this project report and found
this project report is sufficient in term of the scope and quality for the award of

Bachelor of Computer Science (Computer Security) with Honours.

SUPERVISOR @/ Date : 'Jot 9 l 20U3

(PM TS. DR ROBIAH BINTI YUSOF)

DEDICATION

| dedicate this work to my parents, Saniah Binti Husin and Abdul Aziz Bin Hj Bakar
for their love, motivation and support in the aspect of emotional and financial support
that they have provided me throughout this project and as long as I live. My parents
have always believed in me, and their sacrifices have shaped me into the person I am
today. This accomplishment illustrates your unwavering trust in me, and | will be

forever grateful for your unconditional love and guidance.

I also would like to dedicate this work to my inspiring supervisor Profesor Madya Ts.
Dr Robiah Bt Yusof, my evaluator Ts. Haniza Bt. Nahar and especially all educators
at the Universiti Teknikal Malaysia Melaka (UTeM) for their wisdom and guidance
that has helped to shape my intellectual growth during my study. Additionally, | would
like to dedicate this work to my precious sibling, relatives and my friends that have
been with me providing motivational support and have supported me along the way.

Your encouragement, advice, and prayers have meant the world to me.

In the name of Allah, the Most Gracious, the Most Merciful. | dedicate this Final Year
Project to the God, the Almighty, for giving me the strength, wisdom, and guidance to
complete this project. Without His divine intervention, | would not have been able to
complete this Final Year Project. | am truly grateful for all the blessings that He has

bestowed upon me.

ACKNOWLEDGEMENTS

First and foremost, | would like to express my deepest appreciation to my supervisor
Profesor Madya Ts. Dr Robiah Bt Yusof for her continuous support, advice, and
patience to help me completing this project successfully. Her insights and expertise
have helped me to develop a strong understanding of the topic and she always
motivates me to explore new understanding of certain areas of topic that I'm not
familiar with. I’'m grateful and honored to be under her supervision and | enjoy having
meetings and discussions with my supervisor as she always provides her best in
making me understand the discussions topic. In addition to that, | would like to express
my sincere gratitude to the Universiti Teknikal Malaysia Melaka (UTeM) for
providing me with the opportunity to complete my final year project on “Analysis Of
Classification Techniques In Ransomware Detection Using Machine Learning
Approach* as the requirements for my program of Bachelor of Computer Science
(Computer Security) with Honours.

ABSTRACT

Ransomware is one of the most devastating cyberattacks in the malware category
which involves the victim device being locked from accessing the system. The increase
of ransomware attacks may be caused by several factors such as insufficient corporate
security defense and the trends of ransomware as a service known as (RaaS) affiliate
market. Additionally, most of the antivirus that use signature-based detection can be
ineffective especially for detecting new variants of ransomware. There’s also a
challenge in selecting appropriate classification techniques due to the extensive
scientific and technical materials involved. Therefore, taking all these problems into
consideration this project objective is to evaluate the performance of various
classification techniques for detection and classification of ransomware. The research
methodology involves acquiring a comprehensive ransomware dataset from reputable
sources such as Kaggle, UCI Machine Learning Repositories, and Resilient
Information Systems Security (RISS) Ransomware Dataset. The dataset undergoes
preprocessing steps, including data cleaning to handle missing values and noisy data.
Feature selection methods are applied to identify the most informative features,
thereby enhancing the accuracy of the ransomware detection system. Several machines
learning classifiers, including Decision Tree, Random Forest, Support Vector
Machines (SVM), and Naive Bayes, are employed for training the ransomware
detection model. The resulting models are then evaluated using various evaluation
metrics such as accuracy, precision, recall, F-measure, and True Positive Rate (TPR).
and False Positive Rates (FPR). The outcomes of this study contribute to the
understanding of the performance of different classification techniques in the context
of ransomware detection. The findings illustrate that performance consistently
improves with larger balanced dataset sizes, notably Random Forest highest being
99.30% accuracy, exhibit remarkable accuracy gains when transitioning from
imbalanced to balanced datasets. Future research directions include exploring deep
learning methods, utilizing larger datasets, and conducting real-time testing to further
enhance the accuracy and zero-day attack of ransomware detection systems. This
research can serve as a reference for future work to combat the rising threat of

ransomware attacks.

Vi

ABSTRAK

“Ransomware” adalah salah satu serangan siber yang paling dahsyat dalam
kategori perisian hasad yang melibatkan mangsa terkunci dari mengakses peranti.
Peningkatan serangan “ransomware” disebabkan oleh beberapa faktor seperti
pertahanan keselamatan korporat yang tidak mencukupi dan pola “ransomware”
sebagai perkhidmatan yang dikenali sebagai (RaaS). Selain itu, kebanyakan antivirus
yang tidak dapat mengesan varian “ransomware” baru. Terdapat juga cabaran dalam
memilih teknik klasifikasi yang sesuai kerana banyak bahan saintifik dan teknikal yang
terlibat. Oleh itu, dengan mempertimbangkan semua masalah ini, projek ini bertujuan
untuk menilai prestasi pelbagai teknik Klasifikasi untuk pengesanan dan klasifikasi
“ransomware”. Metodologi penyelidikan melibatkan memperolen set data
“ransomware” yang komprehensif dari sumber terkenal seperti Kaggle, Repositori
Pembelajaran Mesin UCI, dan Keselamatan Sistem Maklumat Berdaya Tahan (RISS)
Ransomware Dataset. Set data menjalani langkah-langkah pra-pemprosesan, termasuk
pembersihan data untuk menangani nilai yang hilang. Kaedah pemilihan ciri
digunakan untuk mengenal pasti ciri yang paling bermaklumat, sehingga
meningkatkan ketepatan sistem pengesanan “ransomware”. Beberapa mesin belajar
klasifikasi, termasuk Decision Tree, Random Forest, Support Vector Machines
(SVM), dan Naive Bayes, digunakan untuk melatin model pengesanan ransomware.
Model yang dihasilkan kemudian dinilai menggunakan pelbagai metrik penilaian
seperti ketepatan, ketepatan, penarikan balik, ukuran F, dan Kadar Positif Sejati (TPR)
dan Kadar Posditif Palsu (FPR). Keputusan kajian ini menggambarkan bahawa
prestasi konsisten bertambah baik dengan saiz set data yang lebih besar, terutamanya
Random Forest tertinggi ketepatan 99.30%, mebuktikan kecekapan bagus apabila
beralih daripada set data tidak seimbang kepada seimbang. Arah penyelidikan masa
depan termasuk meneroka kaedah lain, menggunakan set data yang lebih besar, dan
menjalankan ujian masa nyata untuk meningkatkan lagi ketepatan dan serangan sifar
hari sistem pengesanan perisian tebusan. Penyelidikan ini boleh menjadi rujukan untuk

kerja masa depan dalam bidang pengesanan “ransomware” yang semakin meningkat.

vii

TABLE OF CONTENTS
PAGE
DECLARATION ...ttt bbbt I
DEDICATION ...ttt bbbttt sb e 1
ACKNOWLEDGEMENTS. ..ottt nne s v
ABSTRARCT ...ttt ettt ettt et b e te e se e e e s et e tesbesresbeateeneeneens \Y/
ABSTRAISE— ... [VI
TADB L e T . I VIl
LIST OF R ... [... . N & o N....... X1V
LIST OF FIGURES ittt sttt XVI
LIS T O A B S R A O N S o rrrrrr e [e e st es e s es e nas XX
LIST QRAT EACEIMENTES: b 146 A5 RA AL AV LA BAE B B eoeerrernenens XXI
CHAPTER 1: INTRODUCTION ..ottt 1
1.1 INEFOAUCTION......eeceie et ee e e s re e nae e srna e 1
1.2 BaCKGIOUNGc.oieiieie e e 2
1.3 Problem StateMENt...........coviiiiiiie e e 3
1.4 Project QUESTION........cueiieieeic sttt e e enes 3
1.5 ProJECt ODJECTIVE.iitiiiiiiieiieeeeee e 4
1.6 PrOJECE SCOPE ..vvieiiieiee ettt e et e et nbe e e e naeeanes 4

1.7 Project ContribULION..........ooii i 5

1.8 Report OrganiZation............ccceecueeieieeie et sae s 6
1.9 SUMIMAIY L.ttt ettt st et e s e e e be e sreeenbeesnbeeteeaneaens 7
CHAPTER 2: LITERATURE REVIEW. ..ottt 8
2.0 INEOTUCTION ...ttt nee e 8
2.1 RANSOMWAIE........eoiiiiiie ettt reennee e 10
211 DefiNItION .o 10
N A O 1 (<o o] =T R TRRPR R 12
2.1.2. 1 LOCKET i 12
N 1 4 /o] (o TSR TOPR PR 13
2. - 2ERIRIATE ... o 14
o g e B M P . BV NN 14
20N e S—— W . B R 14
N I T I 1 Ty o] [S S 15
2.1.4 Typeof AMACKS...... e B L L L e 18
2.1.4.1 Exploitable Software Vulnerabilities..............c...ocooiiinneiieieee, 18
2.1.4.2 Brute-Force Credential attacksccccoevivriieviverenie e 18
2.1.4.3 Phishing eMailS.........cccoviiiiiiiiiiiee e 18
2.1.4.4 Remote Desktop Protocol Attackccccccvevveiiiieiiieiiiciie e, 18
2.2 MaChine Learningcc.coveiueiiieiieie et 19
2.2.1 DEFINITION .o 19
2.2.2 Y PES ittt 20
2.2.2.1 SUPEIVISEA....c.uieiiiiiieie et e e e et sae et ra et neenraees 20

2.3

2.2.2.3 SEMI-SUPEIVISEA......ccviiiiiiieiiieie st 21
2.2.2.4 Summary of type of machine learning..........cccccceecvevvvivereiiesnenn. 22
2.2.3 TOOIS .o 22
2.2.3.1 WK ..o e 22
2.2.3.2 OFANQEL......tiieiiieeiiie ettt ettt 23
2.2.3.3 TeNSOIFIOWoiiiiiiiiec e 23
2.2.3.4 AZUIC.....ciiiiiiiet e 23
2.2.3.5 SCIKIT-LEAINoouiiiiiiiieiieee e 24
2.2.4 Summary of Machine Learning tools featureccccccevvennnnen, 25
TEalISUES T E S - 27
ARG LG k... W W 27
2.3.2 Classification TEChNIQUESc.veevueivieieeiieeecrie et e e see e eee s 27
2.3.2.1 DECISION TTEE ..ottt 28
2.3.2.2 RaANAOM FOTESL.......ciiiiiiie it 29
2.3.2.3 Support Vector Maching.........ccccecveveeiesiese e 30
2.3. 2.4 NATVE BAYESeiieeiiieieeee e 31
2.3.2.5 Summary of machine learning algorithms..........ccccoceieiiiiinnnn 32
2.3.3 ANAIYSIS. ..ottt 35
2.3.3. 1 DALASELS ... 35
2.3.3.2 PaAramMeLEIS......oiuieiiiieiieetee e 37
2.3.3.3Train and TeSt RALIO..........c.cuiiiiiieieieiee e 41
2.3.3.4 Evaluation TEChNIQUES.........coveiiieiie e 42

2.4 CIITICAI REVIBW. ...ttt e ettt e e e e e e e et eeaaens 48

2.5 PropoSed SOIULIONc.eciuiiiciiccee et 52
2.6 SUMMIAIY ...ttt sttt sttt et e et e sbb e e be e e st e e st e e sbeeabeesrbeebeesnbeenneeanee 52
CHAPTER 3: METHODOLOGYooiiiiiitseeeeeiee e 53
3.0 INEOTUCTION.....eiee et 53
3.1 Project Methodologycooveiiiiieiie e 54
3.1.1 Phase I: Identify and Gather Project Requirements....................... 55
3.1.2 Phase II: Select Tools and Datasets..........cccocereerenerieereseeseenne. 55
3.1.3 Phase HI: Installing the TOOIS.........ccccveviiiieiieieie e 56
3.1.4 Phase IV: Dataset Preparationccccccoerereneniecneneneseseesnens 56
3.1.5 Phase V: Information Collectionccccocviiiniiniiiininenene 57
3.1.6 Phase VI: Analyze the Informationccccovverriirceenecceneene, 57
3.1.7 Phase VII::Document Result......... 0 .o ot iiie e, 58
3.2 REGERIERHeGIONE... . ..o.... o . 8. ... 58
3.3 Research Gantt Chart..........cocoiieieie e 59
3.4 SUMMIAIY .ttt d et e et e e sbb e e e bb e e e be e e sba e e nabeeenanes 60
CHAPTER 4: ANALYSIS AND DESIGN......cccoiiiiiiieieiene e 61
4.0 F 1 oo o1 o] o SRS R 61
4.1 Research WOrKFIOWccooiiiiiie e 62
4.2 Project Requirements ANAIYSIS........ccoiveiiieiiie i 64
4.2.1 Hardware REQUIFEMENTScceevieiiiiieie e 64
4.2.2 Software ReqUIrEMENTS.ccoiiiiiiieieiesc e 64
4.3 ArChIteCture ANAIYSIS.........coviiiiiiceece e 66
4.4 Proposed ReSEarch DESIGN........c.ccuviieiiereiicie e 67

4.5 Flowchart Design Of RESEAICNccoiviiiiiiiee e 69

Xi

4.6 TOOIS INEEITACE ..o 71
4.8 SUMIMAIY ..ttt sttt et be e s rb e e beesnbeesbeeanbeereas 72
CHAPTER 5: IMPLEMENTATION......ccoiiititeeeeee e 73
5.0 INEOTUCTION.....eiee et 73
5.1 Research Implementation ACHIVILIESccccveiieiiieiie e 74
5.2 Step 1: Environment Setup based on Requirements...........c.cccooveveevernnennn. 75
5.2.1 HAIAWATE......ccieieeiecieece ettt 75
5.2.2 Operating SYSEM.......ccouiiiiiiiie e e 76
5.2.3 SOFIWAIEccuiiieiece e 76
5.3 Step 2: Installation and Configurations Machine Learning Setup................ 78
5.3.1 Installation and Configurations WEKAccceeeiviieiiecce e 78
5.4 SIERSEEauRg=atasEls.. N 8. 8 T 4. ... 81
5.5 StEP 42 Pre=PrOCESSINGocvveieeiieitieieeriesteesteesiesteessesseesseessessessseessesseessesnees 82
58 Y T StEPS fOr PrE=PTOCESS T ... rsre e feFmageere dostemnstonmassenessersareesessnes 82
282 E rComnanisonBefaraanthAREr AW S A - BT BB B veeeeeereeeens 84
5.6 Step 5: Load DataSerl.........cciviiiieiiiciie st 85
5.6.1 Stepsto Load Dataset for WEKA............cccvevievieve i 85
5.6.2 Stepsto Load Dataset for ORANGEc.ccooviiiiiiniicncic 87
5.7 Step 6: ClassIfiCatioNccccciiiiiiece e 88
5.7.1 Stepsto classify data in WEKA...........ccceveieiieie e 89
5.7.2 Steps to classify data in ORANGEcccooeviiiiiii i 90
5.8 Step 7: Generate RESUIL.........ccvive i 91
5.8.1 Step 7: Generate Result for WEKA..........cccooiiiiiiiiiei e 91

5.8.2 Step 7: Generate Result for ORANGEccccoocvevieiiievie e, 92

Xii

59 CONCIUSION ...t 93

CHAPTER 6: TESTING AND EVALUATIONcocooiiiiiiceee e 94

6.0 INEOTUCTION... ettt 94

6.1 LIS 1o TR USRT 95

6.1.1 Test for various dataset size and unbalanced vs balanced dataset. 97

6.1.2 Test for various ratio of training and testError! Bookmark not
defined.

6.2 Result and Analysis Dataset |coeviririiieieisescseee e 99

6.2.1 Evaluation Metric Result of 1000 BitcoinHeist Ransomware

Samples for Unbalanced and Balanced Ransomware Detection... 99

6.2.2 Evaluation Metric Result of 5000 BitcoinHeist Ransomware

Samples for Unbalanced and Balanced Dataset Ransomware

P o W RN BB W e 102

6.2.3 Evaluation Metric Result of 10 000 BitcoinHeist Ransomware

Samples for Unbalanced and Balanced Dataset Ransomware

Cmeare il W B W N W BN SRR 105

6.2.4 Accuracy of Classification Model Across Different Sample Sizes .. 108

6.2.5 Accuracy of Classification Model for Different Ratio 109

6.2.6 Comparison between WEKA and Orange..........cccciveeenereneneens 112

6.3 Result and Analysis Dataset H...........ccccvevieiiiiiiiiicc e 116

6.3.1 Evaluation Metrics Result of 1000 Android Samples for Unbalanced

and Balanced Ransomware Detectionc.cccocvevevvervneesnenne. 116

6.3.2 Evaluation Metric Result of 5000 Android Samples for Unbalanced

and Balanced Dataset Ransomware Detectioncccccveeenne. 119

6.3.3 Evaluation Metric Result of 10 000 Android Samples for

Unbalanced and Balanced Dataset Ransomware Detection 122

6.3.4 Accuracy of Classification Model Across Different Sample Sizes .. 125

6.3.5 Accuracy of Classification Model for Different Ratio 126

6.3.6 Comparison between WEKA and Orange..........cccoevveviveeiveinnnns 129

6.4 Result and Analysis Dataset Hl............cooviiiiininiiiieeee e 133

Xiii

6.4.1 Evaluation Metrics Result of 1000 File System Behavior
Ransomware dataset for Unbalanced and Balanced Ransomware
DB ON .. ettt 133

6.4.2 Evaluation Metrics Result of 5000 File System Behavior
Ransomware dataset for Unbalanced and Balanced Ransomware
DB CHION e 137

6.4.3 Evaluation Metrics Result of 10 000 File System Behavior
Ransomware dataset for Unbalanced and Balanced Ransomware
DBCHION ..o 140

6.4.4 Accuracy of Classification Model Across Different Sample Sizes .. 143

6.4.5 Accuracy of Classification Model for Different Ratio 144

6.4.6 Comparison between WEKA and Orange........c.ccccevvevververeeannns 147
6.5 TOOIS COMPANISONviiiiiiiiecitie ettt sre e 151
6.6 SIgNIfICANT RESUILSeevveiicec e 156
6.7 N b W O O e R S SRR 159
CHAPTEREESESENCESSION A .. 8 8. .8 1. ... 160
7.0 INErOAUCTION et 160
7.1 Project SUMMAriZAtioN.........ccccoviiuieieicinieires sttt sreene e 161
7.2 Project CONtriDULIONScoviiieie e 162
7.3 Project LIMITAtIONS........cviiiiiieie e 162
7.4 FULUIE WOTK ... 163
7.5 SUMMIAIY .ttt et e b e et e e e ebb e e e bb e e abr e e abeeesnneeean 164
REFERENCGESot 165
APPENDLIX A e 172
APPENDIX B .ot 175
APPENDIX C ..ottt sttt en e 182

APPENDDEX D .ot 184

Xiv

LIST OF TABLES
PAGE
Table 1.1 Summary of Problem Statementcccovviiiieciiciec e 3
Table 1.2 Summary of Project QUESLIONc..coveiiieiii e 3
Table 1.3 Summary of Project ODJECHIVEccceiveiiiieceee e 4
Table 1.4 Summary of Project ContribUtioNcccoiiiiiiiiice s 5

Table 2.1 Summarization of each Machine Learning tools feature based on reviewed
FIEEIALUIES ...t ettt ettt re e nbe e e nre e 25
Table 2.2 Summarization Machine Learning algorithms based on previous study ... 32
Table 2.3 indicator to represent the machine learning algorithms.............c.c.ccoce.e... 33

Table 2.4 Summarization of each Machine Learning algorithms based on the tools 34

Table 2.5 Ransomware families of dataset 1 mapped to its categorycccecvevenee. 36
Table 2.6 Ransomware of families of dataset 2 mapped to its category.................... 36
Table 2.7 Ransomware of families of dataset 3 mapped to its category.................... 38

Table 2.8 Parameters used in Kaggle Dataset Android Ransomware Detection....... 39
Table 2.9 Parameters used in Resilient Information Systems Security (RISS)
RansormearerDeaset) 8 = A b I e o I 40

Table 2.10 Parameters used in UCI BitcoinHeistRansomwareAddressDataset Data Set

Table 2.11 Summary review for evaluation metrics based on reviewed literatures .. 46

Table 2.12 Indicator to represent the evaluation MetriCescccovvvvvevveiieeiiieiinnns 47
Table 2.13 Summary of critical review for previous research articles 48
Table 3.1 Summary of Research MileStONnecccovvevievieiiieii e 58
Table 3.2 Research Gantt Chartccocoviiieiiee e 9
Table 4.1 Summary of hardware specifiCations.c.ccccevvieiie i, 64
Table 4.2 Summary of software Specifications...........ccccceeiveevieciiiicie e, 65
PAGE

Table 6.1 Evaluation Metrics Result of 1000 BitcoinHeist Samples...........c..cc....... 101

XV

Table 6.2 Evaluation Metrics Result of 5000 BitcoinHeist Samples....................... 104
Table 6.3 Evaluation Metrics Result of 10 000 BitcoinHeist Samples.................... 107
Table 6.4 Summary of results Dataset | for TPR, FPR, Precision, Recall, F-measure
and ACCUraCy IN WEKAo ottt 114
Table 6.5 Summary of results Dataset | for TPR, FPR, Precision, Recall, F-measure
and Accuracy in ORANGEccooiiie e 116
Table 6.6 Evaluation Metrics Result of 1000 Android Samples............ccccevvrvennne 118
Table 6.7 Evaluation Metrics Result of 5000 Android Samples..........cccccceevrnenenn. 121
Table 6.8 Evaluation Metrics Result of 10 000 Android Samples..........cccccevevnennee. 124
Table 6.9 Summary of results Dataset Il for TPR, FPR, Precision, Recall, F-measure
and Accuracy in WEKA (70:30)ccieeieeiieie e e e ses e e e 131
Table 6.10 Summary of results Dataset Il for TPR, FPR, Precision, Recall, F-measure
and Accuracy in ORANGE (70:30) ...ccuviiiiiiieiiesiienieeee e 133
Table 6.11 Evaluation Metrics Result of 1000 File System Behavior Ransomware
dataset...=/EE—— ... N N N....... [. 135
Table 6.12 Evaluation Metrics Result of 5000 File System Behavior Ransomware
dataset.. i N ... B k.. A B 138
Table 6.13 Evaluation Metrics Result of 10 000 File System Behavior Ransomware
ALASEL... b eeeeeefererrninnsforrreeforsgiiesnnrnnssssgdieneessesagmressessnssnsssssessesssesibonsshessessnssensenses 141
Table 6.14 Summary of results Dataset 11l TPR, FPR, Precision, Recall, F-measure
and Accuracy IN WEKA (70:30) .c..eurereermesresreeesmensesmessnessesmssmessesssssssssseessesseseessenes 148
Table 6.15 Summary of results Dataset Il for TPR, FPR, Precision, Recall, F-measure
and Accuracy in ORANGE (70:30)ccocvueiiieieeieseere et se e sre e sre e 150
Table 6.16 Classifier performance comparison between WEKA and Orange

(10 000 SAMPIES ,10:90) ...eevienieiiie ettt 152
Table 6.17 Classifier performance comparison between WEKA and Orange

(10 000 SAMPIES ,30:70) ...vveieeereeieeiee ettt sre e 153
Table 6.18 Classifier performance comparison between WEKA and Orange

(10 000 SAMPIES ,50:50)eeveereiniiieiiesiesiieiee e 154
Table 6.19 Classifier performance comparison between WEKA and Orange

(10 000 SAMPIES ,70:30) ...uveieieireeieeieeeie ettt 155
Table 6.20 Classifier performance comparison between WEKA and Orange

(10 000 SAMPIES ,70:30) ...vvevienieieie ettt 156

Table 6.21 Significant Results for comparison of previous research....................... 159

XVi

LIST OF FIGURES

Figure 2.1 Research FramewWorKccccvioiieiiiieci e 9

Figure 2.2 Known ransomware attacks by gang, March 2023 (Malwarebytes, 2023)

Figure 2.3 Ransom note display at the infected device by the Locker (Avast, 2022) 12
Figure 2.4 Payment method used for retrieving the private key due to the CryptoLocker

(AVAST, 2022)...cueeeueeiieeteasie e sueeiaeaaesseasseasesssaeseasaeaseesseasseasaesseesseanaeane e e e eneesreenseaneens 13
Figure 2.5 Infection phases of ransomware lifecycle (Abbasi, 2023)...........c............ 15
Figure 2.6 Categories of machine learning (Naga et al., 2015)ccoeverininnenne. 20
Figure 2.7 Example of decision tree. (SeCUrityEXPerts.it) c...coceveiveeiiereciereenennne 28
Figure 2.8 Example of Random Forest (Javatpoint).........cccccevveveiieeieenesieeseesesnens 29
Figure 2.9 Example of Support Vector Machine (Javatpoint)...........cccieererenerenne. 30
Figure 2.10 Example of Naive Bayes (Chaudhuri, 2022)cccccoeiveiiinninennnnnne 31
Figure 2.11 Accuracy Formula (Kok et al., 2020)ccoii e 42
Figure 2.12 True Positive Rate (TPR) Formula (Kok et al., 2020)............ccceevvennen. 43
Figure 2.13 False Positive Rate (FPR) Formula (Kok et al., 2020)............cccceevennene. 43
Figure 2.14 True Negative Rate (TPR) Formula (Kok et al., 2020)ccccevvenene. 43
Figure 2.15 False Negative Rate (FNR) Formula (Kok et al., 2020)........c..cccevveeee. 44
Figure 2.16 Precision Formula (Kok et al., 2020).........cccccoiveiiiieiiieiiecc e 44
Figure 2.17 Recall Formula (Kok et al., 2020)ccccoovviieiieieiie e, 45
Figure 2.18 F-measure Formula (Kok et al., 2020)..........cccooviininininieiencencee 45
Figure 3.1 Project methodologycccviiieiiiiiiecie e 54
Figure 3.2 Process to Identify and gather project requirement..............cccccevveveennene 55
Figure 3.3 Process of selecting tools and dataset.............cccovevveieiieiiene e 55
Figure 3.4 Process of installing the selected machine learning tools.............cccc...... 56

Figure 3.5 Process of Dataset Preparationccocooeeeieneneninieseeesesesie e 56

Figure 3.6 Process of Information colleCtionsccccovevveieiiciiece e, 57
Figure 3.7 Process of analyze the information.............cccoccovvevenieiceie s, 57
Figure 3.8 Process of dOCUMENE reSUIL..........coviiiiiiiieee s 58
Figure 4.1 Workflow for the preparation of dataset for Phase I11 of the research..... 62
Figure 4.2 Dataset “Android Ransomware” from Kagglecccoevvevvieniicnninnn. 63
Figure 4.3 Workflow of the training and testing...........ccccevveveniiesiieie e, 63
Figure 4.4 Overview of architecture analysis of this projectccccecevevviencrenn. 66
Figure 4.5 Proposed research design for ransomware detection model..................... 67
Figure 4.6 Flowchart of WEKA to visualize possible scenario that might occur...... 69
Figure 4.7 WEKA GUI ChOOSEIccieiiiieiieie e e et eee e 71
Figure 4.8 Example of Result when Load the Dataset I Andoroid Ransomware to the
MV E K A e a e r e e r e e rrr e e e 71
Figure 4.9 Main user interface of Orangecccovereeiiiieiieieee e 72
Figure 5.1 Diagram Outlining Research Implementation Activitiescc.coe...... 74
Figure 5.2 hardware SPeCITICAtIONSc.ccvviieiiieiieiieiieseesie e tesnesnee s e e eeesieeneeaneens 75
Figure 5.3 Operating System SPeCifiCatIONS.cc..overeiieeeeriiiiee st 76
Figure 5.4 WEKA official WEDSITE.......ccoviiiiiii i i 76
Figure 5.5 Orange official WeDSITE........ccviieiieii e 77
Figure 5.6 Setup Wizard 0Of WEKA ..o 78
Figure 5.7 WEKA LiCENSE AGIrEEMENT.........ciiiirereieeiresne et sresns et sre e 79
Figure 5.8 WEKA Associate Package Files...........ciieiiemnvesiinne s 79
Figure 5.9 WEKA Installation LOCAtIONccceeviieiiiiiiiiiie i 80
Figure 5.10 WEKA INEITACEc..ecveiieiie et 80
Figure 5.11 Android Ransomware Detection datasetccocvvvereeienenenencsennn 81
Figure 5.12 BitcoinHeistRansomware Address Datasetccccvvvvereiencicncnennn, 81
Figure 5.13 selecting the dataset in csv file format.............cccoooeiiiiicic e 82
Figure 5.14 Categorization of dataset attributesccccovveveiicii i, 82
Figure 5.15 Categorization of dataset attributescccoccevvevevieii e, 83
Figure 5.16 Categorization of dataset attribUtesc.coovverereiiieseee 83
Figure 5.17 Dataset 1 before Pre-ProCessingcccocvveviviieeiieeiie e 84
Figure 5.18 Dataset 1 with defined relation and attributescccccevvviiiiieieenn, 84
Figure 5.19 Dataset 1 with defined data.............cccocereeiiveieiiieseere e 85
Figure 5.20 WekKa INtEITaCe..........cciiiiiiiciceeiee e 85

Figure 5.21 Loading the .arff file format dataset into WEKAccccoeiiiiiiiinenn. 86

Figure 5.22 graph for visualize the Ransomware and Benign samples 86
Figure 5.23 Loading dataset int0 Orange.........cccvevueeeerrerieseeseesesieesee e seeseeseesneens 87
Figure 5.24 Data Table representation in Orangeccoevererinenieieneneseseseens 87
Figure 5.25 Assigning target class in Orangeccoccovvveveeciie e 88
Figure 5.26 WEKA EXPIOTENcviiiecie ettt 89
Figure 5.27 Selection of classification algorithms in WEKA...........ccccooiviiiveieennne 89
Figure 5.28 Selection of classification algorithms in Orange...........ccccevevviiniienn. 90
Figure 5.29 Connecting each N0des in Orangeccooeeeereeienienieeie e, 90
Figure 5.30 Dataset splitting in WEKA ..o 91
Figure 5.31 Evaluation Metrics result for Decision Tree in WEKA.............ccccen..... 92
Figure 5.32 Dataset Splitting iN OFangecevverieiiereeiie e e ee s e see e see e 92
Figure 5.33 Completion percentage of Test and SCOre process..........ccccverererereenn 93
Figure 5.34 Evaluation Metrics result for Decision Tree in Orange..........cccceeeeneen. 93
Figure 6.1 TeSt Plan Srategycccceiveiiiiiiiieie e nae e 97
Figure 6.2 Flowchart Conducting TeSt Planccocvieieeciiiieie e, 98
Figure 6.3 Command for Sub-sampling the Ransomware dataset using Python
language in Jupyter NOteDOOK. ..o 99
Figure 6.4 Command to show the Ransomware dataset dimentsion before and after
SUDb-SamPIiNG MELhOdoooie i e 100
Figure 6.5 Graph Accuracy for 1000 BitcoinHeist Samples........ccceoveieneneneneneens 103
Figure 6.6 Graph Accuracy for 5000 BitcoinHeist Samples..........cccovconverviieennnnne. 106
Figure 6.7 Graph Accuracy for 10 000 BitcoinHeist Samples.........c..cccevvveviveinnns 109

Figure 6.8 Graph Accuracy for Classification Model Across Different Sample Sizes of
BitCOINHEISt RANSOMWAIE........ccviiieiiieie et nee e sre e nrees 110
Figure 6.9 Graph Accuracy for 1000 BitcoinHeist Samples across Different

RALIO ...ttt bttt aeenes 111
Figure 6.10 Graph Accuracy for 5000 BitcoinHeist Samples across Different

RALIO ..t 112
Figure 6.11 Graph Accuracy for 10 000 BitcoinHeist Samples across Different

RALIO .. ettt re e enes 113
Figure 6.12 Graph Accuracy for 1000 Android Samplescccceevvevveviveveiiecreennn. 120
Figure 6.13 Graph Accuracy for 5000 Android Samplesccccevcvvverivereiiiesnene. 123

Figure 6.14 Graph Accuracy for Classification Model Across Different Sample Sizes

of FileSystem Behavior RANSOMWAIE...........c.ooiiiiiieiiiie e 141

XiX

Figure 6.15 Graph Accuracy for Classification Model Across Different Sample Sizes
Of ANAroid RANSOMWEAIEc..oveviiiiiiiiiieieeie et 127
Figure 6.16 Graph Accuracy for 1000 Android Samples across Different Ratio 128
Figure 6.17 Graph Accuracy for 5000 Android Samples across Different Ratio.... 129
Figure 6.18 Graph Accuracy for 10 000 Android Samples across Different Ratio. 130
Figure 6.19 Graph Accuracy for 1000 File System Behavior Ransomware
... Dataset 137
Figure 6.20 Graph Accuracy for 5000 File System Behavior Ransomware
... Dataset 140
Figure 6.21 Graph Accuracy for 10 000 File System Behavior Ransomware dataset
143

Figure 6.22 Graph Accuracy for Classification Model Across Different Sample Sizes
of Filesystem Behavior RANSOMWAIE..........ccoiiiiirieriiiie et 144
Figure 6.23 Graph Accuracy for 1000 File System Behavior Ransomware Dataset
acCroSS DITFEreNt RATIOcc.iviviiiiiei ittt 145
Figure 6.24 Graph Accuracy for 5000 File System Behavior Ransomware Dataset
across Different RAtiO esvereres. ... bass .. anns. . deumaneh oo T o b e Bt 146
Figure 6.25 Graph Accuracy for 10 000 File System Behavior Ransomware Dataset
across DITfErent RAtIO Lcoovceiuiiiiiiiiiissie e bbb 47
Figure 6.26 Overall Test Plan FINAINGScccoeiiie it 157

LIST OF ABBREVIATIONS

FYP - Final Year Project
Acc Accuracy
TPR True Positive Rate (also known as Sensitivity, Recall, or Hit Rate)
FPR False Positive Rate
TNR True Negative Rate (also known as Specificity)
FNR False Negative Rate
Prec Precision
Recall Recall
F-m F-measure (also known as F1 Score)
AUC Area Under the ROC Curve
MCC Matthews Correlation Coefficient
PLR Positive Likelihood Ratio
NLR Negative likelihood ratio
DOR Diagnostic odds ratio
J Youden’s index
NND Number needed to diagnose
NNM Number needed to misdiagnose
NB Net benefit

Appendix A
Appendix B
Appendix C

Appendix D

LIST OF ATTACHMENTS

Details of critical review
Implementation classification models
Sample of Python code for Sub-
sampling

Results Generated for WEKA and

Orange

XXi

PAGE

163

166

173

175

CHAPTER 1: INTRODUCTION

1.1 Introduction

Ransomware is one of the types of malicious software also known as malware.
It’s one of the most devastating cyberattacks in the malware category which involves
the victim device being locked from accessing the system (Fedor, 2023). According to
(Madani et al., 2023) ransomware has the ability to infect devices through multiple file
format such as .exe, .docx, .ppt and etc. Other issues related to ransomware includes,
it can spread via social engineering using email attachments and compromised
websites links to attack individual and organizations (Mohammad, 2020). In addition,
another issue concerns the financial aspect. According to the Cybersecurity venture
predict, the cost of ransomware will be over $42 billion by the end of 2024 and over
$265 billion by 2031 due to the rising number of cases (Fedor, 2022). The increase of
ransomware attacks is caused by several factors such as insufficient corporate security
defense and trends of RaaS (Ransomware-as-a-Service) affiliate market. Ransomware-
as-a-Service is a business model developed by the ransomware creators which
distributes and sells it to other cybercriminals (Kaspersky, n.d). The subscribers who
take part in the Ransomware-as-a-Service are known as affiliates or users. The model
is derived from the concept such as SaaS (Software-as-a-Service) but in this case it is
being used for malicious purposes. The trades of ransomware can be found especially
on the dark web and one of the famous cases involves the LockBit ransomware. (Antal,
2023) stated that Lockbit is the number one leading for Ransomware attacks by gang
in January 2023. Other deadliest ransomware groups such as Conti, REvil, DarkSide
and DopplePaymer (Antal, 2023).

1.2 Background

One of the most significant cases includes President of Costa Rica, Rodrigo
Chaves Robles that announced national state of emergency due to continuing
ransomware attack in May 2022 by the Russian group Conti gang (Security
Intelligence, 2023). Most antivirus that use signature-based detection can be
ineffective especially for detecting new variants of ransomware that can evade
detection using techniques such as polymorphism and code obfuscation. According to
(Gagulic et al., 2023) there has been proposed research for Ransomware detection with
Machine Learning in Storage Systems using the Random Forest classification
technique with 97.3% of F1-Score. Besides, (Horduna et al., 2023) has stated that
machine learning can be implemented to detect and predict ransomware attack
behavior, in order to counter the current issues regarding ransomware. Other than that,
according to (Khalil et al., 2022) there are many machine learning algorithms and
classification techniques for detection of ransomware that have been proposed.

However, there’s still a lack of knowledge on implementing various
classification techniques for analyzing ransomware. According to (Smith et al., 2022)
due to large scientific and technical resources, it’s challenging to identify suitable
machine learning classification techniques for analyzing ransomware. Therefore,
taking all these problems into consideration this project proposed research to study
more about various classification techniques that can be used to analyze ransomware
using machine learning approach. Other than that, this project will also apply the
classification techniques to ransomware dataset and evaluate the accuracy result of
classification techniques using different evaluation metrics tool. The datasets can be
obtained from official dataset repositories such as Kaggle (Chakraborty, 2023), UCI
Machine Learning Repositories (Sgandurra at al., 2016), Resilient Information
Systems Security (RISS) Ransomware Dataset which are collected and analyzed from

the Cuckoo sandbhox and others.

1.3 Problem Statement

Ransomware attacks are continually evolving which involve new groups of threat
actors to grow and ransomware malware being developed. There is a need for
improvement of previous research in accordance with ransomware attacks being one

of the most significant issues in cybersecurity.

Table 1.1 Summary of Problem Statement
PS Problem Statement

PS1 | It’s challenging to identify suitable machine learning classification

techniques for analyzing Ransomware due to large scientific and

technical materials being used.

Table 1.1 shows the problem statements in this project. Several studies (Khalil et al.,
2022) have proposed numerous machine learning algorithms and classification
techniques for ransomware detection. However, there remains a knowledge gap
regarding the practical implementation of different classification techniques for
analyzing ransomware. Additionally, the extensive scientific and technical resources
available make it challenging to identify appropriate machine learning classification

techniques for ransomware analysis, as highlighted by (Smith et al., 2022).

1.4 Project Question

Table 1.2 Summary of Project Question
PS | PQ Project Question

PQ1 | What are the different classification techniques in Machine

PS1 Learning that can be used to analyze ransomware?

PQ2 | How can the classification techniques in Machine Learning be
applied to ransomware datasets to accurately identify

ransomware attacks?

PQ3 | How to identify the best classification techniques in detecting

Ransomware.

Table 1.2 shows the project question that’s derived based on the problem statement in
Table 1.1. Project question 1 focuses on identifying different classification techniques
in Machine Learning that can be used to analyze ransomware. Project question 2
focuses on the technique to apply the ransomware dataset to identify and categorize
the ransomware attack. The last project question is to identify the best classification

techniques in ransomware detection.

1.5 Project Objective

Based on the project questions above, Table 1.3 shows the summary of project

objective that’s constructed based on each of the project questions.

Table 1.3 Summary of Project Objective
PS D @ Project Objective

PQ1 | PO1 | To study the classification techniques for analyzing

pPS1 Ransomware

PQ2 | PO2 | To apply the classification techniques to

Ransomware dataset.

PQ3 | PO3 | To evaluate the accuracy result of classification

techniques using different evaluation metrics tool.

1.6 Project Scope

The scope of this project is listed down as below:
1) Data collection involves datasets from various data repositories that will be
used in this project.

e Dataset 1 Ransomware: UCI
BitcoinHeistRansomwareAddress Data Set
https://archive.ics.uci.edu/ml/datasets/BitcoinHeistRansomwareA
ddressDataset#

https://archive.ics.uci.edu/ml/datasets/BitcoinHeistRansomwareAddressDataset
https://archive.ics.uci.edu/ml/datasets/BitcoinHeistRansomwareAddressDataset

o Dataset 2 Ransomware: Kaggle Dataset Android

Ransomware Detection
https://doi.org/10.34740/KAGGLE/DSV/4987535

o Dataset 3 Ransomware: Kaggle Dataset Ransomware

Detection File System Behavior

https://www.kaggle.com/datasets/amdj3dax/ransomware-

detection-data-set?resource=download

2) This project will implement various classification techniques in machine

learning such as Decision Tree, Random Forest, Support Vector Machine

and Naive Bayes to identify the best technique for detection of

Ransomware.

3) Machine Learning tools that will be used in this project are Weka and

Orange.

4) This project will evaluate the accuracy using evaluation metrices such as
True Positive Rate (TPR), False Positive Rate (FPR), Recall, Precision,

Accuracy and F-measure score will be assessed.

1.7 Project Contribution

Table 1.4 shows the project contribution that’s mapped based on the project objectives,

project question and the problem statement.

Table 1.4 Summary of Project Contribution

PS | PQ | PO | PC Project Contribution
PQ1 | PO1 | PC1 | Taxonomy of Ransomware and its classification
PS1 techniques.
PQ2 | PO2 | PC2 | Proposed the best classification technique to be
applied for Ransomware dataset.
PQ3 | PO3 | PC3 | Verified the best classification technique based on

the evaluation of the accuracy result.

https://doi.org/10.34740/KAGGLE/DSV/4987535
https://www.kaggle.com/datasets/amdj3dax/ransomware-detection-data-set?resource=download
https://www.kaggle.com/datasets/amdj3dax/ransomware-detection-data-set?resource=download

1.8 Report Organization

This section illustrates the organization of this report, which includes a total of six

chapters.

Chapter 1: Introduction

The first chapter introduces the background of ransomware and its problem statements
based on current issues. This chapter also outlines the research project questions,
project objectives, the scope, project contribution, project organization and conclusion

as the summarization of chapter 1.

Chapter 2: Literature Review
The second chapter will include analysis of previous study regarding ransomware. This
chapter will provide reviewed of research papers to study the approaches used in

machine learning for identifying ransomware attacks.

Chapter 3: Methodology

The third chapter explains the approaches/methodology that will be used to carry out
the research as justified in previous chapter. This chapter will also outline the project
schedule and milestone to ensure completion of the project activities are according to

the timeline.

Chapter 4: Analysis and Design
The fourth chapter will focus on the workflow of the research. This chapter will also

illustrate the architecture design that will be used for the next chapter.

Chapter 5: Implementation
The fifth chapter will focus on the implementation of the project. This chapter will
apply the classification techniques in machine learning to the Ransomware dataset

using tools such as Weka and Orange.

Chapter 6: Testing and Evaluation
The sixth chapter will discuss the testing and evaluation of the project. This chapter
will analyze and evaluate the accuracy result of classification techniques using

different evaluation metrics tools.

Chapter 7: Conclusion
This chapter will include the project summarization, the contribution, project

limitation and improvement for future work.

1.9 Summary

In conclusion, this project aims to have a better understanding in implementing
various classification techniques for analyzing Ransomware. A comparison will be
made to propose which classification techniques is the best to be applied for
Ransomware dataset. In addition, this project will also verify the best classification
technique based on the evaluation of the accuracy result. This chapter includes
background of Ransomware, problem statement, project questions, project objective,
project scope, project contribution and the report organization. In the next chapter,
review of various research papers will be analyzed to study the approaches used in

machine learning for identifying ransomware attacks.

CHAPTER 2: LITERATURE REVIEW

2.0 Introduction

The second chapter will include analysis of previous study regarding
ransomware. This chapter will provide reviewed of research papers to study the
approaches used in machine learning for identifying ransomware attacks. In addition
to that, the objective is to provide an overview of existing research and knowledge in
relation to the research. Indirectly it helps in identifying existing research restrictions,
such as the type of classification method used, the type of research method, and the
accuracy of the algorithms. Therefore, this can assist in identifying gaps in the

available literature and help construct the theoretical framework.

Figure 2.1 below shows the framework for this chapter. The framework is
important which will be used as guideline to follow what will be done in this chapter.
The next section will discuss in detail about the ransomware such as the definition,
categories, lifecycle, type of attacks, cases timeline, machine learning types, tools

available, classification techniques and the analysis.

ANALYSIS OF CLASSIFICATION TECHNIQUES IN RANSOMWARE
DETECTION USING MACHINE LEARNING APPROACH

v

2.1) Ransomware

2.1.1) Definition

2.1.2) Categories

_,.l 2.1.2. 1) Locker

[
—* 2.1.2.2) Crypto

I
—;.i 2.1.2.3) Scareware

—»! 2.1.2.4) Leakware

L 2.1:2.5) RaaS

h 4

2.2) Machine Learning

—— 2.2 1) Definition

» 2.2.2) Types

2.2 2 1) Supervised

| |
| 2.2.2.2) Unsupervised

|
————» 2272 3) Semi-supervised

¥

223)Tools |

|..| |

| —» 2.1.3)Lifecycle

—

L 2.1.4) Type of Attacks

. 2.1.4 1) Exploitable Software
Vulnerabilities

> 2231)Weka

[[
2.2 .372)Orange

>

e — — o m— —— e

__,.‘ 2.2.3.3) TensorFlow

! 2.2.34)Azure

attacks

| 2.1.4.2) Brute-Force Credential _;,I 2 2.3 5) Scikit-Leamn

—

2.1.4 3) Phishing emails

L

2.1.4 4) Malware infection

v

2.3) Techniques

—

‘ 2.3.2) Classification
| Techniques

2.3.1) Definition

—»| 2.3.2.1) Decision Tree

» 2.3.22)Random
Forest

|, 2323) Support Vector
Machine

Ly 232 4)Naive Bayes

—» 2.3.3)Analysis

— 2.3.3.1) Datasets

> 2.3.3.2) Parameters

‘2_3_3_4) Train and Test
—’| Ratio

‘ 2.3.3.4) Evaluation
‘ techniques

‘ 2 4) Crfical Review L_

{ 2.5) Proposed Solution [«

Figure 2.1 Research Framework

10

2.1 Ransomware

In this section, it includes the discussion of ransomware definition based on
author from multiple existing journals, different categories of ransomware, its
lifecycle, and the type of ransomware attack that are available. In addition, this section
will discuss and review the ransomware cases based on the timeline. Analysis of these
cases allows us to identify the pattern and common features that contribute to

understanding of ransomware detection in this domain.

2.1.1 Definition

According to (Fernando et al., 2020) ransomware is one of the malware types
that’s designed to prevent user access to the target device files and the entire system.
Most of the threat actors will demand fees in form of cryptocurrency such as Bitcoin
as the bargain to the victim until it’s paid (Horduna et al., 2023). The reason why
bitcoin is the most preferred method of payment is because cryptocurrency
transactions are anonymous and non-reversible. Therefore, this will make the law
enforcement become harder to track down the attacker since the actual identities of the
individual that is involved in the transactions are not revealed. Additionally non-
reversible in this context means once the attacker receives the payment, the transaction
is added to the blockchain which is non-refundable unlike the traditional financial
system that allows it. Therefore, this will eliminate the risk of the victim reversing the

transaction after regaining access to their data.

Other than that, similar to the research work by (Madani et al., 2023) that
defines ransomware as the malware type that causes damage to the system by
encrypting all the files in the victim device. The author also states that, usually to
regain access to the data, the victim will need to pay the ransom fee in exchange of the
decryption key. Additionally, the author specifically states that ransomware has the
ability to infect devices through multiple file formats such as .exe, .doc, .docx, .ppt,
Jpg, .xlIsx and others. This can lead to the situation where, the user unintentionally
opens a file that seems harmless but actually infected by the ransomware that can

damage the metadata.

11

In addition to that, (Kaspersky, 2023) mentioned that the word ransom in the
“ransomware” itself conveys the meaning of it. It suggests that ransomware is intended
to hold the victim's file or system captive in exchange for a ransom payment. It also
defines the term “malware” as the malicious software that causes harm to the victim

computer system.

cLop
LockBit
Black Basta
ALPHV
Roya
PLAY
BianLian
Medusa
Avoslocker
DarkPower
Other
Vice Society
Mallox
Karakurt

Ragnar Locker

0 10 20 30 40 50 60 70 80 90 100

Figure 2.2 Known ransomware attacks by gang, March 2023 (Malwarebytes, 2023)

Figure 2.2 shows the ransomware attack according to the ransomware gang
offender based on the report from Malwarebytes. Based from this figure we can see
that the top three offender is “CLOP”, “LockBit” and “BlackBasta”. According to the
news by BleepingComputer on 28" April 2023, there have been reports on ransomware
activities. Microsoft has linked recent assaults on PaperCut servers to the Clop and
LockBit ransomware operations, which is an intriguing scenario. Clop claims to have
exploited these servers starting from April 13th, which coincided with Microsoft's
observation of active exploitation of vulnerabilities. The ransomware group clarified
that they used these exploits for gaining initial access to corporate networks rather than

stealing archived documents.

12

2.1.2 Categories

In this section, it will include discussion of all categories in ransomware. This section
will compare each type of categories to understand its behavior. As shown in the
framework based on Figure 2.1, ransomware can be in the category of Locker, Crypto,

Scareware, Leakware and RaaS.

2.1.2.1 Locker

Lockervi.7

| Payment Files | Status

Locker. 7

All your personal files on this computer are locked and encrypted by Locker v1.7. The
encrypting has been done by professional software and your files such as; photo's,
video's and cryptocurrency wallets are not damaged but just not readable for now. You
can find the complete list with all your encrypted files in the files tab.

The encrypted files can only be unlocked by a unique 2048-bit RSA private key that is
safely stored on our server till 5/28/2015 12:01:41 AM. If the key is not obtained before
that moment it will be destroyed and you will not be able to open your files ever again.

Obtaining your unique private key is easy and can be done by clicking on the payment

tab and pay a small amount of 0.1 BTC to the wallet address that was created for you. If

the payment is confirmed the decryption key will be send to your computer and the
f/\\ Locker software will automatically start the decrypting process. We have absolutely no
~L=’° interest in keeping your files encrypted forever.

Gd“ You can still safely use your computer, no new files will be encrypted and no malware will

. be installed. When the files are encrypted Locker v1.7 will automatically uninstall itself.
i

Time remaining:
4 8 . 30 3 2 Waining any attempt to remove damage or even investigate the Locker softw
L 3 will lead to immediate destruction of your private key on our server!

Figure 2.3 Locker ransom note shows at the infected device (Avast, 2022)

Figure 2.3 shows the information of the ransom note by Locker v1.7 as stated by
Bleeping Computers. Meanwhile, according to (Horduna et al., 2023) locker
ransomware has a low-level risk which blocks access to the computing resources.
While the interface is locked, the victim can only use the mouse and keyboards to pay
the ransom. On the other hand, (Abbasi, 2023) defines that locker ransomware will

lock the computer in which the victim has limit access or even no functionality.

Usually, the malicious attacker will leave a ransom note on the victim’s device lock
screen. This type of ransomware is also referred as screen-lockers. (Kharraz et al.,
2018) states that type of ransomware only block access to the victim’s system without

using encryption method.

13

2.1.2.2 Crypto

Payment for private key

Choose a convenient payment method and click «Next»:
[Bitcoin (most cheap option)

Dbitcoin

Bitcoin is 3 cryptocurrency where the creation and transfer of bitcoins is based on an
open-source cryptographic protocol that is independent of any central authority.
Bitcoins can be transferred through a computer or smartphone without an intermediate
financial institution.

You have to send 2 BTC to Bitcoin address
and specify the Transaction ID on the ‘
Private key will be destroyed on next page, which wil be verified and confirmed.
101/.1231/5313 Home Page
24 Getting started with Bitcoin

Time left

71:33:17

Figure 2.4 Payment method used for retrieving the private key due to the
CryptoLocker (Avast, 2022)
As stated by (Abbasi, 2023) crypto ransomware will use encryption methods in order
to lock the victim’s data. The author notes that, some of the attacker use symmetric
cryptography, however most of the modern ransomware will use hybrid cryptography.
Hybrid cryptography approach means the attacker will encrypt the victim’s file using
symmetric cryptography (single key to both encryption and decryption data), and then
asymmetric cryptography will be used to encrypt the symmetric session keys used for

file encryption.

By implementing this approach, the attacker can send the encrypted symmetric session
keys to the victim while keeping the private key used for encryption secret. In addition,
(Kok et al., 2020) has emphasize that, crypto ransomware is considered to be most
damaging type of ransomware. This is because many organisations have been obliged
to pay in return for the decryption key, owing to the fact that encrypted files will remain
unavailable even after the ransomware has been completely removed. Figure 2.4 above
shows the payment procedure for the victim that has been infected with CryptoLocker

ransomware.

14

2.1.2.3 Scareware

As the name indicates, scareware is a type of malicious software in the category of
ransomware that’s designed to scare the user. According to (Horduna et al., 2023), it
usually uses social engineering to trick the victim into downloading the malware. For
example, a pop-up message that seems legitimate claims that the user's computer is
infected with a virus. This action will intimidate the victim and encourage them to take

further action such as purchasing the fake software.

On the other hand, (Abbasi, 2023) define scareware is a type of ransomware that make
use of people’s fear and demands purchase to be made in order to avoid worse
consequences. Unlike crypto ransomware that encrypt the user system, scareware does

not do anything to the victim data which make it one of the low-level risk ransomware.

2.1.2.4 Leakware

According to (Horduna et al., 2023) leakware is designed not only to encrypt the
victim’s file but it also threatens to release the victim’s data publicly. The author
highlights that leakware is one of the high-risk level ransomwares because the impact
can be severe for organization. (Moussaileb, 2020) states that data is the most valuable
asset as it can lead to millions of dollars in terms of losses if it’s released publicly. In
accordance with that matter, the attacker usually uses leakware or also known as
Doxware to target critical infrastructure such as the bank and other institution that

work with confidential and important data .

2.1.2.5 RaaS

According to (Salvi, 2019) RaaS which means Ransomware-as-a-service is a type of
online subscription that’s based on ransomware model. Third-party criminal
entrepreneurs provide malicious users a platform for the purpose of using ransomware
such as to keep the hostage computer files. The author also highlights that RaaS has
become a trend because it enables attackers who lack coding skills to collaborate with

ransomware developers who might not wish to carry out assaults themselves.

The creators will earn money by writing and adapting the code while the attacker rents

the ransomware. In addition, (Horduna et al., 2023) defines RaaS to be an affiliate

15

scheme that benefits attackers with low technical knowledge about creating

ransomware but are a member of the scheme.

In conclusion, this section helps to understand the difference between each
ransomware category. Specifically for this project, based on the dataset obtained from
official dataset repositories which are Kaggle, UCI Machine Learning Repositories,
Resilient Information Systems Security (RISS) Ransomware Dataset, it will focus on
the Crypto, Locker, Leakware and Ransomware-as-a-service (Raas) type of

ransomware.

2.1.3 Lifecycle

2. Infection: Arrives on user’s
1. Distribution: Standard methods computer and starts processes. 3. Communication: Process
of email attachments, website talks to encryption-key servers.
compromises.
&) D) il
g)]
) ds)
|
e / -]
6. Ransom demand: System ready - 4. File search: Process searches
to demand payment —) for important files on the systerr
5. Encryption: Typically done through e.g. JPG, DOCX, XLSX, PPTX, PDF.
rename, encrypt, rename again.

Figure 2.5 Infection phases of ransomware lifecycle (Abbasi, 2023)

According to some existing studies, such as (Abbasi, 2023) and (Silva, 2019) the
ransomware lifecycle also known as the attack kill chain has been proposed. The
ransomware lifecycle refers to the series of stages it requires in performing a typical
ransomware attack. As shown in Figure 2.5, the research (Abbasi, 2023) has
emphasized six stages involved in the ransomware lifecycle which are Distribution,

Infection, Communication, File Search, Encryption and Ransom Demand.

16

Distribution Phase

This phase involves the attacker finding ways or vulnerability to deliver the
ransomware to the victim device or network system. According to (Abbasi,
2023) the distribution of ransomware using standard propagation method such
as phishing and drive-by downloads. However, it’s not only limited to that
method, but some of the sophisticated ransomwares can also take advantage of
exploiting different network vulnerabilities. For example, precisely as stated
by (Kharraz et al., 2018) the WannaCry attacks has exploited the EternalBlue

vulnerability contributing as one of the largest ransomware attacks.

Infection Phase

Once the ransomware has been delivered, it can start to infect and compromise
victim system by performing task such as collection the infected device
information and disabling the anti-malware programs (Abbasi, 2023).

Communication Phase

The attacker will communicate using command and control (C&C) server in
order to fetch information and send instructions to the infected device (Cusack,
2018) On the other hand, (Abbasi, 2023) has stated that the command and
control (C&C) server also can be used to get the session keys information that’s

used for the victim’s files encryption process.

File Search Phase

According to (Abbasi, 2023) in this phase the ransomware searches for files to
be encrypted. However, different ransomware families implement different
techniques for searching files to be encrypted. Traversing for files can start
from randomly chosen directory, root directory or user directory (C:/Users/).
As stated by (Lee, 2017) there are two methods, first is by enumerates all the
file types (.ppt, .pptx, .txt, .doc, docx, etc) after scanning all the mounted file
systems and the encryption will be performed. Second method is immediately

encrypting the file when it detects a certain file extension.

Vi.

17

Encryption Phase

In this phase, it will use encryption algorithm to encrypt the files. In addition
to that, (Muslim, 2019) states that aside from encrypting the files it can seek
and damage folder even those that’s hidden and contain backup files. The files
are intentionally damaged in order to impede computer users from conducting

backup restore.

Ransom Demand Phase

After encrypting the files or system, the attacker will demand for payment by
displaying the ransom note in the victim device. According to (Muslim, 2019)
if the ransom is not paid within given time, the price of ransom will increase.
In addition to that, according to (Kharraz et al, 2018) the ransom note can be
generated in different ways. For example, calls to API functions such as
CreateDesktop() will made to create a new desktop as default configuration to
displaying the ransom note while locking the victim. Other method include
using HTML to create a persistent desktop message of the ransom note
(Kharraz et al, 2018).

In conclusion, the above lifecycle are explained to help us in understanding the
behaviour of the ransomware. This is because later in the attribute selection
phase we need to understand the relationship between the API calls according
to its behaviour. For example during the encryption process, one of the API
calls such as “ CryptAcquireContext™. This is because the ransomware might
use this function to generate encryption keys or perform cryptographic

operations during the encryption process.

18

2.1.4 Type of Attacks

This section will explain about different types of attack vector that contribute to
ransomware attacks. The attacker can carry out the ransomware attacks through

various types of attack as explained below.

2.1.4.1 Exploitable Software Vulnerabilities

This type of attack vector takes advantage of the flaws or weakness in the system for
the attacker to gain unauthorize access. According to (Horduna et al, 2023) potential
software vulnerabilities can be buffer overflows, invalidated input and remote desktop
(RDP) servers. (llascu, 2022) observes that, in the first quarter of 2022, there was 157

software vulnerabilities was exploited due to ransomware attack.

2.1.4.2 Brute-Force Credential attacks

According to Kaspersky Brute-Force Credential attacks involve the attacker attempts
by forcing which means using all possible combination until the correct credential is
identified. The purpose of this attack is to act as an entry point for the malicious
attacker to get into the victim system or network. Once successful, the attacker can use

ransomware to encrypt the data on the victim’s device.

2.1.4.3/ Phishing emails

(Horduna et al., 2023) states that one of the most common ways for ransomware to
spread is through emails. The attacker can achieve this objective by sending emails
that look legitimate which contain files attachments that’s secretly embedded with
malicious executable files. In addition to that, (Humayun et al, 2021) emphasize that
TorrentLocker and Cryptowall which is one of the family of ransomware commonly

spread through spam emails.

2.1.4.4 Remote Desktop Protocol Attack

Remote Desktop Protocol also known as RDP is a popular two-way communication
protocol. (Van, 2023) RDP works by transferring client’s keyboard and mouse input
to the server and transferring the server’s screen output to the client. Moreover, RDP

commonly accept connection requests on port 3389, the attacker can use port-scanners

19

to search for devices with open ports. Thus, exploiting any security vulnerability they
can find in the target device. (Van, 2023)

In conclusion, the above explanation help us to understand the attack vector of the
ransomware. Based on the dataset there are two primary source which are related with
ransomware that’s targeting android mobile device and targeting Bitcoin transactions.
Therefore, possible attack vector according to the source of ransomware sample are
gathered are Exploitable Software VVulnerabilities, Brute-Force Credential Attack and

Phishing Emails.

2.2 Machine Learning

This section will address the definition of machine learning, the different types of
machine learning and available tools based on the research paper that has been

collected and reviewed.

2.2.1 Definition

According to (Abbasi, 2023) machine leaning is a subset artificial intelligence (Al). It
enables computer systems to learn new information and make decisions based on the
developed intelligence (Microsoft Azure, 2023). In accordance with that, (Horduna,
2023) defines machine learning as a process of training algorithms to identify and learn
patterns from collected data. Therefore, based on these identified patterns, it can use

the insights to predict and improve detection of malware.

On the other hand, machine learning described by (Sen, 2021) as a system's capacity
to autonomously collect, integrate, and then create knowledge from enormous volumes
of data by discovering new information without having to be taught to do so. For this
reason, it can be a reliable method for the problem of distinguishing new variants of
malware without relying only on traditional methods such as the signature-based
techniques (Gagulic et al., 2023). In addition to that, as stated by (Gagulic et al., 2023)

20

Random Forest, support vector machines (SVM) and k-nearest neighbors’ algorithm
(KNN) are some of the algorithms that can be used for ransomware detection with

good performance.

2.2.2 Types

Training data

Labeled
data

Supervised learning

Machine

Semi-supervised learning —Jp= learning —)-

(training)

Partially
Labeled
data

Human-m:

Unlabeled
data

Unsupervised learning

Figure 2.6 Categories of machine learning (Naga et al., 2015)

Figure 2.6 shows the types of machine learning according to (Naga et al., 2015).
Machine learning can be divided into supervised learning, unsupervised learning and
semi supervised. Based on the existing research, this section will review all of the three

types of machine learning.

2.2.2.1 Supervised

According to (Chumachenko, 2017) supervised learning is based on labelled data. It
requires an initial datasets with labels to mapped it to the correct results. The author
also points out that some of the problems that use supervised learning include

regression and classification.

In accordance with that, (Abbasi, 2023) states that supervised learning main goal is to

generate a model using the training data to accurately predict the outcome. In addition

21

to that, (Naga et al., 2015) has similar understanding of supervised learning compared
to the other research paper mentioned. The author notes that, supervised learning deals
with pattern recognition in which it’s programmed to learn and distinguish the data

based on its repeated learning experience.

2.2.2.2 Unsupervised

In contrast with supervised learning, the author (Chumachenko, 2017) has states that
unsupervised learning does not deal with labeling of data. The author of that research
paper notes the goal of unsupervised learning is to identify patterns in the unsorted
data rather than predicting the value. In addition to that, (Sen, 2021) states that

algorithms are taught based on unlabelled, unclassified, and uncategorized data.

The author also mentioned that unsupervised learning task are usually anomaly
detection, clustering, feature learning and finding association rules. In addition to that,
(Abbasi, 2023) also mentioned about clustering in his paper. The author explains that
clustering as creating groups of input data based on differences and similarities
identified in the data. The primary goal of using unsupervised learning in clustering is

to group data with similar attributes.

2.2.2.3 Semi-supervised

According to (Naga et al., 2015) semi-supervised learning makes use of labelled and
unlabelled data. Similar with the research paper by (Abbasi, 2023), the author states
that semi-supervised learning is used when the data class labels are only partially
available. The model is build based on supervised and unsupervised learning model in

order to train the model using both label and unlabelled data.

(Abbasi, 2023) also emphasizes in semi-supervised learning typically, the labelled data
is smaller than the unlabelled data. Text document categorization is one example of
this, as it is almost hard to obtain numerous labelled text documents. Therefore, we
can say that semi-supervised learning learns from small number of labelled instances

while classifying large number of unable instances in training data.

22

2.2.2.4 Summary of type of machine learning

In conclusion, based on the reviewed research papers as discussed above this project
will be using supervised learning. Supervised learning is the most suitable type
because this project will involve in training the model using a labelled dataset. The
datasets can be obtained from official dataset repositories such as Kaggle, UCI
Machine Learning Repositories, Resilient Information Systems Security (RISS)
Ransomware Dataset. Other than that, the supervised learning can also help in
identifying to distinguish between ransomware and benign software. The training
model can learn to recognize the patterns that contributes to ransomware and therefore

detecting it.

2.2.3 Tools

This section will cover all the available tools used in various research papers that relate
to machine learning. The review is important to determine which tools will be using

in this project.

2.2.3.1 Weka

According to (Thampi et al., 2020) WEKA also known as Waikato Environment for
Knowledge Analysis is a popular machine learning tool developed at University of
Waikato, New Zealand. The author proposed using WEKA to classify benign and
malicious categories since the tools contain machine learning algorithms for tasks such
as classification, regression, and clustering. On the other hand (Sharma, 2018)
proposed research on detection of advanced malware using WEKA to study and
compare each classifier. The classifier used such as Random Forest, Logistic Model
Tree (LMT), Naive Bayes and others. In addition to that, (Norouzi et al., 2016) presents
research on classification methodologies for detecting malware behavior using
WEKA. The author also highlights the research used classification algorithms such as
NaiveBayse, BayseNet, IB1, J48, and regression algorithms. After obtaining the
evaluation result, the author analyzed that regression algorithms have the best

performance for classification method.

23

2.2.3.2 Orange

Orange is an open-source software used for machine learning algorithms. According
to (Mahajan et al., 2019) Orange uses python-based libraries which give optimized
output. Similar with WEKA, orange tools can analyse various classification techniques
such as Random Forest, Naive Bayes, Support Vector Machine. In addition to that,
(Padmavaty et al., 2020) states that Orange tool has multiple components known as
widgets which makes it easier for user to understand the navigation of the software.
Other than that, in the researcher’s paper (Mahajan et al., 2019) they analysed tools
such as Knime, Orange and RapidMiner. Based on the researcher study, it’s found that

Orange presented better result compared to the others.

2.2.3.3 TensorFlow

According to (Prakash, 2021) TensorFlow is a free and open-source end-to-end
platform for developing and deploying machine learning models. Tensorflow.org
states that TensorFlowe gives flexibility because it has features such as Keras
Functional APl and Model Subclassing API to handle large amounts of data and
complex models. Other than that, TensorFlow has the ability to work with various
machine learning algorithms, such as classification, linear regression, deep learning
wipe, deep learning classification, boosted tree classification, and boosted tree

regression.

2.2.3.4 Azure

Azure Machine Learning (Azure ML) is a cloud-based machine learning released by
Microsoft (Jainani, 2021). Azure ML Studio has a number of modules for training,
scoring, and validation. Users may obtain up to 10GB of model data storage per
account, but they can also link their own Azure storage to the service for bigger
models. For creating with Azure services, programmers can utilize either the R or
Python programming languages. The machine learning algorithm that are popular

include regression, anomaly detection, clustering, and classification.

24

2.2.3.5 Scikit-Learn

Scikit-learn is a Python open-source machine learning package that provides a variety
of tools and methods for data mining and analysis. According to (Fabian, 2011) Scikit-
Learn based on the three primary Python libraries such as Numpy, Spicy and Cython.
It’s explain that Numpy is the base data structure used for data and model parameters,
while Spicy provides useful algorithms for special functions and basic statistical
functions. It can also easily integrate with other numerical packages, making it easy to
install and use. On the other hand, Cython is a programming language that allows users

to combine C and Python for better performance.

2.2.4 Summary of Machine Learning tools feature

Table 2.1 Summarization of each Machine Learning tools feature based on reviewed literatures

Machine Learning features

WEKA

TensorFlow

Orange

Azure

Scikit-

Learn

GUl/
Usage Command (OX] Classification | Regression | Clustering Authors
Line
Data mining tasks Both Cross-platform (Qolomany et al.,
(Windows, Linux, | Yes Yes Yes 2019)
MacOS) (Sipra, 2021)
Focus on deep learning | Command | Cross-platform (Qolomany et al.,
neural network line (Windows, Linux, | No No No 2019)
MacQS)
Visual - programming tool | GUI Cross-platform (Qolomany et al.,
for data mining and machine (Windows, Linux, | Yes Yes Yes 2019)
learning MacQS) (Padmavaty,
2020)
Open-source data analytics | GUI Not Cross-platform. (Qolomany et al.,
platform Only Windows and | Yes Yes Yes 2019)
Linux. (Jainani, 2021)
Machine learning library for | Command | Cross-platform (Qolomany et al.,
Python line (Windows, Linux, | Yes Yes Yes 2019)

MacQS)

(Gupta, 2023)

In conclusion, based on reviews of the existing research articles and
summarization as shown in table 2.1, the machine learning tools that will be used in
this project are WEKA and Orange. WEKA and Orange are the best options because
they provide a user-friendly interface using a GUI (Graphical User Interface) using
widgets as navigation. On the other hand, other tools such as Scikit-learn and
TensorFlow use command lines so it might be challenging for users that’s beginners
in machine learning tools and not expert in programming language such as Python. In
comparison with Azure that’s not a cross-platform, both WEKA and Orange supported
various Operating System such as Microsoft Windows, Linux and MacOS. Therefore,
WEKA and Orange are considered the best options as they also provide features to
apply many different algorithms to the dataset to determine which one will give the

best results.

2.3 Techniques

This section will go through several techniques and how they will be used in this
project. There are a lot of classification techniques available in machine learning and
this section will only discuss techniques such as Decision Tree, Random Forest and
Naive Bayes.

2.3.1 Definition

According to the Cambridge Dictionary, the technique is defined as a way of
performing activity or tasks. Technique can also mean the basic method for making or
doing something, such as an artistic work or scientific. Therefore, in the context of
machine learning techniques refer to the method that will be used for the classification

task. Below is the explanation about definition of classification techniques in detail.

2.3.2 Classification Techniques

According to (Brownlee, 2020), classification is a job that involves employing
machine learning algorithms to figure out how to assign a class label to problem
domain occurrences. The author, (Abbasi, 2023), states that classification in machine
learning uses the information gained during the training phase, when training examples
with associated class labels are mapped, to predict the class labels of a collection of
test instances in the data. There are many different types of classification tasks that can

be applied in machine learning.

2.3.2.1 Decision Tree

Seen on 100 petwork workstaswons

LN

Hw suspicwons headers Hig suspiwcions headers

27

Yo

| Islu;lhl.-';mr“ | 15 benigmarare

| 15 bemigmwrare

| 15 dig nally sigmed

2

e,

Contans encrypled data

Contauns encrypted daa

> %

Iz malware

5 malware

v,

Is enigmware

Ix mualware

Figure 2.7 Example of decision tree (SecurityExperts.it)

28

Figure 2.7 illustration the search process in the decision tree. As the name indicates,

decision trees are data structures with a tree structure. According to (Chumachenko,

2017), the purpose of decision trees is to produce the most accurate outcome with the

fewest amount of decisions. Furthermore, the author says that it may be utilised for

classification and regression issues. According to (Horduna, et al., 2023) the most used

algorithm in decision tree classification technique is ID3 and it uses the concepts of

Information Gain and Entropy.

According to research of (Ahmed, 2020), the author proposed a behaviour-based

ransomware detection method using Windows API calls. The call sequences were split

into N-grams. Based on his research, their method achieved 98.10% accuracy on

average using Decision Tree classification algorithm.

29

2.3.2.2 Random Forest

Training Training Training
Data Data oo e Data
1 2 n
Training ¢ ¢ ¢
Set Decision Decision Decision
Tree Tree Tree
| \ 2) ’
Voting
Test Set (averaging)
Prediction

Figure 2.8 Example of Random Forest (javatpoint)

Figure 2.8 shows the visualization of random forest techniques by javapoint.
According to (Gagulic et al., 2023), the Random Forest model is an addition to the
conventional decision tree approach that entails iteratively splitting the dataset at each
decision node until a leaf node with the proper label is obtained.

Other than that, the author also mentioned his opinion on Decision Tree compared with
Random Forest. It's said by (Gagulic et al., 2023) decision trees are extremely
sensitive to their training data, which can lead to large variation. Random Forest, on
the other hand, is a collection of multiple random decision trees, making it less

susceptible to training data and greatly improving the accuracy.

30

2.3.2.3 Support Vector Machine

@A Maximum

Margin Positive

¢ Hyperplane !
Maximum ~:’ / L R
Margin ~. AN 3 I 4
Hyperplane

/(\‘\ Support

Negative Hyperplane Vecto}rs

Figure 2.9 Example of Support Vector Machine (javatpoint,2023)

Figure 2.9 shows the visualization of Support Vector Machine by javapoint to
understand about the theory of hyperplane in details. According to (Horduna et al.,
2023) Support Vector Machine is one of the well-known machine learning algorithms
that can be used in binary classification. For example, detection of benign software or
ransomware. It implements the concept of a hyper-plane that divides the points in an
n-dimensional space, representing the data into two different groups. In addition to
that, (Chumachenko, 2017) describes the purpose of Support Vector Machines (SVM)

as finding the optimum hyperplane to split the classes.

(Chumachenko, 2017) also highlights that, the term ’support vectors’ refers to points
closest to the hyperplane that would change its position if removed, and the distance
between the support vector and the hyperplane is known as the margin. Intuitively, the
further away from the hyperplane our classes lie, the more accurate predictions we can

make.

31

2.3.2.4 Naive Bayes

Naive bayes classifier

@ Classifier 1
61 ~ Classifier 2

© " @ Classifier 3
@

Figure 2.10 Example of Naive Bayes (Chaudhuri, 2022)

Figure 2.10 shows the illustration of Naive Bayes classifier according to (Chaudhuri,
2022). According to (Herrera-Silva et al., 2023) this algorithm produces probabilistic
models based on target variables. It assumes that input characteristics are independent
without pairwise correlation, however this is not always true. This method is labelled
"naive" because of the assumption of uncorrelated characteristics. This is because real-
world problems often have a correlation between features. In addition. the term Bayes
is derived from the well-known probabilistic theory upon which this method generates
the probabilistic model. Similar with research by (Chumachenko, K. 2017) defines
Naive Bayes is classification based on the Bayes Theorem. The author notes that it

predicts the probability of each feature without relations.

2.3.2.5 Summary of machine learning algorithms

Table 2.2 Summarization of each Machine Learning algorithms based on previous study

Included (¥, Not Included (X)

No Research DT RF SVM NB KNN LR RLR SNN JRip
1 (Khalil et al., X \/ \/ ‘/ \/ ‘/ X X X

2022)
2 (Kok et al,

2020) X v X X X X X X X
3 (Ibrahim, et al.,

2020) v X X v X X X X v
4 (Khammas,

2020) X v X X X X X X X
5 (Abbasi, 2023) \/ ‘/ ‘/ X \/ X ‘/ X X

33

(Al-Haija et al.,

oo v X X X X v v

(Chumachenko,

< 2017 v v v v v X X X
Occurrences 5 3 3 1 2 1

Table 2.3 Indicator to represent the machine learning algorithms

Indicator
DT | Decision Tree (J48) KNN K-Nearest Neighbors
RF | Random Forest LR Logistic Regression
SVM | Support Vector Machine RLR Regularized Logistic Regression
NB | Naive Bayes SNN Shallow Neural Networks

Table 2.4 Summarization of each Machine Learning algorithms

Included (¥, Not Included (X)

Machine Learning Algorithms

WEKA v

TensorFlow

Scikit-Learn

Decision Tree Random Forest Support Vector Naive Bayes
Machine
v v v
X v X X
v v v v
v v v v
v v v v

34

In conclusion, after conducting the review of existing literature, the machine learning algorithms that will be used with the high

number of occurrences are Decision Tree (J48), Random Forest, Support Vector Machine (SVM) and Naive Bayes. Although K-Nearest

Neighbors (KNN) has the same number of occurrences as Naive Bayes and Support Vector Machine, according (Alalousi et al., 2016) K-

Nearest Neighbors (KNN) are mainly used as the unsupervised classifier. The author also states that its not suitable for smaller dataset as

its susceptible to overfitting because of noise in the training data. Therefore, we will not be using KNN since our scope focus on the

supervised learning with accordance to the type of dataset that we acquired.

2.3.3 Analysis

This section will cover the parameters that will be implemented in this project. This
research will also compare the three datasets and use only five parameters to analyze
the data. The explanations of parameters, dataset, metric, and critical review are

presented below.

2.3.3.1 Datasets

According to Javatpoint a dataset is a collection of data that is organized. In the case
of tabular data, a dataset refers to one or more database tables, with each row referring
to a specific record in the relevant data set and each column referring to a single
variable. A dataset can include any type of data, from a collection of arrays to a
database table. "Comma Separated File," or CSV, is the most often used file format

for tabular datasets.

(Maigida al., 2019) states that most issue in analysis is acquiring the dataset. Most
research articles also faced lack of recent dataset for their research. Indirectly this can
affect the training model because they are not using an updated dataset which can
affect the result. In accordance with the issues mentioned above, in this project we
have gathered an updated open-source ransomware dataset obtained from official
dataset repositories such as Kaggle, UCI Machine Learning Repositories, File System
Behavior Ransomware Dataset which are collected and analyzed from the Cuckoo

sandbox.

a) Dataset 1 Ransomware: UCI BitcoinHeistRansomwareAddressDataset
Data Set

The third dataset is “UCI BitcoinHeistRansomwareAddressDataset Data Set”.
The dataset is taken from UC Irvine Machine Learning Repository. The dataset
consists of 2916697 samples or instances in total with 10 attributes. The types
of ransomware family in the sample includes montrealCryptoLocker,

36

princetonCerber and paduaCryptoWall. The BitcoinHeist dataset was collected

from the Bitcoin transaction that are associated with the ransomware payments.

Table 2.5 Ransomware of families of dataset 3mapped to its category

Included (¥, Not Included (X)

Family Locker | Crypto | Scareware | Leakware | RaaS
montreal CryptoLocker v X X X X
princetonCerber X v X X X
paduaCryptoWall X v X X X

b) Dataset 2 Ransomware: Kaggle Dataset Android Ransomware Detection

The first dataset that will be used, which is “Kaggle Dataset Android

Ransomware Detection”, consist of 203,556 samples and 85 columns,

encompassing 10 different types of Android Ransomware and Benign traffic.

The type of Ransomware includes such as SVpeng, PornDroid, Koler,

RansomBO, Charger, Simplocker, WannaL ocker, Jisut, Lockerpin and Pletor.

Table 2.6 Ransomware families of dataset 1 mapped to its category

Included (‘/), Not Included (X))

Family Locker

Crypto

Scareware

Leakware

RaaS

WannaLocker

v

X

X

X

X

Simplocker

SVpeng

PornDroid

Koler,

RansomBO

Charger

Jisut

NEN NN X XXX

Lockerpin

X| X| X| X| X| X| X| X

x| X| X| X «| X| \| X

x| X| X| X| X| | X X

X| X| X| X| X| X| X| X

37

Pletor v X X X X

c) Dataset 3 Ransomware: Kaggle Ransomware Detection File System

Behavior

Dataset 111, authored by (Bensalah, 2022), is a ransomware detection dataset
designed for research purposes. It consists of 62,485 samples, with 27,119
classified as benign and the remaining samples labeled as ransomware. This
dataset encompasses various columns, including FileName, md5Hash,
Machine, DebugSize, DebugRVA, MajorimageVersion, MajorOSVersion,
ExportRVA, ExportSize, latVRA, MajorLinkerVersion, MinorLinkerVersion,
NumberOfSections, SizeOfStackReserve, DIlICharacteristics, ResourceSize,
and Label. These attributes provide essential information about the files, their

characteristics, and whether they are benign or potentially malicious.

2.3.3.2 Parameters

According to (Kizito ,2022) parameters or attributes are learned or estimated solely
from the data during the training process, as the algorithm aims to understand the

relationship between the input features and the corresponding labels or targets. As a

38

result, choosing the optimal parameter values is crucial since it has a direct impact on

the model's performance when used during model training.

Table 2.7 Parameters used in UCI BitcoinHeistRansomwareAddressDataset

Dataset

Parameters Description

ADDRESS Addresses are used for sending and receiving Bitcoin
transactions.

YEAR Value that indicates the year in which the transaction
related to the Bitcoin address occurred.

DAY Representing the day of the year

LENGTH Length attribute of the transaction

WEIGHT Represents information on the amount

COUNT Information on the number of transactions

LOOPED Number of transactions i) separate their coins; ii) transport
these coins through the network via multiple pathways;
and eventually, iii) combine them into a single address

INCOME Amount of Bitcoin associated with the transaction.

LABEL Name of ransomware family/ white (goodware)

Table 2.8 Parameters used in Kaggle Dataset Android Ransomware

Detection

Parameters

Description

Flow ID

Identifier for the network flow

Source IP

IP address of the source (sender) of the flow

Source Port

Port number used by the source IP

Destination IP

IP address of the destination (receiver) of the flow

Destination Port number used by the destination IP

Port

Protocol Network protocol used in the flow (e.g., TCP, UDP)
Timestamp Time when the flow occurred

Flow Flow duration

Duration

Total Fwd Total number of packets sent in the forward direction
Packets

Total Total number of packets sent in the backward direction
Backward

Packets

Total Length
of Fwd
Packets

Total length of packets in the forward direction

Total Length
of Bwd
Packets

Total length of packets in the backward direction

Flow Bytes/s

Data transfer rate in bytes per second

Flow Packet transfer rate in packets per second

Packets/s

Flag counts Indicating the presence of specific flags (e.g., FIN, SYN,
RST, PSH, ACK, URG)

Network Window size, active and idle times

parameters

and

characteristics

39

40

Table 2.9 Parameters used in Kaggle Ransomware Detection File System

Behavior
Parameters Description
Represent ames of the files including the file
FILENAME)
extension (e.g., .dll)
MD5HASH MD5 hash value associated with each file
_ Information about the type of machine or architecture
Machine] o
for which the file is intended
DebugSize Size of debug information within the file
Relative Virtual Address. It contain the RVA
associated with debug information within the file.
DebugRVA

RVAs are used to specify locations within a file's

virtual address space.

MajorimageVersion

Major version number associated with the image or
executable file to indicate significant updates or

changes in the software.

MajorOSVersion

Indicate the major version number of the operating

system for which the file is intended.

Stores the RV associated with exported functions

ExportRVA .)
or symbols within the file.
size of the exported functions or symbols within the
ExportSize file. It provides information about the resources
exposed to other programs.
latVRA Represent the RVA of the Import Address Table

(IAT) within the file. The IAT is essential for

41

dynamically linking functions from external libraries
or DLLs.

MajorLinkerVersion

Major version of the linker used during the file's
compilation or linking process. Linkers combine

object files into executables or libraries.

MinorLinkerVersion

Minor version of the linker used during compilation.

NumberOfSections

Stores the number of sections or segments within the
file. Sections are distinct parts of an executable, each

with specific characteristics and permissions.

SizeOfStackReserve

Size of the stack reserved for the file. The stack is a

memory region used for managing function calls.

DlICharacteristics

Store characteristics or flags associated with the file,
indicating its behavior as a dynamic link library

(DLL). DLLs are shared libraries used by programs.

ResourceSize

Information about the size of resources embedded
within the file. Resources can include data such as

images, icons, or strings.

Label

Specifies the classification label for each file whether
the file is benign (not malicious) or categorized as

ransomware (malicious).

2.3.3.3 Train and Test Ratio

According to the author (Khalil et al., 2022) focuses on static analysis for detecting

and classifying ransomware utilizing five machine learning algorithms which are
Support Vector Machines (SVM), K-Nearest Neighbors (KNN), Random Forest (RF),

Logistic Regression (LR) and Naive Bayes (NB). However, the result may be

42

inaccurate because in his research, the author stated that the dataset was split into 50:50
ratio to train and test the detection model. This is not a good method of splitting the
dataset. According to the research by (Dobbin and Simon, 2011) the optimal fraction
of data splitting is 2/3 which can be applied to any dataset. Therefore, in our research
we will expand the testing by evaluating various train and test ratios which are 50:50,
70:30 and 90:10. Purpose of expanding test is to observe behavior classification

algorithms under several conditions.

2.3.3.4 Evaluation Techniques

According to (Khalil, 2022) True Positive refers to the ransomware instances that are
accurately identified as ransomware (TP). The total amount of benign files is
categorized accurately as benign (True Negative, or TN). False Positive (FP): a small
number of benign files were mistakenly detected as ransomware. False Negative (FN):

the number of ransomwares that are incorrectly categorized as benign.

1) Accuracy

i AV ledl
| TP+ TN
ACC — i

| PP P42 5N

Figure 2.11 Accuracy Formula (Kok et al., 2020)

Figure 2.11 shows the calculation of accuracy. According to (Kok et al., 2020)
accuracy indicates the number of correctly classified samples over the total

samples on dataset.

2) True Positive Rate (TPR)

TP

TPR =
I'P+EFN

3)

4)

43

Figure 2.12 True Positive Rate (TPR)
Formula (Kok et al., 2020)

Figure 2.12 shows the formula for True Positive Rate (TPR). The TPR is the
ratio of accurately anticipated positive conditions to the total number of actual
positive conditions. This statistic measures how successfully the predictive

model predicts positive values.

False Positive Rate (FPR)

FP
FP+TN

Figure 2.13 False Positive Rate (FPR)
Formula (Kok et al., 2020)

FPR =

Figure 2.13 shows the formula for False Positive Rate (FPR). The FPR is the
ratio of mistakenly projected positive predictions to the total number of actual
negative circumstances. This indicator determines the extent to which the

predictive model predicts positive values inaccurately.

True Negative Rate (TNR)

TN
TN+ FP

Figure 2.14 True Negative Rate (TPR)
Formula (Kok et al., 2020)

IT'NR =

Figure 2.14 shows the formula for True Negative Rate (TNR). The TNR is the
ratio of accurately anticipated negative conditions to the total number of actual
negative conditions. This statistic measures how well the predictive model

predicts negative values.

44

5) False Negative Rate (FNR)

FN
FN+TP

Figure 2.15 False Negative Rate (FNR)
Formula (Kok et al., 2020)

FNR =

Figure 2.15 shows the formula for the False Negative Rate (FNR). The FNR is
the ratio of mistakenly anticipated negative conditions to the total number of
actual positive conditions. This indicator determines the extent to which the

predictive model predicts negative values inaccurately.

6) Precision

Precision =

TP+ FP |

Figure 2.16 Precision Formula (Kok et al., 2020)

Figure 2.16 shows the formula for the precision. The precision measure
represents the proportion of positive predictions that were accurately
anticipated over the total number of positive forecasts. When the forecast is
positive, this indicator determines how much the predictive model may be

believed.

45

7) Recall

TP

Recall = TP I PN

Figure 2.17 Recall Formula (Kok et al., 2020)

Figure 2.17 shows the formula for Recall. Recall, also known as the true

positive rate, is an estimate to measure the detection rate of the positive class.

8) F-measure

Precisiton - Recall

F — measure = 2 *

Precision + Recall

Figure 2.18 F-measure Formula (Kok et al., 2020)

Figure 2.18 shows the formula for F-measure. The F-measure, often known as
the F-score or F1-score, is the average of TPR and accuracy. This statistic
measures how effectively the predictive model predicts positive values while

taking both into account.

2.3.3.4.1 Summary of the evaluation metrices

Table 2.11 Summary review for evaluation metrics based on reviewed literatures.
Applied (¥, Not Applied (X)

No Research Acc | TPR | FPR | TNR | FNR | Prec | Recall lr:r; AUC | MCC | PLR | NLR | DOR NND | NNM | NB
(Khalil et al.,

1| 2022) v |V > B R B T o < B X X |X
(Kok et al,

2 |20 v I vV v |V |V |V | X v X X v | v |V v v |V
(lbrahim, et al.,

3 |29 X [%Wh Ix (X ¥l IvEIX v dXx | X X X |IX |x
(Khammas,

4 | 2020 X e e e L e e = o X X X
(Abbasi, 2023)

5 v IX X |[X X |v |v |v X |X X |X |X X X X

47

(Al-Haija et al.,
2021
6 2D lvix Ix |[x Ix |V v |V v [x |x |x |x |x
7 (Chumachenko,
K. 2017
VX XX XX X X (X |x X |x X |X
Occurrences 5 3 2 2 2 5 4 5 1 1 2 2 2 2
Table 2.12 Indicator to represent the evaluation metrices.
Indicator
Acc | Accuracy MCC Matthews Correlation Coefficient
TPR | True Positive Rate (also known | PLR Positive Likelihood Ratio
as Sensitivity, Recall, or Hit
Rate)
FPR False Positive Rate NLR Negative likelihood ratio
TNR | True Negative Rate (also known | DOR Diagnostic odds ratio
as Specificity)
FNR . | False Negative Rate i Youden’s index
Prec | Precision NND Number needed to diagnose
Recall | Recall NNM Number needed to misdiagnose
F-m F-measure (also known as F1 | NB Net benefit
Score)
AUC | Area Under the ROC Curve

In conclusion, after conducting a thorough review of existing literature the evaluation metrices that will be used in

this project are Accuracy, TPR (True Positive Rate), Precision, Recall and F-measure. These evaluation metrices are

chosen based on the number of occurrences as shown in table 2.9 with accordance to the reviewed literature reviews.

2.4 Critical Review

Table 2.13 Summary of critical review for previous research articles

Neighbors (KNN)
Random Forest
(RF)

Logistic Regression
(LR)

Naive Bayes (NB)

Research Type of Tools Type of Algorithms Type of Problems +
Techniques Objective
(Khalil et al., 2022) o WEKA Support Vector e Classification P: 1) How can static analysis be used to overcome the
e MATLAB Machines (SVM) constrglnts of dynamic analysis in order to construct a
K-Nearest detection model?

O: 1) To propose a new technique based on static analysis
for detecting and classifying ransomware utilizing five
machine learning algorithms.

48

(Kok et al., 2020)

PEDA (Pre-
encryption
detection
algorithm
(PEDA)
Cuckoo for
generating
datasets

e Random Forest

Classification

P: 1) How to detect presence of crypto-ransomware before
any encryption occurs?

0O: 1) To propose development of pre-encryption detection
algorithm (PEDA) for early detection of crypto-
ransomware.

2) To propose new metrics for the evaluation of a predictive
model used in ransomware detection.

(lbrahim, et al., 2020)

WEKA
Orange
Scikit

e NaiveBayse
e JRip
e Decision Tree

Classification

P: How to address the challenges and problems associated
with ransomware behavior detection and classification.

O: To produce solutions for feature selection in machine
learning for drive-by download problem

(Khammas, 2020)

WEKA

e Random Forest
(RF)

Classification

P: How can we overcome the issue of complicated
disaasemble process when detecting ransomware attacks?

O: To propose a new method of ransomware detection
using Random Forest technique based on static analysis.

49

Regularized P: How can the challenges of high-dimensional data and
. e Cuckoo iy) o
(Abbasi, 2023) Sandi Logistic Regression | e Classification time-intensive manual inspection in behavior-based

(RLR) ransomware detection be overcome?

e Tensorflow

Random Forest -

(RF) O: To propose a new representation of API call sequences,

SRR 1= (D7) for early ransomware detection.

Support Vector

Machines (SVM)

k-Nearest

Neighbors (KNN)
(Al-Haija et al., 2021) e MATLAB shallow neural e Classification P: How to identify and detect ransomware attacks in early

networks (SNNs)
Decision Tree (DT)

detection of bitcoin transaction.

O: To develop a predictive system that can classify
ransomware payments for heterogeneous bitcoin networks.

50

Table 2.11 above shows the summary of the critical review. The table is
generated from reviews based on the existing research papers. The author (Khalil et
al., 2022) proposed a new technique based on static analysis for detecting and
classifying ransomware utilizing five machine learning algorithms which are Support
Vector Machines (SVM), K-Nearest Neighbors (KNN), Random Forest (RF), Logistic
Regression (LR), Naive Bayes (NB). According to the experimental result, the
Random Forest achieved the highest detection accuracy. However, the result may be
inaccurate because in his research, the author stated that the dataset was split into 50:50
ratio to train and test the detection model. This is not a good method of splitting the
dataset. According to the research by (Dobbin and Simon, 2011) the optimal fraction
of data splitting is 2/3 which can be applied to any dataset.

On the other hand, the research by (Kok et al., 2020) proposes development of
pre-encryption detection algorithm (PEDA) for early detection of crypto-ransomware.
In the author research (Kok et al., 2020) produces six new metrics for the evaluation
of a predictive model used in ransomware detection. The metrices are Likelihood
ratio(LR), Diagnostic odds ratio (DOR), Youden’s index (J), Number needed to
diagnose (NND), Number needed to misdiagnose (NNM) and Net benefit (NB).
According to the result and discussion of the research, the author stated that proposed
metrics include PLR, NNM, DOR, J Index, and NND is difficult to represent into one
graph, as proposed metrics (DOR,PLR) may have an infinite value. This may result in
a misunderstanding of the true metric value and the new metrics has not yet been tested
for various research domain.

In the research work by (Abbasi, 2023) the author propose a new representation
of API call sequences, for early ransomware detection. The research has proof that
identifying critical call arguments alongside API call names in sequences can help
improve the classification performance. However, there are limitation in this work
because the scope of the analysis environment is limited. The research excludes
ransomware that targets multiple operating systems such as Linux and Mac, as well as
devices such as mobile phones. The findings are limited to ransomware that’s
compatible with Windows 7 PCs only.

Therefore, for our research we will only focus on the common evaluation

metrics as provided by the WEKA program to calculate the accuracy of the classifier

52

performance. Other than that, we will be using a cross validation method using a 2/3
fraction to split the dataset as recommended by (Dobbin and Simon, 2011) in our
research to improve the previous research work. In addition to that, to improve the
previous issues of not using ransomware sample of a bigger environment because the
author only use ransomware that’s compatible with Windows 7 PCs. We will be
evaluating ransomware that’s targeted the mobile devices as well by using the dataset

provided by Kaggle.

2.5 Proposed solution

Based on the reviews of existing literature and a comprehensive evaluation for the
critical analysis, this project will be using supervised learning. Supervised learning is
the most suitable type because this project will involve training the model using a
labelled dataset. Dataset will be downloaded from Kaggle, UCI Machine Learning
Repositories and (RISS) Ransomware Dataset. It’s chosen because they are the most
often utilized open-source sites by researchers for getting datasets for their research on
ransomware detection. In addition to that, the machine learning tools that will be used
in this project are WEKA and Orange. WEKA and Orange are the best options because
they provide a user-friendly interface. On the other hand, other tools such as Scikit-
learn use command lines so it might be challenging for users that’s beginners in
machine learning tools. It also provides feature to apply many different algorithms to
the dataset. According to the critical review, the classification technique that will be
used with the most occurrence is Decision Tree, Random Forest, Support Vector
Machines (SVM) and Naive Bayes. Other than that, to evaluate the performance of the
experiments conducted in this study, the chosen evaluation metric is Accuracy, TPR
(True Positive Rate), Precision, Recall and F-measure.

2.6 Summary

In conclusion, the project will focus on analysis of ransomware detection using
machine learning. Based on the discussion above the classification techniques that will
be use are Decision Tree, Random Forest, Support Vector Machines (SVM) and Naive

Bayes. The evaluation metric are Accuracy, TPR (True Positive Rate), Precision,

53

Recall and F-measure. The next chapter will focus on the methodology that will be

implemented.

3.0

CHAPTER 3: METHODOLOGY

Introduction

The research methodology used to carry out the study are defined in this
chapter. This chapter describes the process used to gather, present, and
analyses the data and information required to address the research purpose and
question. Additionally, this chapter explicitly defines the project's phase,
timetable, and milestones, as well as the project approach. The project

methodology for this project is explained as follows.

54

3.1 Project Methodology

PHASE 1: IDENTIFY AND GATHER RESEARCH
REQUIREMENTS

PHASE 2: SELECT TOOLS AND DATASET

PHASE 3: INSTALL THE TOOLS

PHASE 4: DATASET PREPARATION

PHASE 5: INFORMATION COLLECTION

PHASE 6: ANALYZE THE INFORMATION

PHASE 7: DOCUMENT RESULT

Figure 3.1 Project methodology

This section explains the project methodology based on Figure 3.1. The
methodology that will be implemented in this project is inspired by (Yusof et al., 2019)
and additional steps were added to improve the previous methodology used by the
author. Figure 3.1 shows the analysis methodology for ransomware detection which
consists of 7 phases. The phases include Phase 1 of this project which is identifying

and gathering project requirements.

55

It involves justifying problem statements based on the reviews of research
papers and submission of the project requirements. Phase 2 involves choosing the tools
and dataset and Phase 3 involves installing the tools that will be used in the project. In
addition to that, Phase 4 involves dataset preparation, Phase 5 involves information
collection, Phase 6 involves information analysis, and Phase 7 involves documenting

the outcomes.

3.1.1 Phase I: Identify and Gather Project Requirements

Fuo I ‘ IDENTIFY PROBLEM MAKE ANALYSIS

SUBMIT
PAPERS

REQUIREMENTS

Figure 3.2 Process to Identify and gather project requirement

Figure 3.2 shows the activity to conduct Phase 1 which is identifying and gather
project requirements. Initially, before the research can begin the first step of the
research is to identify common problems in the ransomware domain. This can be done
by analyzing existing research papers to gain insight into current challenges in the
targeted domain. This step is important for us to gain a clear understanding of the issue
that we aim to address throughout the entire research is conducted. The project
requirement will be documented in the proposal, which will outline the problem
statement, research objectives, methodology and expected outcomes. The proposal is

then submitted and approved to proceed to the next step.

3.1.2 Phase Il: Select Tools and Datasets

ANALYZE AND EVALUATETHE | ___» | SELECT SUITABLE TOOLS

OB LIMEREATUAE REARN |y INFORMATION — AND DATASETS

Figure 3.3 Process of selecting tools and dataset

Figure 3.3 shows the process of selecting tools and dataset. A comprehensive
literature review is conducted so that we can identify the most suitable machine
learning tools that will be used in the project for ransomware detection. Based on the
gathered information of available machine learning tools, the features, its usage, type

of operating system that its compatible and task that it performs will be evaluated to

56

identify the best tool. In our case, based on the literature review in the Chapter 2, the

machine learning tools that will be used in this research are WEKA and Orange.

3.1.3 Phase IlI: Installing the Tools

REVIEW THE HARDWARE AND b
SOFTWARE REQUIREMENTS .

INSTALL WEKAAND ORANGE | \

VERIFY TOOLS
FUNCTIONALITY

Figure 3.4 Process of installing the selected machine learning tools

Figure 3.4 shows the process of installing the chosen machine learning tools.
Before the installation can begin, first the hardware and software specifications will
be reviewed to ensure our system meets the necessary specifications. The selected
machine learning tools which are WEKA and Orange are downloaded and installed
according to the installation guide at their official website. After the installation is

completed, the tools will be verified to ensure the functionalities.

3.1.4 Phase IV: Dataset Preparation

IDENTIFY FEATURE APPLY METHOD TO
ACQUIRE AND Jl g SELECTION METHOD A REMOVE CF?EPSTLLJJ&EFB%E
DOWNLOAD DATASETS SUITABLE FOR THE NOISY/RRELEVANT ANALYSIS
DATASETS FEATURES

Figure 3.5 Process of Dataset Preparation

Figure 3.5 shows the process of Dataset preparation. In this step, the dataset
will be acquired and downloaded from official datasets repositories. In our case, the
dataset will be acquired from Kaggle and UCI Machine Learning Repositories.
Additionally, in this phase it involves identifying a suitable feature selection method.
This is important because by applying the chosen feature selection methods, it can
remove noisy or irrelevant features from the datasets. Once it’s chosen we will apply
method to remove the irrelevant features. Sub-sampling will also be done using Jupyter
Notebook.

57

3.1.5 Phase V: Information Collection

] _ : N APPLY CLASSIFICATION | b
LOAD DATASET % MACHINE LEARNING TOOLS | I v TECHNIQUES v QUTPUT

Figure 3.6 Process of Information collections

Figure 3.6 shows the process of information collection. Once the datasets has
been processed as explained in the previous step, then we can proceed with training
the ransomware detection model using various machine learning classification
techniques. According to the literature review, the selected classification technique
that will be used with the most occurrence is Decision Tree, Random Forest, Support
Vector Machines (SVM) and Naive Bayes. After applying the classification

techniques, we will collect the information generated from the machine learning tool.

3.1.6 Phase VI: Analyze the Information

) APPLY EVALUATION
CAPTURE OUTPUT 5 T E— RESULT

Figure 3.7 Process of analyze the information

Figure 3.7 shows the process of information analysis. This step includes
analyzing the information generated from the ransomware detection model. It involves
capturing the output that will serve to evaluate the performance of the model. Various
evaluation metrics will be applied to evaluate the accuracy result of the machine
learning classification techniques. This is a crucial step because these evaluation
metrices will provide information of different aspect of the classifier's performance
such as its ability to correctly classify ransomware instances and its ability to minimize
false positives or false negatives. To be specific, the research will apply evaluation
metrics such as True Positive Rate (TPR), False Positive Rate (FPR), Precision and

accuracy.

3.1.7 Phase VII: Document Result

58

COMPARE RESULT

IDENTIFY BEST CLASSIFICATION —
TECHNIQUES

DOCUMENT RESULT

Figure 3.8 Process of document result

Figure 3.8 shows the process documenting the result. Based on the accuracy

result of classification techniques using different evaluation metrics tool, comparison

will be made. Therefore, we can identify the best classification techniques based on

the accuracy. Lastly the result and analysis will be documented.

3.2 Research Milestone

Table 3.1 Summary of Research Milestone

Start Week End Week | Activities
W1 W2 e ldentify Project Requirements (Research Problems
and Objectives)
e Proposal Assessment and Project Consultation
W2 W2 e Gather Project Requirements.
e Proposal Improvement
W3 w4 e Introduction Of Report Writing
W4 W6 e Select Machine Learning Tools and Datasets
e Conduct Literature Review
W6 W7 e Construct Methodology of Project
W8 W9 e Design Project Architecture
¢ Installing Tools (Weka and Orange)
w10 W12 e Datasets Preparation
W13 W15 e Information Collections
e Testing Features in The Machine Learning Tools
W15 W17 e Train The Machine Learning Classifier
W18 W24 e Information Analysis
e Applying Evaluation Metric to The Classifier
e ldentify Best Performance
W25 W26 e Documenting Result

3.3 Research Gantt Chart

Table 3.2 Research Gantt Chart

ACTIVITIES

WEEKS

11

12

13

14

15

16

17

18

19

20

21

22

24

25

IDENTIFY AND GATHER
REQUIREMENTS

SELECT TOOLS AND DATASETS

INSTALLING TOOLS

DATASET PREPARATION

INFORMATION COLLECTIONS

ANALYZE THE INFORMATION

DOCUMENT RESULT

3.4 Summary

This chapter has addressed the methodology that will be used in the research. As
discussed above the phases include Phase 1 identifying and gathering project
requirements, Phase 2 involves choosing the tools and dataset and Phase 3 involves
installing the tools that will be used in the project, Phase 4 involves dataset preparation,
Phase 5 involves information collection, Phase 6 involves information analysis, and
Phase 7 involves documenting the outcomes. This section also outlines the research
milestones and Gantt chart. The next section will discuss further about the analysis and
design according to the phases of the methodology that will be implemented for this

research.

61

CHAPTER 4: ANALYSIS AND DESIGN

4.0 Introduction

This chapter focuses on the analysis and design phase of this project. The analysis
phase involves understanding the research workflow. It includes identifying problem
domain, reviewing existing literature reviews, requirement identification and
submission. In addition to that, the design phase will focus on choosing the suitable
dataset, machine learning tools, algorithms, and evaluation metrices. The design phase
Is essential for establishing the procedures that must be taken to analyze the
ransomware dataset. This is to ensure the project goal will be achieved, thus the
recommended design will be thoroughly analyzed and studied. Below are the details
for the research workflow, project requirement analysis, architecture analysis, and
parameter measurement. The section of project requirements analysis will include both
software and hardware requirements that will be followed for conducting the project

in order to ensure smooth project execution.

62

4.1 Research Workflow

Evaluate all
Set of all attributes New set of
attributes attributes
rankers

|

Remove irrelevant
attribute

I
! |
! |
! |
! |
! |
! |
! I
! I
! I
! |
! |
! |
| I
! |

—> i Search and | =

I
! |
! |
! |
! |
! |
! |
! I
! I
! I
! |
! |
! |
! |
! |

Figure 4.1 Workflow for preparation of dataset for Phase 111 of the research

Based on the previous chapter, we have discussed the methodology that will
be implemented in the research. In this section, we will identify and design the
structure of the workflow to conduct the dataset preparation phase. According to
(Mazumdar, 2023) it’s important to process the dataset to prevent data dimensionality.
This is because by identifying a subset of new attributes we can effectively minimize
the impact of noisy or irrelevant attributes.

As shown in Figure 4.1, the datasets will be filtered using filter method that’s
based on the measure of degree association between each feature and target variable.
(Mazumdar, 2023) states that, the higher the F-value the more important the feature is
for the task. In addition to that, (Brownlee, 2020) also mentioned that the best method
to choose feature selection method for numerical input variables associated with

categorical output variable is using Information Gain.

63

3N BO BP BQ BR BS BT BU BV BW BX BY BZ cA <] cc <D [cF 4 cH
1 [Avg Bwd Avg | Bwd Avg |Bwd Avg ESubflow F Subflow f Subflow E Subflow EInit Win_ Init Win_ act_data_ min_seg_Active Me Active Stc Active Me Active Mi Idle Mean Idle Std_ Idle Max Idle Min_Label
2 0 0 0 [} 5 1076 8 4575 65535 353 3 32 [} 0 0 0 [} [} [} 0 Benign
3 0 0 0 [} 2 2 0 0 1594 1] 32 0 0 0 0 [} [} [} 0 Benign
4 0 0 0 [} 2 23 0 0 1486 1] 32 0 0 0 0 [} [} 0 0 Benign
5 0 0 0] 1 31 1 0 1548 391 0 32 0 0 0 0] 0 0 0 Benign
6 0 0 [}] 6 1313 7 307 65535 352 3 32 0 0 0 [}] 0 0 0 Benign
7 0 0 [}] 2 2 0 0 1402 1 0 32 0 0 0 [}] 0 0 0 Benign
8 0 0 0] 1 0 2 31 1550 122 0 32 0 0 0 0] 0 0 0 Benign
E) 0 0 0] 2 0 0 0 1547 -1 0 3z 0 0 0 0] 0 0 0 Benign
0 o 0 0 [2 [} 0 0 1547 1 o 32 0 0 0 0 [[} [} 0 Benign
n 0 0 0 [1 0 1 0 1594 350 0 32 0 0 0 0 [0 0 0 Benign
12| o 0 0 [1 [} 1 0 1726 357 0 32 0 0 0 0 [[} [} 0 Benign
13 o 0 0 [1 [} 1 0 1637 349 [} 32 0 0 0 0 [[} [} 0 Benign
14 o 0 0 [} 2 [} 0 0 1547 1] 32 0 0 0 0 [} [} [} 0 Benign
15| o 0 0 [} 2 55 0 0 362 1] 32 0 0 0 0 [} [} 0 0 Benign
6] o0 0 0 0 3 61 0 0 1909 1 1 32 0 0 0 0 0 0 0 0 Benign
17 o 0 0] a 372 4 489 65535 59 1 32 0 0 0 0] 0 0 0 Benign
18 o 0 [}] 3 0 0 0 1 1 0 0 0 0 0 0 37456032 4017699 40296974 34615089 Benign
19 o 0 0] 2 0 0 0 1547 -1 0 32 0 0 0 0] 0 0 0 Benign
20| o 0 0] 2 0 0 0 1386 -1 0 3z 0 0 0 0] 0 0 0 Benign
21 0 0 0 [a 217 6 357 65535 114 1 32 32889 127.2792 32979 32799 35508719 41704811 64998473 6018964 Benign

DATASET1 Android Ransomeware ® <

Ready $% Accessibility: Unavailable ici] M - ——+ 100

Figure 4.2 Dataset Il “Android Ransomware” from Kaggle

Figure 4.2 shows the content of the Android Ransomware dataset that will be used in
this research. We can see the input variables consist of numerical values while the

target variable which is the “label” is defined as categorical output.

Use training
set to train

Model

model
Load dataset |— Train Model
|
|
:
|
! Model
I finalization
|
|
| Use test set
: to test model Predictive
|
|
|
|
|
|

Figure 4.3 Workflow of the training and testing

As discussed in the previous chapter, Phase 1V includes information collection In the
information collection phase, it involves training the machine learning classifiers.
Figure 4.3 shows the illustration of how the model can be trained. (Dobbin and Simon,
2011) states that the recommended amount to split the dataset is 2/3 fraction split. Once
the data is split as shown in Figure 4.2, the model will be train and we will test the
model using the test set to evaluate new samples of ransomware for the predictive

model.

64

4.2 Project Requirements Analysis

The project requirement is a specific requirement that is followed for conducting the
project in order to ensure a smooth functioning of the project. This section contains a
reference to the project specification, which will be implemented throughout the

project.

4.2.1 Hardware Requirements

This section focuses on determining the project's hardware prerequisites. Hardware
requirements in the context of ransomware detection using machine learning using
tools like WEKA and Orange will include the specifications of the computer systems
and hardware requirements to run the program. This might include aspects such as the
minimum CPU speed, RAM capacity, storage capacity, and network connectivity
necessary to use machine learning tools efficiently. Below are the details of the

hardware requirements:

Table 4.1 Summary of hardware requirements

Requirements Details
Processor Intel Dual-Core Processor or advance
A minimum of 8GB of RAM is recommended. (For larger
oM dataset more RAM will be required)
Type of storage Solid-state drives (SSDs)
Graphic Card NVIDIA’s / Intel’s GPU

4.2.2 Software Requirements

Software requirements include the version numbers and specific configurations of the
tools, such as WEKA and Orange, that will be used in the project. Additionally, this
section will specify the operating system requirements or dependencies necessary for

the software to function properly. Below are the details of the software requirements:

65

Table 4.2 Summary of software requirements

Requirements Details
Operating System Windows 7/8/10
Java Version 8 or latest
Python Version 3.4 or latest

Miniconda Version miniconda3 v4.12.0
) _ WEKA
Machine Learning tool
Orange

a)

b)

WEKA

WEKA is a well-known open-source software package for data mining and
machine learning. It offers a set of machine learning tools and methods that
enable users to carry out operations including feature selection, grouping,
regression, and data preparation. WEKA supports a number of file types
for data entry and has an intuitive graphical user interface. For data analysis
and model creation, it is widely utilised by academics and practitioners in

the field of machine learning.

Orange

Orange is an open-source software which also for data mining and machine
learning. Both specialists and non-experts in the area can use it because it
is designed to be user-friendly and aesthetically pleasing. Classification,
regression, clustering, and association rule mining are just a few of the data
visualisation, preprocessing, and modelling methods that Orange provides.
Additionally, it provides interactive data exploration and features a visual
programming interface that enables users to build processes for data

analysis without writing any code.

Java

Java is a general-purpose programming language with robust libraries and
frameworks for machine learning. It provides implementations of machine
learning algorithms and utilities for data processing and model building.

Java is known for its platform independence, scalability, and performance.

d) Python

Python is a versatile programming language widely used for data analysis
and machine learning. It has a rich ecosystem of libraries and frameworks

dedicated to these domains. It offers tools for data manipulation, statistical

analysis, visualization, and building machine learning models.

e) Miniconda

Miniconda is a lightweight distribution of the Python programming
language. It allows users to easily create and manage Python environments

for specific project requirements. It simplifies package management and is

useful for setting up customized Python environments.

4.3 Architecture Analysis

Ransomware

(

"“-\,‘L___ _'_//

\ Datasets /'_|

Y

WEKA

v

ORANGE

Evaluation

Y

Machine Learning
Techniques

Classifier

F 3

Output

Figure 4.4 Overview of architecture analysis of this project

Figure 4.4 shows the overview architecture analysis for this project that’s
developed based on the proposed solution as stated in Chapter 2 of this report. The
architecture analysis briefly consists of four major crucial components which are the

ransomware dataset, machine learning tools, the classification techniques that will be

used and evaluation of those classifiers.

67

4.4 Proposed Research Design

Datasets Collection
T
! I
| P _Y Performance Evaluation
| |
B (UCH iy freeeemmem oo l
I I
; i i I
- A MENDELEY DATA | | |
I I
I
e - ! : Recal F-measure |
I
Pre-Processing [| |
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | | True Positive Rate !
: | | (TPR) :
I
: xls —"> .csv | b e ______ !
! | Model Classification T
| ° [ ) | /e
| |
' ovte o
| J u pyter : | Random Forest
: | | Benign
1 ® ! :
|
| @RELAT|ON | : Naive Bayse.
! .SV == > .arff | @ATTRIBUTE Lo Bemgn
|
| @DATA !
| ! Ransomware |
———————————————————————————— ! : Support Vector Machine _|
Split Dataset :
________________________ |
| | [ Ransomwere |
| | | - I Ransomware
| | | Decision Tree (DT)
. y A L ew
i |
| Train Test ! |
: | I Ransomware Dectection
| ! IL __________________________
________________________ I

Figure 4.5 Proposed research design for ransomware detection model

Figure 4.5 visualizes the proposed research design for our ransomware
detection model. The dataset will be obtained from official dataset repositories in this
case such as the Kaggle Dataset Android Ransomware Detection. The dataset will then
pre-process to ensure the dataset file can be loaded into the WEKA program. Pre-
process in this context means defining the attributes and its instances and ensuring the

data are all comma separated.

According to (Srivastava, 2014) preprocessing must include attributes
selection which is important because some attribute may be redundant and noisy which
can impact the performance of the classifier. Therefore, for this research, we will be
using infoGainEvaluation as the ranker for the attribute selection in WEKA. After the

dataset is processed and able to be loaded successfully into the WEKA program, the




68

dataset will be split into training and testing. The training set will be used to train the
ransomware detection model whereas the testing set will be used to evaluate the
model’s performance. This step ensures that the model will be trained on the subset of
the data and tested on the unseen data to determine its performance capability for the

ransomware detection.

As for the process of model classification, four classification techniques were chosen
based on the critical review in Chapter 2. The classification techniques are Decision
Tree (DT), Random Forest (RF), Naive Bayes (NB), and Support Vector Machine
(SVM) where each technique has a different approach in building the classification
model. Random Forest creates a group of decision trees then combines the prediction
to make a final decision. Naive Bayes is a probabilistic classifier that uses Bayes'
theorem to calculate the probability of a data point belonging to a particular class.
Support Vector Machine (SVM) will separate data points using hyperplanes in high-

dimensional space. Decision tree on the other hand,

Lastly for the performance evaluation, the ransomware classification model will be
evaluated using the testing set. The evaluation metrices that will be used include
Accuracy, Precision, Recall, F-measure, and True Positive Rate (TPR). By analyzing
the result of the evaluation metrices, the efficiency and accuracy of the ransomware

model performance can be assessed.



4.5

Flowchart Design of Research

ACQUIRE RANSOMWARE
DATASETS (CSV)

|

LOAD DATASET INTQ

|

Y

WEKA/ORANGE

DATASET IN ARFF FORMAT

|

f

HAMDLE MISSING VAUES f CLEAN
IRRELEVANT ATTRIBUTES

WEKA/ORANGE ABLETO
READ DATASET?

AFPPLY ATTRIBUTES

REVIEW SUITABLE
ATTRIBUTES SELECTION

Y

SELECTION

No Yes

DOES THE ACCURACY
INCREASE ?

IDENTIFY BEST

CHOOSE CLASSFIER

TRAIM THE CLASSIFIER

h A

F Y

CLASSIFICATION TECHNIQUE

EVALUATE THE MODEL FOR
TEST SET

Figure 4.6 Flowchart of WEKA/ORANGE to visualize

possible scenario that might occur




70

Figure 4.6 above shows the flowchart for the machine learning tools. Once the
dataset has been downloaded, there can be 2 possibilities. If the dataset cannot be
loaded into WEKA program, then we have to check the datasets if there’s any missing
values. If the dataset is not in the ARFF file format, then we will convert it by defining
the attributes and data of the old dataset. Using the same step, which is loading the
dataset, when it’s successful the attribute selection will be performed to minimize
noisy and irrelevant data using the filter method as discussed in the previous chapter.

Once new datasets of best feature are finalized then we will use the dataset for
training and testing the model. The same phase will iterate three times since we will
evaluate four types of machine learning classifiers which are Decision Tree, Random
Forest, Support Vector Machines (SVM) and Naive Bayes. The classifiers
performance will be evaluated using evaluation metric are Accuracy, TPR (True
Positive Rate), FPR (False Positive Rate)Precision, Recall and F-measure. After
capturing the result then the WEKA program will be exit.



4.6

Tools interface

nnnnnnnn

Figure 4.7 WEKA GUI chooser

71

& Weka Explorer

ss Classify  Cluster  Associate  Selectattributes  Visualize

Open file.. Bl eyl Open DB... Generate..

Selected attribute
Narme: Label
Missing: 0 (0%)

Attributes: 70

Sum of weights: 10000 Distinct: 2

No. Label Caunt
5000
5000

Pattern 1 Ransomware

2 Berign

Class: Label (Norm)

e
67 Idle Std
68 Idle Max
69 ] Idle Min ‘

70 M Label

Remove

Status

oK

Type: Nominal
Unique: 0 (0%)

5000
5000

Apply

Weight

stop

~ | Visualize All

Log

-

Figure 4.8 Example of result when load the Dataset || Android Ransomware

to the WEKA

Figure 4.7 shows the interface for the WEKA application. First launch the WEKA

application then we can see the WEKA GUI chooser which includes option for

Explorer, Experimenter, KnowledgeFlow, Workbench and Simple CLI. In addition to

that, at the top section it has important features such as downloading a new package

manager especially for new algorithms using the “tool”. Second WEKA also can load

and transform dataset from CSV to ARFF file format. Figure 4.8 shows the data

visualization when we load the Dataset 1 Ransomware:

Ransomware Detection to the WEKA application.

Kaggle Dataset Android



72

@ Untitled - Orange - X
File Edit View Widget Window Options Help

'3 oata @

Transform @ Welcome to Orange LS

E Visualze

.
;
;ﬂ HE ‘ ’ Il.l.l

c 0 ry) ®
Tree Viewer Box Plot Viclin Plet Distributions

.;:: b<: Ilﬂll 5% News Open Recent

Scatter Plot  Line Plot Bar Plat
— |
:

Mossic

Display.
i

Hezt Map

D == %o B

Video Tutorials Get Started Examples Documentation

venn Shhouette  Pythagorean
Disgram Plot Tres

)

Pythagarsan  CN2 Rule
Forsst Viewer

Show at startup Help us imprave!

Homogram

% Orange Tutorials
New to Orange? et started by checking out our video tuterials!

oeshow sgan

Figure 4.9 Main user interface of Orange

Based on Figure 4.9, the toolbox on the left shows the widgets available while the
white canvas on the left is the working area. In order to add the widget to the canvas,
we can either drag, double click or right click on the canvas menu. Datasets can be

loaded using the file option or from the csv widgets in the toolbox.

48  Summary

In conclusion, this chapter summarizes the analysis and design of the research.
The proposed research design is visualized to illustrate the possible scenario for the
project execution that will be conducted in Chapter 4 for implementation phase. This
section also identifies the hardware and software requirements which are important to
ensure the implementation of the research can be carried out without issues such as
compatibility or not enough resources to load the dataset. The next chapter will discuss

in detail about the implementation of this project.



73

CHAPTER 5: IMPLEMENTATION

5.0 Introduction

This chapter focuses on the implementation phase of this project. The implementation
of Chapter 5 includes Phase 3, Phase 4 and Phase 5 of project methodology. Based on
the design consideration from the previous Chapter 4, this chapter involves applying
various classification algorithms to the dataset, each of which is designed to identify
patterns that distinguish ransomware samples and benign samples. The
implementation process also involves configuring the machine learning tools to align
with the designated algorithms, processing the dataset and starting the learning process
by building the machine learning model. The implementation phase is important to see
the performance of the classification algorithms chosen applied on the dataset. The
result of this chapter will be used as the foundation for the next chapter, by evaluating

the accuracy result of classification techniques using different evaluation metrics tools.



5.1

Research Implementation Activities

Chapter V:
IMPLEMENTATION
h 4 r Y ¥ v v v
e Step 2: Installation
Step 1: Environment | | . /e onfigurations Step 3: Acquiring Step 4: Step 5: Step 6: Step 7: Generate

Setup based on
Requirements

Machine Learning
tools

Dataset

Pre-Processing

Load dataset

Classification

Result

Figure 5.1 shows the activities involved in the research implementation, which is constructed to align and implement the research
design in the previous Chapter 4. It involves 7 steps which are, Step 1: Environment Setup based on Requirements, Step 2: Installation and
Configurations Machine Learning tools, Step 3: Acquiring Dataset, Step 4: Pre-Processing, Step 5: Load dataset, Step 6: Classification and
Step 7: Generate Result. It’s very important to outline the research implementation activities to ensure a systematic guide and organized

execution of the research project. In addition to that, constructing these steps ensures minimization of error from occurring during the

Figure 5.1 Diagram Outlining Research Implementation Activities

implementation of the research.




5.2  Step 1: Environment Setup based on Requirements

The environment setup for this project is a critical factor in ensuring a smooth
execution of the research workflow. This section provides an overview of the essential
tools, software, and hardware configurations required for the successful execution of
the ransomware detection analysis using machine learning. In addition to the tools and
software, the operating system is also an important consideration for the environment

setup.

5.2.1 Hardware

Device specifications

Device name DESKTC
Processor Intel(R)

Installed RAM 12.0 GB

Figure 5.2 hardware specifications

Figure 5.2 shows the device specifications from the hardware aspect. This
research will be conducted using a laptop with 12 GB of RAM installed. The
processor being used by the laptop is the quad-core processor Intel Core i5-
8265U CPU, which operates at a base frequency of 1.60 GHz. This frequency
indicates the CPU's standard processing speed. When greater computing power
is required, the CPU will dynamically raise its speed up to a maximum turbo
frequency of 1.80 GHz. This brings advantages to the device because it can

manage tasks efficiently and provide higher performance.



5.2.2 Operating System

Windows specifications

Edition

Version

System type

Pen and touch

Figure 5.3 Operating System specifications

76

Figure 5.3 shows the device specifications from the operating system aspect.

The Windows operating system installed on the laptop is Windows 10 Home

Single Language. Its specific version is 22H2 and the system type is 64-bit

operating system. In addition to that, the system type 64-bit means the

computer's processor architecture is capable of handling 64-bit instructions.

Therefore, it’s beneficial because the device can use more memory than a 32-

bit operating system which enables it to run both 32-bit and 64-bit applications

efficiently.

5.2.3 Software

1) WEKA

ne Downloading and installing Weka Q, Search

Weka Wiki

Home

Downloading and installing Weka
Requirements

Documentation

Getting help

Citing Weka

Literature

Development

History

Resources >

Stable version #

Weka 3.8 is the latest stable version of Weka. This branch of Weka only receives bug fixes and
upgrades that do not break compatibility with earlier 3.8 releases, although major new features
may become available in packages. There are different options for downloading and installing it
on your system:

WINDOWS

* Click here to download a self-extracting executable for 64-bit Windows that includes Azul's
64-bit OpendDK Java VM 17 (weka-3-8-6-azul-zulu-windows.exe; 133.2 MB)

This executable will install Weka in your Program Menu. Launching via the Program Menu or
shorteuts will automatically use the included JVM to run Weka.

MAG 0S - INTEL PROGESSORS

« Click here to download a disk image for Mac OS that contains a Mac application including
Azul's 64-bit OpenJDK Java VM 17 for Intel Macs. (weka-3-8-6-azul-zulu-osx.dmg; 180.2 MB)

MAC 0S - ARM PROCESSORS

* Click here to download a disk image for Mac OS that contains a Mac application including
Azul's 64-bit OpenJDK Java VM 17 for ARM Macs. (weka-3-8-6-azul-zulu-arm-osx.dmg; 166.3
MB)

LINUX

© S

Table of contents
Snapshots
Stable version
Windows
Mac 0S - Intel processors
Mac OS - ARM processors
Linux
Other platforms
Developer version
Windows
Mac 0S - Intel processors
Mac OS - ARM processors
Linux
Other platforms
Old versions

Upgrading from Weka 3.7

Figure 5.4 WEKA official website



77

Figure 5.4 shows the official website of WEKA and its package installation.
Weka is an open-source program created by academics at the University of
Waikato in New Zealand. WEKA is an abbreviation for Waikato Environment
for Knowledge Analysis. It was created by the international scientific
community and is freely available under the GNU GPL license. WEKA is
written entirely in Java. It integrates with the SQL database using Java
Database connection. It includes various machine learning algorithms for

implementing data mining jobs.

2) Orange

g Screenshots Workflows Download Blog Jacs Workshops

Download the latest version for ¥Windows

Figure 5.5 Orange official website

Figure 5.5 shows the official website of Orange with three version for
Windows, macOS and Linux operating system. Orange is an open-source data
mining and machine learning platform. It is intended to be user-friendly so it
can be used by both specialists and non-experts in the field. Orange offers a
variety of data visualization, preprocessing, and modelling approaches,
including classification, regression, clustering, and association rule mining. It

also offers interactive data exploration and a visual programming interface.



78

5.3  Step 2: Installation and Configurations Machine Learning Setup

This section will focus on the setup and configuration for both WEKA and ORANGE.
This requires aligning the device to its baseline specifications, configuration settings,
and operational complexities, assuring consistent and intended performance
throughout time. It's to establish an environment which is conducive to achieving the
objectives of our study by precisely configuring WEKA and ORANGE. This
management strategy protects against any inconsistencies or mistakes caused by

insufficient Machine Learning tools setup.

5.3.1 Installation and Configurations WEKA

1) Download the WEKA installation file according to the type of
operating system. Launch the setup and click “Next” as shown in
Figure 5.6 below.

() Weka 3.8.6 Setup — ¥

Welcome to the Weka 3.8.6 Setup
Wizard

Setup will guide you through the installation of Weka 3.8.6.

Itis recommended that you dose all other applications
before starting Setup. This will make it possible to update
relevant system files without having to reboot your
computer.,

Click Next to continue.

| Next = Cancel

Figure 5.6 Setup Wizard of WEKA




79

2) Read the License Agreement and click “I Agree” as shown in Figure
5.7 below.

(79 Weka 3.8.6 Setup - X

License Agreement
Please review the license terms before installing Weka 3.8.6.

Press Page Down to see the rest of the agreement.

e e e L

if any, to sion a 'mpwight-d.i.srclléi‘n;ér:'ﬁ‘:r-Tj'llé-p.rogram, it necessary. [
how to apply and follow the GNU GPL, see

The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library, If this is what you want to do, use the GMU Lesser General
Public License instead of this License. But first, please read
<http: ffwww, gnu, ora/fphilosophy fwhy-not-gpl, himl =,

If you accept the terms of the agreement, dick I Agree to continue. You must accept the
agreement to install Weka 3.8.6.

Mullsoft Install System w3.06.1

| <Back II 1 Agree |I| Cancel |

Figure 5.7 WEKA License Agreement

3) Select the Associated Files since Full component installation is

recommended to prevent issues during the data mining tasks as shown
in Figure 5.8 below.

() Weka 3.86 Setup MELARK:

Choose Components
Choose which features of Weka 3.8.6 you want to install,

Checdk the components you want to install and unchedk the components you don't want to
install, Click Next to continue,

Select the type of install: |F|_,||| ~
= Description
Or, select the optional Assodiate Files TP
components you wish to Pasition your moause
install: over a camponent ko

see its descripkion,

Space reguired: 345.2 MB

Mullsoft Install Syskem 3,06, 1

| < Back I] Next = Il Cancel |

Figure 5.8 WEKA Associate Package Files



80

4) Browse for the installation file location and click Next to start the

installation as shown in Figure 5.9 below.

1| - Choose Install Location
ot T Choose the falder in which to install Weka 3.8.6.

{5 Weka 3.8.6 Setup = =

Setup will install Weka 3.8.6 in the following folder. To install in a different folder, dick Browse
and select another folder. Click Mext to continue.

Destination Folder

Browse...

Space required: 345.2 MB
Space available: 1.7 GB

Mullsaft Install Syskem w3.06. 1

[ <Back Il Next = Ill Cancel |

Figure 5.9 WEKA Installation Location

5) After installation is completed, WEKA will be launched as show in

Figure 5.10 below.

© Progum Vieusiaation Tooks Help Weka GUlChooses

Wester Weka, Galliallus australs australis, collected 16 Aprl 1987, Addison’s Flat, Westport, New Zealand. Field collection 1978 - 2004, CC BY 40. Te Popa |ple cLI

Explorer

KnowledgeFlow

Figure 5.10 WEKA interface



81

5.4  Step 3: Acquiring Datasets

The dataset will be acquired and downloaded from official datasets
repositories. In our case, the dataset will be acquired from Kaggle and UCI Machine
Learning Repositories.

— 3
= kagg|e Q searcn N
+ Android Ransomware Detection
Create
’ ‘ N & :
Data Card  Code (0)  Discussion (0) s New Notebook e N
@ Home Data Explorer
Android_Ransomeware.csv (20811 MB) &0 Version 1 (20811 MB)
@  competitions
M Android_Ransomeware.csv
@ Datasets Detail Compact Column 10 of 86 columns v
A Models About this file
<> Code The dataset contains 203556 rows and 85 columns and the entire data has 10 types of Android
Ransomware and Benign traffic types. The types of Ransomware includes SVpeng, PornDroid, Koler,
& Discussions RansomBO, Charger, Simplocker, WannaLocker, Jisut, Lockerpin and Pletor. The distribution of the data
labels are as follows:
2 Learn
SVpeng Label contains 54161 Records
v More >wiD = asourcelP = # Source Port = A Destination IP = 4t Destinati
10.42.0211 45% 10.42.01 19%
B Your Work 203556 10.42.0151 20% 10.42.0211 6%
unique values
Other (98669) 25% o 65.5k Other (296491) 76% 0

Figure 5.11 Android Ransomware Detection dataset

Figure 5.11 shows the Android Ransomware Detection dataset from Kaggle.
It’s distributed under the GNU Affero General Public License and serves as a

resource for analyzing Android ransomware and benign traffic types.

g BitcoinHeistRansomwareAddressDataset

Donated on 6/16/2020

CITE

BitcoinHeist datasets contains address features on the heterogeneous Bitcoin network to identify ransomware payments.
¥ 0 citations

Dataset Characteristics Subject Area Associated Tasks © 3264 views

Multivariate, Time-Series Computer Classification, Clustering

Attribute Type # Instances # Attributes Dol

Integer, Real 2916697 10 10.24432/CSBGEY
‘ License

Information A

This dataset is licensed under a Creative
Additional Information Commons Attribution 4.0 International

We have downloaded and parsed the entire Bitcoin transaction graph from 2009 January to 2018 December. Using a time T e,
interval of 24 hours, we extracted daily transactions on the network and formed the Bitcoin graph. We filtered out the network e
edges that transfer less than B0.3, since ransom amounts are rarely below this threshold.

This allows fo ring and adaptation

of the datasets for any purpose, provided

Ransomware addresses are taken from three widely adopted studies: Montreal, Princeton and Padua. Please see the
BitcoinHeist article for references. that the appropriate credit is given

Figure 5.12 BitcoinHeistRansomwareAddress Dataset

Figure 5.12 shows the BitcoinHeistRansomwareAddress Dataset. The dataset
is designed for identifying ransomware payments on the Bitcoin network. It
contains features related to addresses involved in the Bitcoin network,

particularly focusing on detection ransomware-related transactions.



5.5

82

Step 4: Pre-Processing
5.5.1 Steps for Pre-Processing

1) Select the csv file of the chosen dataset as shown in Figure 5.13 below.

£ Open *

Look In: DATASET 1 KAGGLE ~ M #

x
iii

|| @ DATASET1 _Android_Ransomeware | I

Invoke options dialog

. Y - B R

File Mame: updates_DATASET1_Android_Ransomeware.csv

Files of Type: | CSVY data files (*.csv) w

Cance'

Figure 5.13 selecting the dataset in csv file format

2) The ARFF-viewer tool of WEKA will automatically categorize each

attribute based on the sample type whether it’s Numerical or Nominal as

shown in Figure 5.14 below.

" | @ File Edit View ARFF-Viewer - D:\Backup\SEM 6\FYP\DATASET\DATASET 1 KAGGLE\DATASETI_Android_Ransomeware.csv - o X
DATASETI_Android_Ransomeware.csv
No. 1:SourcelP 2 SourcePort 3:Destination [P 4: Destination Port 5: Protocol 6: Flow Duration 7: Total Fwd Packets 8: Total Backward Packets 9: Total Length of Fwd uaj(ets
Nominal MHumeric w w MHumeric Humeric w w Numeric
1 10420211 51023.0 172.217.2.174 430 60 1510540 60 80 1076.0
2 104202M 51023.0 172.217.2.174 430 60 349.0 20 00 230
310420211 342500 172.217.12.174 3.0 60 119.0 20 00 20
4 1042021 55500.0 172.217.10.74 4430 60 37035.0 10 10 310
5 10420211 448520 1722172174 4430 60 178727.0 60 70 1313.0
6 10420211 448520 1722172174 4430 60 143.0 20 00 230
7 1042021 43492.0 3113713 4430 60 35978.0 10 20 00
8 1042021 57502.0 31.13.65.1 430 60 507298.0 20 00 00
9 1042021 57502.0 31.13.65.1 430 60 2041284.0 20 00 00
10 10420211 51656.0 172.217.7.1 430 60 37591.0 10 10 00
1110420211 51537.0 172.217.10.10 430 60 373220 10 10 00
1210420211 38107.0 172.217.7.164 430 60 42629.0 10 10 00
1310420211 57502.0 31.13.65.1 4430 60 2173435.0 20 00 00
14 172217.00... 443.0 1042.0.211 51702.0 60 1350 20 00 5.0
15 10420211 51702.0 172.217.10.10 4430 60 3620 30 00 61.0
16 10420211 53185.0 208.80.154.224 200 60 5064091.0 40 40 20
17 860.1 0.0 8064 00 00 749120637 10 00 00
18 10420211 57502.0 31.13.65.1 430 60  3.2760605E7 20 00 00
19 10420211 53185.0 208.80.154.224 800 60 42872330 20 00 00
20 1042021 36721.0 31.13.71.1 430 60  7.1083269E7 40 60 2170
21 1042021 36722.0 31.13.71.1 430 60  7.1048086E7 40 60 2190
2 10420211 36722.0 31.13.71.1 4430 60 48320 10 10 00
23 10420211 57035.0 31.13.65.37 4430 60 6517582367 20 20 1404.0

Figure 5.14 Categorization of dataset attributes



83

3) Navigate to the File tab and click “Save as” shown in Figure 5.15 below.

n Edit  View ARFF-Viewer - D:\Backup\SEM B\FYP\DATASET\DATASET 1 KAGGLE\DATASET!_Android_Ransomeware.csv = [m] X
pal & Open... Ctrl+0
Relati: are
MNo. estination IP 4 Destination Port  5: Protocol  6: Flow Duration  7: Total Fwd Packets 8: Total Backward Packets 9: Total Length of Fwd Packets
Close Chrl+W Mominal Mumeric Mumeric Mumeric Numeric Mumeric Numeric
1 Closeall 17.2.174 30 60 1510540 60 80 1076.0
2 17.2.174 443.0 6.0 349.0 20 0.0 23.0
3 Properties Ctrl+Enter  217.12.174 443.0 6.0 119.0 20 0.0 23.0
4 17.10.74 443.0 6.0 37053.0 1.0 10 31.0
= Exit Alt+ X

5 17.2.174 3.0 60 178727.0 60 70 1313.0
6 10420211 44852.0 172.217.2.174 443.0 6.0 143.0 20 0.0 23.0
7 10420211 434920 31.13.71.3 443.0 6.0 35078.0 1.0 20 0.0
8 10420211 57592.0 31.13.85.1 443.0 6.0 307298.0 20 0.0 0.0
9 1042021 575020 31.13.65.1 3.0 60 20412840 20 00 00
10 1042021 51656.0 172.217.7.1 443.0 6.0 37391.0 1.0 10 0.0
11 1042021 51537.0 172.217.10.10 443.0 6.0 373220 1.0 10 0.0
121042021 38107.0 172.217.7.164 443.0 6.0 42629.0 1.0 10 0.0
131042021 575020 31.13.65.1 3.0 60 8175455.0 20 00 00
14 17221710, 443,0 1042.0.211 51702.0 6.0 133.0 20 0.0 55.0
131042021 51702.0 172.217.10.10 443.0 6.0 562.0 3.0 0.0 61.0
16 1042021 53183.0 208.80.154.224 20.0 6.0 5064091.0 4.0 4.0 372.0
17 8601 00 8064 0.0 00 749120637 30 00 00
18 1042021 57592.0 31.13.65.1 443.0 6.0 3.2760605E7 20 0.0 0.0
19 1042021 53183.0 208.80.154.224 20.0 6.0 4287233.0 20 0.0 0.0
200 10420211 36721.0 3113711 443.0 6.0 7.1083269E7 4.0 6.0 217.0
21 1042021 367220 31.13.71.1 3.0 60 7.1048086E7 40 6.0 2190
2210420211 36722.0 31.13.71.1 443.0 6.0 4382.0 1.0 10 0.0
23 10420211 57033.0 31.13.65.37 443.0 6.0 6.5173823E7 9.0 9.0 1404.0
24 10420211 57033.0 31.13.85.37 443.0 6.0 639.0 3.0 0.0 420
25 1042021 MB37.0 160.47.42.199 52220 60 0302951267 320 240 8100
26 10420211 40852.0 208.80.154.224 443.0 6.0 6.14349E7 440 59.0 3086.0
27 10420211 40851.0 208.80.154.224 443.0 6.0 6.1458132E7 330 31.0 23780
28 208.80.154.... 443.0 1042.0.211 40832.0 6.0 73546710 1.0 20 0.0

beq 2 20880154... 4430 10420211 40851.0 60 7363609.0 10 30 00

4) Save the previous dataset with extension .csv file to convert it into an .arff

Figure 5.15 Categorization of dataset attributes

file format shown in the Figure 5.16 below. Now the dataset is ready to be

loaded and processed into WEKA and Orange.

Nominz!
10420211
10.42.0211
10420211
10420211
10420211
10420211
10.42.0.211
10.42.0.211
10.42.0.211
10 10420211
11 10420211
12 10420211
13 10420211
14 17221710,
15 10420211
16 10420211
17 8601
12 10420211
19 10420211
20 10420211
21 1042021
22 1042021
23 1042021
2410420211
25 10420211
260 10420211
27 1042021
28 208.80.154....

!

W - @ oW B oW P o

Relation: DATASET]_Android_Ransomeware i i v 2 i
| Mo. 1:Source P 2:Source Port  3: Destination [P 4: Destination Port  5: Protocol  6: Flow Duration  7: Total Fwd Packets  8: Total Backward Packets 9: Total Length of Fi

Nurneric

Numeric Nominal Numeric Mumeric Numeric Numeric MNumeric
& Save X
Save In: DATASET 1 KAGGLE v M oA B IS

[ "] Invoke options dialog

=4 Ja@

File Name: DATASET1 Android Ransomeware.csv
Files of Type:

Cancel

443.0 1042.0211

40852.0

6.0 7354671.0

Wy | Save selected file

Figure 5.16 Categorization of dataset attributes



84

5.5.2 Comparison Before and After

L_:{ D:\Backup\SEM E\FVP\DATASET\DATASET!_Android_Ransomeware.csv - Notepad++

File Edit Search View Encoding Langusge Settings Tools Macre Run Plugins Window 7

& e BRE=] o lazlaapm s q9=vUb xEE ® W
[l DATASET1_Android_Ransomeware cav £3 }E Undates_DATASET1_Android_Ransomeware.cov.arf 3|

Source IP, Source Port, Destination IP, Destination Port, Protocol, Timestamp, Flow Duration, Total Fwd Packets, Total Backward Pa
2.174-10.42.0.211-443-51023-6,10.42.0.211,51023,172.217.2.174,443,6,16/06/2017 03:55:47,151054,¢€,8,1076.0,4575.0,821.0,0.0,179.333
2.174-10.42.0.211-443-51023-6,10.42.0.211,51023,172.217.2.174,443,6,16/06/2017 03:55:47,349,2,0,23.0,0.0,23.0,0.0,11.5,16.2634559
12.174-10.42.0.211-443-342559-6,10.42.0.211,34255,172.217.12.174, 443, ¢,16/06/2017 03:55:52,119,2,0,23.0,0.0,23.0,0.0,11.5,16.263455
5 10.74-10.42.0.211-443-55505-6,10.42.0.211,55509,172.217.10.74,443,6,16/06/2017 03:55:53,37055,1,1,31.0,0.0,31.0,31.0,31.0,0.0,0.0,
2.174-10.42.0.211-443-44852-6,10.42.0.211,44852,172.217.2.174,443,6,16/06/2017 03:55:58,178727,¢,7,1313.0,307.0,753.0,0.0,218.8333
2.174-10.42.0.211-443-44852-6,10.42.0.211,44852,172.217.2.174,443,6,16/06/2017 03:55:58,143,2,0,23.0,0.0,23.0,0.0,11.5,16.2634559
& 211-31.13.71.3-43492-443-6,10.42.0.211,43452,31.13.71.3,443,6,16/06/2017 03:56:44,35%78,1,2,0.0,31.0,0.0,0.0,0.0,0.0,31.0,0.0,15.5
S 211-31.13.65.1-57592-443-6,10.42.0.211,57592,31.13.65.1, 443,6,16/06/2017 03:56:44,507298,2,0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
10 211-31.13.65.1-575%2-443-6,10.42.0.211,57592,31.13.65.1,443,6,16/06/2017 03:56:46,2041284,2,0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
7.1-10.42.0.211-443-51656-6,10.42.0.211,51656,172.217.7.1,443,6,16/06/2017 03:56:50,37591,1,1,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,

.10.10-10.42.0.211-443-51537-6,10.42.0.211,51537,172.217.10.10, 443, 6, 16/06/2017 03:56:50,37322,1,1,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.
.7.164-10.42.0.211-443-38107-6,10.42.0.211,38107,172.217.7.164, 443, 6, 16/06/2017 03:56:50,42625,1,1,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.
.211-31.13.65.1-57552-443-¢,10.42.0.211,57592,31.13.65.1,443,6,16/06/2017 03:56:52,8175455,2,0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.
.10.10-10.42.0.211-443-51702-6,172.217.10.10, 443,10.42.0.211,51702,6,16/06/2017 03:57:29,135,2,0,55.0,0.0,55.0,0.0,27.5,38.8508729
.10.10-10.42.0.211-443-51702-6,10.42.0.211,51702,172.217.10.10, 443, 6, 16/06/2017 03:57:29,562,3,0,61.0,0.0,38.0,0.0,20.333333333333
154.224-10.42.0.211-80-53185-6,10.42.0.211, 53185,208.80.154.224, 80,6, 16/06/2017 03:57:41,5064091,4,4,372.0,485.0,372.0,0.0,93.0,18

-8.6.0.1-0-0-0,8.6.0.1,0,8.0.6.4,0,0,16/06/2017 03:55:40,74912063,3,0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0400469547875
.211-31.13.65.1-57592-443-6,10.42.0.211,57552,31.13.65.1,443,6,16/06/2017 03:57:16,32760€05,2,0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.]
154.224-10.42.0.211-80-53185-6,10.42.0.211, 53185,208.80.154.224, 80,6, 16/06/2017 03:57:47,4287233,2,0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
.211-31.13.71.1-36721-443-6,10.42.0.211,36721,31.13.71.1,443,6,16/06/2017 03:56:46,71083269,4,6,217.0,257.0,217.0,0.0,54.25,108.5,
.211-31.13.71.1-36722-443-¢,10.42.0.211,36722,31.13.71.1,443,6,16/06/2017 03:56:46,7104808¢,4,6,219.0,257.0,219.0,0.0,54.75,109.5,
.211-31.13.71.1-36722-443-6,10.42.0.211,36722,31.13.71.1,443,6,16/06/2017 03:57:57,4882,1,1,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.]
.211-31.13.65.37-57035-443-6,10.42.0.211,57035,31.13.65.37, 443, 6,16/06/2017 03:56:54, 65175823, 9,9,1404.0,745.0,1078.0,0.0,156.0, 35
.211-31.13.65.37-57035-443-6,10.42.0.211,57035,31.13.65.37, 443, 6,16/06/2017 03:57:59,639,3,0,42.0,0.0,42.0,0.0,14.0,24.2487113055
42.195-10.42.0.211-5222-44837-6,10.42.0.211, 44837,165.47.42.199, 5222, 6,16/06/2017 03:56:15,93929512,32,24,810.0,545.0,226.0,0.0,25
154.224-10.42.0.211-443-40852-6,10.42.0.211, 40852, 208.80.154.224, 443, 6,16/06/2017 03:57:42, 61454500, 44,59, 3086.0,70437.0,558.0, 0.

Figure 5.17 Dataset 1 before Pre-Processing

Figure 5.17 shows the dataset before pre-processing. The provided data is in CSV
format and contains network traffic information. Each row represents a network
communication instance. The columns contain various attributes related to
communication, such as source IP, source port, destination IP, destination port,
protocol and so on. The dataset that is in CSV format, is not a standard format for
machine learning datasets. Although Weka can read CSV data, it requires manual

conversion. This can be a time-consuming and error-prone process.

Q{ D:\Backuph\SEM B\FYP\DATASET\updates DATASET]_Android_Ransoreware.csv.arff - Notepad++

File Edit Search View Encoding language Settings Tools Macra Run Plugins Window 7
aeREEg|L0D Y dladleaallo/z =D ADE| @0 W E
DATASET] Android_Ransomeware.csv 1| [=updates_DATASET1_Android_Ransomeware csv arff E3 |

dates DATASET1 Android Ransomeware

1| @relation

Battribute

Source IP" {10.42.0.211,172.217.10.10,8.6.0.1,208.80.154.224,172.217.2.163,172.217.10.74,74.125.22.1
Source Port' numeric

Destination IP" {172.217.2.174,172.217.12.174,172.217.10.74,31.13.71.3,31.13.65.1,172.217.7.1,172.217
Battribute Destination Port' numeric

Protocol’ numeric

2

E

4

5 @attribute
(3

T Battribute
8

Battribute Flow Duration' numeric

9 @attribute " Total Fwd Packets' numeric
10 @attribute " Total Backward Packets' numeric

11 @attribute "Total Length of Fwd Packets' numeric
12 @attribute " Total Length of Bwd Packsts' numeric
12 @attribute ' Fwd Packet Length Max' numeric

14 @attribute ' Fwd Packet Length Min' numeric

15 @attribute ' Fwd Packet Length Mean' numeric

16 @attribute " Fwd Packst Length Std' numeric

17 @attribute 'Bwd Packet Length Max' numeric

18 @attribute ' Bwd Packet Length Min' numeric

15 @attribute ' Bwd Packet Length Mean' numsric

20 @attribute ' Bwd Packet Length Std' numeric

21 @sttribm "Elow Buteafe’ nn

Figure 5.18 Dataset 1 with defined relation and attributes

Figure 5.18 shows the dataset is in ARFF (Attribute-Relation File Format), which is a

standard file format used to represent datasets in machine learning and data mining.



85

This format includes both the data attributes and their corresponding values, making it

easier for machine learning tools like WEKA to process and analyze the data.

@' D:\Backup\SEM E\FYP\DATASET\updates DATASETI_Android_Ransomeware.csv.arff - Notepad++
File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window ?
aeELEReg LbhE e cladlaalfals JEent ARE| @0 &

[E| DATASET1_Android_Hansomeware csv e [=] updates_DATASET1_Android_Ransomeware.csv.arff E1 |

79 @attribute ' Active Max' numsric
80 @attribute ' Active Min' numeric
81 @attribute 'Idle Mean' numeric
82 @attribute ' Tdle Std' numeric
82 @attribute ' Idle Max' numeric
84 @attribute ' Tdle Min' numeric

25 @attribute Label {Benign,Charger,Jisut,Koler,Lockerpin,Pletor, PornDroid, RansomBO, Simplocker, SVpeng, WannaLocker}

]

g8 10.42.0.211,51023,172.217.2.174, 443, 6,151054, 6,8, 1076, 4575,821,0,175.333333,321.621531, 1418, 0,571.875, 675.532284, 374

85 10.42.0.211,51023,172.217.2.174,443,6,349,2,0,23,0,23,0,11.5,16.263456,0,0,0,0,65902.5788, 5730. 659026, 345, 0, 349, 349,
S0 10.42.0.211,34255,172.217.12.174,443,6,115,2,0,22,0,23,0,11.5,16.263456,0,0,0,0,153277.3109, 16806.72269,115, 0,115, 11
51 10.42.0.211,55509,172.217.10.74, 443, €,37055,1,1,31,0,31,31,31,0,0,0,0,0, 836.554252, 53. 573823, 37055, 0, 37055, 37055, 0,

52 10.42.0.211,44852,172.217.2.174, 443, €,178727,6,7,1313, 307,753, 0, 218.833333, 331.306152, 168, 0, 43.8571432,75.366722, 5064
53 10.42.0.211,44852,172.217.2.174,443,6,143,2,0,23,0,23,0,11.5,16.263456,0,0,0,0,160835.1608,13586.01359,143,0, 143,143

94 10.42.0.211,43452,31.13.71.3,443,¢,35578,1,2,0,31,0,0,0,0,31,0,15.5,21.92031, 861.637668,83.38425,17989, 25362.50603, 3
G5 10 42 0 211 S575642 21 12 A5 1 442 £ S07T2G6GR 2 O 0 0 0 0 0 0 0 0 0 0 0 2 GA245¢6 SNT2GR N _SNT2GR SENTIGR S0T26G8 S0TIGR 0O

Figure 5.19 Dataset 1 with defined data

Figure 5.19 shows Dataset 1 with defined data. The structured ARFF format defines
the attributes and their types using the @attribute section, followed by the actual data
values using the @data section. This structure makes it clear how the data is organized
and what each attribute represents. In addition to that, each attribute is assigned a
specific type (numeric, nominal, etc) which is essential for machine learning

algorithms to understand how to treat each attribute during analysis.

5.6  Step 5: Load Dataset
5.6.1 Stepsto Load Dataset for WEKA

1) Launch WEKA and navigate to the Explorer tab as shown in Figure 5.20

below.

© Progum Vewsiaan Toor Fep

]
R
3 f o
H
x

WEKA

n WAIKATO KnowledgeFlow

Smple CUI

Figure 5.20 Weka Interface



86

2) Another terminal “WEKA Explorer” will be popup as shown Figure 5.21.

Navigate to “open file” and choose the dataset that has been processed as

an .arff file format in order to load the dataset. Click open to proceed.

Status
Welcome to the Weka Explorer

| tos | g0

- O x - X
Applications
Generate... Und. Edit.. Sav
Expl
X Bpply Stop
v B # B e None
= e: Non,
() DATASET_Android Rsnsor et
Al
Experimenter
KnowledgeFlow
|~ visualize an
=@
Workbench
File Name: | DATASET!_Android Ransomeware.cov.arff
Files of Type: | Arff data files (*.arff ~
Cancel
— Open selected file
- Ren Simple cLI

Figure 5.21 Loading the .arff file format dataset into WEKA

3) Wait for WEKA to load the dataset as it might take some time especially

for dataset with large number of samples/instances. The result is shown as

Figure 5.22 below. The graph visualizes the target class which is Label into

2 categories which are Ransomware samples and Benign samples.

ation | &3 Weka Explorer

Preprocess  Classify  Cluster  Associate

Openfile..

Filter
Choose |None
Current relation

Relation: DATASET!_Android_Ransomeware, . KAGGLE
Instances: 392034

Atributes
All None Invert

No. Name
65 Bwd Avg Packets/Bulk
66| |Bwd Avg Bulk Rate
67 | Subflow Fwd Packets
68 Subflow Fwd Bytes
69 Subflow Bwd Packets
0 Subflow Bwd

72
7
7
75
76
7
b
7
80 Idle Std
810 ldle Max
82 Idle Min

tedge Remove

Status
oK

Open URL... op

23 | Label

Select attributes  Visualize

- [m] X
&n DB... Generate... Ind Edit.. s
Apply tof
Selected attribute
Attributes: 83 Name: Label Type: Nomina |
Sum of weights: 302034 _Micsing 0(0%) Distingi2 Unigue 0
Mo, Label Count Weight
Pattemn 1 Ransomwar 348942 348942
2 Benign 43092 43092

Class: Label (Nom)

34a00

~ | Visualize All

4300z

Log e

Figure 5.22 graph for visualize the Ransomware and Benign samples



5.6.2 Steps to Load Dataset for ORANGE

87

1) Once Orange has been launched, navigate to the menu bar at the left section

and choose “File”” widget as shown in Figure 5.23 below.

@ Untitled * - Orange

File Edit View Widget Window Options

Transform

2 | Visualize
‘&% | Model
Ex}

s | Evaluate

Unsupervised

Read data from an input fi
table to the output,

le or network and send a data

2)

Figure 5.23 Loading dataset into Orange

Select the dataset that has been processed as an .arff file format from the

provided folder. Orange will show all the attributes presented in the chosen

dataset and view it using the “Data Table”” widget as shown in Figure 5.24

below.

N

cav Fie

Data Table] Paint Data
; /
T/
Edit Domain Color

Datasets

Data Info

Festurs
Statistics

E

SQLTable

Rank

A

Save Data

Transform

[£ Visualze

ﬁ Unsupervised

D8

File Data Table

2] Data Table - Orange

o) Label

392034 instances (no missing data)

Ransomware

Ransomware

Ransomware

Ransomware

Ransomware

Ransomware

Ransomware

Select full rows

Ransomware

B e @ N e wm s W e

Ransomware

-
=

Ransomware

Source IP
10.42.0.211
10.42.0.211
10.42.0.211
10.42.0.211
10420211
10.42.0.211
10420211
10.42.0.211
10.42.0.211
10.42.0.211
10.42.0.211

Destination IP
172.217.2.174
172.217.2.174
172.217.12.174
172.217.10.74
172.217.2.174
172.217.2.174
311313
31.13.65.1
31.13.65.1
172.217.71
172.217.10.10

Figure 5.24 Data Table representation in Orange




5.7

88

3) In Orange, we have to manually choose which attribute will be our target
class. In this case, change the Role value for attribute label as the target
class that will be categorized into 2 categories which are Ransomware

samples and Benign samples as shown in Figure 5.25 below.

& Untitled * - Orang
File Edit View Widget Window Options Help
Data
m] O File- Orange — [m] X
Source
0 2
@® File: | DATASET1_Android ¢ . KAGGLE.csv V| o || @reoad |
CSV File
Fie Tmport Datasets  SQLTable O | <
I File Type
% @ m Bile [ detect type v/
Data Table Paint Data Data Info Rank Info
392034 instances
~ I 81 features
TS @ L] Data has no target variable.
> ~aill 2meta attributes
EdtDomsin  Color Festure o b Columns (Double dick to edit)
Statisics
Name Type Role Values @
Transform T idleMean [ numeric feature
[ﬁ Visualize 78 idlestd @ numeric feature
=y -
%7 | Model dieMax @ numeric feature
x
/22 | Evaluate
:?-i’ unsupervised
skij <
= = — Reset Apply
Browse documentation datasets
Read data from an input file or network and send a data e =
table to the output. =28 | B 302k

Figure 5.25 Assigning target class in Orange

Step 6: Classification

This step focuses on choosing machine learning classification techniques.
According to the literature review in the previous Chapter 3, the selected
classification techniques that will be used with the most occurrence are
Decision Tree, Random Forest, Support Vector Machines (SVM) and Naive
Bayes. Below demonstration will show examples of steps for Decision Tree
for both WEKA and Orange. Note that the same steps will be applied for the
other types of classification techniques. Refer Appendix B for demonstration

of Random Forest, Support Vector Machines (SVM) and Naive Bayes.



5.7.1

1)

2)

89

Steps to classify data in WEKA

Once the dataset has been loaded, navigate to the “Classify” tab as

shown in Figure 5.26 below.

tion | € weka Explorer

Preprocess Cluster  Associate  Select attributes

i Choose ff[zeroR
Test options
( s

Set..
s |10
% | 66

(Nom) Label -

Start Stop

Result lst (right-click for options)

Status
0K

Figure 5.26 WEKA explorer

Under the “Classifier” section, click choose to select the machine

learning classification algorithms as shown in Figure 5.27 below. In

this case, we try to classify using one of the decision trees classification

algorithms specifically J48.

& Weka Explorer

Classifier

Preprocess  Classify  Cluster  Associate  Select attributes

ize

= weka

v = classifiers
> B9 bayes
> [ functions
> B lazy
> [ meta
> B misc
> B rules
v [ trees
£ Decision Stump

%

i s

il RandomForest
1 RandomTree
i REPTree

Figure 5.27 Selection of classification algorithms in WEKA



90

5.7.2 Steps to classify data in ORANGE

1) To start the classification process on the dataset, navigate to the
“Model” section and select the “Tree” widget which represents the

Decision Tree classification algorithm as shown in Figure 5.28 below.

@ Untitled * - Orange
File Edit View Widget Window Options Help

Transform @

2*  Model
ix) . p .. E

Data Table

File

3
S

\ 25
Had

Rendom Gradiant
Tlee (from Orange3)

* 5| A tree algerithm with forward pruning.

, Inputs:
Line=y * Data (Orange.data.table Table)
® Prepracessor (Orange. preprocess.preprocess.Preprocess)

29
M Outputs:

* Leamner (Orange.modelling.tree.TreeLearner)

* Model (Orange.tree. TreeModel)
Taferk  Gradent Deo

Figure 5.28 Selection of classification algorithms in Orange

2) Connect the nodes to start training the model using the Decision Tree

classification algorithms as shown in Figure 5.29 below.

@ Untitled * - Orange
File Edit View Widget Window Options Help

F ]| Transform £

g se g
8} ® oy If‘é’ s e
£ .
— — O Data Table
CN2Rule  Calbrated
Constant 1o duction Learmer = D
AL 4 Q
g faia eel
T Satoun = Fil
Random Gradient
u= Farest Boosting &) i‘h

E A Yoy

Regression  Rearesson  MaveBayes  AdaBoost

s 2O €

Neural Stochastic
Hetwork  Gradient De..

s R

Save Model  Load Model

Curve Fit Stacking

Figure 5.29 Connecting each nodes in Orange



5.8

91
Step 7: Generate Result

This step focuses on generating the result based on the machine learning
classification algorithm chosen. The output for this step will be used for the
next chapter to evaluate the accuracy result of classification techniques using

different evaluation metrics tool.

5.8.1 Step 7: Generate Result for WEKA

1) Once the classification algorithm has been chosen, for this
demonstration we will split the dataset into 70:30 ratio for training and
testing the model. Note that the same steps will be repeated for other
ratios such as 50:50 and 90:10.

on | G Weka Explorer

Preprocess Classify Cluster  Associate Select attributes  Visualize

Classifier !
Choose )48 -C 0.25 -M 2

Test options Classifier cutput
() Use training set

() Supplied test set Set...
I @ Percentage split % | 70 I
Mare options...
(Mom) Label ~
Start Stop

Result list {right-click for options)

Figure 5.30 Dataset splitting in WEKA



92

2) Click start and wait for WEKA to generate the result as it may take
some time. As shown in Figure 5.31 below, the information generated
such as the time taken for the model to be build, Summary for each
instance, Performance for each evaluation metrics and the Confusion

Matrix.

& Weka Explorer — [m] X

Preprocess  Classify  Cluster  Associate  Selectattributes  Visualize

Classifier

Choose |48 -C0.25-M2

Test options Classifier output
() Use training set

() Supplied test set Set.

N Time taken to build model: 129.22 seconds
(_) Cross-validation Folds | 10

(®) Percentage split % |70 == Evaluation on test split —=

More options... Time taken to test model on test split: 0.42 seconds

(Mom) Label V| == Summary =—
Start Stop Correctly Classified Instances 105659 93.2735 3

Result list (right-click for options] 791l 5.7
== Happa statistic 06056

Mean absolute error 0.0867

Root mean squared error 0.236

Relative absolute error 41,2784 3

Root relative squared error 75.4325 3

Total Number of Instances 117610

== Detailed Rccuracy By Class —=

TP Rate FP Rate Precision Recall F-Measure MCC ROC RArea PRC Area Class

0.930 0.453 0.946 0.930 0.963 0.617 0.916 0.934 Ransomware
0.547 0.020 0.775 0.547 0.642 0.617 0.916 0.667 Benign
Weighted RAvg. 0.933 0.405 0.4927 0.933 0.928 0.617 0.916 0.94%

== Confusion Matrix =—

a b <-- classified as
102620 2050 | a = Ransomware
5861 7079 | b = Benign

Figure 5.31 Evaluation Metrics result for Decision Tree in WEKA
5.8.2 Step 7: Generate Result for ORANGE

1) Once the classification algorithm has been chosen, we will evaluate it
using the evaluation metrics. Navigate to the “Evaluate” section and
connect the node to the “Test and Score” widget as shown in Figure
5.32 below. Click on the Test and Score to edit the configuration of the

model and set the training to be 70:30 ratio.

]| Transform | & Testand Score (0% complete) - Orange - [m] X
p g
L | vsuaze O Cross validaton — A ——
o —
5| Moce e o s Modd AUC | CA Fi  Prec Recall MCC -
o
322 Evaluate M stratified e
A Cross validation by feature
A - |- g
Test and Cenfusior ROC
Seor Predictions. Matr Anslysis
Performance  Calibration
Curve Plot
4 ‘ Unsupervised Compare models by: |Area undr ROG aurve S Neglghle diff: o0
Tree
Tree

Figure 5.32 Dataset splitting in Orange



5.9

93

2) The percentage shows the progress of building and evaluation of the

chosen classification model as shown in Figure 5.33 below.

@ Untitled * - Orange
File Edit View Widget Window Options Help

Test and Score
Running
7%

f-.’{:' ‘ Unsupervised

Figure 5.33 Completion percentage of Test and Score process

3) After reaching 100% of completion the result will be generated as

shown in Figure 5.34 below.

i Testand Score - Orange — o %

(O Cross validation Evaluation results for target |{None, show average over dasses)

Number of folds: | 5 > BModal ALC ___imh Ed Riac Pacall hice -
[] Stratified

(! Cross validation by feature

Tree 0.539 0.849 0.845 0842 0.249 0194

(® Random sampling

Repeat train/test: 5: ¥ {
Training set size: l7"0 %TI
Stratified

) Leave one out

Figure 5.34 Evaluation Metrics result for Decision Tree in Orange
Conclusion

This chapter focuses on the activities to implement the research. Same steps
will be taken for other classification algorithm Random Forest, Support VVector
Machines (SVM), Naive Bayes and each dataset splitting ratio 50:50, 70:30,
90:10. The reason for various dataset splitting as discussed in previous Chapter
3 critical review section, which is to improve the previous research work that
only using 50:50 ratio. Other than using the method of 2/3 fraction equivalent
to 70:30 for splitting the dataset as recommended by (Dobbin and Simon,
2011), we will expand the research by considering various ratios and
classification algorithms. Each comparison will be discussed and evaluated in
the next Chapter 6.



94

CHAPTER 6: TESTING AND EVALUATION

6.0 Introduction

The previous chapter focuses on the implementation of the research which
involves configuring the machine learning tools to align with the designated
algorithms, processing the dataset and starting the learning process by building the
machine learning model. This chapter will explain about the testing and analysis after
the machine learning model is created. The testing includes a comprehensive
evaluation that involves experimenting with diverse dataset testing samples. It's a
crucial step as it allows us to analyze the model performance towards different dataset
characteristics. Following the experimental results, analysis will be made to evaluate
the model performance according to the evaluation metrics. This chapter is crucial to
measure the performance of the model and discuss whether different datasets size may
influence the accuracy of the model. Chapter 6 activities are mapped based on the
research methodology Phase 6 Analyze the information and Phase 7 Documenting
Result.



6.1

95

Test Plan Strategy

Test Plan
|
A) Unbalanced vs . C) Train and Test
Balanced B) Sample Size Ratio
Unbalanced Balanced 1000 10 000 Train: 50% | Test: 50% Train: 90% Test]10%
dataset dataset Samples Samples
5000
Samples Train: 70% Test: 30%

Figure 6.1 Test Plan Strategy

Based on Figure 6.1 we have constructed three test plan with purpose
to observe the classification techniques behavior under diverse condition. To
be specific, the aspects include testing for a) unbalance vs balanced dataset b)
various sample sizes c) various ratio of training and test. Test Plan A is
expanded to consider not only the unbalanced dataset but also the balanced
dataset which is inspired by (Alsoghyer et al., 2020), (Almomani et al., 2021),
and (Mercaldo, 2021). Previous authors only consider 1000 balanced samples
precisely 500 Ransomware samples and 500 Benign samples. Therefore, we
will improve the previous research by considering to expand the dataset for
1000, 5000 and 10 000 samples. This is because, according to the findings of
research by (Ajiboye et al., 2015) in the paper titled "Evaluating The Effect Of
Dataset Size On Predictive Model Using Supervised Learning Technique,"” it
is evident that enhancing the results can be achieved through dataset size which
motivates our research plan B. For test plan C, as suggested by (Dobbin and
Simon, 2011) the recommended amount of training and testing ratio is 70:30.
However, an additional ratio was added to the experiment with the purpose of

expanding our testing scope.




96

6.1.1 Test Plan Flowchart

Conduct Test PLAN A
(Unbalanced vs Balanced)

l |

Unbalanced Balanced
Dataset Dataset

| |
l

Analyze result and make
Conclusion A. Proceed Test B
with conclusion A

l

Conduct Test PLAN B
(Sample Size)

r l ¥

1000 samples 5000 samples 10 000 samples

h

Analyze result and make
Conclusion B. Proceed Test C
with conclusion B

|

| Conduct Test PLAN C
(Train and Test ratio)

I I l 1 1

10:90 30:70 50:50 70:30 90:10

¥

Analyze Result and make
overall conclusion

Figure 6.2 Flowchart Conducting Test Plan

The suggested flowchart illustrates an approach for improving the accuracy of
machine learning models based on combining ideas from previous research, as
discussed in section 6.1. It begins by determining whether a balanced or imbalanced
dataset produces greater results and proceed Test Plan B with outcome/conclusion of
Test Plan A. Based on conclusion B, we will proceed with Test Plan C and make

overall conclusion which is explain in section 6.6 Significant Results.



97

6.1.2 Sub-sampling Ransomware Dataset

-Selectorcre X | & Sub-Sampling BitcoinHei: X

@ O D localhos

= KaliTools  # Kali Docs Kali Forums e\ Kali NetHunter % Exploit-DB % Google Hacking DB OffSec Virus

“~ Jupyter Sub-Sampling BitcoinHeist Ransomware Dataset Last Checkpoint: 19 minutes ago (unsaved ch

File Edit View Insert Cell Kernel Widgets Help

B |+ % & B4+ | pRuin B C W | Code v | =

In [1]: import pandas as pd
In [2]: data = pd.read csv('BitcoinHeistRansomware.csv')

In [3]: ransomware data = data[data['label’'] == 'Ransomware’]
benign data = data[data['label'] == 'white']

In [4]: sampled ransomware = ransomware data.sample(n=700, random_state=42)
sampled_benign = benign_data.sample(n=300, random state=42)

In [5]: sampled data = pd.concat([sampled ransomware, sampled benign])

In [6]: sampled data.to csv('1080 Unbalanced BitcoinHeist RANSOMWARE.csv', index=False)

Figure 6.3 Command for Sub-sampling the Ransomware dataset using

Python language in Jupyter Notebook.

Figure 6.3 shows the command for sub-sampling method for Dataset I. The
method is conducted using Python language in Jupyter Notebook. The testing
is done in Kali Linux VMWare workstation since it has a better environment
for Jupyter Sever configuration setup compared to the Windows environment.
In the provided code snippet, the Python panda’s library is utilized to handle a
dataset named BitcoinHeistRansomware.csv.

This dataset is filtered into two categories: 'Ransomware’ and 'white' as the
benign sample. Subsequently, a subset is created by randomly sampling 700
instances from the 'Ransomware' class and 300 instances from the 'white’ class.
The resulting sampled dataset, comprising 1000 instances, is then saved as
'1000_Unbalanced_BitcoinHeist. RANSOMWARE_.csv'. Same code is run
by adjuster the parameter for sampled_ransomware and sample_benign as the

following for Dataset | ( BitcoinHeist Ransomware) :

a) 1000 _Unbalanced_BitcoinHeist. RANSOMWARE _.csv
b) 1000 Balanced_BitcoinHeist RANSOMWARE _.csv



98

c) 5000 Unbalanced_BitcoinHeist. RANSOMWARE_.csv
d) 5000 _Balanced_BitcoinHeist_ RANSOMWARE_.csv

e) 10 000_Unbalanced_BitcoinHeist_ RANSOMWARE_.csv
f) 10000 _Balanced_BitcoinHeist RANSOMWARE_.csv

e - Selectorcre X | B Sub-Sampling BitcoinHei- x| +

O [ localhost

# KaliTools =« KaliDocs Kali Forums e Kali NetHunter % Exploit-DB % Google Hacking DB

" Jupyter Sub-Sampling BitcoinHeist Ransomware Dataset Last Gheckpoint: 22 minutes agy

File Edit View Insert Cell Kernel Widgets Help
B+ @ B 4+ ¥ PR B C W Code v | =

In [7]: data.shape

out[7]: (1048575, 10)

In [8]: data = pd.read csv('1000 Unbalanced BitcoinHeist RANSOMWARE.csv')
In [9]: data.shape

Out[9]: (1690, 10)

In [18]: sampled data class counts = sampled data['label'].value_counts()
print("sampled dataset class counts:")
print(sampled data class_counts)

| Sampled dataset class counts:
| Ransomware 708
white 308

Figure 6.4 Command to show the Ransomware dataset dimension

before and after sub-sampling method

Figure 6.4 shows the command displaying the dimensions for number
of rows and columns of the original dataset which comprises of 1048575
million samples with 10 attributes. The purpose of the sub-sampling is to
counter against the heap size error when loading the dataset into WEKA.
Therefore, this strategy involves working with smaller datasets initially and
gradually increasing the size. Line 10 of the Python code shows the result
distribution of classes in the newly created balanced subset. Sample of code
can be found in Appendix C. Same sub-sampling method is done for all
datasets, BitcoinHeist Ransomware dataset (Dataset I), Android Ransomware
dataset (Dataset I1) and File System Behavior Ransomware Detection dataset
(Dataset I11). Each parameter has been discussed in the previous Chapter 2

section 2.3.3.2 for further understanding.



6.2

Result and Analysis Dataset |

In this section, the results from the project implementation phase are presented. The analysis focuses on identifying the performance of

machine learning algorithms by evaluating the accuracy result using different evaluation metrics tools by expanding the test plan. All the

results for Dataset | focuses on BitcoinHeist and discussion are shown below. Refer Appendix D for others results.

6.2.1

Dataset

1000_Unbalanced
BitcoinHeist

1000_Balanced_
BitcoinHeist

Table 6.1 Evaluation Metrics Result of 1000 BitcoinHeist Samples (50:50)

Evaluation Metric Result of 1000 BitcoinHeist Ransomware Samples for Unbalanced and Balanced Ransomware Detection

: _ . True Positive False Positive | _ mal B T
Algorithms | Precision ‘ Recall F-Measure | Overall Accuracy
| Rate Rate
Decision Tree E 0.930 0.075 0932 | 0930 | 0931 93.00%
Random Forest 0.810 . 0.424 ' 0.843 0810 | 0.781 81.00%
Naive Bayes 0770 | 0518 | 0820 | 0770 _: 0.719 77.00%
LibSVM 0.690 0.696 0.481 0.690 0.567 69.00%
SMO | 0.916 | 0.161 | 0.917 | 0.916 0.914 91.60%
‘Decision Tree | 0938 | 0065 | 0940 0938 | 0.938 93.80%
Random Forest 0.926 0.078 0.935 0.926 0.925 92.60%
Naive Bayes 0.828 0.165 0.862 0.828 0.825 82.80%
LibSVM 0.642 0.373 0.730 0.642 0.599 64.20%
SMO 0.940 0.059 0.941 0.940 0.940 94.00%(Best)




100

Table 6.1 shows the evaluation metrics result of 1000 BitcoinHeist Samples. In this experiment the machine learning classifiers are
tested for two scenarios: unbalanced and balanced ransomware samples. 1000 _Unbalanced_BitcoinHeist Dataset consists of 700
ransomware samples and 300 benign samples (referred to as "white"). Whereas 1000 Balanced BitcoinHeist Dataset consists of 500
ransomware samples and 500 benign samples (referred to as "white"). The purpose of these two datasets is to identify the performance
between balanced and unbalanced ransomware datasets of 1000 samples. For each case, the following classification algorithms were
applied, and their related evaluation metrics were calculated.

Based on the result as shown in Table 6.1, for the unbalanced scenario, the Decision Tree achieved the highest True Positive Ratio
among all classifiers which is 0.930. The result indicated its effectiveness to correctly identified ransomware samples thus giving the highest
precision of 0.932. The False Positive is relatively lowest among all at 0.075% suggesting that it is classifying non-ransomware (white)
instances with a high level of accuracy which is 93.00 %.

For the case of balanced scenario, it shows that the Support Vector Machine with Polynomial Kernel (SMO) is the best classifier
with highest accuracy 94.00%. It achieved the highest True Positive Ratio among all classifiers which is 0.940 which indicated its
effectiveness to correctly identified ransomware sample. The False Positive is relatively lowest among all at 0.059 suggesting that it is

classifying non-ransomware (white) instances with a high level of precision of 0.941.



Accuracy of Classification Models for 1000
BitcoinHeist samples

100
90
80
7
6
5
a4
3
2
1

LibSVM

Accuracy (%)
© & o o o o

o o

Classification Models

B 1000_Unbalanced_BitcoinHeist B 1000_Balanced_BitcoinHeist

Figure 6.5 Graph Accuracy for 1000 BitcoinHeist Samples (50:50)

Figure 6.5 shows the Graph Accuracy for 1000 BitcoinHeist Samples for
both cases. The graph is important to provide a clear visual representation of
the model performance between the unbalanced and balanced scenarios. The
graph illustrates a noticeable increase in accuracy across four models,
specifically Decision Tree J48, Random Forest, Naive Bayes, and Support
Vector Machine with Polynomial Kernel (SMO), for transition from the
unbalanced scenario to the balanced scenario. As conclusion machine learning
algorithms perform better across multiple metrics in the balanced case, where
the class distribution is equal. This is because a balanced dataset gives
classifiers a more equal representation of both classes, allowing the model to

learn and classify more successfully.



6.2.2 Evaluation Metric Result of 5000 BitcoinHeist Ransomware Samples for Unbalanced and Balanced Dataset Ransomware Detection

Table 6.2 Evaluation Metrics Result of 5000 BitcoinHeist Samples (50:50)

Dataset Algorithms yTigye Positive | False Positive Precision Recall | F-measure Overall Accuracy
Rate Rate

Decision Tree 0939 0045 | 0944 | 0939 | 0.940 93.88 %

F@ndom Forest 0.810 > _0.430 0847 | 0.810 0.779 Bl 81.00%

5000_Unbalanced_ “\.i/0 Baves 0.887 0.239 0895 | 0.887 0.880 88.68%
BitcoinHeist - | TS | B W oW | || |

LibSVM | 0.698 0.667 0662 0698 | 0596 |  69.84%

SMO 0962 0.074 0962 = 0962 = 0962 | 96.2%

Decision Tree | 0.950 0.051 0952 | 0950 | 0.950 95.04%

Random Forest | 0.959 0043 | 0962 | 0959 | 0.959 95.88%

2000_Balanced_ ' \zive payes | 0.908 0092 | 0908 | 0908 | 0908 |  90.76%
BitcoinHeist P ] ] 3 L - & b > |

LibSVM 't 0637 0373|0691 | 0.637-+ | ~0:606 63.72%

SMO 0.966 0.034 0.966 0.966 | 0.966 96.56%(Best)




103

Table 6.2 shows the evaluation metrics result of 5000 BitcoinHeist Samples. In this experiment the machine learning classifiers are
tested for two scenarios: unbalanced and balanced ransomware samples. 5000 Unbalanced BitcoinHeist Dataset consists of 3500
ransomware samples and 1500 benign samples (referred to as "white"). Whereas 5000 _Balanced_BitcoinHeist Dataset consists of 2500
ransomware samples and 2500 benign samples (referred to as "white™). The purpose of these two datasets is to identify the performance
between balanced and unbalanced ransomware datasets of 5000 samples. For each case, the following classification algorithms were
applied, and their related evaluation metrics were calculated.

Based on the result as shown in Table 6.2, for the unbalanced scenario, Support VVector Machine with Polynomial Kernel (SMO)
achieved the highest True Positive Ratio among all classifiers which is 0.962. The result indicated its effectiveness to correctly identified
ransomware samples thus giving the highest precision of 0.962 as well. Despite the False Positive for SMO being the second lowest among
all at 0.074, it has the highest Precision, Recall and F-measure value at 0.962 which contributes to its being the highest accuracy of 96.2%
among all models.

For the case of the balanced scenario, it is noticeable that the Support Vector Machine with Polynomial Kernel (SMO) maintains its
position as the most effective classifier, reaching the accuracy of 96.56. It achieved the highest True Positive Ratio among all classifiers
which is 0.966 which indicated its effectiveness to correctly identified ransomware sample. The False Positive is relatively lowest among

all at 0.034 suggesting that it is classifying non-ransomware (white) instances with a high level of precision of 0.966.



Accuracy of Classification Models for 5000
BitcoinHeist samples

96.56
95.04 95.88 96.2
93.88
100 89.68 90.76
90 81
80 69.84
R 63.72
£ 60
Z
o 50
3
3 40
<
30
20
10
0
148 RF NB LibSVYM SMO

Classification Models

B 5000_Unbalanced_BitcoinHeist i 5000_Balanced_BitcoinHeist

Figure 6.6 Graph Accuracy for 5000 BitcoinHeist Samples (50:50)

Figure 6.6 shows the Graph Accuracy for 5000 BitcoinHeist Samples for
both cases. The graph illustrates a noticeable increase in accuracy across four
models, specifically Decision Tree J48, Random Forest, Naive Bayes, and
Support Vector Machine with Polynomial Kernel (SMO), for transition from
the unbalanced scenario to the balanced scenario. It can be highlight that the
performance of Naive Bayes has significantly increase for 5000 samples
(88.68% and 90.76%) compared to the previous 1000 samples (77% and
82.8%). This shows that the Naive Bayes model performance increases as the
sample size increase to 5000 samples. Whereas for three others, Decision Tree
J48, Random Forest, SMO maintain its good performance with slight
increments in accuracy. As conclusion most of machine learning algorithms
which are Decision Tree J48, Random Forest, Naive Bayes, and SMO perform
better across multiple metrics in the balanced case, where the class distribution
is equal. This is because a balanced dataset gives classifiers a more equal
representation of both classes, allowing the model to learn and classify more
successfully.



6.2.3 Evaluation Metric Result of 10 000 BitcoinHeist Ransomware Samples for Unbalanced and Balanced Dataset Ransomware
Detection

Table 6.3 Evaluation Metrics Result of 10 000 BitcoinHeist Samples (50:50)

Dataset Algorithms TrueRlzz:ltlve Falsiqlzi)sltlve Precision Recall F-measure AOCZE:Z::Iy
DecisionTree | 0941 | 0032 | 0949 0.941 0.942 94.06%
i Random Forest 0.775 0.521 0.830 0.775 0.723 77.46%
10000 Unbalanced | NaiveBayes | 0912 0142 | 0912 | 0912 | o9m 91.24%
. LibSVM | 0701 | 0665 | 0.661 i 0701 | = 0.603 70.14%
SMO | 0972 0.053 0972 | 0972 0.972 97.18%
Decision Tree | 0.952 0.047 0954 | 0952 | 0952 95.2%
Random Forest | 0965 | 0035 | 0.967 0.965 0.965 96.46%
10000_Balanced_ | NaiveBayes = 0548 | 0460 0713 | 0548 | 0436 54.84%
BitcoinHeist | jhsym 0.650 0.346 0.704 |~ 0.650 | - 0,626 64.98%
. SMO 0.982 0.018 0982 | 092 | 0982  98.16%(Best)




106

Table 6.3 shows the evaluation metrics result of 10 000 BitcoinHeist Samples. In this experiment the machine learning classifiers
are tested for two scenarios: unbalanced and balanced ransomware samples. 10 000_Unbalanced_BitcoinHeist Dataset consists of 7000
ransomware samples and 3000 benign samples (referred to as "white"). Whereas 10 000_Balanced_BitcoinHeist Dataset consists of 5000
ransomware samples and 5000 benign samples (referred to as "white™). The purpose of these two datasets is to identify the performance
between balanced and unbalanced ransomware datasets of 10 000 samples. For each case, the following classification algorithms were
applied, and their related evaluation metrics were calculated.

Based on the result as shown in Table 6.3, for the unbalanced scenario, Support VVector Machine with Polynomial Kernel (SMO)
still maintains its position as the most effective classifier, with the highest True Positive Ratio among all classifiers which is 0.972. The
result indicated its effectiveness to correctly identified ransomware samples. Despite the False Positive for SMO being the second lowest
among all at 0.053, it has the highest Precision, Recall and F-measure value at 0.972 which contributes to its being the highest accuracy of
97.18% among all models.

For the case of the balanced scenario, it is noticeable that the Support VVector Machine with Polynomial Kernel (SMO) remains its
position as the most effective classifier, reaching the greatest accuracy of 98.16%. It achieved the highest True Positive Ratio among all
classifiers which is 0.982 which indicated its effectiveness to correctly identified ransomware sample. The False Positive is relatively lowest

among all at 0.018 suggesting that it is classifying non-ransomware (white) instances with a highest level of precision at 0.982.



Accuracy of Classification Models for 10 000
BitcoinHeist samples

g7.18 98.16

o 94.06 952 9646 9994
90 77.46
80 70.14
, 64.98
; 54.84
5
4
3
2
1
148 RF NB SMO

LibSVM

Accuracy (%)
o 0o o o o

o o

Classification Models

M 10 000_Unbalanced_BitcoinHeist 10 000_Balanced_BitcoinHeist

Figure 6.7 Graph Accuracy for 10 000 BitcoinHeist Samples (50:50)

Figure 6.7 shows the Graph Accuracy for 10 000 BitcoinHeist Samples for
both cases. The graph illustrates a noticeable increase in accuracy across three
models, specifically Decision Tree J48, Random Forest and Support Vector
Machine with Polynomial Kernel (SMO), for transition from the unbalanced
scenario to the balanced scenario. On the other hand, Naive Bayes and LibSVM
shows inconsistency of result as the sample size increase from 5000 to 10 000
samples. Whereas for three others, Decision Tree J48, Random Forest, SMO
maintain its good performance with slight increments in accuracy.

As conclusion most of machine learning algorithms which are Decision
Tree J48, Random Forest, Naive Bayes, and SMO perform better across
multiple metrics in the balanced scenario, where the class distribution is equal.
This is because a balanced dataset gives classifiers a more equal representation
of both classes, allowing the model to learn and classify more successfully. It
also can be concluded that, the Support Vector Machine with Polynomial
Kernel (SMO) has achieved the best performance for all sample size 1000,
5000 and 10 000 BitcoinHeist samples.



108

6.2.4 Accuracy of Classification Model Across Different Sample Sizes

Accuracy of Classification Modes Across Different Sample

Sizes
95.05 95.2 =5 96.46

100 93.8 92.6_amm 90.76

o0 82.8

80 64.98
20 642 63.72

54.84

60

40

30

20

10

0
48 RF NB

98.16
94 965‘ |
SMO

W 1000 BitcoinHeist Samples | 5000 BitcoinHeist Samples M 10 000 BitcoinHeist Samples

Accuracy(%)
8

J

LibSVM

Classification Models

Figure 6.8 Graph Accuracy for Classification Model Across Different Sample

Sizes of BitcoinHeist Ransomware (50:50)

Figure 6.8 shows the Graph Accuracy for Classification Model Across
Different Sample Sizes of BitcoinHeist Ransomware. The results allow us to visualize
the behavior of classification models for the sample of 1000, 5000 and 10 000 by doing
the sub-sampling method to prevent heap size issues in WEKA. Based on the results,
as the samples increases from 1000 to 5000 and then to 10 000, Decision Tree J48
Random Forest and Support Vector Machine with Polynomial Kernel (SMO) display
an incremental rise in accuracy. To be specific Decision Tree J48 shifted from 93.8%
up to 95.05% and peaked at 95.20%. Random Forest on the other hand, started with
92.60% increase up to 95.88% and peaked at 96.46%. It can be seen that, Naive Bayes
and LibSVM displays sensitivity to class distributions with poor performance. In this
test plan, the Support Vector Machine with Polynomial Kernel (SMO) performed best
compared to others starting with 94.00% increase up to 96.56% and peaked at 98.16%.




109

6.2.5 Accuracy of Classification Model for Different Ratio

Accuracy of Classification Models Across Different Ratio

94 95.67 94.67 95 g4 96

100 93.897. 94

90

80

70

60

50

40

Accuracy(%)

30
20

10

50:50 70:30 90:10

Train and Test Ratio

WJ48 WRF MNB i LibSVM mSMO

Figure 6.9 Graph Accuracy for 1000 BitcoinHeist Samples across Different
Ratio

Figure 6.9 shows the Graph Accuracy for 1000 BitcoinHeist samples across
different ratios. The results allow us to visualize the behavior of classification models
for the ratio of 50:50, 70:30 and 90:10 train and test ratio. Based on the results, as the
class ratios move from 50:50 to 70:30 and then to 90:10, both Decision Tree J48 and
Support Vector Machine with Polynomial Kernel (SMO) display an incremental rise
in accuracy. To be specific Decision Tree J48 shifted from 93.8% up to 94% and
peaked at 95%. Whereas SMO experienced a slight increase from 94% up to 94.67%
and peaked at 96%. On the other hand, LibSVM displays sensitivity to class
distributions with limited improvements as the performance are all below 70% of
accuracy. While it’s true that both Random Forest (RF) and Naive Bayes (NB)
experience increase in accuracy when transitioning from 50:50 to 70:30 ratio.
However, decrease in accuracy can be seen when moving to the 90:10 ratio, which

Random Forest and Naive Bayes scored down to 94% and 68% respectively.



110

Accuracy of Classification Models Across Different Ratio

96.73 96.8 97.4

o504 95-88 96.56 g5.33 96.27 952 _

100 90.76
90

4.6

80

70

60

50

40

Accuracy(%)

30
20

10

50:50 70:30 90:10

Train and Test Ratio

W48 EMRF ENB mLibSVM ®BSMO

Figure 6.10 Graph Accuracy for 5000 BitcoinHeist Samples across Different
Ratio

Figure 6.9 shows the Graph Accuracy for 5000 BitcoinHeist samples across
different ratios. The results allow us to visualize the behavior of classification models
for the ratio of 50:50, 70:30 and 90:10 train and test ratio. Based on the result, the
SMO model regularly outperforms in all class ratios. It can be highlighted that Support
Vector Machine with Polynomial Kernel (SMO) consistently leads with the highest
accuracy levels across all ratios. On the other hand, the performance of Naive Bayes
(NB) and LibSVM display sensitivity to class distributions. Their accuracy shows
limited improvements with Naive Bayes decreasing for each ratio and LibSVM
performance are all below 70% of accuracy. Whereas both the Decision Tree J48 and
Random Forest models improve in accuracy as the 50:50 ratio is changed to 70:30.
Decision Tree J48 improved from 95.04% to 95.33%, while Random Forest improved
from 95.88% to 96.27%. However, a slight decrease in accuracy can be seen when

moving to the 90:10 ratio, with Decision Tree J48 scoring down to 95.20%.



111

Accuracy of Classification Models Across Different Ratio

96.46 98.16 98.67 98.47 98.4 99.1
100 .

90
80
70
60

50

Accuracy(%)

40

30

20

10

50:50 70:30 90:10
Train and Test Ratio

HJ48 EWRF ENB [LbSVM mSMO

Figure 6.11 Graph Accuracy for 10 000 BitcoinHeist Samples across
Different Ratio

Figure 6.11 shows the Graph Accuracy for 10 000 BitcoinHeist samples across
different ratios. The results allow us to visualize the behavior of classification models
for the ratio of 50:50, 70:30 and 90:10 train and test ratio. Based on the result, the
SMO model regularly outperforms in all class ratios. Specifically, SMO achieves a
98.16% accuracy at a 50:50 ratio. This pattern continues with an accuracy of 98.47%
ata 70:30 ratio and peaks at 99.1% at a 90:10 ratio. On the other hand, the performance
of Naive Bayes (NB) and LibSVM display sensitivity to class distributions, with their
accuracy showing limited improvements which are all below 70% of accuracy. Both
Decision Tree J48 and Random Forest models exhibit an increase in accuracy as the
transition progresses from the 50:50 ratio to the 70:30 ratio. However, a slight decrease
in accuracy is observed when moving to the 90:10 ratio. Consequently, considering
the accuracy trends observed in all samples (1000, 5000 and 10 000) it can be
concluded that, most machine learning classification model achieve better

performance for testing ratio starting with 70% and above.



6.2.6 Comparison between WEKA and Orange

Table 6.4 Summary of results for Dataset | TPR, FPR, Precision, Recall, F-measure and Accuracy in WEKA (70:30)

. True Positive | False Positive

Sample Size Algorithms Rate Rate Precision Recall F-measure Overall Accuracy

Decision Tree 0.940 0.059 0.940 0.940 0.940 94.00%

Random Forest 0.957 0046 | 0957 0.957 0.957 95.67% (Best)
1000 Naive Bayes | 0833 0144 | 0877 | 0833 | 0831 83.33%
LibSvM | 0.663 0381 | 0732 e 0663 |  0.626 66.33%
SMO 0947 0.048 0.950 0.947 0.947 94.67%
Decision Tree | 0.953 0.047 0955 | 0953 |  0.953 95.33%
Random Forest | 0.963 0037 | 0.965 0.963 0.963 96.27%
5000 Naive Bayes 0.846 0154 | 0876 0846 | 0843 84.60%
LibSVM 0.632 0368 | 0680 | 0632 | . 0606 63.20%

SMO 0967 0.033 0.968 | 0.967 0.967 96.73% (Best)
Decision Tree | 0.953 ooud. MALSY STA det LA K 95.27%

Random Forest 0.987 0.014 0.987 0.987 0.987 98.67% (Best)
10 000 Naive Bayes 0.553 0.440 0.716 0.553 0.453 55.33%
LibSVM 0.660 0.344 0.709 0.660 0.637 65.97%
SMO 0.985 0.015 0.985 0.985 0.985 98.47%




Table 6.4 shows an in-depth overview of the evaluation's results in WEKA
obtained by using balanced BitcoinHeist datasets with sample sizes of 1000, 5000, and
10,000, all with a 70:30 ratio. The aim of this table is to present a comprehensive
summary of several classification algorithms' performance measures, with a focus on
True Positive Rate (TPR), False Positive Rate (FPR), precision, recall, F-measure, and
overall accuracy. It can be highlighted that, Random Forest obtains the highest True
Positive Rate (TPR) of 0.957 and the lowest False Positive Rate (FPR) of 0.046 with
1000 samples. These numbers represent the algorithm's ability to detect positive cases
correctly while minimizing false positives. As the dataset size increases to 5000
samples, Random Forest experienced a slight increase from 95.67% to 96.27% and
peaked at 98.67% for 10 000 BitcoinHeist samples as the best classification

algorithms.

It can be concluded that, for WEKA Random Forest (RF) approach consistently
outperforms other classification algorithms on balanced BitcoinHeist datasets with
variable sample sizes and a 70:30 ratio. With accuracy scores of 95.67%, 96.27%, and
98.67% for 1000, 5000, and 10,000 samples, respectively remains the best
classification algorithms. Following closely behind, the Support Vector Machine with
Polynomial Kernel (SMO) performs successfully, with the highest accuracy of 96.73%
for 5000 samples. These findings highlight the reliability of Random Forest and the
flexibility of SMO for effective ransomware detection over an extensive selection of

dataset sizes.



Table 6.5 Summary of results for Dataset | TPR, FPR, Precision, Recall, F-measure and Accuracy in ORANGE (70:30)

True Positive

False Positive

Sample Size Algorithms Rate Rate Precision Recall F-measure Overall Accuracy

Decision Tree 0.908 0.088 0.910 0.910 0.910 91.00%

1000  Random Forest | 0.892 0.044 0.926 0.924 0.924 92.40% (Best)
Naive Bayes 0.892 0.142 0.875 0.875 0.875 87.50%
i SVM 0802 | 0026 | 0900 0.887 0.887 88.70%
Decision Tree 0.940 0.045 0.948 0.948 0.948 94.80%

. Random Forest 0.933 0030 | 0952 0.951 10951 95.10% (Best)
2000 T aive Bayes 0.910 0185 | 0866 0.862 |  0.862 86.20%
i SVM 0.693 0089 | 087 | 0802 |  0.800 80.20%
Decision Tree 0.936 0.046 0.945 0.945 0.945 94.50%

10000 ~ Random Forest 093 | 0028 | 095 095 | 0.955 95.50% (Best)
Naive Bayes 0.912 0183 | 0868 0.864 | 0.864 86.40%
i SVM 0619 0.073 0802 | 0773 | 0.767 77.30%




Table 6.5 shows an in-depth overview of the evaluation's results in ORANE
obtained by using balanced BitcoinHeist datasets with sample sizes of 1000, 5000, and
10,000, all with a 70:30 ratio. The aim of this table is to present a comprehensive
summary of several classification algorithms' performance measures, with a focus on
True Positive Rate (TPR), False Positive Rate (FPR), precision, recall, F-measure, and
overall accuracy. It can be highlighted that, the ORANGE examination of balanced
BitcoinHeist datasets with a 70:30 ratio across three sample sizes demonstrates the
consistent increase of the Random Forest classifier performance. Its accuracy, in
particular, gradually rises by around at the beginning at 92.40% for 1000 samples,
progressing to 95.10% for 5000 samples, and finally peaked at 95.50% accuracy for
10,000 samples. This rise in accuracy reflects its ability to consistently perform

accurate classification as the dataset size grows.

The Decision Tree classifier follows in second best performance in ORANGE
closely followed by the Random Forest, and its accuracy shows a similar rising trend
across various sample sizes. It begins with an accuracy of 91.00% for 1000 samples,
gradually increases to 94.80% for 5000 samples, and then maintains a little lower
accuracy of 94.50% for 10,000 samples. This pattern shows a continuous 3.8%
increase from the smallest to the largest sample. This development emphasizes the
Decision Tree's ability to make accurate predictions. In conclusion, Random Forest

performance outperform all others in ORANGE and followed by the Decision Tree.



6.3  Result and Analysis Dataset 11
In this section, the results from the project implementation phase are presented. All the results for Dataset Il focuses on Android

Ransomware and discussion are shown below:
6.3.1 Evaluation Metrics Result of 1000 Android Samples for Unbalanced and Balanced Ransomware Detection

Table 6.6 Evaluation Metrics Result of 1000 Android Samples (50:50)

) . True Positive | False Positive B | ’
Dataset Algorithms | Precision Recall | F-Measure |Overall Accuracy
I Rate Rate
Decision Tree i 0.578 0.437 0615 | 0578 | 0532 57.80%
1000_Unbalanced_| Random Forest | 0.706 0.296 0.706 0.706 0.706 70.60%
Android Naive Bayes 0552 | 0466 | 0539 | 0552 | 048l 55.20%
 LibSVM 0502 | 0476 | 0592 | 0502 | . 0369 50.20%
SMO | 0652 | 0352 | 0654 | 0652 | 0649 65.20%
DecisionTree | 0604 | 0694 | 0694 | 0694 | 0694 69.40%
Random Forest 0.722 0.550 0.700 0.722 0.676 72.20% (Best)

1000A—r?§r'g‘i”dced— Naive Bayes 0.560 0.344 0.676 0.560 0.574 56.00%
LibSVM 0.696 0.671 0.652 0.696 0.590 69.60%
SMO 0.710 0.614 0.688 0.710 0.637 71.00%




117

Table 6.6 shows the evaluation metrics result of 1000 Android Samples. In this experiment the machine learning classifiers are
tested for two scenarios: unbalanced and balanced Android Ransomware samples. 1000 Unbalanced Android Dataset consists of 700
ransomware samples and 300 benign samples (referred to as "Benign™). Whereas 1000_Balanced_Android Dataset consists of 500
ransomware samples and 500 benign samples (referred to as "Benign"). The purpose of these two datasets is to identify the performance
between balanced and unbalanced ransomware datasets of 1000 Android samples. For each case, the following classification algorithms
were applied, and their related evaluation metrics were calculated.

Based on the result as shown in Table 6.6, for the unbalanced scenario, the Random Forest achieved the highest True Positive Ratio
among all classifiers whichis 0.706. The result indicated its effectiveness to correctly identified ransomware samples thus giving the highest
precision of 0.706. The False Positive is relatively lowest among all at 0.296 suggesting that it is classifying non-ransomware (Benign)
instances with a high level of accuracy which is 70.60 %.

For the case of balanced scenario, Random Forest maintains its good performance as the best classifier with highest accuracy
72.20%. It achieved the highest True Positive Ratio among all classifiers which is 0.722 which indicated its effectiveness to correctly
identified ransomware sample. Despite the False Positive being the second lowest among all at 0.550, it has the highest Precision and Recall
values which contributes to its being the highest accuracy of 72.20% among all models.



Accuracy of Classification Models for 1000

Android samples
69.4 71
65.2
lm I
148 SMO

[ele}
o

70.6 722

i I552 |
RF NB

Classification Models

~
o

Accuracy (%)
N w B Ul [=)]
o © © o o

=
o

LibSVM

69.6
SOZI
B 1000_Unbalanced_Android M 1000_Balanced_Android
Figure 6.12 Graph Accuracy for 1000 Android Samples (50:50)

Figure 6.12 shows the Graph Accuracy for 1000 Android Samples for both
cases. The tabular result has been transformed into a graph which is important to
provide a clear visual representation of the model performance between the
unbalanced and balanced scenarios. The graph illustrates a noticeable increase in
accuracy across all five models, specifically Decision Tree J48, Random Forest,
Naive Bayes, LibSVM and Support Vector Machine with Polynomial Kernel
(SMO), for transition from the unbalanced scenario to the balanced scenario.

To be specific, a significant improvement in accuracy can be seen for
Decision Tree J48 and LibSVM which are 57.80% to 69.40% and 50.20% to
69.60%. On the other hand, support Vector Machine with Polynomial Kernel
(SMO) experience increased in accuracy by 5.8%. Both Random Forest and Naive
Bayes experience slight increase in accuracy 1.6% and 0.8% respectively.

As conclusion machine learning algorithms perform better across multiple
metrics in the balanced case, where the class distribution is equal for all
classification model of 1000 Android samples. This is because a balanced dataset
gives classifiers a more equal representation of both classes, allowing the model to
learn and classify more successfully.



6.3.2

Table 6.7 Evaluation Metrics Result of 5000 Android Samples (50:50)

Evaluation Metric Result of 5000 Android Samples for Unbalanced and Balanced Dataset Ransomware Detection

True Positive

False Positive

Dataset Algorithms Precision Recall F-Measure | Overall Accuracy
Rate Rate ‘ ‘
Decision Tree ‘ 0.584 0.421 0587 | 0584 J 0.577 58.36%
5000_Unbalanced_ Random Forest | 0.704 0209 | 0706 | 0704 f 0.702 70.36%
Android Naive Bayes = 0.602 0409 | 0663 | 0602 | 0556 60.2%
LibSVM | 0.506 0476 | 0557 | 0506 | 0390 50.56%
SMO | 0.674 0.328 0676 | 0674 | 0673 67.44%
Decision Tree | 0.695 0.695 0.695 0.695 0.695 69.48%
Random Forest 0747 | 0439 f—0732 | 0747 0.730 74.72% (Best)

SOOOA—E(;"r'gi”dced— ‘Naive Bayes | 0541 | 0303 | 0701 | 0541 | - 0547 54.08%
LibSVM 0692 | 0.689 0592 0692 0.575 69.16%
UNIMERSITIAEENTRAL MALAY SIAMELAKA 74.00%




120

Table 6.7 shows the evaluation metrics result of 5000 Android Samples. In this experiment the machine learning classifiers are
tested for two scenarios: unbalanced and balanced ransomware samples. 5000_Unbalanced_Android Dataset consists of 3500 ransomware
samples and 1500 benign samples (referred to as "Benign"). Whereas 5000 Balanced Android Dataset consists of 2500 ransomware
samples and 2500 benign samples (referred to as "Benign™). The purpose of these two datasets is to identify the performance between
balanced and unbalanced ransomware datasets of 5000 samples. For each case, the following classification algorithms were applied, and
their related evaluation metrics were calculated.

Based on the result as shown in Table 6.7, for the unbalanced scenario, Random Forest achieved the highest True Positive Ratio
among all classifiers which is 0.704. The result indicated its effectiveness to correctly identified ransomware samples thus giving the highest
precision of 0.706 as well. The False Positive is relatively lowest among all at 0.299 suggesting that it is classifying non-ransomware
(Benign) instances with a high level of precision of 0.706.

For the case of the balanced scenario, it is noticeable that the Random Forest maintains its position as the most effective classifier,
reaching the accuracy of 74.72%. It achieved the highest True Positive Ratio among all classifiers which is 0.747 which indicated its
effectiveness to correctly identified ransomware sample. Despite the False Positive being the second lowest among all at 0.439, it has the

highest Precision at 0.732 which contributes to its being the highest accuracy of 74.72% among all models.



Accuracy of Classification Models for 5000

Android samples
74
'
SMO

74.72

70.3 69.16
60.2
.08
50.5
RF NB

LibSVM

(o]
o

68.48
i
Jag8

B 5000_Unbalanced_Android H 5000_Balanced_Android

Accuracy (%)
NDow B w @
o © o © o o

=
o

Classification Models

Figure 6.13 Graph Accuracy for 5000 Android Samples (50:50)

Figure 6.13 shows the Graph Accuracy for 5000 Android Samples for both
cases. The tabular result has been transformed into a graph which is important to
provide a clear visual representation of the model performance between the
unbalanced and balanced scenarios. The graph illustrates a noticeable increase in
accuracy across four models, specifically Decision Tree J48, Random Forest,
LibSVM and Support Vector Machine with Polynomial Kernel (SMO), for
transition from the unbalanced scenario to the balanced scenario.

To be specific, Naive Bayes performance shows inconsistency as it
decreases from 60.20% down to 54.08%. On the other hand, an increase in
accuracy can be seen for Decision Tree J48 from 58.36% up to 69.48%, Random
Forest from 70.36% up to 74.72%, significant increase for LibSVM from 50.56%
up to 69.16% and SMO from 67.44% up to 74.00%.

As conclusion machine learning algorithms perform better across multiple
metrics in the balanced case, where the class distribution is equal for four
classification models specifically Decision Tree J48, Random Forest, LibSVM and
Support Vector Machine with Polynomial Kernel (SMO) for 5000 Android
Samples.



6.3.3 Evaluation Metric Result of 10 000 Android Samples for Unbalanced and Balanced Dataset Ransomware Detection

Table 6.8 Evaluation Metrics Result of 10 000 Android Samples (50:50)

True Positive | False Positive
Dataset Algorithms Precision Recall F-Measure | Overall Accuracy
Rate Rate ‘ ‘
Decision Tree‘ 0.660 0.336 0711 | 0.660 J 0.640 66.00%
10000_Unbalanced _i?_andom Forest: 0.726 _0.2? —0.723 | O_.726 f 0.7?6 72.62%
Android Naive Bayes = 0.637 0358 | 0704 | 0637 | 0606 63.68%
LibSVM | 0510 0483 | 0537 | 0510 | 0420 51.02%
SMO | 0,690 0.306 0730 | 0690 | 0.677 69.00%
Decision Tree | 0.698 0698 |  0.698 0.698 0.698 69.80%
Random Forest 0762 0398 | 0751 | 0762 0.751 76.24%
10002?5?:)6:30“‘— ' Naive Bayes | 0571 0294 | 0713 | 0571 = - 0583 57.14%
LibSYM | 0697 0688 | 0623 0697 | 0583 69.66%
INBMERSITh AEKNIKRAL MALAY SIAMELAK A 76.52% (Best)




123

Table 6.8 shows the evaluation metrics result of 10 000 Android Samples. In this experiment the machine learning classifiers are
tested for two scenarios: unbalanced and balanced ransomware samples. 10 000_Unbalanced Android Dataset consists of 7000 ransomware
samples and 3000 benign samples (referred to as "Benign"). Whereas 10 000_Balanced_Android Dataset consists of 5000 ransomware
samples and 5000 benign samples (referred to as "Benign™). The purpose of these two datasets is to identify the performance between
balanced and unbalanced ransomware datasets of 10 000 samples. For each case, the following classification algorithms were applied, and
their related evaluation metrics were calculated.

Based on the result as shown in Table 6.8, for the unbalanced scenario Random Forest still maintains its position as the most effective
classifier, with the highest True Positive Ratio among all classifiers which is 0.726. The result indicated its effectiveness to correctly
identified ransomware samples. The False Positive is relatively lowest among all at 0.273 suggesting that it is classifying non-ransomware
(Benign) instances with a high level of precision of 0.706.

For the case of the balanced scenario, it is noticeable that the Support Vector Machine with Polynomial Kernel (SMO) remains its
position as the most effective classifier, reaching the greatest accuracy of 76.52%. It achieved the highest True Positive Ratio among all
classifiers which is 0.765 which indicated its effectiveness to correctly identified ransomware sample. It has the highest Precision, Recall

and F-measure which contributes to its being the highest accuracy at 76.52%



Accuracy of Classification Models for 10 000
Android samples

76.24 76.52

Accuracy(%)
= N w =y w [=2] ~l co
o o o o o o o o
(=)
()]
(o))
o
(o0
~
N
a
o
W
()]
(o]
PN
ey
wv
=
o
[*)]
o
()]
)
a
W0

(=]

148 RF NB LibSVM SMO

Classification Models

W10 000_Unbalanced_Android 10 000_Balanced_Android

Figure 6.14 Graph Accuracy for 10 000 Android Samples (50:50)

Figure 6.14 shows the Graph Accuracy for 10 000 Android Samples for
both cases. The tabular result has been transformed into a graph which is important
to provide a clear visual representation of the model performance between the
unbalanced and balanced scenarios. The graph illustrates a noticeable increase in
accuracy across four models similar with previous test 5000 samples, specifically
Decision Tree J48, Random Forest, LibSVM and Support Vector Machine with
Polynomial Kernel (SMO), for transition from the unbalanced scenario to the
balanced scenario.

To be specific, Naive Bayes performance shows inconsistency again as it
decreases from 63.68% down to 57.14%. On the other hand, an increase in
accuracy can be seen for Decision Tree J48 from 66.00% up to 69.8%, Random
Forest from 72.62% up to 76.24%, significant increase for LibSVM from
51.02%% up to 69.66% and SMO from 69.00% up to 76.52%.

As conclusion machine learning algorithms perform better across multiple
metrics in the balanced case, where the class distribution is equal for four
classification models specifically Decision Tree J48, Random Forest, LibSVM and
Support Vector Machine with Polynomial Kernel (SMO) for 5000 Android
Samples.



125

6.3.4 Accuracy of Classification Model Across Different Sample Sizes

Accuracy of Classification Modes Across Different Sample
Sizes

76.24 76.52

69.8 74.7
6. 69.48 .
148 RF

Accuracy(%)
N w B wu [e)] ~ o]
o o o o o o

=
o

(]

NB LibSVM SMO
Classification Models

B 1000 Android samples B 5000 Android samples 110000 Android samples

Figure 6.15 Graph Accuracy for Classification Model Across Different

Sample Sizes of Android Ransomware (50:50)

Figure 6.15 shows the Graph Accuracy for Classification Model Across
Different Sample Sizes of Android Ransomware. The results allow us to visualize the
behavior of classification models for the sample of 1000, 5000 and 10 000 by doing
the sub-sampling method to prevent heap size issues in WEKA. Based on the results,
as the samples increases from 1000 to 5000 and then to 10 000, four out of five model
experience increase in accuracy. It includes Decision Tree J48, Random Forest,
LibSVM and Support Vector Machine with Polynomial Kernel (SMO). On the other
hand, the performance of Naive Bayes shows inconsistencies as it deacrease slightly
before increasing up to 57.14%. It can be highlighted that, Support Vector Machine
with Polynomial Kernel (SMO) performance is the best out of all starting at 71.00%

and increasing to 74.00% and peaked at 76.52% as the sample size increases.



126

6.3.5 Accuracy of Classification Model for Different Ratio

Accuracy of Classification Models Across Different
Ratio

co
o

72.67

70.67

Accuracy(%)
w B w1 (2] ~l
& © © o© o

N
=]

=
o

o

50:50 70:30 90:10
Train and Test Ratio

HJ48 HRF ENB mLbSvYM ®ESMO

Figure 6.16 Graph Accuracy for 1000 Android Samples across Different
Ratio

Figure 6.16 shows the Graph Accuracy for 1000 Android samples across
different ratios. The results allow us to visualize the behavior of classification models
for the ratio of 50:50, 70:30 and 90:10 train and test ratio. Based on the results, as the
class ratios move from 50:50 to 70:30 and then to 90:10, Random Forest shows the
best performance as it consistently displays an incremental rise in accuracy. To be
specific Random Forest shifted from 72.2% up to 72.67% and peaked at 77%. Whereas
Decision Tree J48, LibSVM and SMO experienced a slight decrease when
transitioning from 50:50 to 70:30 ratio before increasing for 90:10 ratio. On the other
hand, Naive Bayes displays sensitivity to class distributions with limited

improvements as the performance is all below 60% of accuracy for all ratio 50:50,
70:30 and 90:30.



127

Accuracy of Classification Models Across Different
Ratio

74.72 74 74.6 75.07

Accuracy(%)
] w B ;] [=)) ~l o]
o (=] o o o o (=]

=
[=]

o

50:50 70:30

Train and Test Ratio

HJ48 WRF ENB [LbSVM mSMO

Figure 6.17 Graph Accuracy for 5000 Android Samples across Different
Ratio

Figure 6.17 shows the Graph Accuracy for 5000 Android samples across
different ratios. The results allow us to visualize the behavior of classification models
for the ratio of 50:50, 70:30 and 90:10 train and test ratio. Based on the results, as the
class ratios move from 50:50 to 70:30 and then to 90:10, Support VVector Machine with
Polynomial Kernel (SMO), shows the best performance as it consistently displays an
incremental rise in accuracy. To be specific SMO shifted from 74.00% up to 75.07%
and peaked at 78.20%. Whereas Decision Tree J48, Random Forest experienced a
slight decrease 0.28% and 0.12% when transitioning from 50:50 to 70:30 ratio before
accuracy increases for 90:10 ratio. It can be highlighted that LibSVM displays constant
decrease from 69.16% down to 68.87% and 68.60%. On the other hand, Naive Bayes
still displays sensitivity to class distributions with limited improvements as the
performance is all below 60% of accuracy for all ratio 50:50, 70:30 and 90:30.



128

Accuracy of Classification Models Across Different
Ratio

a0 76.24 76.52 76.07 77.13

70
60
50

40

Accuracy(%)

30

20

10

70:30 90:10

Train and Test Ratio

W48 WRF MNB MlLlibSVM mSMO

Figure 6.18 Graph Accuracy for 10 000 Android Samples across Different
Ratio

Figure 6.18 shows the Graph Accuracy for 10 000 Android samples across
different ratios. The results allow us to visualize the behavior of classification models
for the ratio of 50:50, 70:30 and 90:10 train and test ratio. Based on the results, as the
class ratios move from 50:50 to 70:30 and then to 90:10, Support Vector Machine with
Polynomial Kernel (SMO), shows the best performance as it consistently displays an
incremental rise in accuracy. To be specific SMO shifted from 76.52% up to 77.13%
and peaked at 78.60%. Whereas Random Forest experienced a slight decrease by
0.17% when transitioning from 50:50 to 70:30 ratio before accuracy increases for
90:10 ratio. It can be highlighted that Naive Bayes finally improves its accuracy
compared to previous 1000 and 5000 samples as it displays constant increase from
57.14% up to 69.00% and 69.9%. While it’s true that both Decision Tree J48 and
LibSVM experience increase in accuracy when transitioning from 50:50 to 70:30 ratio.
However, decrease in accuracy can be seen when moving to the 90:10 ratio, which
Decision Tree J48 and LibSVM scored down to 69.60% and 69.90% respectively.




6.3.6

Comparison between WEKA and Orange

Table 6.9 Summary of results Dataset Il for TPR, FPR, Precision, Recall, F-measure and Accuracy in WEKA (70:30)

. True Positive | False Positive

Sample Size Algorithms Rate Rate Precision Recall F-measure Overall Accuracy

Decision Tree 0.663 0.663 0.663 0.663 0.663 66.33%

Random Forest 0.727 0509 | 0747 0.727 0.675 72.67% (Best)
1000 Naive Bayes | 0.560 0350 | 0658 | 0560 | 0567 56.00%
LibSVM | 0.660 0646 | 0592 e 0660 | 0550 66.00%
SMO —r 0.549 0.721 0.707 0.642 70.67%
Decision Tree | 0.692 0.692 0692 | 0692 | 0692 69.20%
Random Forest |  0.746 0.409 0.733 0.746 0.735 74.60%
5000 Naiive Bayes 0.525 0301 | 0.699 0.525 0527 52.53%
LibSVM 0.689 0680 | 0606 | 0689 | . 0577 68.87%

SMO 0751 0.474 0.740 | 0.751 0.722 75.07% (Best)
Decision Tree | 0.702 0.702 oY SIA IWE LA K A2 70.20%
Random Forest 0.761 0.386 0.750 0.761 0.753 76.07%
10 000 Naive Bayes 0.690 0.369 0.711 0.690 0.698 69.00%
LibSVM 0.701 0.683 0.637 0.701 0.596 70.10%

SMO 0.771 0.462 0.765 0.771 0.744 77.13% (Best)




Table 6.9 shows an in-depth overview of the evaluation's results in WEKA
obtained by using balanced Android datasets with sample sizes of 1000, 5000, and
10,000, all with a 70:30 ratio. The aim of this table is to present a comprehensive
summary of several classification algorithms' performance measures, with a focus on
True Positive Rate (TPR), False Positive Rate (FPR), precision, recall, F-measure, and
overall accuracy. It can be highlighted that, Random Forest obtains the highest True
Positive Rate (TPR) of 0.727 and which contributes to the highest precision of 0.747
with 1000 samples. These numbers represent the algorithm's ability to detect positive
cases correctly while minimizing false positives. As the dataset size increases to 5000
samples, it can be seen Support Vector Machine with Polynomial Kernel (SMO)
emerge as the best performance from 70.67% to 75.07% and peaked at 77.13% for

10000 Android datasets samples as the best classification algorithms.

It can be concluded that, for WEKA Support Vector Machine with Polynomial
Kernel (SMO) approach consistently outperforms other classification algorithms on
balanced Android datasets with variable sample sizes and a 70:30 ratio. Wit h accuracy
scores of 70.67% to 75.07% up to 77.13% for 1000, 5000, and 10,000 samples,
respectively remains the best classification algorithms. Following closely behind,
Random Forest performs successfully, with the highest accuracy of 72.67% for 1000
samples. These findings highlight the reliability of Support Vector Machine with
Polynomial Kernel (SMO) and Random Forest for effective ransomware detection

over an extensive selection of dataset sizes.



Table 6.10 Summary of results for Dataset Il for TPR, FPR, Precision, Recall, F-measure and Accuracy in ORANGE (70:30)

Sample Size Algorithms TrueRI;(zzltlve False:?F;(t)sltlve Precision Recall F-measure Overall Accuracy

Decision Tree 0.615 0.462 0.574 0.573 0.573 57.30%

1000  Random Forest 0630 0.426 0.615 0.615 0.615 61.50% (Best)
Naive Bayes 0.513 0.486 0.584 0.584 0.584 58.40%
. suM 0375 |  0.346 0.514 0.511 0.450 51.10%
Decision Tree | 0.606 0.457 0.575 0.574 0.574 57.40%

00  Random Forest I 0.611 0416 | 0598 0598 |  0.598 59.80% (Best)
Naive Bayes | 0522 0.518 0.502 0502 | 0502 50.20%
. SVM | 0267 0.259 0.505 0504 | 0475 50.40%
Decision Tree 0618 | 0452 . 0583 0.583 0.582 58.30%

10000 . RandomForest. | 0627 | 0400 | 0614 | 0614 E 0614 61.40% (Best)
Naive Bayes 0.555 0.537 0.509 0.509 0.508 50.90%
i SVM ; 0.368 - 0.365 0.502 0.502 0.492 50.20%




Table 6.10 shows an in-depth overview of the evaluation's results in ORANGE
obtained by using balanced Android datasets with sample sizes of 1000, 5000, and
10,000, all with a 70:30 ratio. The aim of this table is to present a comprehensive
summary of several classification algorithms' performance measures, with a focus on
True Positive Rate (TPR), False Positive Rate (FPR), precision, recall, F-measure, and
overall accuracy. It can be highlighted that, the ORANGE examination of balanced
Android datasets with a 70:30 ratio across three sample sizes demonstrates slight
increase of the Random Forest classifier performance. Its accuracy gradually rises
around the beginning at 61.50% for 1000 samples, slightly decrease to 59.80% for
5000 samples, and finally peaked at 61.40% accuracy for 10,000 samples.

The Decision Tree classifier follows in second best performance in ORANGE
closely followed the Random Forest, and its accuracy shows a consistent rising trend
across various sample sizes. It begins with an accuracy of 57.30% for 1000 samples,
slightly increases to 57.30% for 5000 samples, and then peaked at accuracy of 58.30%
for 10,000 samples. This pattern shows a continuous 3.8% increase from the smallest
to the largest sample. This development emphasizes the Decision Tree's ability to make
accurate predictions. In conclusion, Random Forest performance outperform all others
in ORANGE and followed by the Decision Tree.



6.4  Result and Analysis Dataset 111
In this section, the results from the project implementation phase are presented. All the results for Dataset |11 focuses on File System

Behavior Ransomware dataset and discussion are shown below:

6.4.1 Evaluation Metrics Result of 1000 File System Behavior Ransomware dataset for Unbalanced and Balanced Ransomware

Detection
Table 6.11 Evaluation Metrics Result of 1000 File System Behavior Ransomware dataset (50:50)
) " True Positive | False Positive __ T
Dataset Algorithms | Precision \ Recall F-Measure | Overall Accuracy
| Rate Rate
| | |
Decision Tree | 0.956 0.034 0.959 095 | 0957 95.60%
1000_Unbalanced | Random Forest ~ 0.904 | 0218 | 0916 0904 | 0.898 90.40%
FileSystem Naive Bayes | “0.812(¢ _J™ 0.353 ' 0.810 _:, 0.812° | 0.799 81.20%
LibSVM | 0.738 , 0.594 , 0.810 . 0738 | 0.661 73.80%
SMO : 0.894 I 0.215 | A 10.899 . 0.89%4 0.889 89.40%
Decision Tree 0.954 0.045 0.955 0.954 0.954 95.40%
Random Forest 0.960 0.040 0.960 0.960 0.960 96.00% (Best)
1000_Balanced_ |\ e Bayes 0.736 0.253 0.800 0.736 0.723 73.60%
FileSystem
LibSVM 0.680 0.336 0.803 0.680 0.640 68.00%
SMO 0.828 0.166 0.853 0.828 0.826 82.80%




134

Table 6.11 shows the evaluation metrics result of 1000 File System Behavior Ransomware dataset samples. In this experiment the
machine learning classifiers are tested for two scenarios: unbalanced and balanced File System Behavior Ransomware samples.
1000_Unbalanced_FileSystem Dataset consists of 700 ransomware samples and 300 benign samples (referred to as "Benign™). Whereas
1000_Balanced_ FileSystem Dataset consists of 500 ransomware samples and 500 benign samples (referred to as "Benign™). The purpose
of these two datasets is to identify the performance between balanced and unbalanced ransomware datasets of 1000 File System Behavior
Ransomware samples. For each case, the following classification algorithms were applied, and their related evaluation metrics were
calculated.

Based on the result as shown in Table 6.11, for the unbalanced scenario, the Decision Tree achieved the highest True Positive Ratio
among all classifiers which is 0.956. The result indicated its effectiveness to correctly identified ransomware samples thus giving the highest
precision of 0.959. The False Positive is relatively lowest among all at 0.034 suggesting that it is classifying non-ransomware (Benign)
instances with a high level of accuracy which is 95.60%.

For the case of balanced scenario, Random Forest maintains its good performance as the best classifier with highest accuracy
96.00%. It achieved the highest True Positive Ratio among all classifiers which is 0.960 which indicated its effectiveness to correctly
identified ransomware sample. The False Positive is relatively lowest among all at 0.040 suggesting that it is classifying non-ransomware

(Benign) instances with a high level of accuracy which is 96.00 %.



135

UNIVERSITI TEKNIKAL MALAYSIA MELAKA



Accuracy of Classification Models for 1000
FileSystem Behavior
95.6 96
100 / 22 90.4 89.4
90 81.2 A 32 .8
/
20 73.6 73.8 "
70
x
:.; 60
S 50
=
S 40
<
30
20
10
o}
148 RF NB LibSVM SMO
Classification Models
B 1000_Unbalanced_FileSystem m 1000_Balanced_FileSystem

Figure 6.19 Graph Accuracy for 1000 File System Behavior Ransomware dataset
(50:50)

Figure 6.19 shows the Graph Accuracy for 1000 File System Behavior
Ransomware dataset samples for both cases. The tabular result has been
transformed into a graph which is important to provide a clear visual representation
of the model performance between the unbalanced and balanced scenarios. The
graph illustrates a noticeable increase in accuracy across all five models,
specifically Decision Tree J48, Random Forest, Naive Bayes, LibSVM and
Support Vector Machine with Polynomial Kernel (SMO), for transition from the
unbalanced scenario to the balanced scenario.

To be specific, for the unbalanced dataset, Decision Tree J48 demonstrated
its good performance by achieving highest accuracies of 95.6% but slightly
decreased to 95.4% when transitioning to balanced dataset. Naive Bayed, LibSVM
and Support Vector Machine with Polynomial Kernel (SMO) also shows
inconsistencies as the dataset transition to balanced state.

On the other hand, a significant improvement in accuracy can be seen for
Random Forest which from 90.40% and peaked at 96.00% as the highest accuracy

of for 1000 File System Behavior Ransomware dataset samples.



6.4.2 Evaluation Metrics Result of 5000 File System Behavior Ransomware dataset for Unbalanced and Balanced Ransomware
Detection

Table 6.12 Evaluation Metrics Result of 5000 File System Behavior Ransomware dataset (50:50)

) True Positive  False Positive -
Dataset Algorithms Precision Recall F-Measure |Overall Accuracy
Rate Rate

Decision Tree 0.991 0.017 0.991 0.991 0.991 99.08%
5000 _Unbalanced Rarldpm Forest 0.855 1).331 0.88_£ 1 O_._855__ _ __O.BEQ 85.48%
FileSystem Na'l'veﬁgyes_' 0.737 0.226 0.786 0.737 0.747 73.68%
LibSVM 0.763 0.539 0.823 0.763 0.705 76.32%
SMO 0.880 0.241 ' 0.885 0.880 0.874 88.04%

Decision Tree h 0.989 0.008 ' 0.991 0.991 - 0.991 99.10% (Best)
Random Forest 0.952 0.049 0.952 0.952 0.952 95.16%
5000_Balanced_ |~ Bayes 0.845 0152 | 0854 0.845 0.845 84.52%

FileSystem LIRgir s e d L 1 R Pllet GAE ARG Y i W T i)

LibSVM 0.771 0.237 0.841 0.771 0.758 77.12%
SMO 0.834 0.162 0.853 0.834 0.832 83.36%




138

Table 6.12 shows the evaluation metrics result of 5000 File System Behavior Ransomware dataset samples. In this experiment the
machine learning classifiers are tested for two scenarios: unbalanced and balanced File System Behavior Ransomware samples.
5000_Unbalanced_FileSystem Dataset consists of 3500 ransomware samples and 1500 benign samples (referred to as "Benign™). Whereas
5000 Balanced_ FileSystem Dataset consists of 2500 ransomware samples and 2500 benign samples (referred to as "Benign"). The purpose
of these two datasets is to identify the performance between balanced and unbalanced ransomware datasets of 1000 File System Behavior
Ransomware samples. For each case, the following classification algorithms were applied, and their related evaluation metrics were
calculated.

Based on the result as shown in Table 6.12, for the unbalanced scenario, Decision Tree J48 achieved the highest True Positive Ratio
among all classifiers which is 0.991. The result indicated its effectiveness to correctly identified ransomware samples thus giving the highest
precision of 0.991 as well. The False Positive is relatively lowest among all at 0.017 suggesting that it is classifying non-ransomware
(Benign) instances with a high level of accuracy at 99.08%.

For the case of the balanced scenario, it is noticeable that the Decision Tree J48 maintains its position as the most effective classifier,
reaching the accuracy of 99.10%. It achieved the highest True Positive Ratio among all classifiers which is 0.981which indicated its
effectiveness to correctly identified ransomware sample. The False Positive is relatively lowest among all at 0.019 suggesting that it is

classifying non-ransomware (Benign)) instances with a high level of precision of 0.981.



Accuracy of Classification Models for 5000
FileSystem Behavior

99,08 99.1

95.16
100
85.4 8452 88.04 83.36
90 77.12
736 76.32
80 - Z
70
S
< 60
Q
& 50
>
S 40
<
30
20
10
0
148 RF NB LibSVYM SMO

Classification Models

W 5000 Unbalanced_FileSystem M 5000 Balanced_FileSystem

Figure 6.20 Graph Accuracy for 5000 File System Behavior Ransomware
dataset (50:50)

Figure 6.20 shows the Graph Accuracy for 5000 File System Behavior
Ransomware Dataset Samples for both cases. The graph illustrates a noticeable
increase in accuracy across three models, specifically Random Forest, Naive
Bayes, and LibSVM for transition from the unbalanced scenario to the
balanced scenario. It can be highlight that the performance of Naive Bayes has
significantly increase for 5000 samples (73.68%% and 84.52%%) compared to
the previous 1000 samples (81.2% and 73.6%).

This shows that the Naive Bayes model performance increases as the
sample size increase to 5000 samples. Whereas Decision Tree J48 experience
a slight increment in accuracy precisely 99.08% for unbalanced. For the case
of balanced scenario, Decision Tree J48 still maintains its good performance

increase up to accuracy of 99.10%.



6.4.3 Evaluation Metrics Result of 10 000 File System Behavior Ransomware dataset for Unbalanced and Balanced Ransomware

Detection
Table 6.13 Evaluation Metrics Result of 10 000 File System Behavior Ransomware dataset (50:50)
] True Positive | False Positive -
Dataset Algorithms Precision Recall F-Measure |Overall Accuracy
Rate Rate
Decision Tree | 0.989 0.018 0.989 | 0.989 0.989 98.86%0(Best)
10 000 i B N v W e
- Rancmeor_est[ 0.883 0271 | 0.899 1 0883 | 0873 88.26%
Unbalanced_ |\ zie Bayes | 0843 0.205 0845 | 0843 | 0844 84.32%
FileSystem LibSVM | 0.767 0.538 0.823 0.767 0.711 76.68%
SMO N/A . N/A ' N/A N/A . N/A N/A
Decision Tree b _0.984_ ' 0.01§ ' O.9§4 { 0.98_4 i 2984 98.36%
10 000 Random Forest 0.954 0.046 0.954 0.954 0.954 95.38%
Balanced_ iNaive Bayesy i 1 0-80%= 1 11110202 i 4 10831 | 4 0802~ | 4 10.706 80.10%
FileSystem LibsvmM | 0823 | 0174 | 0869 | 0823 | 0817 82.28%
SMO N/A N/A N/A N/A N/A N/A




141

Table 6.13 shows the evaluation metrics result of 10 000 File System Behavior Ransomware dataset samples. In this experiment the
machine learning classifiers are tested for two scenarios: unbalanced and balanced File System Behavior Ransomware samples.
10000_Unbalanced_FileSystem Dataset consists of 7000 ransomware samples and 3000 benign samples (referred to as "Benign"). Whereas
10000_Balanced_ FileSystem Dataset consists of 5000 ransomware samples and 5000 benign samples (referred to as "Benign™). The
purpose of these two datasets is to identify the performance between balanced and unbalanced ransomware datasets of 10000 File System
Behavior Ransomware samples. For each case, the following classification algorithms were applied, and their related evaluation metrics
were calculated.

Based on the result as shown in Table 6.13, for the unbalanced scenario, Decision Tree J48 achieved the highest True Positive Ratio
among all classifiers which is 0.989. The result indicated its effectiveness to correctly identified ransomware samples thus giving the highest
precision of 0.989 as well. The False Positive is relatively lowest among all at 0.018 suggesting that it is classifying non-ransomware
(Benign) instances with a high level of accuracy at 98.86%

For the case of the balanced scenario, it is noticeable that the Decision Tree J48 maintains its position as the most effective classifier,
reaching the accuracy of 98.36%. It achieved the highest True Positive Ratio among all classifiers which is 0.984 which indicated its
effectiveness to correctly identified ransomware sample. The False Positive is relatively lowest among all at 0.016 suggesting that it is

classifying non-ransomware (Benign)) instances with a high level of precision of 0.984.



Accuracy of Classificat

ion Models for 10 000

FileSystem Behavior

99.86

98.36

_~

95.38
100 i

90
80
70
60
50
40
30
20
10

88.26

Accuracy(%)

148 RF

NB

LibSVM

Classification Models

W 10 000_Unbalanced_FileSystem

B 10 000_Balanced_FileSystem

Figure 6.21 Graph Accuracy for 10 000 File System Behavior

Ransomware dataset (50:50)

Figure 6.2 shows the Graph Accuracy for 10 000 File System Behavior
Ransomware Dataset Samples for both cases. The graph illustrates a noticeable

increase in accuracy across two

LibSVM for transition from the unbalanced scenario to the balanced scenario.
In this case Support Vector Machine with Polynomial Kernel (SMO) labelled
as N/A since it didn’t show result even after running more than 3 hours in

WEKA. In addition to that. Random Forest experiences a slight increment in

accuracy as it increases from 88.

95.38% when transitioning to balanced sampled. Based on the result above,

it can be highlighted that Decision Tree J48 maintains its position as the most

models, specifically Random Forest and

26% for Unbalanced sampled and up to

effective classifier for both unbalanced and balanced samples.




143

6.4.4 Accuracy of Classification Model Across Different Sample Sizes

Accuracy of Classification Modes Across Different Sample
Sizes

100 96.3395 53

86.83 83.8
90

82.8 833
80
70
60

50

Accuracy(%)

40

30

148 RF NB LibSVM SMO

Classification Models

W 1000 FileSystem Behavior M 5000 FileSystem Behavior 10 000 FileSystem Behavior

Figure 6.22 Graph Accuracy for Classification Model Across Different Sample Sizes
of FileSystem Behavior Ransomware (50:50)

Figure 6.22 shows the Graph Accuracy for Classification Model Across
Different Sample Sizes of FileSystem Behavior Ransomware. The results allow us to
visualize the behavior of classification models for the sample of 1000, 5000 and 10
000 by doing the sub-sampling method to prevent heap size issues in WEKA. Based
on the results, as the samples increases from 1000 to 5000 and 10 000, four out of five
model experience increase in accuracy. It includes Decision Tree J48, Naive Bayes,
LibSVM and Support Vector Machine with Polynomial Kernel (SMO). However,
Naive Bayes shows inconsistencies as it decreases for transition from 5000 to 10 000.
In this case it can be highlighted that, Decision Tree J48 shows the best performance
out of all starting at 98.00% and increasing to 98.33% and peaked at 98.60% as the

sample size increases.



6.4.5 Accuracy of Classification Model for Different Ratio

Accuracy of Classification Models Across Different
Ratio

98  96.33

100
90
80
70
60
50

40

Accuracy(%)

30

20
10

50:50 70:30 90:10

Train and Test Ratio

mJ48 mRF EmNB mLibSVM ®SMO

Figure 6.23 Graph Accuracy for 1000 File System Behavior Ransomware Dataset
across Different Ratio

Figure 6.23 shows the Graph Accuracy for 1000 File System Behavior Ransomware
Dataset samples across different ratios. The results allow us to visualize the behavior
of classification models for the ratio of 50:50, 70:30 and 90:10 train and test ratio.
Based on the results, as the class ratios move from 50:50 to 70:30 and then to 90:10,
Random Forest and Decision Tree J48 shows the best performance as it consistently
displays an incremental rise in accuracy. To be specific Random Forest shifted from
96.00% for 50:50, experiences a slight increase to 96.33% for 70:30, and reaches an
impressive 99.00% for 90:10. Whereas Decision Tree J48 also shows a consistent
increase from 95.4% up to 98% for both 70:30 and 90:10 ratios. On the other hand,
Naive Bayes, LibSVM and SMO displays sensitivity to class distributions with limited

improvements in accuracy.



145

Accuracy of Classification Models Across Different
Ratio

98.33 894

95.53

100

90 3.8

80
70
60
50

Accuracy(%)

40

30

20

10

50:50 70:30 90:10
Train and Test Ratio

®)48 MRF ENB ®LibSVM mSMO

Figure 6.24 Graph Accuracy for 5000 File System Behavior Ransomware Dataset
across Different Ratio

Figure 6.24 shows the Graph Accuracy for 5000 File System Behavior Ransomware
Dataset samples across different ratios. The results allow us to visualize the behavior
of classification models for the ratio of 50:50, 70:30 and 90:10 train and test ratio.
Based on the results, as the class ratios move from 50:50 to 70:30 and then to 90:10,
It can be highlighted that Decision Tree J48 consistently leads with the highest
accuracy levels across all ratios. To be specific, Decision Tree shifted from 98.12%
for 50:50, experiences a slight increase to 98.33% for 70:30, and peaked at 99.40% for
90:10. Random Forest followed closely as the second-best classifier with its best
performance at 95.53% for 70:30 ratio.



146

Accuracy of Classification Models Across Different Ratio

98.36 538 98.6 98.2

94.9

100

90

80

70

60

50

Accuracy(%)

40

30

20

10

50:50 70:30 90:10
Train and Test Ratio

WJ48 WMRF WNB [ LibSYM mSMO

Figure 6.25 Graph Accuracy for 10 000 File System Behavior Ransomware Dataset

across Different Ratio

Figure 6.25 shows the Graph Accuracy for 10 000 File System Behavior Ransomware
Dataset samples across different ratios. The results allow us to visualize the behavior
of classification models for the ratio of 50:50, 70:30 and 90:10 train and test ratio.
Based on the results, as the class ratios move from 50:50 to 70:30 and then to 90:10,
It can be highlighted that Decision Tree J48 consistently leads with the highest
accuracy levels across all ratios. To be specific, Decision Tree shifted from 98.36%
for 50:50, experiences a slight increase to 98.60% for 70:30, and slightly decrease to
98.20% for 90:10. Random Forest followed closely as the second-best classifier with
its best performance after Decision Tree. Random Forest shifted from 95.38% for
50:50, decrease 86.83% for 70:30 and increase again to 94.90% for 90:10. On the other
hand, Support Vector Machine with Polynomial Kernel (SMO) didn’t show result even
after running more than 3 hours using WEKA. In addition to that, LibSVM shows
consistent increase as the ratio transition, which start at 82.28% for 50:50, slightly
increase up t0 83.80% for 70:30 and peaked at 85.70% for 90:10.



6.4.6

Comparison between WEKA and Orange

Table 6.14 Summary of results Dataset 111 TPR, FPR, Precision, Recall, F-measure and Accuracy in WEKA (70:30)

. True Positive | False Positive

Sample Size Algorithms Rate Rate Precision Recall F-measure Overall Accuracy
Decision Tree 0.980 0.017 0.981 0.980 0.980 98.00% (Best)
Random Forest 0.963 0038 | 0963 0.963 0.963 96.33%
1000 Naive Bayes = 0.697 0264 | 0803 | 0697 | 0677 69.97%
LibsvM | 0713 032 | 0813 e 0713 | 0679 71.33%
SMO 0810 0.169 0.847 0.810 0.808 81.00%
Decision Tree | 0.983 0.017 0983 | 0983 | 0983 98.33% (Best)
Random Forest |  0.955 0.045 0.956 0.955 0.955 95.53%
5000 Naiive Bayes 0.839 0461~ -0.845 0.839 | 0838 83.87%
LibSVM 0.783 0217 | 0848 | 078 | . 0773 78.33%
SMO 0838 0.162 0.856 | 0.838 0.836 83.80%
Decision Tree | 0.986 0.014 098 | 098 | . 0.986 98.60% (Best)
Random Forest 0.868 0.131 0.875 0.868 0.868 86.83%
10 000 Naive Bayes 0.756 0.247 0.812 0.756 0.744 75.60%
LibSVM 0.838 0.165 0.877 0.838 0.833 83.80%
SMO N/A N/A N/A N/A N/A N/A




Table 6.14 shows an in-depth overview of the evaluation's results in WEKA
obtained by using balanced File System Behavior Ransomware Dataset with sample
sizes of 1000, 5000, and 10,000, all with a 70:30 ratio. The aim of this table is to
present a comprehensive summary of several classification algorithms' performance
measures, with a focus on True Positive Rate (TPR), False Positive Rate (FPR),
precision, recall, F-measure, and overall accuracy. It can be highlighted that, Decision
Tree J48 obtains the highest True Positive Rate (TPR) of 0.980 and which contributes
to the highest precision of 0.981 with 1000 samples. These numbers represent the
algorithm's ability to detect positive cases correctly while minimizing false positives.

As the dataset size increases to 5000 samples, it can be seen Decision Tree J48
for WEKA still maintains as the best performance from 98.00% to 98.33% and peaked
at 98.60% for 10 000 File System Behavior Ransomware Dataset samples as the best
classification algorithms. Following closely behind, the Random Forest performs,
starting with accuracy of 96.33% for 1000 samples, slightly decreases 95.53% for 5000
samples and accuracy of 86.83% for 10 000 samples. These findings highlight the
reliability of Decision Tree J48 and Random Forest for effective ransomware detection

over an extensive selection of dataset sizes.



Table 6.15 Summary of results Dataset 11l for TPR, FPR, Precision, Recall, F-measure and Accuracy in ORANGE (70:30)

| True Positive iFaIse Positivei

Sample Size Algorithms Rate Rate Precision Recall F-measure Overall Accuracy

Decision Tree 0.961 0.026 0.968 0.968 0.968 96.80%

1000 Random Forest 0986 0009 | 0988 0.988 0.988 98.80% (Best)
Naive Bayes 0.810 0.067 0.877 0.872 0.871 87.20%
Y 0888 0040 | 0926 | 0924 | 0924 92.40%
Decision Tree | 0.959 0020 | 099 | 099 | 099 96.90%

£000 Randomforest i 0.989 0.008 0.991 0991 | 0991 99.10% (Best)
Naive Bayes |  0.683 0.057 082 | 0876 | 0875 87.60%
SVvWM | 0810 0059 | 0836 0.813 0.810 81.30%
Decision Tree 0964 | 0018 | 0973 | 0973 | 0973 97.30%

10000 Random Forest 0991 ~ 0005 | 0933 | 0938 | 0933 99.309% (Best)
Naive Bayes 0826 0044 0898  0.891 = 0.891 89.10%
UBIWERSITbHAEKNIKAL MALAYSIA MELAK 82.40%




Table 6.15 shows an in-depth overview of the evaluation's results in ORANGE
obtained by using balanced File System Behavior Ransomware Dataset with sample
sizes of 1000, 5000, and 10,000, all with a 70:30 ratio. The aim of this table is to
present a comprehensive summary of several classification algorithms' performance
measures, with a focus on True Positive Rate (TPR), False Positive Rate (FPR),
precision, recall, F-measure, and overall accuracy. It can be highlighted that, the
ORANGE examination of balanced File System Behavior Ransomware Dataset with
a 70:30 ratio across three sample sizes demonstrates a good increase of the Random
Forest as the best classifier performance. Its accuracy gradually rises around
the beginning at 98.80%% for 1000 samples, significantly increase to 99.10% for 5000
samples, and finally peaked at 99.30%% accuracy for 10,000 samples.

The Decision Tree classifier follows in second best performance in ORANGE
closely followed the Random Forest, and its accuracy shows a consistent rising trend
across various sample sizes. It begins with an accuracy of 96.80% for 1000 samples,
slightly increases to 96.90% for 5000 samples, and then peaked at accuracy of 97.30%
for 10,000 samples. This pattern shows a continuous increase from the smallest to the
largest sample. This development emphasizes the Decision Tree's ability to make
accurate predictions. In conclusion, Random Forest performance outperform all others

as the sample size increases in ORANGE and followed by the Decision Tree.



6.5  Tools Comparison

151

Table 6.16 Classifier performance comparison between WEKA and Orange
(10 000 samples ,10:90)

Dataset Tools | Decision Random Naive Support
Tree Forest Bayes Vector

Machines

I Weka | 95.04% 94.06% 66.79% | 63.34%
Orange | 93.80% 94.10% 86.70% | 90.40%

1 Weka | 69.86% 68.27% 58.12% | 69.51%
Orange | 54.20% 55.40% 50.60% | 50.60%

i Weka | 96.67% 95.08% 82.49% | 73.65%
Orange | 95.60% 98.60% 88.30% | 95.40%

Occurrences 3 3 0 0

Average | Weka | 87.19%(Best) | 85.80% 69.13% | 68.83%
Accuracy | Orange | 81.20% 82.70%(Best) | 75.20% | 78.80

Table 6.16 shows comparison of classification techniques performance

between WEKA and Orange for 10 000 samples using 10:90 train and test ratio.

The classification techniques were applied to the Dataset | (BitcoinHeist

Ransomware), Dataset Il (Android Ransomware) and Dataset I11 (File System

Behavior Ransomware). Based on the result, it can be highlighted, Decision

Tree performs the best among all classifiers in WEKA, achieving an average

accuracy of 87.19%. On the other hand, when using Orange, Random Forest

with an average accuracy of 82.70% outperforms other classifiers. These

findings highlight the effectiveness of Decision Tree and Random Forest with

same number of occurrences in ransomware detection when using a 10:90

training and test ration for 10,000 samples.




152

Table 6.17 Classifier performance comparison between WEKA and Orange
(10 000 samples ,30:70)

Dataset Tools Decision | Random Naive Support
Tree Forest Bayes Vector
Machines
| Weka 94.96% | 96.46% 53.54% | 64.40%
Orange 94.40% | 95.10% 86.70% | 80.40%
I Weka 69.94% | 74.61% 51.99% | 69.50%
Orange 57.60% | 60.10% 50.60% | 50.10%
i Weka 98.53% | 95.40% 79.01% | 80.01%
Orange 97.30% | 98.90% 88.00% | 83.80%
Occurrences 1 5 0 0
Average | Weka 87.81% | 88.82% (Best) | 61.51% | 71.30%
Accuracy | Orange 83.10% | 84.70% (Best) | 75.10% | 71.43%

Table 6.17 shows comparison of classification techniques performance
between WEKA and Orange for 10 000 samples using 30:70 train and test ratio.
The classification techniques were applied to the Dataset | (BitcoinHeist
Ransomware), Dataset Il (Android Ransomware) and Dataset 111 (File System
Behavior Ransomware). Based on the result, it can be concluded that Random
Forest is the best classification technique, in both WEKA and Orange with
most occurrences as the average best classifier for this case. Specifically,
Random Forest achieved an average accuracy of 88.82% in WEKA and
84.70% in Orange. These findings highlight the effectiveness of Random
Forest with better accuracy than previous 10:90 ratio for ransomware detection

when using a 30:70 dataset split with 10,000 samples.



153

Table 6.18 Classifier performance comparison between WEKA and Orange

(10 000 samples ,50:50)

Dataset Tools Decision | Random Naive Support
Tree Forest Bayes Vector
Machines
| Weka 95.2% 95.46% 54.84% | 64.98%
Orange 94.30% | 95.30% 86.70% | 76.80%
1 Weka 69.80% | 76.24% 57.14% | 69.66%
Orange 57.60% | 60.10% 50.60% | 50.10%
11 Weka 98.36% | 95.38% 80.10% | 82.28%
Orange 97.20% | 99.20% 89.10% | 82.00%
Occurrences 1 3] 0 0
Average Weka 87.78% | 89.03% 64.02% | 72.31%
Accuracy (Best)
Orange 83.03% | 84.86% 75.46% | 69.63%
(Best)

Table 6.18 shows comparison of classification techniques performance

between WEKA and Orange for 10 000 samples using 50:50 train and test ratio.

The classification techniques were applied to the Dataset | (BitcoinHeist

Ransomware), Dataset I (Android Ransomware) and Dataset I11 (File System

Behavior Ransomware). Based on the result, it can be concluded that Random

Forest is the best classification technique, in both WEKA and Orange with

most occurrences as the average best classifier. Specifically, Random Forest

achieved an average accuracy of 89.03% in WEKA and 84.86% in Orange.

These findings highlight the effectiveness of Random Forest in ransomware

detection when using a 50:50 dataset split with 10,000 samples.




154

Table 6.19 Classifier performance comparison between WEKA and Orange

(10 000 samples ,70:30)

Dataset | Tools Decision Random Naive | Support
Tree Forest Bayes | Vector
Machines
| Weka 95.27% 98.67% 55.33% | 65.97%
Orange 94.50% 95.50% 86.40% | 77.30%
1 Weka 70.20% 76.07% 69.00% | 70.10%
Orange 58.30 61.40% 50.90% | 50.20%
i Weka 98.60% 86.83% 75.60% | 83.80%
Orange 97.30% 99.30% 89.10% | 82.40%
Occurrences 1 5 0 0
Average | Weka 88.02%(Best) | 87.19% 66.64% | 78.29%
Orange 83.37% 85.40% 75.47% | 69.97%
(Best)

Table 6.19 shows comparison of classification techniques performance

between WEKA and Orange for 10 000 samples using 70:30 train and test ratio.

The classification techniques were applied to the Dataset | (BitcoinHeist

Ransomware), Dataset I (Android Ransomware) and Dataset I11 (File System

Behavior Ransomware). In this scenario, when using WEKA, Decision Tree

emerges as the best classifier with an average accuracy of 88.02%. Orange on

the other hand, has an average accuracy of 85.40% with Random Forest being

the highest. It can be highlighted, while Decision Tree emerges as the best-

performing classifier for WEKA in this scenario, it's important to note that




155

Random Forest maintains its status as the overall best classifier due to the
highest number of occurrences across different scenarios when using a 50:50

dataset split with 10,000 samples.

Table 6.20 Classifier performance comparison between WEKA and Orange
(10 000 samples, 90:10)

Dataset | Tools Decision | Random Naive Support
Tree Forest Bayes Vector
Machines
I Weka 95.30% | 98.40% 56.40% | 66.60 %
Orange 94.20% | 95.40% 86.50% | 77.00%
1 Weka 69.60% | 78.20% 71.90% | 69.90%
Orange 59.10% | 61.30% 50.60% | 50.10%
i Weka 98.20% | 94.90% 55.60% | 85.70%
Orange 97.60% | 99.30% 89.40% | 78.00%
Occurrences 1 5 0 0
Average | Weka 87.70% | 90.50% 61.30% | 74.07
(Best)
Orange 83.63% | 85.33% 75.5% 68.37
(Best)

Table 6.20 shows comparison of classification techniques performance
between WEKA and Orange for 10 000 samples using 90:10 train and test ratio.
Based on the result, it can be concluded that Random Forest is the best
classification technique, in both WEKA and Orange with most occurrences as

the average best classifier. Specifically, Random Forest achieved an average



6.6

156

accuracy of 90.50% in WEKA and 85.33% in Orange. These findings highlight
the effectiveness of Random Forest in ransomware detection when using a
50:50 dataset split with 10,000 samples.

In conclusion, Random Forest shows best accuracy in most scenario of
all train and test ratio (10:90, 30:70, 50:50, 70:30, 90:10). This result aligns
with previous research by (Almomani et al., 2021), (Alsoghyer et al., 2020)
and (Ahmed et al., 2020) which achieve Random Forest as the best

classification technique in their ransomware domain research. According to,

Significant Results

‘ Conduct Test PLAN A
{Unbalanced vs Balanced)

I Conclusion A : Accuracy increases
when transition between
I Unbalanced Balanced Unbalanced to Balanced. Proceed with
Dataset Dataset Balanced Dataset

Conduct Test PLAN B
| (Sample Sizes)

1
l ¥ vl Conclusion B : Accuracy increases
as the sample sizes increase.
1000 samples 5000 samples 10 000 samples Proceed with highest sample size

Conduct Test PLAN C
(Train and Test Ratio)

10:90 30:70 50:50 70:30 90:10

Conclusion C : Higher training
ratio has better accuracy

Figure 6.26 Overall Test Plan Findings



157

Figure 6.26 shows the conclusion based on the outcomes of each test
plan. By conducting test plan A, we can conclude the classification algorithms
increases when transition from unbalanced to balanced dataset. This is
supported by (Mooijman et al.,2023) in his research “The effects of data
balancing approaches” which states that, imbalance dataset tends to influence
classifiers, causing them to prioritize the majority class when performing
classification tasks thereby affecting the performance. In this context,
imbalance dataset refers to a dataset with a significant difference in the number
of samples among its classifications, as stated by (Dehkordy,2021).

In addition to that, there has been research using the same method for
balanced cased (Alsoghyer et al., 2020), (Almomani et al., 2021), and
(Mercaldo, 2021). However, previous authors only consider 1000 balanced
samples precisely 500 Ransomware samples and 500 Benign samples.
Therefore, we were able to produce a better accuracy 99.30% by expanding the
balanced sample size up to 10 000 samples which indirectly justified our Test
Plan B. Not only that, according to (Ajiboye et al., 2015) in the paper titled
"Evaluating The Effect Of Dataset Size On Predictive Model Using Supervised
Learning Technique,” it is evident that enhancing the results can be achieved
through dataset size which supports our findings.

For test Plan C, as suggested by (Dobbin and Simon, 2011) the
recommended amount of training and testing ratio is 70:30. By expanding the
ratio, 10:90, 30:70, 50:50, 70:30 and 90:10 we were able to identify Random
Forest as the best classification techniques for training ratio 70% and above
with 99.30% accuracy. This result aligns with previous research by (Almomani
et al., 2021), (Alsoghyer et al., 2020) and (Ahmed et al., 2020) which achieve
Random Forest as the best classification technique in their ransomware domain

research.



Table 6.21 Significant Results for comparison of previous research

Ransomware (R)=Malicious (M), Benign (B)=White (W)

158

Train Test Studied Balance
Research ) Accuracy
Ratio Dataset d
(Almomani et al.,
N/A 500 R 500 B Yes 98.30%
2021)
(Alsoghyer, S,
N/A 500 R 500 B Yes 96.90%
2020)
(Khammas, B. M.
50:50 840 R 840B Yes 97.74%
2020)
(Alzahrani et al.,
N/A 100R 200 B No 91.00%
2015)
(Popryho, 2023) N/A 1056 R 399 B No 97.00%
(Coronado-De-
N/A 1531 M 765 B No 97.56%
Alba et al., 2017)
(Victoriano, 2019) N/A 668 R 1255 B No 98.05%
5000 R 5000
70:30 Yes 98.67%
Proposed Work w
Dataset | 5000 R 5000
90:30 Yes 99.10%
W
5000 R 5000
70:30 Yes 78.20%
Proposed Work B
Dataset 11 5000 R 5000
90:10 Yes 78.60%

B




159

5000 R 5000 99.30%
70:30 Yes
Proposed Work B (Best)
Dataset 111 5000 R 5000 99.30%
90:10 Yes
B (Best)

Based on table 6.17, in comparison to previous studies, the study
presented in this research marks significant improvements in the field of
ransomware detection. It can be highlighted, utilization of balanced datasets
with higher number of samples as justified previously able to show outstanding
accuracy rates of up to 99.30%. From the result, most machine learning
classification models achieve better performance for testing ratio starting with
70% and above. In conclusion, expanding the test set to encompass three
distinct aspects is a commendable approach, enabling an in-depth investigation

into the performance behavior across various scenarios.

6.7 Summary

In this chapter, an in-depth examination of ransomware detection using various
machine learning algorithms is performed on the BitcoinHeist Ransomware dataset
(Dataset 1), Android Ransomware dataset (Dataset 1) and File System Behavior
Ransomware Detection dataset (Dataset I11). In addition to that, various aspects of
testing has been expanded and covered in this research such as in aspect of the a)
various dataset sizes, b) unbalanced versus balanced datasets, and c) various training
and test ratios. The aim of expanding the scope is to study the behavior of the
ransomware detection model under a variety of scenarios. To sum up, our test plan has
shown that balanced datasets, a sample size of 10,000, and a training ratio of 70% and
above consistently yield the best Random Forest (RF) results, achieving an impressive
accuracy rate of 99.30%. Random Forest has also shown as the best classification

model with most number of occurrences in both WEKA and Orange for all datasets.



CHAPTER 7: CONCLUSION

7.0 Introduction

The previous chapter focuses on testing and evaluation of the dataset. The
machine learning model performance has been evaluated and discussed according to
the evaluation metrics in the previous chapter. As a result, this chapter will be the final
chapter for the project conclusion. This chapter will go through the project summary,
project contributions, project limitations, and future work to improve the current
research. This concluding chapter holds significant importance as it provides a
comprehensive overview of our project, "Analysis of Ransomware Detection Based
on Machine Learning Approach.” Its primary function is to serve as a practical guide
for future researchers aiming to refine and build upon our model by summarizing its

limitations and offering suggestions for enhancement.



7.1

161

Project Summarization

This project has been designed to analyze the performance of various
machine learning classification models for ransomware detection. Overall, our
research has successfully accomplished all three stated objectives, providing
significant insights into the area of ransomware detection. Our first objective,
which was to study classification techniques for ransomware detection, has
been accomplished by an extensive review of the existing literature in the area
of interest. We thoroughly researched and analyzed a wide variety of
ransomware detection methods, getting insights into their strengths,
limitations, and applicability for different types of situations. In response to our
first objective, we discovered that a variety of machine learning classification
models have been used for ransomware detection, including Decision Tree,

Random Forest, Support Vector Machines (SVM) and Naive Bayes.

During the execution of the second objective, valuable experience in
the practical application of classification techniques to ransomware dataset is
gained. The hands-on process involved extensive data preprocessing conducted
through Jupiter Notebook, providing an opportunity to learn and apply the
Python programming language for data preparation. Furthermore, we
developed and executed a comprehensive test plan that included three critical
components, all of which were carried out by employing the WEKA and

Orange platforms.

To address our third objective a comprehensive evaluation process was
conducted using various evaluation metrics tools. The accuracy of each
classification technique was extensively assessed, taking into account metrics
such as True Positive Rate (TPR), False Positive Rate (FPR), Precision, Recall,
F-measure, and Overall Accuracy. As conclusion, it’s shown that balanced
datasets, a sample size of 10,000, and a training ratio of 70% and above
consistently yield the best Random Forest (RF) results, achieving an

impressive accuracy rate of 99.30%.



7.2

7.3

162

Project Contributions

The results of the test in Chapter 6 provided in this research paper
demonstrate that, the proposed approaches outperform the existing research in
the same domain. A comprehensive review of this research is carried out to
further highlight their accuracy and effectiveness. We've not only implemented
and tested various ransomware detection datasets category (Dataset I, 11, 111),
as showcased in the results of Chapter 6. We’ve also conducted a meticulous
comparative analysis which is inspired from (Ajiboye et al., 2015) research on
dataset size's impact on predictive models using supervised learning
techniques, exploring various testing scenarios: a) unbalance vs balanced
dataset b) various sample sizes c) various ratio of training and test.

In our research, we discovered an interesting trend in which
performance constantly improves as dataset size increases using the balanced
scenario. This occurrence occurs across all three datasets, which are Dataset I,
Dataset I1, and Dataset I11. In addition to that, another interesting finding is that
certain machine learning algorithms, such as Random Forest, have a
remarkable performance in its accuracy while migrating from imbalanced to
balanced datasets. It also can be highlighted that, most machine learning
classification models achieve better performance for training ratio starting with
70% and above.

This significant improvement highlights the ability of these algorithms
to efficiently adapt to varied data distributions, which is critical in the domain
of ransomware detection. Furthermore, we managed idenn. Furthermore, we
were successful in finding a solution for heap size constraints encountered
during the execution of machine learning algorithms. We constructed an
effective sub-sampling approach by using the capability of Jupyter Notebook

in the Python programming language.

Project Limitations

Several challenges occurred throughout the span of our research,
including heap size constraints in WEKA during the execution of several
machine learning algorithms. Although we have tried to maximize heap size

(up to 8GB) WEKA by overriding the initial value using command



7.4

163

%JAVA _OPTS% -Xms8192m. Heap size successfully changed but error
persist on WEKA. Subsequent problems have led us to explore sub-sampling
as a potential solution to WEKA-related problems. Another aspect to consider
is data processing and model training times increased with larger datasets and
more complex attributes. This can be shown as we were only able to evaluate
a maximum of 10 000 samples which WEKA took more than 2 hours to
generate the results. Therefore consideration needs to be given, to address these
computational constraints that would allow for the exploration of even larger

datasets and more intricate machine learning models.

Future Work

Future work should broaden the scope of our research in order to further
expand on the project. Most importantly, expanding the dataset size is critical
for improving model resilience. A broader range of classifiers and tools that
are more suitable should also be studied to increase the diversity of techniques.
To be specific as we only focus on the supervised machine learning technique,
future researchers may also explore deep learning methods, browser plugin
development, zero-day ransomware detection and most importantly the

utilization of larger datasets to advance ransomware detection.



164

7.5 Summary

In conclusion, our study has shown significant findings in the field of
ransomware detection, indicating a substantial advancement above typical
antivirus systems that rely on signature-based detection approaches. This research
has been constructed with the objective of investigating various classification
techniques for the analysis of ransomware. The second objective has been achieved
by applying the classification techniques to Ransomware dataset after
preprocessing conducted through Jupiter Notebook. The third objective has been
addressed by evaluating the accuracy result of classification techniques using

different evaluation metrics tools.

The test is executed repeatedly to study the behavior of the classifications
model performance under different conditions such as, balanced vs unbalanced,
various dataset size and ratios. Based on the results it can be concluded that
Random Forest performs as the best classification techniques for both WEKA and
Orange with most number of occurrences. This research can serve as a guide for

future studies and improvement of applications in ransomware detection.



165

REFERENCES

A. Khalil, & M. Khammas, B. (2022). An effective and efficient features vectors for
ransomware detection via machine learning technique. Iraqi Journal of
Information and Communication Technology, 5(3), 23-33. Accessed 20 March
2023, https://doi.org/10.31987/ijict.5.3.205

Antal, G. (2023, February 15). Lockbit ransomware: Here's what you need to know.
Heimdal Security Blog. Accessed 20 March,
https://heimdalsecurity.com/blog/what-is-lockbit-ransomware/

Abbasi, M. S. (2023). Automating Behavior-Based Ransomware Analysis, Detection,
and Classification Using Machine Learning. Accessed 10 May 2023,
https://doi.org/10.26686/wgtn.22180858

Abdullah, Z., Muhadi, F. W., Saudi, M. M., Hamid, I. R., &amp; Foozy, C. F. (2019).
Android Ransomware Detection Based on Dynamic Obtained Features.
Advances in Intelligent Systems and Computing, 121-129. Accessed 18
September 2023, https://doi.org/10.1007/978-3-030-36056-6 12

Ahmed, Y. A., Kocer, B., Huda, S., Saleh Al-rimy, B. A., & Hassan, M. M. (2020). A
system call refinement-based enhanced minimum redundancy maximum
relevance method for ransomware early detection. Journal of Network and
Computer Applications, 167, 102753. Accessed 14 May 2023,
https://doi.org/10.1016/j.jnca.2020.102753

Al-Haija, Q. A., & Alsulami, A. A. (2021). High performance classification model to
identify ransomware payments for heterogeneous bitcoin networks.
Electronics, 10(17), 2113. Accessed 10 May 2023,
https://doi.org/10.3390/electronics10172113

Alalousi, A., Razif, R., AbuAlhaj, M., Anbar, M., & Nizam, S. (2016). A
preliminary performance evaluation of K-means, KNN and EM unsupervised
machine learning methods for network flow classification. International
Journal of Electrical and Computer Engineering (IJECE), 6(2), 778. Accessed
20 May 2023, https://doi.org/10.11591/ijece.v6i2.pp778-784

Ajiboye, A. R., Abdullah-Arshah, R., Qin, H., & Isah-Kebbe, H. (2015). Evaluating
the effect of dataset size on predictive model using supervised learning
technique. International Journal of Computer Systems &amp; Software
Engineering, 1(2), 75-84. Accessed 10 August 2023,
https://doi.org/10.15282/ijsecs.1.2015.6.0006

Alzahrani, A., Alshehri, A., Alshahrani, H., Alharthi, R., Fu, H., Liu, A., &amp; Zhu,
Y. (2018). Randroid: Structural similarity approach for detecting ransomware
applications in Android platform. 2018 IEEE International Conference on


https://doi.org/10.31987/ijict.5.3.205
https://heimdalsecurity.com/blog/what-is-lockbit-ransomware/
https://doi.org/10.1016/j.jnca.2020.102753
https://doi.org/10.3390/electronics10172113

166

Electro/Information Technology (EIT). Accessed 9 September 2023,
https://doi.org/10.1109/eit.2018.8500161

Alsoghyer, S., &; Almomani, I. (2020). On the Effectiveness of Application
Permissions for Android Ransomware Detection. 2020 6th Conference on Data
Science and Machine Learning Applications (CDMA). Accessed 18 September
2023, https://doi.org/10.1109/cdma47397.2020.00022

Almomani, I., AlKhayer, A., &amp; Ahmed, M. (2021). An Efficient Machine
Learning-based Approach for Android v.11 Ransomware Detection. 2021 1st
International Conference on Artificial Intelligence and Data Analytics
(CAIDA). Accessed 18 September 2023,
https://doi.org/10.1109/caida51941.2021.9425059

Almomani, 1., Alkhayer, A., &amp; El-Shafai, W. (2023). E2E-RDS: Efficient End-
to-End Ransomware Detection System Based on Static-Based ML and Vision-
Based DL Approaches. Sensors, 23(9), 4467. Accessed 18 September 2023,
https://doi.org/10.3390/523094467

Bensalah, A. (2022, July 31). Ransomware detection data set. Kaggle.
Accessed 4 May 2023,
https://www.kaggle.com/datasets/amdj3dax/ransomware-detection-data-
set?resource=download

Belcic, 1. (2022, May 19). What is CryptoLocker ransomware and how to remove it.
Accessed 10 May 2023, https://www.avast.com/c-cryptolocker

Chakraborty, S. (2023). Android Ransomware Detection [Data set]. Kaggle.
Accessed 4 May 2023, https://doi.org/10.34740/KAGGLE/DSV/4987535

Cusack, G., Michel, O., & Keller, E. (2018). Machine learning-based detection of
ransomware using SDN. Proceedings of the 2018 ACM International
Workshop on Security in Software Defined Networks & Network Function
Virtualization. Accessed 26 May 2023,
https://doi.org/10.1145/3180465.3180467

Chumachenko, K. (2017). Machine Learning Methods for Malware Detection and
Classification. Proceedings of the 21st Pan-Hellenic Conference on
Informatics - PCI 2017, 93

Chaudhuri, K. D. (2022, March 25). Building naive Bayes classifier from scratch to
perform sentiment analysis. Analytics Vidhya. Accessed 26 May 2023,
https://www.analyticsvidhya.com/blog/2022/03/building-naive-bayes-
classifier-from-scratch-to-perform-sentiment-analysis/

Coronado-De-Alba, L. D., Rodriguez-Mota, A., &amp; Escamilla-Ambrosio, P. J.


https://doi.org/10.1109/eit.2018.8500161
https://doi.org/10.34740/KAGGLE/DSV/4987535
https://doi.org/10.1145/3180465.3180467

167

(2016). Feature selection and ensemble of classifiers for android malware
detection. 2016 8th IEEE Latin-American Conference on Communications
(LATINCOM). Accessed 9 September 2023,
https://doi.org/10.1109/latincom.2016.7811605

Dobbin, K. K., &amp; Simon, R. M. (2011). Optimally splitting cases for training and
testing high dimensional classifiers. BMC Medical Genomics, 4(1). Accessed
6 June 2023, https://doi.org/10.1186/1755-8794-4-31

Dehkordy, D. T., &amp; Rasoolzadegan, A. (2021). A new machine learning-based
method for android malware detection on imbalanced dataset. Multimedia
Tools and  Applications. Accessed 19 September 2023,
https://doi.org/10.1007/s11042-021-10647-z

El Nagqa, I., &amp; Murphy, M. J. (2015). What is machine learning? Machine
Learning in Radiation Oncology, 3—-11. Accessed 20 May 2023,
https://doi.org/10.1007/978-3-319-18305-3 1

Fedor, O. (2022, November 3). 93 must-know ransomware statistics.
AntivirusGuide. Accessed 20 March 2023,
https://www.antivirusguide.com/cybersecurity/ransomware-statistics/

Fernando, D. W., Komninos, N., & Chen, T. (2020). A Study on the Evolution of
Ransomware Detection Using Machine Learning and Deep Learning
Techniques.  IoT,  1(2), 551-604. Accessed 10 May 2023,
https://doi.org/10.3390/i0t1020030

Gagulic, D., Lynn Zumtaugwald, & Siddhant Sahu. (February 2023). Ransomware
Detection with Machine Learning in Storage Systems. Universitit Ziirich,
Communication Systems Group, Department of Informatics, Ziirich,
Switzerland. Accessed 20 March 2023,
https://files.ifi.uzh.ch/CSG/staff/vonderassen/extern/theses/map-gagulic-
zumtaugwald-sahu.pdf

Gupta, A. (2023, January 30). An introduction to scikit-learn: Machine learning in
Python. Simplilearn.com. Retrieved from Accessed 20 May 2023,
https://www.simplilearn.com/tutorials/python-tutorial/scikit-learn

Herrera Silva, J. A., Barona Lopez, L. 1., Valdivieso Caraguay, A. L., & Hernandez-
Alvarez, M. (2019). A survey on situational awareness of ransomware
attacks—detection and prevention parameters. Remote Sensing, 11(10), 1168.
Accessed 10 May 2023, https://doi.org/10.3390/rs11101168

Horduna, M., Lazarescu, S.-M., & Simion, E. (2023). A note on machine learning
applied in ransomware detection. Accessed 20 March 2023,
https://eprint.iacr.org/2023/045


https://www.antivirusguide.com/cybersecurity/ransomware-statistics/
https://doi.org/10.3390/iot1020030
https://files.ifi.uzh.ch/CSG/staff/vonderassen/extern/theses/map-gagulic-zumtaugwald-sahu.pdf
https://files.ifi.uzh.ch/CSG/staff/vonderassen/extern/theses/map-gagulic-zumtaugwald-sahu.pdf
https://www.simplilearn.com/tutorials/python-tutorial/scikit-learn
https://doi.org/10.3390/rs11101168
https://eprint.iacr.org/2023/045

168

Humayun, M., Jhanjhi, N. Z., Alsayat, A., & Ponnusamy, V. (2021). Internet of things
and Ransomware: Evolution, mitigation and prevention. Egyptian Informatics
Journal, 22(1), 105-117. Accessed 10 May 2023,
https://doi.org/10.1016/;.e1j.2020.05.003

Javatpoint. (2023). How to get datasets for Machine Learning.
Accessed 13 May 2023 https://www.javatpoint.com/how-to-get-datasets-for-
machine-learning

Ilascu, Tonut. (2022, May 19). Ransomware gangs rely more on weaponizing
vulnerabilities. BleepingComputer. ~ Accessed  May 5 2023,
https://www.bleepingcomputer.com/news/security/ransomware-gangs-rely-
more-on-weaponizing-vulnerabilities/

Ibrahim, S., Herami, N. A., Nagbi, E. A., & Aldwairi, M. (2020). Detection and
analysis of drive-by downloads and malicious websites. Communications in
Computer and Information Science, 72—-86. Accessed 20 May 2023,
https://doi.org/10.1007/978-981-15-4825-3 6

Jainani, P. (2021, April 30). Azure machine learning service - part 1: An introduction.
Medium. Accessed 15 May 2023, https://towardsdatascience.com/azure-
machine-learning-service-part-1-an-introduction-739620d1127b

Kharraz, A., Robertson, W., & Kirda, E. (2018). Protecting against ransomware: A new
line of research or restating classic ideas? IEEE Security & Privacy, 16(3),
103—-107. Accessed 10 May 2023, https://doi.org/10.1109/msp.2018.2701165

Kok, S. H., Azween, A., & Jhanjhi, N. (2020). Evaluation metric for crypto-
ransomware detection using machine learning. Journal of Information Security
and  Applications, 55, 102646. Accessed 10 May 2023,
https://doi.org/10.1016/j.jisa.2020.102646

Kaspersky. (2023, April 19). What is ransomware. Accessed 10 May 2023,
https://www.kaspersky.com/resource-center/threats/ransomware

Khalil, N. A., & M. Khammas, B. (2022). An effective and efficient feature vector for
ransomware detection via machine learning techniques. Iraqi Journal of
Information and Communication Technology, 5(3), 23-33. Accessed 20 May
2023, https://doi.org/10.31987/ijict.5.3.205

Khammas, B. M. (2020). Ransomware detection using random forest technique. ICT
Express, 6(4), 325-331. Accessed 20 May 2023,
https://doi.org/10.1016/j.icte.2020.11.001

Kaspersky IT Encyclopedia. (2023). What is RaaS (Ransomware-as-a-Service)?
Accessed 20 March 2023,
https://encyclopedia.kaspersky.com/glossary/ransomware-as-a-service-raas/


https://doi.org/10.1016/j.eij.2020.05.003
https://www.javatpoint.com/how-to-get-datasets-for-machine-learning
https://www.javatpoint.com/how-to-get-datasets-for-machine-learning
https://www.bleepingcomputer.com/news/security/ransomware-gangs-rely-more-on-weaponizing-vulnerabilities/
https://www.bleepingcomputer.com/news/security/ransomware-gangs-rely-more-on-weaponizing-vulnerabilities/
https://doi.org/10.1007/978-981-15-4825-3_6
https://towardsdatascience.com/azure-machine-learning-service-part-1-an-introduction-739620d1127b
https://towardsdatascience.com/azure-machine-learning-service-part-1-an-introduction-739620d1127b
https://doi.org/10.1109/msp.2018.2701165
https://doi.org/10.1016/j.jisa.2020.102646
https://doi.org/10.1016/j.icte.2020.11.001
https://encyclopedia.kaspersky.com/glossary/ransomware-as-a-service-raas/

169

Kizito, N. (2022, March 28). Parameters and hyperparameters in machine learning and
deep learning. Medium. Accessed 20 May 2023,
https://towardsdatascience.com/parameters-and-
hyperparametersaa609601a9ac#:~:text=Simply%20put%2C%?20parameters%o
20in%20machine,choice%200f%20hyperparameters%20you%?20provide.

Lee, J., Lee, J., & Hong, J. (2017). How to make efficient decoy files for ransomware
detection? Proceedings of the International Conference on Research in
Adaptive and Convergent Systems. Accessed 20 May 2023,
https://doi.org/10.1145/3129676.3129713

Madani, H., Ouerdi, N., & Azizi, A. (2023). Ransomware: Analysis of Encrypted Files.
International Journal of Advanced Computer Science and Applications, 14(1).
Accessed 20 March 2023, https://doi.org/10.14569/ijacsa.2023.0140124

Maigida, A. M., Abdulhamid, S. M., Olalere, M., Alhassan, J. K., Chiroma, H., &
Dada, E. G. (2019). Systematic literature review and metadata analysis of
ransomware attacks and detection mechanisms. Journal of Reliable Intelligent
Environments, 5(2), 67-89. Accessed 10 May 2023,
https://doi.org/10.1007/s40860-019-00080-3

Mercaldo, F. (2021). A framework for supporting ransomware detection and
prevention based on hybrid analysis. Journal of Computer Virology and
Hacking Techniques, 17(3), 221-227. Accessed 18 September 2023,
https://doi.org/10.1007/s11416-021-00388-w

Microsoft Azure. (2023). Artificial Intelligence vs. Machine Learning.
Accessed 6 May 2023, https://azure.microsoft.com/en-us/resources/cloud-
computing-dictionary/artificial-intelligence-vs-machine-
learning/#introduction

Mohammad, A. H. (2020). Analysis of Ransomware on Windows Platform.
Accessed 20 March 2023, https://doi.org/10.13140/RG.2.2.11150.59202

Moussaileb, R., Navas, R. E., & Cuppens, N. (2020). Watch out! Doxware on the
way. Journal of Information Security and Applications, 55, 102668. Accessed
10 May 2023, https://doi.org/10.1016/.jisa.2020.102668

Mooijman, P., Catal, C., Tekinerdogan, B., Lommen, A., &amp; Blokland, M.
(2023). The effects of data balancing approaches: A case study. Applied Soft
Computing, 132, 109853.  Accessed 18 September 2023,
https://doi.org/10.1016/j.as0c.2022.109853


https://doi.org/10.1145/3129676.3129713
https://doi.org/10.1007/s40860-019-00080-3
https://doi.org/10.13140/RG.2.2.11150.59202
https://doi.org/10.1016/j.jisa.2020.102668

170

Muslim, A. K., Mohd Dzulkifli, D. Z., Nadhim, M. H., & Abdellah, R. H. (2019). A
study of ransomware attacks: Evolution and prevention. Journal of Social
Transformation and Regional Development, 1(1). Accessed 20 May 2023,
https://doi.org/10.30880/jstard.2019.01.01.003

Mahajan, G., Saini, B., & Anand, S. (2019). Malware classification using machine
learning algorithms and Tools. 2019 Second International Conference on
Advanced Computational and Communication Paradigms (ICACCP).
Accessed 10 May 2023, https://doi.org/10.1109/icaccp.2019.8882965

Norouzi, M., Souri, A., & Samad Zamini, M. (2016). A data mining classification
approach for behavioral malware detection. Journal of Computer Networks and
Communications, 2016, 1-9. Accessed 10 May 2023,
https://doi.org/10.1155/2016/8069672

Prakash, K. B., Kannan, R., Alexander, S. A., & Kanagachidambaresan, G. R. (2021).
Advanced deep learning for engineers and scientists. EAI/Springer Innovations
in  Communication and Computing. Accessed 10 May 2023,
https://doi.org/10.1007/978-3-030-66519-7

P. Fabian, V. Gael, and G. Alexandre (2012), “Scikit-learn: machine learning in
python,” Journal of Machine Learning Research, vol. 12, pp. 2825-2830, 2011.
Accessed 26 May 2023, https://doi.org/10.48550/arXiv.1201.0490

Padmavaty, V., Geetha, C., & Priya, N. (2020). Analysis of data mining tool Orange.
International Journal of Modern Agriculture, 9(4), 1146-1150. Retrieved from
Accessed 20 May 2023, http://www.modern-
journals.com/index.php/ijma/article/view/485

Popryho, Y., (2023). Behaviour-based detection of ransomware attacks in the Cloud
using machine learning. Accessed 19 September 2023, https:/www.diva-
portal.org/smash/get/diva2:1773681/FULLTEXTO02.pdf

Qolomany, B., Al-Fugaha, A., Gupta, A., Benhaddou, D., Alwajidi, S., Qadir, J., &
Fong, A. C. (2019). Leveraging machine learning and big data for Smart
Buildings: A comprehensive survey. IEEE Access, 7, 90316—90356. Accessed
20 May 2023, https://doi.org/10.1109/access.2019.2926642

Salvi, H. U. (2019). Raas ransomware-as-a-service. International Journal of Computer
Sciences and Engineering, 7(6), 586—590.
Accessed 10 May 2023, https://doi.org/10.26438/ijcse/v7i6.586590

Smith, D., Khorsandroo, S., &amp; Roy, K. (2022). Machine learning algorithms and
frameworks in ransomware detection. IEEE Access, 10, 117597-117610.
Accessed 4 May 2023, https://doi.org/10.1109/access.2022.3218779

Security Intelligence. (2023, March 15). Costa Rica State of emergency declared after


https://doi.org/10.30880/jstard.2019.01.01.003
https://doi.org/10.1109/icaccp.2019.8882965
http://www.modern-journals.com/index.php/ijma/article/view/485
http://www.modern-journals.com/index.php/ijma/article/view/485
https://doi.org/10.1109/access.2019.2926642
https://doi.org/10.26438/ijcse/v7i6.586590
https://doi.org/10.1109/access.2022.3218779

171

ransomware attacks. Accessed 20 March 2023,
https://securityintelligence.com/news/costa-rica-state-emergency-
ransomware/

Sgandurra, D., Mufioz-Gonzélez, L., Mohsen, R., & Lupu, E. C. (2016). Automated
Dynamic Analysis of Ransomware: Benefits, Limitations and Use for
Detection. arXiv preprint arXiv:1609.03020. Accessed 4 May 2023,
https://arxiv.org/abs/1609.03020

Srivastava, S. (2014). Weka: A tool for data preprocessing, classification, Ensemble,
clustering and association rule mining. International Journal of Computer
Applications, 88(10), 26-29. Accessed 6 June 2023,
https://doi.org/10.5120/15389-3809

Sipra, V. (2021, May 14). Machine learning for newbies. Medium. Retrieved from
Accessed 20 May 2023, https://towardsdatascience.com/machine-learning-for-
newbies-7dd33dd6b764

Sharma, S., Rama Krishna, C., & Sahay, S. K. (2018). Detection of advanced malware
by Machine Learning Techniques. Advances in Intelligent Systems and
Computing, 333-342. Accessed 10 May 2023, https://doi.org/10.1007/978-
981-13-0589-4 31

Thampi, S., Perez, G., Ko, R., & Rawat, D. B. (2020). Security in computing and
communications. Communications in Computer and Information Science.
Accessed 10 May 2023, https://doi.org/10.1007/978-981-15-4825-3

Victoriano, O. B. (2019). Exposing Android ransomware using machine learning.
Proceedings of the 2019 International Conference on Information System and
System Management. Accessed 9 September 2023,
https://doi.org/10.1145/3394788.3394923

Malwarebytes.(2023). What is a brute force attack. Accessed 10 May 2023,
https://www.malwarebytes.com/cybersecurity/business/brute-force-attack

Yusof, R., Adnan, N. S., Abd. Jalil, N., & Abdullah, R. S. (2019). Analysis of data
mining tools for Android malware detection. Journal of Advanced Computing
Technology and Application (JACTA), 1(2), 21-24. Accessed 30 May 2023,
https://jacta.utem.edu.my/jacta/article/view/5196


https://securityintelligence.com/news/costa-rica-state-emergency-ransomware/
https://securityintelligence.com/news/costa-rica-state-emergency-ransomware/
https://arxiv.org/abs/1609.03020
https://doi.org/10.5120/15389-3809
https://towardsdatascience.com/machine-learning-for-newbies-7dd33dd6b764
https://towardsdatascience.com/machine-learning-for-newbies-7dd33dd6b764
https://www.malwarebytes.com/cybersecurity/business/brute-force-attack

APPENDIX A

Research Type of Tools | Type of Algorithms Type of Problems + Advantages Limitation
Techniques Objective
(Kok et al., e PEDA(Pre- | ¢ RandomForest | e Classification | P: 1) How to detect presence of | Combination of two | The proposed metrics include
2020) encryption crypto-ransomware before any | detection level | PLR, NNM, DOR, J Index, and
detection encryption occurs? which is signature | NND is difficult to represent
algorithm repository(SR) and | into one graph, as proposed
(PEDA) 0O: 1) To propose developm_ent learning  algorithm mej[riqs_(DOR,PLR) may have
e Cuckoo for of pre-encryption detection | (LA) enables PEDA | an _|nf|n|te value. _
. algorithm (PEDA) for early | to detect known | This may result in a
generating d i - = i i
etection of crypto- | crypto-ransomware | misunderstanding of the true
datasets ransomware. faster ~and also | metric value.
detect
2) To propose new metrics for | similar behavioural
the evaluation of a predictive | crypto-ransomware
model wused in ransomware | with unknown
detection. signature.
(Khalil et al., e WEKA e Support Vector | e Classification | P: 1) How can static analysis be | According to the | This method is not extensively
2022) e MATLAB Machines (SVM) used to overcome the | experimental result, | explored in the current existing

o K-Nearest
Neighbors
(KNN)

constraints of dynamic analysis
in order to construct a detection
model?

the Random Forest
achieved the highest
detection accuracy
compared to others.

literature, so it’s recommended
that the future study to
concentrate on the development
of a revolutionary static
analysis-based approach for




173

Random Forest

O: 1) To propose a hew

identifying and distinguishing

(RF) technique based on static ransomware.
Logistic analysis for detecting and
Regression (LR) clz_a§5|_fy|ng ransomware
Naive Bayes ut|I|S|_ng five machine learning
(NB) algorithms.
(Abbasi, 2023) | ¢ cuckoo Regularized e Classification | P: How can the challenges of | The research proof | The scope of the analysis
Sandbox Logistic high-dimensional data and | that identifying | environment is limited. The
e Tensorflow Regression time-intensive manual | critical call | research excludes ransomware
(RLR) inspection in behavior-based | arguments alongside | that targets multiple operating
Random Forest ransomware  detection  be | APl call names in | systems such as L_inux and Mac,
(RF) overcome? sequences can help | as v_veII as devices such as
Decision Tree improve the rr_10b_|le phones. As a r_esult, the
O: To propose a new | classification findings are limited to
(bT) representation of API call | performance. ransomware compatible with
Support Vector sequences, for early Windows 7 PCs only.
Machines (SVM) ransomware detection.
k-Nearest
Neighbors (KNN
(Khammas, e WEKA Random Forest | e Classification | P: How can we overcome the | According to the | The classification time is
2020) (RF) issue of complicated | research result it | directly  proportional  with
disaasemble  process  when | shows good | increasing in tree numbers.
detecting ransomware attacks? | performance of Therefore, it can be complex to
random forest | determine the best number of
O: To propose a new method of | classifier with the | tree that provides high accuracy
ransomware detection using | byte level static | with acceptable time for
Random  Forest technique | analysis for | classification.

based on static analysis.

ransomware attack
detection




174

(Al-Haija et MATLAB shallow neural Classification P: How to identify and detect | Produced high | Lack of in-depth analysis of
al., 2021 networks ransomware attacks in earl erformance uality measure for future ML
y|p quality
(SNNs) detection of bitcoin transaction. | classification model | development especially dealing
optimizable with imbalanced dataset.
decision trees O: To develop a predictive
system that can classify
(oDT)
ransomware payments  for
heterogeneous bitcoin
networks.
P: How to address the
(Ibrahim, et al., | WEKA NaiveBayse challenges and  problems | The research is able | The research has limitations
2020) Orange JRip Classification associated ~ with  malicious | to distinguish | including a small scope of
Scikit website detection. benign and | datasets. The research also uses
= malicious websites | limited classifier which in
O: To produce solutions for | through URL-based | WEKA.

feature selection in machine
learning for drive-by download
problem.

analysis. The
suggested approach
focuses on
protecting users
against browser

vulnerability-related
attacks.




APPENDIX B

a) Steps to classify data for Random Forest, Support Vector Machines (SVM)
and Naive Bayes in WEKA.

1) Navigate to the “Classify” tab as shown in Figure 1 below. Under the
“Classifier” section, click choose to select the machine learning classification
algorithms.

tion | @3 Weks Explorer

Preprocess Cluster  Associate  Select attributes  Visualize

(Nom) Label ~

Start

Result list (right-click for options)

Figure 1 WEKA explorer

2) To implement the Random Forest classification algorithms, choose the

“RandomForest” under the trees section of the classifier as shown in Figure 2

ation | € Weka Explorer
Prep Classify  Clust Associate  Select attributes  Visual
Classifi
welea 1-V0.001-51
lassifie
bayes bctive Std
functions Betive Max
lazy Metive Min
meta dle Mean
misc Idle Std
rules Idle Max
trees Idle Min
DecisionStump L=
HoeffdingTree plit 70.0% train, remainder test
148
T model (full training set) ———

class value: Ransomware

RandomTree

2ild model: 0.09 seconds
REPTree

bn test split ===

=st model on test split: 0.38 seconds

Figure 2 Selection of Random Forest in WEKA



176

3) To implement the Support Vector Machines (SVM) classification
algorithms, there are two options available which are using the default
package SMO or the external package LibSVM. To implement the SMO click

“SMO” under the functions section of the classifier as shown in Figure 3 below.

& Weka Explorer

Preprocess Classify Cluster  Associate Select attributes  Visualize

Classifier

weka =ka.classifiers.functions supportectar.PalyKernel -E 1,0 -C 250007 -calibrato

classifiers
bayes
functions

Legistic
MultilayerPerceptron
5GD

SGDText

SimEIELniisti(

VotedPerceptron
L

Figure 3 Selection of Support Vector Machines (SVM) in WEKA using SMO

4) For the LibSVM, we have to install the external package first. Navigate to tools
as shown in Figure 4 below. Select the Package manager.

Weka GUI Chooser

WEKA
g WAIKATO

R NEW ZEALAND

Figure 4 Package Manager in WEKA



177

5) Search LibSVM and click install to start downloading the package as shown in

Figure 5 below. Close any open WEKA application windows before
proceeding with the installation.

) Package Manager
Official

Install/Uninstall/Refresh progress
Refresh repository cache Install Uninstall

Toggle load

Installed (@) Available (_JAll [ 1gn0re dependencies/conflicts

Package
LibLINEAR Classification
LibSvM

Categaory Installed version

19.8

Classification, Regression

S

& Y | Package search | LibSyM Clear | (Search hits: 2)

LibSVM: A wrapper class for the libsvm tools

URL: https://www.csie.ntu.edu.tw/~cjlin/libsvm/
Author: FracPete <fracpete{[at]}waikato.ac.nz>
Maintainer: FracPete <fracpete{[at]}waikato.ac.nz>

A wrapper class for the libsvm library, including support for one-class SVMs.

All ilminl

Figure 5 Installation of LibSVM in WEKA

6) To implement the Support Vector Machines (SVM) classification algorithms
using the LibSVM, select the LibSVM under the functions section as shown in
Figure 6 below.

& Weke Explorer

Preprocess Classify Cluster Associate  Selectattributes  Visualize

Classifier

weka J‘O -E0.001 -P 0.1 -model "DittBackuptipplication Prograr KA Weka-3-6-6" -see
classifiers
Wil bayes

functions

Logistic
MultilayerPerceptron
SGD

5GDText

SimpleLogistic
SMO

VotedPerceptron

lazy
meta

misc

Figure 6 Selection of Support Vector Machines (SVM) in WEKA using
LibSVM



178

7) To implement the Naive Bayes classification algorithms, choose the

“NaiveBayes” under the bayes section of the classifier as shown in Figure 7

below.

k3 Weka Explorer

Preprocess
Classifier

weka
classifiers
bayes

functions
lazy

meta
misc
rules
trees

Classify

Cluster

Associate

NaiveBayesUpdateable

Select attributes Visualize

MaiveBayesMultinomial Text

on test split ===

=23t model on test split: 3.15 seconds

ified Instances 29403
3sified Instances 88207
0.032

25.0004 %
T74.9998 %

Figure 7 Selection of Naive Bayes in WEKA

b) Steps to classify data for Random Forest, Support Vector Machines (SVM)
and Naive Bayes in Orange.

1) To implement the Random Forest, select the “Random Forest” widget which

represents the Random Forest classification algorithm as shown in Figure 8

below.

@ Untitled * - Orange
File Edit View Widget Window Options Help

O

Data Table

g

O

Fle

* Preprocessor (Orange.preprocess.prepracess.Preprocess)

(Orange.medelling.randomforest.RandemForestLearner)
« Model (Orange.base RandomForestModel)

r 1
~
[T pata
Transform
o | Visualize
XX
L' Model
y e
® om J
e . 1o
oJj® ‘M & N
Comstant | CM2Ruk  Caibrated s
Learner
4 S5 2.
et Fir e to
i LA
.
Random Gradient
= Forest Boosting S
.’ Random Forest (from Orange3)
> /
s Predict using an ensemble of decision trees.
Linsar Logistic
Regression  Regression| Inputs:
. . * Data (Orange.data.table.Table)
X
roied °
« ° .
Outputs:
Neural .
Curve Fit == Learner
Uk R
v

Figure 8 Selection of Random Forest classification algorithms in Orange



2) Connect the nodes to start training the model using the

classification algorithms as shown in Figure 9 below.

179

Random Forest

@ Untitled ™ - Orange
File Edit View Widget Window Options Help

| pate 2
Transform

|£ Visualize D

——

FEF Model

Daty

Data Table
4 sse
.} .s 4
® o s 1
O FH m . '}- %
CN2Rule  Calibrated File
Constertducter Learner EL fa
b
N . .
Fib e g st
an i ) -
i ) L) Randem Forest
Random Gradient
Tree = Boosting SVM
= A
o ®
P LI ieBayss  AdeBosst

Regression  Regression

el O, @

Heural Stochasic
Network ~ Gradient De.

Curve Ft Stacking

Figure 9 Connecting each node for Random Forest in Orange

S

3) To implement the Support Vector Machines (SVM), select the “SVM” widget

which represents the Support Vector Machines (SVM) classification algorithm

as shown in Figure 10 below.

@ Untitled * - Orange
File Edit View Widget Window Optiens Help

Transform

E Visualze D

prey =
5 Model

| \ 3 Data Table
e i | )
O . U4
Constant___ C12 Rule File
e e

{from Orange3)

.
¥ /
9.“'" ® Support Vector Machines map inputs to higher-dimensional feature
spaces.
logiic
Regressio e

P
Linear
Regremion Naive Bayes  AdaBoost npus:
[ . * Data (Orange.data table.Table)
vilel go A ® Preprocessor (Orange.prepracess.prepracess.Preprocess)
% s =z
Neural Stochastic | Qutputs:
CUrvEF etwork  GradentDe.  SRkNg oL range modelling.svm SYMLearner)
_ _ * Model (Orange.base.Model
u’ﬁ ui * Support Vectors (Qrange.data table Table)
v

Figure 10 Selection of Support Vector Machines (SVM) classification

algorithms in Orange



180

4) Connect the nodes to start training the model using the Support Vector

Machines (SVM) classification algorithms as shown in Figure 11 below.

@ Untitled * - Orange

] pata

Transform
|£ Visualize

Ixxs
& Model
*le i J
LX]
O ® e (¢
CNRule  Calibrated
Constant oduction Learner
. .
LTLE] Fan s
ia e dnjan
Tres Random Gradient
= Forest Boosting

f"f‘d\‘c}g’:

File Edit View Widget Window Options Help

0}

File

Daty

O

Data Table

SVM

Figure 11 Connecting each node for Support Vector Machines (SVM)

classification algorithms in Orange

5) To implement the Naive Bayes select the “Nalve Bayes” widget which

represents the Naive Bayes classification algorithm as shown in Figure 12

below.

@ Untitled * - Orange
File Edit View Widget Window Options Help

) pata
Transform
li | Visualize
o3 Model
. I kit
ol ‘'H & A
CN2 Rule Calibrated
Corstrt  uchon  laamer M
1 L . g%
(11K} g eel
TR Uit =
- X
-
= A
Ol [

AddsPocet

A

File

_Baty

(=

Data Table

Naive Bayes (from Orange3)

Stochastic
Metwork  Gradient De.

Afast and simple probabilistic classifier based on Bayes' theorem with
the assumption of feature independence.

Inputs:

* Data (Orange.data.table.Table)
* Preprocessor (Orange.preprocess.preprocess.Preprocess)

Outputs:

* Learner (Orange. classification.naive_bayes NaiveBayesLearner)
* Model (Orange.classification.naive_bayes.NaiveBayesModel)

Figure 12 Selection of Naive Bayes classification algorithms in Orange



181

6) Connect the nodes to start training the model using the Naive Bayes

classification algorithms as shown in Figure 13 below.

@ Untitled * - Orange
File Edit View Widget Window Optiens Help

m] Data 2
Transform
E Visualize D
‘R Model £
5
[x) = Data Table
’ ..
*le g J Y |
O ® o fﬁ ":1\- &
El
CN2 Rule Calibrated -1
Constant Induction Learner = Fie ?
1 K . g0 + A
gy e e HS.H
i—h ] ."J."'. i
i %
. Naive Bayes
Random Gradient
= Forest Eoasting o
o2 / ,A.
= .
Linear Logistic -
Regremion  Repeeton  NEveBsyss  AdsBocst

Figure 13 Connecting each node for Naive Bayes classification algorithms in

Orange



APPENDIX C

Sample of code for Sub-sampling using Python language in Jupyter Notebook

Meiza@Kali
S eME PO 2 3 2} A 0N & G
*» Sub-Sampling BitcoinHeist Ransemware Dataset - Jupyter Notebook — Mozilla Firefox
Home P » | & Sub-Sam itcoinHel: X +
LD |
KaliLinux g Kali Tools « Kali Docs <ali Forums & Kali NetHunter Exploit-DB Google Hacking DB OffSec VirusTotal - Home
: Jupyter Sub-Sampling BitcoinHeist Ransomware Dataset Last Checkpoint: 19 minutes age (unsaved changes) ﬁ Logout
File Edit View nsert Cell Kermnel Widgets Help Trusted o |Pg.rthon 3 (ipykernel) O
+ |5 A B 4 % PR B C MW Codke v

In [1]: import pandas as pd
In [2]: data = pd.read csv('BitcoinHeistRansemware.csv')

In [3]: ransomware data = data[data['label’'] == 'Ransomware’]
benign data = dataldatal'label'] == 'white']

In [4]: sampled ransomware = ransomware data.sample(n=700, random state=42)
sampled benign = benign data.sample(n=300, random state=42)

In [5]: sampled data = pd.concat([sampled ransomware, sampled benign])

In [6]: sampled data.to csv('1000 Unbalanced BitcoinHeist RANSOMWARE.csv', index=False)




183

[\ Meza@Kali

o »
S PO : F b bl DA O | & G
] Sub-Sampling BitcoinHeist Ransomware Dataset - Jupyter Notebook — Mozilla Firefox
— Home Page - Select or cre X | & Sub-Sampling BitcoinHel X+
@ O O localhost smpling B
Kali Linux #= Kali Tools = KaliDocs Kali Forums e Kali NetHunter % Exploit-DB % Google Hacking DB [l OffSec VirusTotal - Home
: Jupyter Sub-Sampling BitcoinHeist Ransomware Dataset Last Checkpoint: 22 minutes ago (autosaved) A Logout
File Edit View Insert Cell Kernel Widgets Help Trusted 4 | Python 3 (ipykemel) O
+|[5< @ B 4+ ¥|[>Rn|[m|c»lcome v =]

In [7]: data.shape
Oout[7]: (1048575, 10)

In [8]: data = pd.read csv('1000 Unbalanced BitcoinHeist RANSOMWARE.csv')

In [9]: data.shape

Oout[9]: (leeo, 18)

In [10]: sampled data class counts = sampled data['label'].value counts()
print("Sampled dataset class counts:")
print(sampled_data_class_counts)

Sampled dataset class counts:
Ransomware 700
white 300




APPENDIX D

1) BitcoinHeist Ransomware Detection Result (Dataset I)

Table 1 Summary of evaluation metrics results in WEKA Dataset | (10:90)

184

True Positive

False Positive

Sample Size Algorithms Rate Rate Precision ‘ Recall F-measure Overall Accuracy

Decision Tree 0.860 0.139 0.866 | 0.860 0.859 86.00%
RandomForest | 0892 0107 | 001l | 0892 | 0891 89.22%
1000 Naive Bayes | 0.829 0.172 0.838 0.829 0.828 82.89%
LibSvM | 0.561 0435 | 0689 0561 | = 0474 56.11%
SMO [ 0.901 0098 | 0910 | 0910 | 0910 90.11%
Decision Tree | 0.941 0.059 0.941 0.941 0.941 94.11%
Random Forest 0928 | 0073 | 0937 0928 | 0927 92.78%
5000 Naive Bayes |  0.885 | 0115 | 0887 | 085 |  0.885 88.51%
LibsyM | 0612 | 0391 | 0700 | 0612 | 0562 61.16%
SMO 0964 | | 003 | 0964 | 0964 0.964 96.38%
Decision Tree 0.950 0.050 0.954 0.950 0.950 95.04%

Random Forest 0.941 0.060 0.947 0.941 0.941 94.06
10 000 Naive Bayes 0.668 0.331 0.775 0.668 0.633 66.79%
LibSVM 0.633 0.368 0.687 0.633 0.605 63.34%

SMO N/A N/A N/A N/A N/A N/A




Table 2 Summary of evaluation metrics results in WEKA Dataset | (30:70)

185

Sample Size Algorithms TrueRI;(zzltlve False:?F;(t)sltlve Precision Recall F-measure Overall Accuracy
Decision Tree. | 0.939 0.062 0.942 0.939 0.938 93.86%
 Random Forest |  0.947 0.054 0.951 0.947 0.947 94.75%
1000 | Naive Bayes 0.869 0.131 0.869 0.869 0.869 86.86%
 LibsvM E™ | WMo . 707 0.611 0.557 61.14%
~ SMO 0937 | 0062 0938 | 0837 0.937 93.71%
Decision Tree | 0.949 0051 | 0.5 0949 0.949 94.94%
~ Random Forest | 0.973 0027 0974 | 0973 | 0973 97.26%
5000 | NaiveBayes 0880 0120 | 0882 | 0880 | 0880 88.03%
 LibsvM | 0685 0.365 0.703 0.635 0.601 68.49%
i sMo 0.962 0.038 0.963 0.962 | 0962 96.22%
Decision Tree | 0.950 0.050 0ons ¢ =0T U50 0.949 94.96%
 Random Forest | 0.965 0.035 0.967 | 0965 |  0.965 96.46%
10000 | NaiveBayes | = 0.535 0.467 0702 | 0.585 0.413 53.54%
~ LibsvM | 0644 | 0354 | 0704 0644 | 0616 64.40%
SMO N/A N/A N/A N/A N/A N/A




Table 3 Summary of evaluation metrics results in WEKA Dataset | (50:50)

186

Sample Size Algorithms TrueRI;(zzltlve False:?F;(t)sltlve Precision Recall F-measure Overall Accuracy
Decision Tree. | 0.938 0.065 0.940 0.938 0.938 93.80%
Random Forest |  0.926 0.078 0.935 0.926 0.925 92.60%
1000 Naive Bayes 0.828 0.165 0.862 0.828 0.825 82.80%
LibSVM Qe ™ | WodEm 0.730 0.642 0.599 64.20%
~ SMO 0940 | 0059 0941 | 0840 0.940 94.00%
Decision Tree 0.950 0051 | 0.952 0950 0.950 95.04%
Random Forest 0.959 0043 0962 | 0959 | 0959 95.88%
5000 Naive Bayes 0.908 0092 | 0908 | 0908 |  0.908 90.76%
LibSvM 0.637 0.373 0.691 0.637 0.606 63.72%
SMO 0.966 0.034 0.966 0.966 0.966 96.56%
Decision Tree 0.952 0.047 0954 | 0952 0.952 95.2%
Random Forest 0965 0.035 0.967 | 0965 |  0.965 96.46%
10 000 Naive Bayes 0.548 0.460 0713 = | 0548 0.436 54.84%
“LibSYM | 0650 | 0346 | 0704 | 0650 | 0626 64.98%
SMO 0.982 0.018 0.982 0.982 0.982 98.16%




187

Table 4 Summary of evaluation metrics results in WEKA Dataset | (70:30)

Sample Size Algorithms TrueRI;(zzltlve False:?F;(t)sltlve Precision Recall F-measure Overall Accuracy
Decision Tree. | 0.940 0.059 0.940 0.940 0.940 94.00%
 Random Forest |  0.957 0.046 0.957 0.957 0.957 95.67%
1000 | Naive Bayes 0.833 0.144 0.877 0.833 0.831 83.33%
 LibsvM 0663 | [0.381 [hamo.732 0.663 0.626 66.33%
~ sMo 0947 | 0048 0950 | 0847 0.947 94.67%
Decision Tree | 0.953 0.047 0.955 0953 0.953 95.33%
~ Random Forest | 0.963 0037 | 0965 | 0963 | 0963 96.27%
5000 | NaiveBayes 0846 0154 | 0876 | 0846 | 0843 84.60%
 LibsSvM | 0632 0.368 0.680 0.632 0.606 63.20%
 smMO 0967 | 0033 | 0968 0967 |  0.967 96.73%
Decision Tree | 0953 | 0048 | 0954 | 0953 |  0.53 95.27%
 Random Forest | 0987 | 0014 | 0987 | 0987 | 0987 98.67%
10000 | Naive Bayes SITPPFEK NI AT MAICAY SIA P09 LA KA 55.33%
LibSVM 0.660 0.344 0.709 0.660 0.637 65.97%

SMO 0.985 0.015 0.985 0.985 0.985 98.47%




Table 5 Summary of evaluation metrics results in WEKA Dataset | (90:10)

188

Sample Size Algorithms TrueRI;(zzltlve False:?F;(t)sltlve Precision Recall F-measure Overall Accuracy
Decision Tree. | 0.950 0.062 0.951 0.950 0.950 95.00%
Random Forest |  0.940 0.083 0.946 0.940 0.939 94.00%
1000 Naive Bayes 0.680 0.232 0.818 0.680 0.663 68.00%
LibSVM Qe ™ | Wo.42am 0.689 0.670 0.635 67.00%
~ SMO 0960 | 0036 0961 | 0860 0.960 96.00%
Decision Tree 0.952 0047 | 0952 0052 0.952 95.20%
Random Forest 0.968 0029 0970 | 0968 | 0968 96.80%
5000 Naive Bayes 0.852 0161 | 0877 | 0852 | 0848 85.20%
LibSvM 0.626 0.350 0.687 0.626 0.602 62.6%
SMO 0.974 0.028 0.975 0.974 0.974 97.4%
Decision Tree 0.953 0.047 0954 | 0953 0.953 95.30%
Random Forest 0984 0.016 0.984 | 0984 | 0984 98.40%
10 000 Naive Bayes 0.564 0.431 0720 ~ | 0564 0.241 56.40%
“LibSVM | 0666 | 0337 | 0723 | 0666 | 0642 66.60 %
SMO 0.991 0.009 0.991 0.991 0.991 99.10%




Table 6 Summary of evaluation metrics results in ORANGE Dataset | (10:90)

189

True Positive

False Positive

Sample Size Algorithms Rate Rate Precision Recall F-measure Overall Accuracy
Decision '_If[egr¥ __0.808 0.192 0.868 0.858 0.857 85.80%
1000 Random Forest 0.892 0.108 0.888 0.888 0.888 88.80%
Na'l'ye Bayes 0.843 3 _0.157 —_ 0.860 0.859 0.E§9 85.90%
SVM 0.821 0.179 0.840 0.893 0.893 83.90%
D?cision Tree 0.931 _0.070 | 093_0 O._930_ _ O.SEO 93.00%
Random Forest | 0.922 0.045 0.939 0.939 0.939 93.90%
5000 - B T —'7 & N
Naive Bayes 0.894 0.166 0.865 0.864 0.864 86.40%
SVM 0.928 0.056 0.936 0.936 0.936 93.60%
Decision Tree 0.930 0.053 0.938 0.938 0.938 93.80%
Random Forest 0.922 0.040 ' 0.942 0.941 0.941 94.10%
10 000 =g T N T e —— ) =T
Naive Bayes _0.904_ 0.17_1 ' 0.8_69 gl 0.86_7 el 0.866 86.70%
SVM 0.830 0.023 0.912 0.904 0.903 90.40%




Table 7 Summary of evaluation metrics results in ORANGE Dataset | (30:70)

190

True Positive

False Positive

Sample Size Algorithms Rate Rate Precision Recall F-measure Overall Accuracy
Decision '_If[egr¥ __0.880 0.064 0.909 0.908 0.908 90.80%
1000 Random Forest 0.869 0.051 0.911 0.909 0.908 90.90%
Na'l'ye Bayes 0.855 3 _0.122 —_ 0.876 0.866 O.EEG 86.60%
SVM 0.872 0.067 0.904 0.902 0.902 90.20%
D?cision Tree 0.943 _0.057 | 093_9 O._939_ _ O.SEQ 93.90%
Random Forest | 0.973 0.027 0.946 0.944 0.944 94.40%
5000 - R om0 N —'7 & R
Naive Bayes 0.849 0.151 0.870 0.869 0.869 86.90%
SVM 0.981 0.019 0.891 0.871 0.871 87.10%
Decision Tree 0.951 0.049 0.944 0.944 0.944 94.40%
Random Forest 0.971 0.029 ' 0.952 0.951 0.951 95.10%
10 000 =g T R T e —— e T8
Naive Bayes _0.836_ 0.16_4 ' 0.8_70 gl 0.86_7 el 0.867 86.70%
SVM 0.804 0.145 0.865 0.800 0.798 80.40%




Table 8 Summary of evaluation metrics results in ORANGE Dataset | (50:50)

191

True Positive

False Positive

Sample Size Algorithms Rate Rate Precision Recall F-measure Overall Accuracy
i Decision '_If[egr¥ __0.916 0.081 0.917 0.917 0.917 91.70%
1000 Random Forest 0.892 0.054 0.920 0.918 0.918 91.80%
i Na'l'ye Bayes 0.896 3 _0.162 _ 0.868 0.867 O.EE? 86.70%
SVM 0.876 0.046 0.918 0.915 0.915 91.50%
i D?cision Tree 0.949 _0.051 | 094_1 O._941_ _ O.Qil 94.10%
Random Forest | 0.968 0.032 0.951 0.950 0.950 95.00%
5000 = - MR e 00 N —'7 & N
Naive Bayes 0.838 0.162 0.866 0.864 0.864 86.40%
SVM 0.915 0.085 0.839 0.822 0.820 82.20%
i Decision Tree 0.950 0.050 0.943 0.943 0.943 94.30%
Random Forest 0.971 0.029 0.953 0.953 0.953 95.30%
10 000 = =g T R T e —— e T8
i Naive Bayes _0.836_ 0.16_4 0.8_71 gl 0.86_7 el 0.867 86.70%
SVM 0.892 0.108 0.798 0.768 0.762 76.80%




Table 9 Summary of evaluation metrics results in ORANGE Dataset | (70:30)

192

True Positive

False Positive

Sample Size Algorithms Rate Rate Precision Recall F-measure Overall Accuracy
Decision '_If[egr¥ __0.908 0.088 0.910 0.910 0.910 91.00%
1000 Random Forest 0.888 0.038 0.927 0.925 0.925 92.50%
Na'l'ye Bayes 0.892 3 _0.142 —_ 0.875 0.875 O.EZS 87.50%
SVM 0.802 0.026 0.900 0.887 0.887 88.70%
D?cision Tree 0.940 _0.045 | 094_8 O._948_ _ 0.9i8 94.80%
Random Forest | 0.933 0.030 0.952 0.951 0.951 95.10%
5000 - B T —'7 & N
Naive Bayes 0.910 0.185 0.866 0.862 0.862 86.20%
SVM 0.693 0.089 0.817 0.802 0.800 80.20%
Decision Tree 0.936 0.046 0.945 0.945 0.945 94.50%
Random Forest 0.936 0.028 ' 0.955 0.955 0.955 95.50%
10 000 =g . N T o ——— e =T 81
Naive Bayes _0.912_ 0.1253 ' 0.8_68 gl 0.86_4 el 0.864 86.40%
SVM 0.619 0.073 0.802 0.773 0.767 77.30%




Table 10 Summary of evaluation metrics results in ORANGE Dataset | (90: 10)

193

True Positive

False Posmve

Sample Size Algorithms Rate Rate Precision Recall F-measure Overall Accuracy

Decision Tree 0.918 0.074 0.922 0.922 0.922 92.20%

1000 ~ Random Forest 0906 | 0041 | 0933 0.932 0.932 93.20%
Naive Bayes 0.908 0.170 0.872 0.870 0.870 87.00%

. SwM . 079% 0043 | o0sss | o087 0.873 88.40%

Decision Tree ! 0.937 0.054 0.941 \ 0.941 0.941 94.10%

cop | RandomForest | 0930 0025 | 0954 | 0953 | 0953 95.30%
Naive Bayes = | 0.915 0.189 0.867 0.862 0.862 86.20%

i SVM 0.702 .~ 0105 + 0810 0.800 0.798 80.0%

| DecisionTree .\ .0931 | 0046 | 0043 | 0942 0.942 94.20%

0o - Random Forest 0.933 | 0.025 0.955 0.954 0.954 95.40%
Naive Bayes | 0.907 Losad &8  mas s n0-368 0.865 0.865 86.50%

| svM | 063 | 0095 | 0791 _T' 0770 | 0.766 77.00%




2) Android Ransomware Detection Result (Dataset 11)

Table 11 Summary of evaluation metrics results in WEKA Dataset 11 (10:90)

194

' True Positive iFalse Positivei

Sample Size Algorithms Rate Rate Precision Recall F-measure Overall Accuracy
Decision Tree 0.697 0.697 0.697 0.697 0.697 69.67%
" Random Forest 0.654 0.628 0.594 0.654 0.607 65.44%
1000 |  Naive Bayes 0532~ | | 0390 0.642 0.532 0.548 53.22%
. LibSYM | 0699 0689 | 0714 0699 | 0579 69.89%
. SMO 0683 0649 | 0614 | 0683 | 0608 68.33%
| DecisionTree | 0.699 0.699 0699 | 0699 | 0.699 69.93%
Random Forest | 0716 0.544 0686 | 0716 | 0.679 71.58%
5000 |  Naive Bayes 0532 | 0368 |  0.656 0.532 0.547 53.20%
| LibSYM® | 0698 0697 | 0580 ~|.-.0.608 0577 69.80%
- SMO NA N/A NA | NIA | NIA N/A
Decision Tree | 0699 | 0699 | 0699 0.699 0.699 69.86%
" Random Forest * 17 | 0.683— “101 gisax- i iggad = 17 068a '  0.658 68.27%
10 000 Naive Bayes 0.581 0.431 0.640 0.581 0.598 58.12%
LibSVM 0.695 0.698 0.607 0.695 0.584 69.51%
SMO N/A N/A N/A N/A N/A N/A




Table 12 Summary of evaluation metrics results in WEKA Dataset 11 (30:70)

195

Sample Size Algorithms TrueRI;(zzltlve False:?:(t)sltlve Precision Recall F-measure Overall Accuracy
Decision Tree. | 0.697 0.697 0.697 0.697 0.697 69.71%
Random Forest |  0.723 0.590 0.709 0.723 0.660 72.29%
1000 Naive Bayes 0.657 0.581 0.618 0.657 0.628 65.71%
LibSVM 0692, | No.6850 0.614 0.694 0.584 69.42%
~ SMO 0697 | 0614 0.651 0.697 0.634 69.71%
Decision Tree | 0.704 0704 | 0.704 0704 | 0704 70.43%
Random Forest | 0.738 0478 0718 0738 | 0717 73.83%
5000 Naive Bayes L 0.518 0202 | 0710 0.518 0.512 51.77%
LibsvM | 0.701 0.700 0.592 0.701 0.586 70.11%
sMO N/A N/A N/A N/A N/A N/A
Decision Tree | 0.699 0.699 0.699 0.699 0.699 69.94%
Random Forest 0746 0.419 0733 | 0746 | 0.735 74.61%
10 000 Naive Bayes | 0.520 0.306 0.696 0.520 0.524 51.99%
LibSVM | 0695 | 0687 | 0607 | 0695 |  0.587 69.50%
SMO N/A N/A N/A N/A N/A N/A




Table 13 Summary of evaluation metrics results in WEKA Dataset Il (50:50)

196

Sample Size Algorithms TrueRlz(zzltlve False:?:(t)sltlve Precision Recall F-measure Overall Accuracy
Decision Tree. | 0.694 0.694 0.694 0.694 0.694 69.40%
| Random Forest |  0.722 0.550 0.700 0.722 0.676 72.20%
1000 |  Naive Bayes 0.560 0.344 0.676 0.560 0.574 56.00%
. LibSVM QeoA™ | Mo 0.652 0.696 0.590 69.60%
. sMO 0710 | 0614 0688 | 0710 0.637 71.00%
Decision Tree | 0.695 0695 |  0.695 0695 0.695 69.48%
. RandomForest | 0.747 0439 0732 0747 | 0730 74.72%
5000 | NaiveBayes 0541 0303 | 0701 | 0541 | 0547 54.08%
. LibSVM | 0.692 0.689 0.592 0.692 0.575 69.16%
. smo 0740 | 0489 0.723 0.740 0.711 74.00%
Decision Tree | 0698 | 0.698 0698 | 0698 0.698 69.80%
| Random Forest | 0.762 0.398 0751 | 0762 |  0.751 76.24%
10000 | NaiveBayes | 0571 | = 0294 0713 ~ | 0571 0.583 57.14%
. LibSvM | 0697 | 068 | 0623 | 0697 | 0583 69.66%
SMO 0.765 0.469 0.759 0.765 0.736 76.52%




Table 14 Summary of evaluation metrics results in WEKA Dataset Il (70:30)

197

Sample Size Algorithms TrueRI;(zzltlve False:?:(t)sltlve Precision Recall F-measure Overall Accuracy

Decision Tree. | 0.663 0.663 0.663 0.663 0.663 66.33%

| Random Forest |  0.727 0.509 0.747 0.727 0.675 72.67% (Best)
1000 |  Naive Bayes 0.560 0.350 0.658 0.560 0.567 56.00%
. LibSVM 0.660 ~ | | 0646 0.592 0.660 0.550 66.00%
. sMO 0707 | 0549 0721 | 0707 0.642 70.67%
Decision Tree | 0.692 0692 |  0.692 0692 0.692 69.20%
. RandomForest | 0.746 0409 0733 0746 | 0735 74.60%
5000 | NaiveBayes 0525 0301 | 0699 | 0525 | 0527 52.53%
. LibsvM | 0689 0.680 0.606 0.689 0.577 68.87%

i sMO 0.751 0.474 0.740 0.751 0.722 75.07% (Best)
Decision Tree | 0702 0.702 0702 | 0.702 0.702 70.20%
| Random Forest 0.761 0.386 0.750 | 0761 |  0.753 76.07%
10000 | NaiveBayes | 0.690 0.369 0711 ~ | 0690 0.698 69.00%
. Libsvm | 0701 | 068 | 0637 | 0701 | 059 70.10%

SMO 0.771 0.462 0.765 0.771 0.744 77.13% (Best)




Table 15 Summary of evaluation metrics results in WEKA Dataset 11 (90:10)

198

Sample Size Algorithms TrueRI;(zzltlve False:?:(t)sltlve Precision Recall F-measure Overall Accuracy

Decision Tree. | 0.700 0.700 0.700 0.700 0.700 70.00%

| Random Forest | 0.770 0.480 0.770 0.770 0.737 77.00%(Best)
1000 |  Naive Bayes 0.540 0.388 0.648 0.540 0.557 54.00%
. LibSVM 0.690 - | | 0685 0.591 0.690 0.588 69.00%
. sMO 0770 | 0480 0770 | 0170 0.737 77.00%
Decision Tree | 0.690 0690 |  0.690 0690 0.690 69.00%

. RandomForest | 0.794 e 0.787 079 | 0783 79.40%(Best)
5000 |  NaiveBayes 0566 0302 | 0704 | 0566 | 0575 56.60%
. LibSYM | 0686 0.678 0.601 0.686 0.575 68.60%
i sMO 0.782 0.418 0.781 0.782 0.760 78.20%
Decision Tree | 0690 0.690 0690 | 0690 0.690 69.60%
| Random Forest 0.782 0.353 0.774 | 0782 | 0775 78.20%
10000 | NaiveBayes | 0.719 0.362 0725 ~ | - 0719 0.722 71.90%
. LibSYM | 0699 | 0674 | 0664 | 0669 | 0592 69.90%

SMO 0.786 0.429 0.786 0.786 0.762 78.60%(Best)




Table 16 Summary of results evaluation metrics results in ORANGE Dataset 11 (10:90)

199

True Positive

False Positive

Sample Size Algorithms Rate Rate Precision Recall F-measure Overall Accuracy
i Decision '_If[egr¥ __0.551 0.449 0.549 0.548 0.548 54.80%
1000 Random Forest 0.553 0.447 0.549 0.549 0.548 54.90%
i Na'l'ye Bayes 0.551 3 _0.449 _ 0.555 0.556 0.535 55.60%
SVM 0.554 0.446 0.543 0.541 0.534 54.10%
i D?cision Tree 0.525 _0.475 | 053_0 O._529_ _ 0.538 52.90%
Random Forest | 0.531 0.469 0.535 0.534 0.534 53.40%
5000 = - B T —'7 & R
Naive Bayes 0.499 0.501 0.500 0.500 0.500 50.00%
SVM 0.518 0.482 0.513 0.510 0.468 51.00%
i Decision Tree 0.540 0.460 0.542 0.542 0.542 54.20%
Random Forest 0.554 0.446 0.554 0.554 0.554 55.40%
10 000 = =g . I T e —— | Lh T
i Naive Bayes _0.505_ 0.49_5 0@5 gl O.SCKS el 0.505 50.60%
SVM 0.513 0.487 0.508 0.506 0.463 50.60%




Table 17 Summary of evaluation metrics results in ORANGE Dataset Il (30:70)

200

Sample Size Algorithms TrueRI;(zzltlve False:?:(t)sltlve Precision Recall F-measure Overall Accuracy
Decision Tree 0.572 0.428 0.575 0.575 0.575 57.50%
oo | Random Forest |  0.590 0.410 0.591 0.591 0.591 59.10%
Naive Bayes 0.577 0.423 0.574 0.574 0.574 57.40%
SVM 0602~ | | 0398 | .w0.560 0.532 0.471 53.20%
Decision Tree 0.551 0.449 0.555 0.554 0.554 55.40%
Random Forest | 0.569 0431 | 0570 0.570 10570 57.00%
2000 Naive Bayes 0.499 0501 | 0499 0.499 | 0.499 49.90%
SVM 0.502 0498 | 0501 | 0501 | 0498 50.10%
Decision Tree 0.570 0.430 0.577 0.576 0.575 57.60%
10000 Random Forest 0597 0403 | 0.601 0601 | 0601 60.10%
Naive Bayes 0.505 0495 | 0506 0506 | 0505 50.60%
SVM 0500 0.500 0501 | 0501 | 0.497 50.10%




Table 18 Summary of evaluation metrics results in ORANGE Dataset 11 (50:50)

201

True Positive

False Positive

Sample Size Algorithms Rate Rate Precision Recall F-measure Overall Accuracy
i Decision '_If[egr¥ __0.566 0.434 0.583 0.579 0.575 57.90%
1000 Random Forest 0.592 0.408 0.600 0.599 0.598 59.90%
i Na'l'ye Bayes 0.581 3 _0.419 _ 0.575 0.575 0.514 57.50%
SVM 0.587 0.413 0.548 0.517 0.422 51.70%
i D?cision Tree 0.559 _0.441 | 05@ O._563_ _ 0.5&2 56.30%
Random Forest | 0.578 0.422 0.579 0.579 0.579 57.90%
5000 = - B T —'7 & N
Naive Bayes 0.501 0.499 0.501 0.501 0.501 50.10%
SVM 0.501 0.499 0.501 0.501 0.501 50.10%
i Decision Tree 0.570 0.430 0.577 0.576 0.575 57.60%
Random Forest 0.597 0.403 0.601 0.601 0.601 60.10%
10 000 = =g } o e— ¥ Lh =T
i Naive Bayes = _0.505_ 0.49_5 0@6 gl O.SCKS el 0.505 50.60%
SVM 0.500 0.500 0.501 0.501 0.497 50.10%




Table 19 Summary of evaluation metrics results in ORANGE Dataset 11 (70:30)

202

Sample Size Algorithms True Positive | False Positive Precision Recall F-measure Overall Accuracy
Rate Rate
| DecisionTree. | 0.615 0.462 0.574 0.573 0.573 57.30%
1000 Random Forest 0.630 0.426 0.615 0.615 0.615 61.50%
. Naive Bayes 0.513 0486 | 0584 0.584 0.584 58.40%
SVM 0.375 0.346 0.514 0.511 0.450 51.10%
. Decision Tree | 0.606 0457 0.575 . 0574 7| 0574 57.40%
Random Forest | 0.611 0.416 0.598 0.598 0.598 59.80%
5000 - - B —'7 & N
Naive Bayes | 0.522 0.518 0.502 0.502 0.502 50.20%
SVM : 0.267 0.259 0.505 | 0504 | 0.475 50.40%
. Decision Tree | 0.618 0.452 0.583 0.583 0.582 58.30%
Random Forest 0.627 ' 0.400 ' 0.614 0.614 0.614 61.40%
10 000 - =g W I s e o — — | i & TR
. NaiveBayes | 10555 0.537 ' 0509 | 0509 | 0.508 50.90%
SVM 0.368 0.365 0.502 0.502 0.492 50.20%




203

Table 20 Summary of evaluation metrics results in ORANGE Dataset 11 (90:10)

Sample Size Algorithms | TrueRF;ct)zltuve |Fals?qz?§|tlve| Precision | Recall | F-measure Overall Accuracy

Decision Tree 0.572 0.480 0.546 0.545 0.545 54.50%

1000 ~ Random Forest 0641 0408 | 0617 0.616 0.616 61.60%
Naive Bayes 0.158 0.094 0.580 0.580 0.579 58.00%

. sVM 0527 0369 | 0572 | 0541 | 0465 54.10%

i Deqifion Tree : 0.596 _0.42 _OSEE 4‘; O._581_ _O.5§1 58.10%

5000 i Randomforest i 0.615 0.414 0.601 0.67071_7 ngl 60.10%
Naive Bayes | 0559 0.531 0514 | 0515 | 0514 51.50%
Y 0218 0189 | 0522 0.510 0.463 51.00%

Decision Tree 0585 | 0415 | 0591 | 0591 | 0590 59.10%

oo | Random Forest 0611 0389 | 0613 | 0613 | - 0613 61.30%
Naive Bayes 0507 = 0493 0506 0506 0506 50.60%

- UBWERSIThsbEKNIFAL MALSY STA ISE LA K S 50.10%




3) File System Behavior Ransomware Detection Result (Dataset 111)

Table 21 Summary of evaluation metrics results in WEKA Dataset 111 (10:90)

204

' True Positive iFalse Positivei

Sample Size Algorithms Rate Rate Precision Recall F-measure Overall Accuracy
Decision Tree 0.950 0.050 0.951 0.950 0.950 95.00%
Random Forest 0.944 0.055 0.944 0.944 0.944 94.44%
1000 Naive Bayes 0793 | 0207 0.795 0.793 0.793 79.33%
LibSVM | 0617 0380 | 0783 0617 | 0552 61.67%
 SMO 0873 0127 | 0878 | 0873 | 0873 87.33
Decision Tree | 0970 0.030 0970 | 0970 |  0.970 97.00%
Random Forest | 0.955 0.045 0956 0955 | 0.955 95.53%
5000 Naive Bayes 0792 | 0207 |  0.807 0.792 0.790 79.22%
LIBSVMP st 00692 bl 0800 t0l809  ~|40:692 0.660 69.24%
SMO NA N/A NA | NIA | NIA N/A
Decision Tree | 0.967 | 0033 | 0967 0.967 0.967 96.67%
Random Forest “1° | 0.951— |71 ppag- '] 051 — |’ 0.85L | 0.051 95.09%
10 000 Naive Bayes 0.825 0.174 0.847 0.825 0.822 82.48%
LibSVM 0.737 0.265 0.827 0.737 0.717 73.65%
SMO N/A N/A N/A N/A N/A N/A




205

Table 22 Summary of evaluation metrics results in WEKA Dataset 111 (30:70)

Sample Size Algorithms TrueRI;(zzltlve False:?:(t)sltlve Precision Recall F-measure Overall Accuracy

Decision Tree. | 0.953 0.047 0.954 0.953 0.953 95.29%
| Random Forest | 0.944 0.056 0.944 0.944 0.944 94.43%
1000 |  Naive Bayes 0.716 0.279 0.791 0.716 0.697 71.57%
. LibSVM O™ | Mo w79 0.657 0.610 65.71%
. sMO 0830 | 0167 0853 | 0830 0.827 83.00%
Decision Tree | 0.980 0.020 0.980 0980 | 0980 98.02%
. RandomForest | 0.953 0047 | 0954 0953 | 0.953 95.31%
5000 |  NaiveBayes  0.843 0157 | 0847 | 0843 | 0843 84.31%
LibSVM | 0.746 0.254 0.831 0.746 0.729 74.60%

. smo NA - NA. | NIA NA | NA N/A
DecisionTree | 0985 | 0015 | 0985 | 0985 |  0.985 98.53%
. RandomForest = 0954 | 0046 | 095 | 0954 | 0.954 95.40%
10000 | NaiveBayes | 0790 | 0211 | 0812 | - 0790 0.786 79.01%
. LibsvM | 0800 | 0199 | 0857 | 0800 | 0792 80.01%

SMO N/A N/A N/A N/A N/A N/A




206

Table 23 Summary of evaluation metrics results in WEKA Dataset 111 (50:50)

Sample Size Algorithms TrueRI;(zzltlve False:?:(t)sltlve Precision Recall F-measure Overall Accuracy

Decision Tree. | 0.954 0.045 0.955 0.954 0.954 95.40%

| Random Forest |  0.960 0.040 0.960 0.960 0.960 96.00% (Best)
1000 |  Naive Bayes 0.736 0.253 0.800 0.736 0.723 73.60%
. LibsvM 0680 © | | 0336 | 0.803 0.680 0.640 68.00%
. sMO 0828 | 0166 0853 | 0828 0.826 82.80%

Decision Tree | 0.989 0.008 0.991 0991 0.991 99.10% (Best)
. RandomForest | 0.952 0049 | 0952 0952 | 0952 95.16%
5000 | NaiveBayes | 0.845 0152 | 0854 | 0845 | 0845 84.52%
LibsvM | 0771 0.237 0.841 0.771 0.758 77.12%
. smo 0834 | 0162 | 0853 0834 | 0832 83.36%
Decision Tree | 0984 | 0016 | 0984 | 0984 | 0984 98.36%
. RandomForest = 0954 | 0046 | 0954 | 0954 | 0.954 95.38%
10000 | NaiveBayes | 0801 | 0202 | 0831 | 0801 0.796 80.10%
. LibsvmM | 0823 | 0174 | 0869 | 0823 | 0817 82.28%

SMO N/A N/A N/A N/A N/A N/A




Table 24 Summary of evaluation metrics results in WEKA Dataset I11 (70:30)

207

Sample Size Algorithms TrueRI;(zzltlve False:?:(t)sltlve Precision Recall F-measure Overall Accuracy
Decision Tree. | 0.980 0.017 0.981 0.980 0.980 98.00%
. Random Forest |  0.963 0.038 0.963 0.963 0.963 96.33%
1000 |  Naive Bayes 0.697 0.264 0.803 0.697 0.677 69.97%
. LibsvM > ol 0.813 0.713 0.679 71.33%
. sMO 0810 | 0169 0847 | 0810 0.808 81.00%
Decision Tree | 0.983 0017 |  0.983 0983 0.983 98.33%
. RandomForest | 0.955 0045 0.956 0955 | 0.955 95.53%
5000 |  NaiveBayes | 0839 0161 | 0845 | 0839 | 0838 83.87%
 LibsyM | 0783 0.217 0.848 0.783 0.773 78.33%
. smo 0838 | 0.162 0.856 0.838 0.836 83.80%
Decision Tree | 0986 | 0.014 0986 | 0986 0.986 98.60%
| Random Forest | 0.868 0.131 0875 | 0868 | 0.868 86.83%
10000 | NaiveBayes | 0786 | = 0.247 0812 ~ | 0756 0.744 75.60%
. Libsvm | 0838 | 0165 | 0877 | 0838 | 0833 83.80%
SMO N/A N/A N/A N/A N/A N/A




Table 25 Summary of evaluation metrics results in WEKA Dataset 111 (90:10)

208

Sample Size Algorithms TrueRI;(zzltlve False:?:(t)sltlve Precision Recall F-measure Overall Accuracy
Decision Tree. | 0.980 0.014 0.981 0.980 0.980 98.00%
Random Forest |  0.990 0.007 0.990 0.990 0.990 99.00%
1000 Naive Bayes 0.800 0.145 0.865 0.800 0.798 80.00%
LibSVM 0670 ~ | | 0456 0.790 0.670 0.600 67.00%
~ sMo 0820 | 0130 0.874 0.820 0.819 82.00%
Decision Tree 0.994 0006 |  0.99 0994 0.994 99.40%
Random Forest 0.950 0048 0951 0950 | 0.950 95.00%
5000 Naive Bayes 0.840 0167 | 0844 0.840 | 0.839 84.00%
LibsvM | 0.798 0.183 0.858 0.798 0.792 79.80%
sMO 0.840 0.170 0.853 0.840 0.838 84.00%
Decision Tree 0982 0.018 0982 0.982 0.982 98.20%
Random Forest 0.949 0.051 0950 | 0949 | 0.868 94.90%
10 000 Naive Bayes 0.556 0.449 0.701 0.556 0.456 55.60%
LibSvM | 0857 | 0145 | 0889 | 085 | 0.854 85.70%
SMO N/A N/A N/A N/A N/A N/A




Table 26 Summary of evaluation metrics results in ORANGE Dataset 111 (10:90)

209

True Positive

False Positive

Sample Size Algorithms Rate Rate Precision Recall F-measure Overall Accuracy
Decision '_If[egr¥ __0.949 0.075 0.937 0.937 0.937 93.70%
1000 Random Forest 0.945 0.038 0.954 0.954 0.954 95.40%
Na'l'ye Bayes 0.777 3 _0.048 —_ 0.876 0.865 0.@4 86.50%
SVM 0.792 0.078 0.863 0.857 0.856 85.70%
D?cision Tree 0.957 _0.040 | 095_9 O._959_ _ 0.9&9 95.90%
Random Forest | 0.977 0.034 0.971 0.971 0.971 97.10%
5000 - B T —'7 & i
Naive Bayes 0.814 0.057 0.885 0.879 0.878 87.90%
SVM 0.951 0.080 0.936 0.936 0.936 93.60%
Decision Tree 0.939 0.026 0.957 0.956 0.956 95.60%
Random Forest 0.983 0.011 ' 0.986 0.986 0.986 98.60%
10 000 =g . R T o —— L T8
Naive Bayes _0.816_ 0.04_9 ' 0.8_90 gl 0.88_3 el 0.883 88.30%
SVM 0.943 0.035 0.954 0.954 0.954 95.40%




Table 27 Summary of evaluation metrics results in ORANGE Dataset 111 (30:70)

210

True Positive

False Positive

Sample Size Algorithms Rate Rate Precision Recall F-measure Overall Accuracy
Decision '_If[egr¥ __0.953 0.047 0.953 0.953 0.953 95.30%
1000 Random Forest 0.967 0.033 0.968 0.968 0.968 96.80%
Na'l'ye Bayes 0.933 3 _0.067 —_ 0.878 0.870 O.EZO 87.00%
SVM 0.900 0.100 0.914 0.913 0.913 91.30%
D?cision Tree 0.955 _0.023 | 09@ O._966_ _ 0.5@6 96.60%
Random Forest | 0.984 0.014 0.985 0.985 0.985 98.50%
5000 - WA w00 e —'7 & N
Naive Bayes 0.815 0.052 0.888 0.881 0.881 88.10%
SVM 0.676 0.048 0.840 0.814 0.810 81.40%
Decision Tree 0.956 0.011 0.973 0.973 0.973 97.30%
Random Forest 0.989 0.010 ' 0.989 0.989 0.989 98.90%
10 000 =g . R T o ——— L T8
Naive Bayes _0.819_ 0.05_8 ' 0.2336 gl 0.88_0 el 0.880 88.00%
SVM 0.738 0.062 0.852 0.838 0.836 83.80%




Table 28 Summary evaluation metrics results in ORANGE Dataset 111 (50:50)

211

True Positive

False Positive

Sample Size Algorithms Rate Rate Precision Recall F-measure Overall Accuracy
i Decision '_If[egr; __0.948 0.030 0.959 0.959 0.959 95.90%
1000 Random Forest 0.979 0.016 0.981 0.981 0.981 98.10%
i Na'l'ye Bayes 0.794 3 _0.058 _ 0.876 0.868 O.EE? 86.80%
SVM 0.936 0.075 0.931 0.931 0.931 93.10%
i D?cision Tree 0.960 _0.019 | 097_1 O._971_ _ 0.9l1 97.10%
Random Forest | 0.990 0.008 0.991 0.991 0.991 99.10%
5000 = - B —'7 &+ N
Naive Bayes 0.813 0.059 0.884 0.877 0.877 87.70%
SVM 0.675 0.057 0.833 0.809 0.805 80.90%
i Decision Tree 0.962 0.018 0.972 0.972 0.972 97.20%
Random Forest 0.990 0.005 0.992 0.992 0.992 99.20%
10 000 = =1 . R T e ——— | L =T 81
i Naive Bayes _0.826_ 0.04_5 0.8_98 gl 0.89_1 el 0.891 89.10
SVM 0.744 0.105 0.827 0.820 0.819 82.00




Table 29 Summary of evaluation metrics results in ORANGE Dataset 111 (70:30)

212

True Positive

False Positive

Sample Size Algorithms Rate Rate Precision Recall F-measure Overall Accuracy
Decision Tree 0.961 0.026 0.968 0.968 0.968 96.80%
oo | Random Forest |  0.986 0.009 0.988 0.988 0.988 98.80%
Naive Bayes 0.810 0.067 0.877 0.872 0.871 87.20%
SVM 0.888 | 0040 0.926 0.924 0.924 92.40%
Decision Tree 0.959 0.020 0.969 0.969 0.969 96.90%
Random Forest | 0.989 0008 | 0991 0.991 10.991 99.10%
2000 Naive Bayes 0.683 0057 | 0882 0876 | 0875 87.60%
SVM 0.810 0059 | 083 | 0813 | 0810 81.30%
Decision Tree 0.964 0.018 0.973 0.973 0.973 97.30%
10000 Random Forest 0.991 0.005 0.933 0933 | 0933 99.30%
Naive Bayes 0.826 0.044 0.898 0.891 | 0.891 89.10%
SVM 0764 0.115 0829 | 0824 | 0824 82.40%




Table 30 Summary of evaluation metrics results in ORANGE Dataset 111 (90:10)

213

True Positive

False Positive

Sample Size Algorithms Rate Rate Precision Recall F-measure Overall Accuracy
i Decision '_If[egr¥ __0.957 0.035 0.961 0.961 0.961 96.10%
1000 Random Forest 0.986 0.010 0.988 0.988 0.988 98.80%
i Na'l'ye Bayes 0.838 3 _0.074 _ 0.885 0.883 O.EEB 88.30%
SVM 0.814 0.021 0.908 0.898 0.898 89.80%
i D?cision Tree 0.969 _0.019 | 097_4 ‘ O._974_ _ 0.9l4 97.40
Random Forest | 0.991 0.006 0.993 0.993 0.993 99.30%
5000 = -  ER w00 e —'7 & N
Naive Bayes 0.715 0.075 0.834 0.818 0.816 81.80%
SVM 0.822 0.046 0.894 0.887 0.887 88.70%
i Decision Tree 0.964 0.013 0.976 0.976 0.976 97.60%
Random Forest 0.991 0.006 0.993 0.933 0.993 99.30%
10 000 = =g T R T e —— L T
i Naive Bayes _0.831_ 0.04_2 O.Sﬂ)l gl 0..8%4 el 0..894 89.40%
SVM 0.737 0.177 0.782 0.780 0.779 78.00%






