

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEVELOPMENT OF WORKHOLDING DEVICE FOR LOADED PCB ROUTING PROCESS

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTEM) for the Bachelor Degree of Manufacturing Engineering (Robotics and Automation) with Honours.

By

MOHD HAFISZUDDIN B MOHD PUAAD

FACULTY OF MANUFACTURING ENGINEERING 2008

ALAY	SIA M
	FLAK
1	
	ALAY:

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORAN	IG PENGESAHAN ST	ATUS LAPORAN PSM
	JUDUL	:
Development of W	orkholding Device 1	for Loaded PCB Routing Process
SESI	PENGAJIAN: <u>Semest</u>	er 2 (2008/2009)
	ini disimpan di Perp	aku membenarkan laporan <u>PSM</u> / tesis ustakaan Universiti Teknikal Malaysia seperti berikut:
· · · · · · · · · · · · · · · · · · ·	alah hak milik Unive	rsiti Teknikal Malaysia Melaka dan
untuk tujuan pengajian	sahaja dengan izin an membuat salinan	laporan PSM / tesis ini sebagai bahan
SULIT		at yang berdarjah keselamatan atau yang termaktub di dalam AKTA RAHSIA RASMI
TERHAD		at TERHAD yang telah ditentukan oleh ana penyelidikan dijalankan)
)	
(Mohd Hafiszuddin B	,	(En Ismail B Abu Shah)
Alamat Teta MBP 226 Pt Limbong Jlr Ahmad 84150 Pt Muar, Joho	n Temenggong t Jawa	Cop Rasmi:
Tarikh: <u>12 Mei</u>	2009	Tarikh:
		rkan surat daripada pihak organisasi berkenaan 11 perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declare this thesis entitled "Development of Workholding Device for Loaded PCB Routing Process" is the result of my own research except as cited in the references.

Signature	:
Author's Name	:
Date	:

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTEM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Robotics and Automation) with Honours. The member of the supervisory committee is as follow:

.....

Main Supervisor (En. Ismail B Abu Shah) Faculty of Manufacturing Engineering (Official Stamp & Date)

ABSTRACT

Workholding is a device that hold, grip, chuck, support and locates a workpiece to perform a manufacturing process. Suppose that for routing process of the printed circuit board (PCB), which is one of the method of the depanelization of PCB, the PCB must be hold properly so that the PCB will not slipped during the routing process which can lead to PCB damage. However, due to the condition of the PCB which is warped after the soldering process, the location of the locating support of the workholding must be determined so that it can fully support the PCB. The method used to determine the location of the locating support is known as stress deformation analysis.

i

ABSTRAK

Alat pengeluaran adalah sebuah alat yang memegang, mencengkam, menyokong dan menentukan kedudukan produk untuk melaksanakan satu proses pembuatan. Katakanlah untuk proses aliran papan litar (PCB), yang merupakan satu kaedah pengasingan PCB, PCB mestilah dipegang supaya PCB tidak tergelincir sepanjang proses pengaliran yang boleh menjurus kerosakan PCB. Bagaimanapun, disebabkan terdapat keadaan di mana PCB meleding selepas proses memateri, lokasi terletaknya sokongan alat pemegang kerja mestilah ditentukan supaya ia boleh dengan sepenuhnya menyokong PCB. Kaedah yang digunakan untuk menentukan lokasi terbaik untuk meletakkan alat sokongan dikenali sebagai analisis deformasi tekanan.

DEDICATION

For everybody in my life that had supported me to finish this project especially my dearest parent, supervisor and friends.

ACKNOWLEDGEMENT

I would like to thank for Allah, because of His witness and abundance on me to accomplish the project within the time provided. The research has finished as planned.

I also would like to thanks to my supervisor, Mr. Ismail B Abu Shah who took his valuable time to offer concrete suggestions, advices, ideas, helps and supports given to complete this Projek Sarjana Muda I. The encouragements and guidances that have been given is really appreciated

In addition, I would like to express my deep gratitude to my family and friends who have offered frequent encouragement, supports and understanding for me since the beginning of the project.

TABLE OF CONTENT

Abstract	i
Abstrak	ii
Dedication	iii
Acknowledgement	iv
Table of Content	v
List of Tables	ix
List of Figures	X
List of Abbreviations	xiv

1. INT	RODUCTION	1
1.1	Background of Project	1
1.2	Problem Statement	2
1.3	Objective	3
1.4	Scope	3
1.5	Important of Project	3
2. LIT	TERATURE REVIEW	4

2.1	Definition of Development	4
	1	

2.2	Workholding Device	5
2.2.1	Definition of Jigs and Fixtures	5
2.2.1.	l Jigs	7
2.2.1.2	2 Fixtures	13
2.3	Printed Circuit Board (PCB)	33
2.3.1	Single-sided PCB	34
2.3.2	Double-sided PCB	35
2.3.3	Dipping Process of Loaded PCB and Its Effect	35
2.3.3.	PCB Warpage	36
2.4	Depanelization of PCB by Using Routing Process	39
2.5	Summary	41
3. ME	THODOLOGY	43
3.1	Flow Chart	43
3.1.1	Flow Chart Diagram	44
3.2	Details of Flow Chart	46
3.2.1	Problem Statement	46
3.2.2	Project Planning	46
3.2.3	Literature Review	49
3.2.4	Part Design Review	49
3.2.5	Fixture Planning	49

3.2.6	Component Selection and Placement	49
3.2.7	Locating Datum Selection	50
3.2.8	Fastening and Testing	50
3.2.9	Using Strain Gauge	50
3.2.10	Application of Fixture	50
4.	RESULT AND ANALYSIS	51
4.1	PCB Design and Characteristic	51
4.1.1	Types of PCB Material	51
4.1.2	Characteristic of PCB	52
4.2	Depanelization Process	53
4.2.1	Loading and Unloading Process	54
4.2.2	Holding Process	54
4.2.3	Cutting Process	55
4.2.4	Gripping Process	58
4.3	Workholding Device	58
4.3.1	First Concept Design	59
4.3.2	Second Concept Design	59
4.3.3	Third Concept Design	60
4.3.4	Pugh Selection Method	59
4.4	3D Modeling of Design	62
4.4.1	Workholding Device	62

4.4.1.1	Dowel-pin-based Modular Fixture	64
4.4.1.2	2 Vacuum System	65
4.4.1.3	3 Sliding Base	67
4.4.1.4	4 Locator	70
4.4.1.5	5 Supporter	72
4.4.1.6	5 PCB Support Jig	73
4.4.1.7	7 PCB Locating Jig	75
4.4.1.8	3 Vacuum System	75
5.	DISCUSSION	78
5.1	Cutting Force	78
5.2	Jamming Analysis	79
5.3	Design Analysis of Dowel-pin-based Modular Fixture	79
5.4	Vacuum Pressure	79
5.5	Pugh Selection Method	80
6.	CONCLUSION AND SUGGESTION	81
6.1	Conclusion	81
6.2	Suggestions	82
Refere	ence	83
Appen	ıdix	86

LIST OF TABLES

2.1	Differences between jig and fixtures	6
2.2	Comparison of T-slot and Dowel-pin-based modular fixtures	33
3.1	Gantt Chart for PSM 1	47
3.2	Gantt Chart for PSM 2	48
4.1	Pugh Selection Method	62

LIST OF FIGURES

2.1	Principles of Workholding	5
2.2	A jigs guiding the tool, in this case the drill bushing	6
2.3	A fixtures reference the cutting tool, in this case with a set block	7
2.4	Boring jig	7
2.5	Drill jig	8
2.6	Template jig	9
2.7	Plate jig	9
2.8	Table jig	10
2.9	Sandwich jig	10
2.10	Angle-plate jig	10
2.11	Box or Tumble jig	11
2.12	Channel jig	11
2.13	Leaf jig	11
2.14	Indexing jig	12
2.15	Trunnion jig	12
2.16	Multistation jig	13
2.17	12 Degree of Freedom of a workpiece	19
2.18	Jamming or sticking of locator	21

2.19	Plug height to avoid jamming	22
2.20	Length engagement for chamfered hole	23
2.21	Distance and angle - primitive cases	23
2.22	Distance and angle - degenerate and special cases	27
2.23	The usage cycle of modular fixtures	27
2.24	T-slot and Dowel-pin –based modular fixtures setups example	28
2.25	Dowel-pin based Modular Fixtures	30
2.26	Dowel-pin-based modular fixtures components	30
2.27	A comparison between stiffness of T-slot and dowel-pin fixtures	32
2.28	Cross-section of PCB	34
2.29	Single-sided PCB	34
2.30	Double-sided PCB	35
2.31	Warpage of 1D linear element due to differential thermal expansion of	37
	multi-metallic strips	
2.32	Warpage of planar element	37
2.33	Example of good PCB	38
2.34	Example of defective PCB	39
2.35	Cutting process of PCB	41
4.1	A Set of Printed Circuit Board (FR-4)	52
4.2	Location Hole and Cutting point	53
4.3	Process Sequence of Depanelization Process	54
	xi	

4.4	12 Degree of Freedom (DOF)	55
4.5	Router Bit	56
4.6	Helix angle of router bit	57
4.7	Rake angle of router bit	57
4.8	First Concept Design	59
4.9	Second Concept Design	60
4.10	Third Concept Design	61
4.11	Workholding device (isometric view)	63
4.12	Workholding device (right view)	63
4.13	Dowel-pin-based modular-fixture	65
4.14	Dowel-pin-based Modular Fixture (front view)	65
4.15	Vacuum Pad	67
4.16	Adjustable Bar	67
4.17	Sliding Base for Locator and Support	68
4.18	Sliding Base for Vacuum Pad	69
4.19	Area covered by adjustable component	70
4.20	Jamming analysis	71
4.21	Locator	72
4.22	Supporter	73
4.23	PCB Support Jig	74
4.24	Support Location	74

4.25	PCB Locating Jig	75
4.26	Vacuum System	76

xiii

LIST OF ABBREVIATION

ESD	-	Electro-static Discharge
DOF	-	Degree of Freedom
ICT	-	In-Circuit Test
PCA	-	Printed Circuit Assembly
PCB	-	Printed Circuit Board
PCBA	-	Printed Circuit Board Assembly
PWB	-	Printed Wiring Board
SMT	-	Surface mount technology

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND OF PROJECT.

A printed circuit board, or PCB, is used to mechanically support and electrically connect electronic components using conductive pathways, or traces, etched from copper sheets laminated onto a non-conductive substrate. Alternative names are printed wiring board (PWB), and etched wiring board. A PCB populated with electronic components is a printed circuit assembly (PCA), also known as a printed circuit board assembly (PCBA). Depaneling is a process step in high-volume electronics assembly production. In order to increase the throughput of printed circuit board (PCB) manufacturing and surface mount (SMT) lines, PCBs are often designed so that they consist of many smaller individual PCBs that will be used in the final product. This PCB cluster is called a panel or multiblock. The large panel is broken up or "depaneled" as a certain step in the process - depending on the product, it may happen right after SMT process, after in-circuit test (ICT), after soldering of through-hole elements, or even right before the final case-up of the assembly.

Routing requires that single boards are connected using tabs in a panel. The bit mills the whole material of the tab. It produces much dust that has to be vacuumed. It is important for the vacuum system to be ESD-safe. Also the fixturing of the PCB must be tight - a usually aluminium jig or a vacuum holding system is used.

The two most important parameters of the routing process are: feed rate and rotational speed. They are chosen according to the bit type and diameter and should remain proportional (i.e. increasing feed rate should be done together with increasing the rotational speed).

Routers generate vibrations of the same frequency as their rotational speed (and higher harmonics), which might be important if there are vibration-sensitive components on the surface of the board. The strain level is lower than for other depaneling methods. Their advantage is that they are able to cut arcs and turn at sharp angles and the disadvantage is lower capacity.

Dowel-pin-based modular fixture is one of the modular fixturing available currently other than T-slot-based modular fixture. The dowel-pin-based modular fixtures have been widely applied, in which the connections of fixture components are accomplished by using a dowel pin and tapped hole. Pin holes and tapped holes are precisely machined in a rectangular (or radial) grid pattern on baseplates or other components for locating and fastening other components. The bolt-screw connection is applied to the in fixture component assemblies. As locating the elements are performed by means of dowel pins and holes, the dowel-pin modular fixture is not continuously adjustable, except using adjustable elements.

1.2 PROBLEM STATEMENT

In electronic manufacturing industry, there are two types of PCB assembly used in manufacturing which is single-loaded and double-loaded PCB. However, these PCBs must be depanelized for the next process of manufacturing to take place. Therefore, the solution is to use the manually or automatically method for the depaneling process. During this process, the PCB must be hold properly without touching the electronic components on the PCB by means of workholding jig and vacuum holding jig. The workholding is important in this process so that the PCB will be hold tightly during depaneling process by Automated Routing Machine. However, the soldering process

cause the warpage of the PCB and therefore, the PCB is not flat. This condition cause the location of the locating support of the workholding jig must be determined properly so that the locating supports of the workholding jig do not exert stress to the PCB.

1.3 OBJECTIVE.

- i. To design the work holding jig.
- ii. To determine the diameter of the vacuum pad needed based on the cutting forces.
- iii. To analyze the design of the workholding.

1.4 SCOPE.

The purpose of this project is to develop the workholding jig to hold the PCB for the Automated Router Machine. Other than that, the cutting forces must be determined in order to identify the maximum diameter required for the vacuum pad. Besides, the design of the locating jig must satisfy the condition of easier loading and unloading.

1.5 IMPORTANCE OF STUDY.

In the electronic manufacturing industry, the application of the wokholding jig into the Automated Router Machine enables the depaneling process to be applied to any type of PCB assembly. Therefore, the application of this modular workholding jig can reduce cost by changing the orientation of the workholding jig for other type of PCB assembly instead of purchasing or build another automated router machine or specific workholding for specific PCB assembly.

CHAPTER 2

LITERATURE REVIEW

This chapter will include the definition of the development, definition of workholding device, explanation of jigs, explanation of fixtures, basic requirements of fixturing systems (ensuring positional accuracy of workpiece, ensuring operation of convenience and safety, ensuring productivity in job, batch and mass production, ensuring low production cost, and 12-point locating principle), current flexible fixturing methodologies, definition and explanation of modular fixturing (T-slot-based and dowel-pin-based), explanation about the printed-circuit board (PCB) and its characteristic, explanation about soldering process, the definition of routing, explanation about stress deformation analysis and strain gauge.

2.1 Definition of Development

Development is a broad field of endeavor dealing with the brainstorming, problem analysis, design, and creation, of new products. Sometimes referred to as new product development (NPD), the discipline is focused on developing systematic methods for guiding all the processes involved in getting a new product to market (Kumar and Phrommathed, 2005).

2.2 Workholding Device

Workholding device is all devices that hold, grip, chuck, support and locates a workpiece to perform a manufacturing process. Workholding is also known as jigs and fixtures. In addition to jigs and fixtures, vises, collets, clamps, and other similar devices are also workholders (Leondes, 2000).

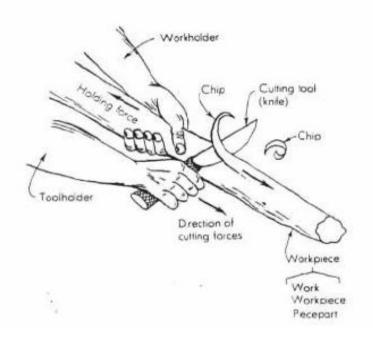


Figure 2.1: The principles of workholding

Source: www.mkn.itu.edu.tr

2.2.1 Definitions of Jigs and Fixtures

Jigs and fixtures are production-workholding device used to manufacture duplicate parts accurately. The correct relationship and alignment between the cutter, or other tool, and

the workpiece must be maintained. To do this, a jig or fixture is designed and built to hold, support and locate every part to ensure that each is drilled or machined within the specific limits (Hoffman, 2003).

The difference between jigs and fixtures can be shown in the Table 2.1 (Adithan and Gupta, 2005).

Jig	Fixture	
Jig holds and position the work and locates or guides the cutting tool with respect to the workpiece	Holds and positions the work but does not guide or locate the cutting tool	
Jig is not fixed to the machine table	Bolted or clamped to the machine table	
Lighter in construction	Heavy in construction	
Used on drilling, reaming, tapping and couterboring operations	Used for milling, grinding, shaping, planning, boring and welding operations	

Table 2.1: Differences between jig and fixtures (Adithan and Gupta, 2005)

As shown in Figure 2.2, jigs use drill bushings to support and guide the tool. Fixtures, as shown in Figure 2.3, use set blocks and thickness, or feeler, gages to locate the tool relative to the workpiece (Hoffman, 2003).

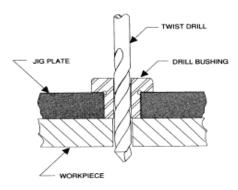


Figure 2.2: A jigs guiding the tool, in this case the drill bushing

Source: www.carrlane.com

6

🔘 Universiti Teknikal Malaysia Melaka