

Design and Fabrication of Transmission Trainer Kit for Continuously Variable Transmission (CVT) Transmission

Bachelor Of Mechanical Engineering Technology (Automotive Technology) With Honours

2023

Faculty of Mechanical and Manufacturing Engineering Technology

Vincent Wong Yew Ming

Bachelor Of Mechanical Engineering Technology (Automotive Technology) With Honours

2023

Design and Fabrication of Transmission Trainer Kit for Continuously Variable Transmission (CVT) Transmission

Vincent Wong Yew Ming

Faculty of Mechanical and Manufacturing Engineering Technology UNIVERSITI TEKNIKAL MALAYSIA MELAKA

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2023

DECLARATION

I declare that this project entitled "**Design and Fabrication of Transmission Trainer Kit for CVT Transmission**" is the result of my own research except as cited in the references. The project report has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

APPROVAL

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the Bachelor Of Mechanical Engineering Technology (Automotive Technology) With Honours.

Signature	Her A.
Supervisor N	Jame ARLAYSIA
	TS. LUQMAN HAKIM BIN HAMZAH
Date	20/1/2013
	Sea Allin
	اونيومرسيتي تيكنيكل مليسيا ملاك
l	JNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEDICATION

This work is dedicated with gratitude and sincere appreciation for support, encouragement, and understanding to my supervisor, my cherished mother, father, brothers, and sister, as well as to all my friends, and to all those whose unwavering love, counsel, and support have inspired me to pursue and complete this work.

ABSTRACT

Automotive transmissions are one of the most important components of a vehicle. It is what moves the power from the engine to the wheels. In the faculty's FTKMP automobile laboratory, only manual and automatic transmission training tools are available. According to the questionnaire, automotive students lack the requisite CVT knowledge. Based on the results of the questionnaire survey, 91.1% of the students answered that they needed the CVT training tools to do the hands-on practise for their study purpose. In this case study, it is necessary to design a transmission training stand to hold the CVT transmission. Measure and determine the standards required for product design, to generate design ideas. It will use a Pugh decision matrix table to score the best design for fabricating the product. Choose the suitable materials for the structural design. Because this material has different internal structural designs, it will require the CATIA V6 software to construct 3D components and simulate the strength analysis by the software Altair Inspire to investigate the safety of factors (FOS), von Misses strength, displacement, and other variables. to calculate the number of cycles that can be used by the S-N curve. Once the product design drawings have been verified as safe, the fabrication process will begin. Finally, it will apply the actual load to the product design to test its functionality.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ABSTRAK

Transmisi automotif adalah salah satu komponen terpenting kenderaan. Ia adalah yang menggerakkan kuasa dari enjin ke roda. Di makmal automobil FTKMP fakulti, hanya alat latihan transmisi manual dan automatik disediakan. Menurut soal selidik, pelajar automotif tidak mempunyai pengetahuan CVT yang diperlukan. Berdasarkan hasil tinjauan soal selidik, 91.1% pelajar menjawab bahawa mereka memerlukan alat latihan CVT untuk melakukan latihan amali bagi tujuan pembelajaran mereka. Dalam kajian kes ini, adalah perlu untuk mereka bentuk pendirian latihan penghantaran untuk memegang transmisi CVT. Ukur dan tentukan piawaian yang diperlukan untuk reka bentuk produk, untuk menjana idea reka bentuk. Ia akan menggunakan jadual matriks keputusan Pugh untuk menjaringkan reka bentuk terbaik untuk fabrikasi produk. Pilih bahan yang sesuai untuk reka bentuk struktur. Oleh kerana bahan ini mempunyai reka bentuk struktur dalaman yang berbeza, ia memerlukan perisian CATIA V5R21 untuk membina komponen 3D dan mensimulasikan analisis kekuatan oleh perisian Altair Inspire untuk menyiasat keselamatan faktor (FOS), kekuatan von Misses, anjakan dan pembolehubah lain. untuk mengira bilangan kitaran yang boleh digunakan oleh keluk S-N. Setelah lukisan reka bentuk produk telah disahkan sebagai selamat, proses fabrikasi akan bermula. Akhir sekali, ia akan menggunakan beban sebenar pada reka bentuk produk untuk menguji kefungsiannya.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ACKNOWLEDGEMENTS

I would like to thank Universiti Teknologi Malaysia Melaka (UTeM) for providing the project platform. The Malaysian Ministry of Higher Education (MOHE) is also thanked for the financial help.

My deepest gratitude goes to my primary supervisor, TS. Luqman Hakim Bin Hamzah, Universiti Teknologi Malaysia Melaka (UTeM), for his modest direction, encouragement, patient excitement, invaluable assistance, and inspiration during this project's development. His steadfast patience in mentoring and providing invaluable insights will be remembered forever.

In addition, I would like to convey my deepest thanks to my family for their unwavering support and encouragement in helping me accomplish my goal. Thank you for their unreserved love and spiritual support.

Furthermore, I am grateful to my classmates Tie Chang Long, Hoh Kin Fatt and Ch'ng Jia Sheng for their jokes and emotional support throughout the day while I completed my thesis. His presence was highly advantageous. Lastly, I'd want to convey my appreciation to the people who helped me whenever I encountered obstacles during this project.

TABLE OF CONTENTS

	F	PAGE
DECL	ARATION	
APPR	OVAL	
DEDI	CATION	
ABST	RACT	i
ABST	RAK	ii
ACKN	IOWLEDGEMENTS	iii
TABL	E OF CONTENTS	iv
LIST	OF TABLES	vii
LIST	OF FIGURES	iv
LIST	OF SYMBOLS AND ARREVIATIONS	vii
	OF ADDENDLOES	XII
LIST	UF APPENDICES	XIII
CHAP	TER 1 INTRODUCTION	14
1.1	Background	14
1.2	Problem Statement	15
1.3	Research Objective TI TEKNIKAL MALAYSIA MELAKA	17 17
1.4	Scope of Research	17
CHAP	TER 2 LITERATURE REVIEW	18
2.1	Introduction	18
2.2	MTUN establish in Universiti Teknikal Malaysia Melaka (UTeM)	19
	2.2.1 Establishment of the Faculty Of Technology Mechanical	20
	Manufacturing Engineering. (FIKMP)	20
	TVET)	20
	2.2.3 Effectiveness of Technical and Vocational Education and Training	20
	(TVET)	21
2.3	Lack of Relevant Hands-On Education Tools	22
	2.3.1 Research To Design and Fabricate A CVT Training Kit	23
2.4	Study Theoretical Continuously Variable Transmission (CVT) for Trainer Kit	25
	2.4.1 Drive mechanism of CVT Transmission Mechanisms	26
	2.4.2 CVT Transmission Component Parts	28
2.5	Study the Material Properties to Design and Fabricate Cvt Trainer Kit	30
	2.5.1 Material Standard Properties of the Aluminum 6061-T6	30
	2.5.2 Study the Material Strength and Ductility Properties	31

2.6	Summary	33
CHAI	PTER 3 METHODOLOGY	34
3.1	Introduction	34
3.2	Methodology Flow Chart	36
3.3	Gantt Chart	38
3.4	Identify the Problem Using the Google Survey Form	39
3.5	Design Criteria Needed to Fabricate the CVT Trainer Kit	40
	3.5.1 Product Design Specification (PDS)	40
	3.5.2 Measure The Exact Dimensions of The Tools to Fabricate CVT Training Kit	43
	3.5.3 Specific Torque Require to Open/Close Bolt and Nut	45
	3.5.4 Design Criteria from the Customer Feedback	45
	3.5.5 House of Quality (HOQ)	46
3.6	Material Selection to Fabricate the CVT Trainer Kit	49
	3.6.1 Table Advantages And Disadvantages Of The Material	50
	3.6.2 Choose Of Suitable Material for Fabrication	51
	3.6.3 Aluminum Profile Specific Material Properties	53
3.7	Concept Design Generation and Selection	54
	3.7.1 Method of the Concept Design Selection	56
3.8	Method of 3D Design Drawing and Strength Analysis	58
	3.8.1 Procedure for 3D Drawing and Simulation	59
	3.8.2 Drafting for the Final Product Design	63
3.9	Bill of Materials and Equipment Fabrication Tools	64
	3.9.1 Tools and Equipment used to fabricate the CVT Trainer Kit	64
3.10	Method to Identify Safety Requirements on the Structure Design	66
	3.10.1 Safety of Factor (FOS)	66
	3.10.2 Estimation of fatigue S-N curves	67
3.11	Limitation of Proposed Methodology	68
3.12	Summary of Methodology	69
CHA	PTER 4 RESULTS AND DISCUSSION	70
4.1	Introduction	70
	4.1.1 Table of the Survey Demographics for CVT Trainer Kit	/1
	4.1.2 Identify the Research Data	/3
4.2	4.1.3 Summary of the Questionnaire Survey	80
4.2	Analyze and Optimize Process for the Product Design	81 02
4.5	A 2.1 Summery of Simulation Data	83 00
1 1	4.5.1 Summary of Simulation Data	00
4.4	4.4.1 Estime Zone on the Design Structurer	01
15	Lifetime of the CVT Support Stand	02
т .5 4.6	Procedure of Fabricate Process	92
т .0 Д 7	Final Product Overview	95
4.8	Summary	97
	~	71
CHA	PTER 5 CONCLUSION AND RECOMMENDATIONS	98
5.1	Conclusion	98

5.1.1 5.1.2	Problem Faced on the Project Future Work	99 100
REFERENC	CES	101
APPENDIC	ES	103

LIST OF TABLES

TABLETITLE	PAGE
Table 2.1 Structures analyses Result	32
Table 3.1 Project Design Specification (PDS)	40
Table 3.2 House of Quality (HOQ)	46
Table 3.3 Table of the Characteristics of Material	50
Table 3.4 Aluminum 6061-T6 Alloy Properties	53
Table 3.5 Concept Design 3D View	54
Table 3.6 Pugh Decision Matrix Table	57
Table 3.7 Bill of Materials	64
Table 4.1 Table of the Survey Demographics	71
Table 4.2 Score of Respondent Opinion	77
Table 4.3 Result of the CVT Component Selection	78
Table 4.4 CVT Clutch Selection EKNIKAL MALAYSIA MELAKA	79
Table 4.5 CVT Drive Belt Selection	79
Table 4.6 Optimise Structure with Downward Force	81
Table 4.7 Downward Force Simulation Data	81
Table 4.8 Downward Force and Torque Force Simulation Data	81
Table 4.9 Displacement	85
Table 4.10 Factor of Safety	85
Table 4.11 Max Shear Stress	86
Table 4.12 Von Mises Stress	86
Table 4.13 Principal Stress	87

Table 4.14 Percentage of Yield	87
Table 4.15 Structurer Analysis Result	88
Table 4.16 Lifetimes in Year	92
Table 4.17 Final Product Overview	96

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 1.1 Survey for the Required Traine	er Kit	15
Figure 1.2 Hands-on tools will improve k	nowledge.	16
Figure 2.1 Parts Of Continuously Variable	e Transmission (CVT)	26
Figure 2.2 Construction of metal pushing	V-belt	27
Figure 2.3 Metal V-chain		28
Figure 2.4 CVT Primary Clutches		28
Figure 2.5 CVT Secondary Clutches		29
Figure 2.6 Comparison of mechanical pro	perties for 6061-T6 Aluminum	30
Figure 2.7 Stress-strain diagram of mild s	teel shows critical stages under uniaxial	
tension (History of Von Mises	s Stress, 2022).	31
Figure 2.8 Final fabricated engine stand	اويوبرسيبي بيه ي	32
Figure 3.1 PSM 1 Flow Chart TEKNIK	AL MALAYSIA MELAKA	36
Figure 3.2 PSM 2 Flow Chart		37
Figure 3.3 Weight Required		42
Figure 3.4 Measure CVT Transmission D	imension	43
Figure 3.5 Weight of the CVT Transmissi	on	44
Figure 3.6 Height and Width of the Hydra	ulic Hand Jack	44
Figure 3.7 Specific Transmission Bolt To	rque(Land Cruiser Manuals, FSMs, and	
Repair Resources — Heritage	Cruisers, 1994)	45
Figure 3.8 Design Criteria Feedback		45
Figure 3.9 Cad Drawing Structurer of Alu	minum Material	53

Figure 3.10 Dassault System Catia V6 Software	58
Figure 3.11 Altair Inspire Simulation Software	58
Figure 3.12 Create a new design on part design	59
Figure 3.13 Constrain Dimension of the Sketch	59
Figure 3.14 Apply Material on Aluminum	60
Figure 3.15 Assembly the Part Design	60
Figure 3.16 Final Product Deisgn Draft	63
Figure 3.17 DeWalt Single Bevel Mitre Saw	65
Figure 3.18 Bosch Drilling Machine	65
Figure 3.19 Arc Welding Machine	65
Figure 3.20 Overall Safety of Factor List (Factor of Safety: Ratio for Safety in	
Design and Use, 2022)	67
Figure 3.21 S-N Fatigue Curve	67
Figure 3.22 Damaged Cutting Parts	68
Figure 3.23 Adjustable Screw Holder	69
Figure 4.1 Feedback Different Types of Transmission	73
Figure 4.2 Type of Transmission Currently Use	74
Figure 4.3 Function of Transmission	74
Figure 4.4 Which vehicle used CVT?	75
Figure 4.5 Advantages of CVT Transmission	75
Figure 4.6 Disadvantage of CVT Transmission	76
Figure 4.7 CVT Internal Part List	78
Figure 4.8 CVT Clutch View	79
Figure 4.9 Type 1 (Left) CVT Belt	79

Figure 4.10 Type 2(Right) CVT Belt	79
Figure 4.11 Complete Assembly by Catia V6	83
Figure 4.12 Force Apply by Altair Inspire	84
Figure 4.13 S-N Curve for Aluminum 6061-T6	90
Figure 4.14 Design Structure Failure Point	91
Figure 4.15 Cutting Material Process	93
Figure 4.16 Install the Gusset Connector	93
Figure 4.17 Installation the Adjustable Screw Locker	94
Figure 4.18 Install the Levelling Feet	94
Figure 4.19 Install the CVT Transmission	95
Figure 4.20 Install & Lock the CVT Screw	95
UNIVERSITI TEKNIKAL MALAYSIA MELAKA	

LIST OF SYMBOLS AND ABBREVIATIONS

CVT	-	Continuously Variable Transmission
FTKMP	-	Faculty of Mechanical and Manufacturing Engineering Technology
FOS	-	Factor Of Safety
HOQ	-	House of Quality
IVT	-	Infinitely Variable Transmission
MTUN	-	Malaysian Technical University Network
PDS	-	Product Design Specification
VDP	-	Variable-Diameter Pulley
TVET	- 10	Technical and Vocational Education and Training
UTEM	A.	Universiti Teknikal Malaysia Melaka
TCT	TERN	Tungsten Carbide Tips
	ملاك	اوييۇم سىتي ئىكنىكل مليسىيا ،
	UNIVI	ERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
APPENDIX A Questionnaire Su	rvey Form	103
APPENDIX B Tabulated Value	of Sa from Figure 2.11	106
APPENDIX C Aluminum Extru	sion Bar 3D Drawing Listing Specification	107
APPENDIX D Gantt Chart		108
APPENDIX E Data Simulation	Optimise 3	110
APPENDIX F S-N Curve Alumi	num 6061-T6 Excel Data	114
APPENDIX G Drafting Adjusta	ble Screw Holder	115
APPENDIX H Fully Assembly I	Part Design	116
APPENDIX I Final Product Des	ign Draft	117
APPENDIX J CATIA V6 Acces	sories Drafting	118
APPENDIX K House of Quality	اويو، سيي سيسيد (HOQ)	126
UNIVERSITI T	EKNIKAL MALAYSIA MELAKA	

CHAPTER 1

INTRODUCTION

1.1 Background

This thesis aims to develop a missing practice tool in my faculty of Mechanical and Manufacturing Engineering Technology (FTKMP) used for Automotive Students. University Technical Malaysia Malacca (UTeM) is one of the technical universities belonging to the Malaysian Technical University Network (MTUN)(*History Of UTeM*, 2000), developing our career-focused education. UTeM education is half theory-based and half practical(*Malaysia Education Ministry Targets Increasing TVET Enrolment to 650,000 Students by 2025*, 2015). Practical lessons allow the student to understand better the machinery learned in theory lessons. Due to the laboratory's lack of Continuously Variable Transmission (CVT) Trainer Kit, automotive students are unable to gain hands-on experience. This case study will create the most suitable design for this project and fabricate the CVT training kit for educational purposes. The 3D design drawing will use the Dassault System CATIA V6 software and the simulation process will use an Altair Inspire software to determine the strength analysis. The simulation will ensure the supported weight of the manufactured product can reach the actual safety range to provide safe education tools in the students' practical sessions.

1.2 Problem Statement

FTKMP currently does not have a continuously variable transmission (CVT) training kit for educational demonstrations. The Vehicle Trainer Kit is a training and teaching tool that helps students better grasp the topics they are studying in the classroom, especially in the field of automotive engineering. A questionnaire will test students' knowledge regarding the basic theory of continuously variable transmissions (CVTs). The result shows that the third and fourth-year automotive students still have limited transmission learning mechanisms. They still cannot understand the CVT transmission system, interior parts, and function.

Figure 1.1 shows that 90.9% of the students need a CVT trainer kit for educational purposes to help them do practical learning in their lab section. This survey can justify that automotive students need the training kit for their hands-on practice sessions to understand the overall components and function better.

Figure 1.1 Survey for the Required Trainer Kit

Do you believe that by doing stuff hands-on will help you understanding better? 45 responses

Figure 1.2 Hands-on tools will improve knowledge.

Figure 1.2 shows that most respondents answered yes that the hands-on training kit would improve their knowledge 84.4% of them. The evaluated survey form shows the knowledge of CVT transmission is quite limited to automotive students in UTeM because students only have some knowledge learned from the theory part and can't correctly answer the questions in my questionnaire. FTKMP workshop currently lacks the CVT trainer kit for education practice which affects students who can't understand the CVT transmission working principle. Students are unable to connect academic concepts to practical applications. Therefore, CVT Stand must be developed to install the CVT transmission better for the instructor to teach automotive students during the lab section.

1.3 Research Objective

Based on the background and problem statement given above. This project aims to be able to design and fabricate a product to fix the current issues in our faculty. The objectives are as follows:

- a) To fabricate a CVT trainer kit to assist students in gaining knowledge through hands-on practice.
- b) To design and analyse a CVT support stand for structural durability using Catia V6 and Altair Inspire.

1.4 Scope of Research

This project will focus on developing a Continuously Variable Transmission (CVT) training kit stand used in the automotive workshop in UTeM. They have the following scope:

- This project design is limited only to automotive technology engineering students at UTeM.
- Develop the concept design based on the respondent's criteria and Uquestionnaire feedback. KAL MALAYSIA MELAKA
- Analyse the structural CVT trainer stand using the Generative Structure Analysis process to determine its strength.
- This project will conduct the manufacturing process of cutting, drilling, welding, and assembling to create the product at the target cost.
- The analysis will only be structural analysis to determine the strength and durability of static and torque loading.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

The literature review aims to review other research related to the study design and fabrication of a Transmission Trainer Kit for educational purposes (CVT Transmission) with the advantage of learning through hands-on applications and comparing it to a theory-based study. This study also uses this literature review to determine the problem statement, the best solution, and the most appropriate methodology. The Fourth Industrial Revolution (IR 4.0) will change how people live, work, communicate, and value things in the future. Shifts in current business models and employment trends. The value of data and information to humanity, now and in the future, is undeniable, and Malaysia needs a skilled workforce to meet the demands of Industry 4.0. Under such circumstances, industry companies must be more responsive and not lag behind cyber-physical systems incorporating new functions and cutting-edge technologies. These factors should be mobilised by high-quality talents, especially in developing artificial intelligence and large-scale data analysis methods such as applications and services. According to Trend researchers, IR 4.0 will require significant changes in culture, delivery, pedagogy, and structure. Education 4.0 must be able to produce highly creative graduates with critical thinking skills. Graduates must be creative and entrepreneurial, with the cognitive flexibility to respond to various situations.