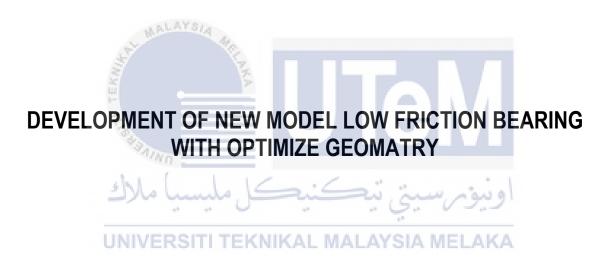


DEVELOPMENT OF NEW MODEL LOW FRICTION BEARING WITH OPTIMIZE GEOMETRY



BACHELOR OF MECHANICAL ENGINEERING TECHNOLOGY (Maintenance Technology) WITH HONOURS

2022

Faculty of Mechanical and Manufacturing Engineering Technology

IGNATIUS WONG LOKE WEI

Bachelor of Mechanical Engineering Technology (Maintenance Technology) with Honours

DEVELOPMENT OF NEW MODEL LOW FRICTION BEARING WITH OPTIMIZE GEOMATRY

IGNATIUS WONG LOKE WEI

A thesis submitted in fulfillment of the requirements for the degree of Bachelor of Mechanical Engineering Technology (Maintenance Technology) with Honours

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Faculty of Mechanical and Manufacturing Engineering Technology

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2022

DECLARATION

I declare that this project entitled " Develop of new model low friction bearing with optimize geometry" is the result of my research except as cited in the references. Therefore, choosing an item has not been accepted for any degree and is not concurrently submitted in the candidature of any other degree.

	MALAYSIA
Signature	: MAY SE
Name	: IGNATIUS WONG LOKE WEI
Date	8 JUN 2022
	UNIVERSITI TEKNIKAL MALAYSIA MELAKA

APPROVAL

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the degree of Bachelor of Mechanical Engineering Technology (Maintenance Technology) with Honours.

Signature interview hus	
Supervisor Name : Dr. Muhammad Ilman Hakimi Chua Bin Abdulla	h
Date : 21 December 2022	
يونر سيتي تيڪنيڪل مليسيا ملاك UNIVERSITI TEKNIKAL MALAYSIA MELA	اور

DEDICATION

I dedicate this work to my beloved parents and supervisor Dr. Muhammad Ilman Hakimi Chua Bin Abdullah. They offered unconditional love and support and have always been there for me. Thank you so much for giving me the strength to finish my Final Year Project.

ABSTRACT

Bearings are among the most prevalent elements in civil-engineering buildings and mechanical machinery, and it have a wide range of uses. As a result, an improved bearing can significantly influence, potentially increasing reliability and efficiency. According to prior studies, rolling parts might minimise friction significantly compared to sliding action. Furthermore, contemporary manufacturing and material technologies enable the fabrication of an ideal structural bearing with a smoother and lower coefficient of friction surface. Different geometry models are designed using CatiaV5 software and manufactured utilising SLS 3D Printing in this study. Furthermore, all model designs are run through simulation using SIMSOLID software, and the prototypes is subjected to vibration analysis performance testing. The prototypes are put through surface validation, a scanning electron microscope (SEM), and a surface roughness tester are used to evaluate tribological behaviour. According to the overall findings, the majority of the optimized prototypes performed better. The force applied to the contact surface while a bearing is rotating is the main influencing factor. In contrast, when more force is applied, the SLS printed prototypes deform plastically and provide a smoother surface. Therefore, the smoother surface results in less machine vibration. The surface roughness results and SEM images provide a wealth of information to support the analysis. As a result, the optimized geomery bearing demonstrates the potential for use in upcoming applications.

ABSTRAK

Galas adalah antara elemen yang paling lazim dalam bangunan kejuruteraan awam dan jentera mekanikal, dan ia mempunyai pelbagai kegunaan. Akibatnya, galas yang lebih baik boleh mempunyai pengaruh yang ketara, yang berpotensi meningkatkan kebolehpercayaan dan kecekapan. Menurut kajian terdahulu, bahagian bergolek mungkin meminimumkan geseran dengan ketara jika dibandingkan dengan tindakan gelongsor. Tambahan pula, teknologi pembuatan dan bahan kontemporari membolehkan pembuatan galas struktur yang ideal dengan pekali permukaan geseran yang lebih licin dan lebih rendah. Model geometri yang berbeza direka bentuk menggunakan perisian CatiaV5 dan dihasilkan menggunakan Percetakan 3D SLS dalam kajian ini. Tambahan pula, semua reka bentuk model dijalankan melalui simulasi menggunakan perisian Simsolid, dan prototaip tertakluk kepada ujian prestasi analisis getaran. Prototaip dimasukkan melalui pengesahan permukaan, mikroskop elektron pengimbasan (SEM), dan penguji kekasaran permukaan digunakan untuk menilai tingkah laku tribologi. Menurut penemuan keseluruhan, sebahagian besar prototaip yang dioptimumkan menunjukkan prestasi yang lebih baik. Daya yang dikenakan pada permukaan sentuhan semasa galas berputar adalah faktor pengaruh utama. Sebaliknya, apabila lebih banyak daya digunakan, prototaip bercetak SLS berubah bentuk secara plastik dan memberikan permukaan yang lebih halus. Oleh itu, permukaan yang lebih halus menghasilkan getaran mesin yang lebih sedikit. Hasil kekasaran permukaan dan gambar SEM memberikan banyak maklumat untuk menyokong analisis. Hasilnya, galas geomeri yang dioptimumkan menunjukkan potensi penggunaan dalam aplikasi yang akan datang.

ACKNOWLEDGEMENT

First and foremost, I give thanks to God for everything I've received from the Almighty, my Creator, and my Sustainer since the beginning of my existence. I'd want to express my gratitude to my university, Universiti Teknikal Malaysia Melaka (UTeM), for offering a conducive research atmosphere.

Dr. Muhammad Ilman Hakimi Chua bin Abdullah, my principal supervisor, deserves my gratitude for all of his help, counsel, and inspiration. His unwavering patience in guiding and imparting invaluable insights will be remembered forever.

In the meantime, I'd want to express my sincere thanks for all the technical assistance from the lab technicians. Encik Mohammad Rafi bin Omar first introduced and guided the SLS printing technology. Encik Tc. Mohd Khairul bin Hassan then helps with the laboratory setup and analysis of the vibration tests. Puan Tc. Nor Zalipah bte Suliman assisted in gathering data on surface roughness. In the collecting of SEM data, Encik Bahatiar bin Zaid and Encik Tc. Mohamad Nazir bin Masrom.

Additionally, I'd like to convey my gratefulness to my supportive family for their constant support, love, and sacrifices in teaching and planning me for the future. Finally, I want to express my sincere thanks to everyone who has guided, supported, and inspired me to pursue my studies.

TABLE OF CONTENTS

	PAGE
DECLARATION	
APPROVAL	
DEDICATION	
ABSTRACT	i
ABSTRAK	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv-vii
LIST OF TABLES	viii-ix
LIST OF FIGURES	x-xii
LIST OF APPENDICES	xiii
LIST OF ABBREVIATIONS	xiv
CHAPTER CHAPTER	
1. INTRODUCTION	10-13
او نوم سيخ تنڪنيڪل مليسيا مالا	10-11
1.2 Problem Statement	12
1.3 Objective IVERSITI TEKNIKAL MALAYSIA MELAKA	13
1.4 Scope	13
2. LITERATURE REVIEW	14-35
2.1 Bearing	14
2.1.1 The Evolution of Bearing	14-17
2.1.2 Types of bearing	17-18
2.1.2.1 Rolling Element Bearing (Cylindrical Roller Bearing)	19
2.1.3 Materials of bearing	19-21
2.1.3.1 Polymer Plastic (Nylon PA 12)	21
2.1.4 Manufacturing of Bearing	22
2.1.4.1 Additive Manufacturing	23-24
2.2 Friction	25

	2.2.1 Types of friction	25
	2.2.2 Dry friction	26
	2.2.2.1 Sliding Friction and Rolling Friction	26
	2.2.3 Coefficient of Friction	27
	2.2.4 Normal Force	27
2.3	Geometry	27
	2.3.1 Geometry Optimization	28
	2.3.1.1 Optimisation procedure of inner geometry in spherical roller	29
bea	rings with regard to their durability	
	2.3.1.2 Geometry optimization of textured three-dimensional micro-	30-31
thru	ist bearing	
	2.3.1.3 Synergistic effect of loads and speeds on the dry sliding	32-33
beh	aviour of fused filament fabrication 3D-printed acrylonitrile butadiene styrene	
pins	s with different internal geometries	
2.4	Simulation and Bearing Performance	33
	2.4.1 SIMSOLID	33-35
	2.4.2 Vibration Analysis	35
2.5	Surface Validations	36
	2.5.1 Surface Roughness Tester	36
	2.5.2 SEM	36
2.6	Wear Mechanismersiti TEKNIKAL MALAYSIA MELAKA	36
	2.6.1 Adhesive Wear	37
	2.6.2 Abrasion Wear	37
	2.6.3 Fatigue Wear	37
СН	APTER 3 METHODOLOGY	38-55
3.1	Introduction	38
	3.1.1 Flow Chart	39
3.2	Design Bearing	40
	3.2.1 Reference Bearing Selection	40-41
	3.2.2 Design with CATIA V5R21	41-42
3.3	Apply Geometry on the Design Bearing	42-43
3.4	Run Simulation	43-44

3.5	Fabricate the Bearing	45
	3.5.1 SLS Equipment	45
	3.5.2 Printing Process	46
3.6	Bearing Performance Test	47
	3.6.1 Experiment Equipment	47
	3.6.2 Vibration Data	48
	3.6.3 Experiment Procedure	49
	3.6.3.1 Vibration Testing & Envelope Analysis Experiment Setup	49-50
3.7	Surface Validation	50
	3.7.1 Profilometer	50
	3.7.1.1 Surface Roughness Testing Procedure	51
	3.7.2 SEM	51
	3.7.2.1 Sample Coating Process	51
	3.7.2.2 Low & High Magnification Setting	52
3.8	Analysis Data	52
	3.8.1 Envelope Analysis	52-53
	3.8.2 Fast Fourier Transform (FFT) Spectrum	53-54
	3.8.2.1 Ranking Scoring Distributed Method	54
	3.8.2.2 Weightages for Dry's Condition and Grease's Condition Used in	55
Cor	nposite Ranking	
	3.8.3 Surface Roughness-I TEKNIKAL MALAYSIA MELAKA	55
	3.8.4 Scanning Electron Microscope (SEM)	55
СН	APTER 4 RESULT AND DISCUSSION	56-78
4.1	Introduction	56
4.2	SIMSOLID Simulation Results	56-57
4.3	Envelope Analysis	58
	4.3.1 Prototypes Defects	58
	4.3.2 Damage Index	58-59
4.4	Frequency Spectrum (FFT)	59
	4.4.1 Experiment A's Vibration Testing Results in Dry's Condition	60
	4.4.2 Experiment B's Vibration Testing Results in Dry's Condition	61
	4.4.3 Experiment C's Vibration Testing Results in Dry's Condition	62

4.4.4 Experiment A's Vibration Testing Results in Grease's Condition	63-64
4.4.5 Experiment B's Vibration Testing Results in Grease's Condition	64-65
4.4.6 Experiment C's Vibration Testing Results in Grease's Condition	65-66
4.4.7 Overall Results from Experiment A, B and C	67-69
4.4.8 Comparing Bearing Performance in Dry and Grease	70-71
4.4.9 Performance Comparison Between Metal Bearing and Prototypes in	72
Vibration	
4.5 Surface Roughness	72-73
4.6 SEM	73-74
4.7 Overall Result & Discussion	74-75
4.7.1 Plastic Deformation	76
4.7.2 Friction	77
4.7.3 Wear Mechanism	78
4.7.4 Overall Result	79
CHAPTER 5 CONCLUSION AND RECOMMENDATION	80-81
5.1 Conclusion	80
5.2 Recommendation	80-81
اونيۇسىيتى تېكنىكل مليسيا ملاك	81
REFERENCES NIVERSITI TEKNIKAL MALAYSIA MELAKA	82-87

APPENDICES

88-178

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1	Evolution of Bearing in Different Era	14-17
Table 2.2	Types of Bearing	17-18
Table 2.3	Types of Cylindrical Roller Bearing	19
Table 2.4	Materials of Bearing	20-21
Table 2.5	Materials' properties for Nylon 12, Nylon 12GF, and Nylon 11	21
Table 2.6	Manufacturing of Metal Bearing and Plastic Bearing	22
Table 2.7	Types of Addictive Manufacturing	23-24
Table 2.8	Type of Friction	25
Table 2.9	Laws of Dry Friction	26
Table 2.10	Reference Research on Geometry Optimization	28
Table 2.11	Inner ring and outer ring contact results of a spherical roller bearing	29
Table 2.12	Geometric properties of optimum step bearings for various B/L ratios	31
Table 2.13	Constraints Applied to Structures	34
Table 3.1	Structure Data for Roller Bearing	41
Table 3.2	Dimension of Geometry Applied	42
Table 3.3	Total Number of Different Geometry and Angles Applied	43
Table 3.4	SLS Equipment's Description	45
Table 3.5	Process Detail Description	46

Table 3.6	Bearing Performance Testing Equipment Components	47
Table 3.7	The Roller' Size in Different Experiment	50
Table 3.8	Standard in Mitutoyo Profilometer	50
Table 3.9	Damage Frequency for the Prototype's Component in Envelope Analysis	52
Table 3.10	Specific Speed Weightages in Dry's Condition	55
Table 3.11	Specific Speed Weightages in Grease's Condition	55
Table 4.1	Overall Simulation Result	57
Table 4.2	Overall Simulation Ranking	57
Table 4.3	Surface Roughness Results	73
Table 4.4	Factors that Affect the Rolling Friction and Sliding Friction	75
Table 4.5	Comparing All Result Ranking اونيونر سيتي نيڪنيڪل مليسيا ملاك UNIVERSITI TEKNIKAL MALAYSIA MELAKA	79

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2.1	Types of Cylindrical Roller Bearing	19
Figure 2.2	Normal Force on the Roller Bearing	27
Figure 2.3	Common Geometries	27
Figure 2.4	Three-Dimensional Parametric CAD Model	30
Figure 2.5	Optimization Results	31
Figure 2.6	Internal Geometries Structure of Pins	32
Figure 2.7	Distribution of COF Values and Wear Rates for the 3D Printed	33
	ABS Pins	
Figure 2.8	SIMSOLID Simulation Process	35
Figure 3.1	Flow Chart	39
Figure 3.2	Bearing Performance Testing Experiment Equipment	40
Figure 3.3	Cylindrical Roller Bearing (NU204-E-XL-TVP2)	40
Figure 3.4	Bearing 2D Structure Diagram with Labels	41
Figure 3.5	Bearing's Parts and Designing Tools in CATIA V5R21	42
Figure 3.6	Different Geometry on the Outer Cages	42
Figure 3.7	UNIVERSITI TEKNIKAL MALAYSIA MELAKA Interception and Overlap Results in the Bearing Design	43
Figure 3.8	Create and Set Up the Connections in Bearing Design	44
Figure 3.9	Reaction/Contact Force and Respond at the Connections	44
Figure 3.10	SLS 3D Printing Equipment	45
Figure 3.11	Prototyping Process in SLS 3D Printing	46
Figure 3.12	Bearing Performance Testing Equipment	47
Figure 3.13	Fast Fourier transform (FFT) spectrum	48
Figure 3.14	Envelope Analysis	48
Figure 3.15	PT500.04 FFT Spectrum Settings	49
Figure 3.16	The Components of a Rectangular Geometry Bearing	49
Figure 3.17	a) Mitutoyo SJ-410, Surface Roughness Tester; b) Mitutoyo	50
	Skidless Stylus	

Figure 3.18	Surface Roughness Testing Setup	51
Figure 3.19	Quorum SC7620 Mini Sputter Coater/Glow Discharge System	51
Figure 3.20	SEM Images	52
Figure 3.21	An Example for Damage Frequency in Envelope Analysis at 600	53
	rpm	
Figure 3.22	No Defect Bearing 's Envelope Analysis Results	53
Figure 3.23	FFT Spectrum Result Selection	54
Figure 3.24	Example of the Placement/Ranking Distribution	54
Figure 4.1	Grease Condition: Comparison of Different Experiment's Result	59
	in Specific Geometry for Damage Index: a) Circle Geometry; b)	
	Rectangle Geometry c) Solid Geometry; d) Square Geometry; e)	
	Triangle Geometry	
Figure 4.2	Experiment A In Dry Condition's Result: a) Acceleration Results	60
	for Various Speed; b) Ranking for Various Speed; c) Composite	
	Ranking	
Figure 4.3	Experiment B In Dry Condition's Result: a) Acceleration Results	61
	for Various Speed; b) Ranking for Various Speed; c) Composite	
	Ranking	
Figure 4.4	Experiment C In Dry Condition's Result: a) Acceleration Results	62
	for Various Speed; b) Ranking for Various Speed; c) Composite	
	RankingRSITI TEKNIKAL MALAYSIA MELAKA	
Figure 4.5	Experiment A In Grease Condition's Result: a) Acceleration	64
	Results for Various Speed; b) Ranking for Various Speed; c)	
	Composite Ranking	
Figure 4.6	Experiment B In Grease Condition's Result: a) Acceleration	65
	Results for Various Speed; b) Ranking for Various Speed; c)	
	Composite Ranking	
Figure 4.7	Experiment C In Grease Condition's Result: a) Acceleration	66
	Results for Various Speed; b) Ranking for Various Speed; c)	
	Composite Ranking	
Figure 4.8	a) Dry's Condition Acceleration Results; b) Dry's Condition	67
	Ranking; c) Dry's Condition Composite Ranking	

Figure 4.9	a) Grease's Condition Ranking; b) Grease's Condition Composite	68
	Ranking	
Figure 4.10	Specific Speed Result from the Average of Experiment A, B and	69
	C in Grease's Condition	
Figure 4.11	Experiment C Dry & Grease Comparison's Acceleration Result in	71
	Various Speed: a) 600 rpm; b) 900rpm; c) 1200rpm	
Figure 4.12	Performance Comparison Between Metal Bearing and Experiment C's Prototypes in Grease's Condition.	72
Figure 4.13	a) Square geometry's SEM; b) Zoomed Square geometry's SEM	73
Figure 4.14	a) Circle geometry's SEM; b) Zoomed Circle geometry's SEM	73
Figure 4.15	a) Rectangle geometry's SEM; b) Zoomed Rectangle geometry's SEM	74
Figure 4.16	a) Solid geometry's SEM; b) Zoomed Solid geometry's SEM	74
Figure 4.17	Optimized Design Impact	75
Figure 4.18	Plastic Deformation	76
Figure 4.19	Surface Microstructure of the SLS Mold Before Experience Stress	77
Figure 4.20	Wear Mechanism	78
Figure 4.21	Inverse Ranking Relationship of SIMSOLID Simulation Result to Others	79
	UNIVERSITI TEKNIKAL MALAYSIA MELAKA	

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
APPENDIX 1	Damage and Speed Frequencies	88
APPENDIX 2	Customized Material Properties for Nylon PA 12 in	89
	SIMSOLID	
APPENDIX 3	SIMSOLID Simulation Results	90-92
APPENDIX 4	Damage Frequency Detected in Envelope Analysis	93-94
APPENDIX 5	Damage Index Result in Envelope Analysis	95-97
APPENDIX 6	Envelope Analysis & FFT Spectrum	98-177
APPENDIX 7	Surface Roughness Result	178

LIST OF ABBREVIATIONS

ABS	- Acrylonitrile butadiene styrene
CAD	- Computer-aided design
CAE	- Computer aided engineering
CAM	- Computer- aided manufacturing
CFD	- Computational fluid dynamics
COF	- Coefficient of friction
DFT	- discrete Fourier transform
DMLS	- Direct Metal Laser Sintering
EBM	- Electron-beam melting
EDX	- Energy dispersive X-ray spectroscopy
FEA	- Finite Element Analysis
FFT	fast Fourier transform
IDFT	- Inverse discrete Fourier transform
LOM	- Laminated object manufacturing
PLM	Product life cycle management
PPE	- Personal protective equipment
PTFE	UN Polytetrafluoroethylene AL MALAYSIA MELAKA
RMS	- Root mean square
SEM	- Scanning electron microscope
SLM	- Selective laser melting
SLS	- Selective Laser Sintering
UAM	- Ultrasonic Additive Manufacturing

CHAPTER 1

INTRODUCTION

1.1 Background

The first modern cylindrical roller bearing is invented by Dr.-lng. Josef Kirner in 1909 with crowned raceways to avoid damaging edge stresses at the roller ends. After evolution for more than 100 years, wide ranges of design, series, variants, and sizes are developed. They are distinguished by inner or outer ring flanges, cage design, number of roller rows and materials. In this research, the geometry of the cylindrical roller bearings is optimized. The cylindrical roller bearing is commonly used in stationary gearboxes, automotive motors, wind turbines, etc.

According to Cambridge Advanced Learner's Dictionary & Thesaurus, Optimized means to make something as good as possible (Cambridge Dictionary). The "Optimized geometry" in the research title is classified as topology optimisation in structural optimization. Topology optimization uses the algorithm to change the density of structure while controlling the stiffness contribution and make changes to the dimension of CAD model to obtain desired structural properties (Róbert and Peter, 2016). Optimization with a few simple structures where the film thickness takes a few distinct values can minimize the coefficient of friction torque in the new bearing geometries (Kalle Kalliorinne et al., 2020).

This research aims to create different geometry (circle, triangle, square, rectangular) holes on the outer ring to reduce the contact area between the roller bearing and the outer ring

wall. The contact pressure on rolling elements is depends on the length of the contact surface; reduce the length of contact can increase the durability of the new geometry (Šteininger et al., 2020). Optimal texture patterns improve substantially the bearing load capacity in comparison to that of smooth sliders (Papadopoulos et al., 2011). Comparing to the solid pin, the different internal geometries of pins in sliding motion showed the lowest COF and wear rates at a high normal load, irrespective of their sliding speed. (Abdollah et al., 2020)

According to Wikipedia, CATIA is a multi-platform software suite for computer-aided design (CAD), computer-aided manufacturing (CAM), computer-aided engineering (CAE), 3D modelling and product lifecycle management (PLM), developed by the French company Dassault Systèmes. In manufacturing the prototypes, the software CatiaV5 is used to design and optimization of the CAD model. Additionally, the selective laser sintering (SLS) technology is used to print out the samples. SLS is an additive manufacturing technology; tiny particles of polymer powder are sintering into a solid structure with the help of a high-power laser. In material selection, Nylon PA12 is selected for the prototyping model; it could provide high-performance prototyping with great detail and great dimensional accuracy ideal for the bearing model. Moreover, it has design freedom, high productivity, and lower cost (formlabs).

Lastly, SIMSOLID is a structural simulation software programme that does statics, dynamics, and thermal analysis. Thus, simulate the performance of the improved design in SIMSOLID software to get forces and response pressure on various connections (contacted surfaces during operation). Meanwhile, the physical simulation is done using a turning shaft driven by a motor with accelerometer, surface roughness tester, and scanning electron microscope machine. Therefore, the vibration analysis, surface roughness, wear analysis, and chemical composition of prototypes are all documented.

Problem Statement

From the RESEARCH AND MARKETS report, the global market for the bearing is estimated at USD 113.1 Billion in 2020 and expected to be at USD 162.1 Billion in 2026. The market is forecast to grow at a compound annual growth rate, a CAGR of 6.3%. Roller bearings constitute the largest (77% of the global bearing market) and fastest-growing category. Additionally, there is an increase in demand for specialised or customised bearing to industry requirements (Bearing – Global Market Trajectory & Analytics, 2022). Nowadays, bearings work with heavy loads, high speed, different conditions (corrosive, humidity, temperature), etc. Thus, the performance of bearings is critical to accomplish the functional requirements. The common bearing failures are caused by the friction problems, such as wear and overheating.

Based on Wikipedia, the motion of solid surfaces, fluid layers and material elements sliding against each other will create friction. There are several types of friction: dry friction, fluid friction, lubricated friction, skin friction, and internal friction. The friction typically converts kinetic energy to thermal energy during the sliding motions (Wikipedia, 2022). Bearing friction is the rotational motion between rolling elements, raceways and cages. It is not constant and depends on the tribological phenomena in the lubricant film.

From the understanding of Amontons' Second Law of friction applied in dry friction, the force of friction is independent of the apparent area of contact (Wikipedia, 2022). Furthermore, one of the rules of rolling friction indicates that friction is caused by deformation of the contact surface. Therefore, to overcome the friction problems in bearing, it is crucial to investigate the contact area's effect during the rotational motion. Besides that, the material properties of the prototype (Nylon PA12) have a very low coefficient of friction, high environmental stability, strong resistance to chemicals with excellent impact and non-impact strength is suitable as the future material in manufacturing bearing. Moreover, Nylon 12 also has the characteristic of dampening noise and vibration. This is great in increasing the reliability of the equipment life and reducing the noises to protect operators' ears. Lastly, the technology of selective laser sintering (SLS) 3D printing also provides an alternative way to manufacture fully functional products with high precision and accuracy. High precision and accuracy with the delicate surface are perfect in reducing the friction in bearings.

Objectives

The objectives of this project are stated as below.

- 1. To fabricate a new bearing with optimize geometry
- 2. To run a test rig testing to validate the performance of new developed bearing compared to the existing model.
- 3. To analyse the tribological behaviour of the developed bearing.

Scope of Research

The scope of this research are as follows:

- Fabricating a new bearing with optimised geometry using CAD/CAE analysis; A simulation is run by utilising SIMSOLID and a prototype bearing is printed by SLS method.
- 2. Run a test rig testing to validate the performance of newly developed bearing compared to the existing model using computerised vibration analyser (PT 500.04).
- 3. The tribological behaviour of the bearing is measured by profilometer (surface roughness tester- SJ401) and surface morphological analysis (SEM).

ونيۆمرسيتي تيكنيكل مليسيا ما

UNIVERSITI TEKNIKAL MALAYSIA MELAKA