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ABSTRACT

The goal of this project is to develop an application that can increase the
resolution of low quality images and to perform neural style transfer that composes
one image in the style of another image. In today's digital age, images play a crucial
role in communication and self-expression. However, low-quality images are a
common problem that many people encounter, particularly when taking pictures with
their mobile phones. The lack of image quality can result in images that are blurry,
pixelated, or have poor resolution. These low-quality images can be frustrating for
users who want to share their images on social media platforms or use them for
personal or professional purposes. In this project, several pretrained deep
convolutional neural networks model that are the Enhanced Deep Residual Network
(EDSR), Efficient Sub-Pixel Convolutional Neural Network (ESPCN) and deep
Laplacian Pyramid Super-Resolution Network (LapSRN) are used for increasing the
resolution of image and the result of each model is analyzed and compared. The EDSR
was chosen as the best model as it achieved the highest average PSNR and SSIM in
testing 45 images which are 25.82 dB and 0.70 respectively. Traditional image
processing applications often lack the ability to perform advanced image enhancement
techniques such as neural style transfer, which can be used to create artistic effects on
images. The neural style transfer functionality is achieved by extracting the style of
the style image using the VGG19 network architecture which is a pretrained image
classification network and apply to the content image to create artistic effects on
images. VGG19 was employed because it obtained the highest average ArtFID in 30
testing images which is 45.97 when compare to MobileNet and ResNet. Finally, an
application is built using Flutter that combines all the functions above.
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ABSTRAK

Tujuan projek ini adalah untuk membangunkan satu aplikasi yang mampu
meningkatkan resolusi imej berkualiti rendah dan melakukan pemindahan gaya neural
yang menggabungkan satu imej dalam gaya imej yang lain. Dalam era digital ini, imej
memainkan peranan yang penting dalam komunikasi dan ekspresi diri. Walau
bagaimanapun, imej berkualiti rendah merupakan masalah yang biasa dihadapi oleh
ramai orang, terutamanya apabila mengambil gambar menggunakan telefon bimbit
mereka. Kekurangan kualiti imej boleh menghasilkan imej yang kabur, berpiksel, atau
mempunyai resolusi yang rendah. Imej berkualiti rendah ini boleh menyebabkan
frustrasi kepada pengguna yang ingin berkongsi imej mereka di platform media sosial
atau menggunakannya untuk tujuan peribadi atau profesional. Dalam projek ini,
beberapa model rangkaian neural konvolusi mendalam pra-latih iaitu Enhanced Deep
Residual Network (EDSR), Efficient Sub-Pixel Convolutional Neural Network
(ESPCN), dan deep Laplacian Pyramid Super-Resolution Network (LapSRN)
digunakan untuk meningkatkan resolusi imej, dan hasil setiap model telah dianalisis
dan dibandingkan. EDSR dipilih sebagai model terbaik kerana ia telah mencapai nilai
purata PSNR dan SSIM tertinggi dalam pengujian 45 imej iaitu 25.82 dB dan 0.70
masing-masing. Aplikasi pemprosesan imej tradisional sering kali tidak mempunyai
keupayaan untuk melaksanakan teknik penambahbaikan imej yang canggih seperti
pemindahan gaya neural, yang digunakan untuk mencipta kesan seni pada imej. Fungsi
pemindahan gaya neural dicapai dengan mengekstrak gaya imej gaya menggunakan
seni bina rangkaian VGG19 yang pra-latih dan menggunakannya pada imej kandungan
untuk mencipta kesan seni pada imej. VGG19 digunakan kerana ia mencapai ArtFID
purata tertinggi dalam 30 imej ujian, iaitu 45.97 berbandingkan kepada MobileNet dan
ResNet. Akhirnya, satu aplikasi dibangunkan menggunakan Flutter yang
menggabungkan semua fungsi di atas.
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CHAPTER 1: INTRODUCTION

1.1 Introduction

In today's digital age, images play a crucial role in communication and self-
expression. People take and share hundreds of photos every day on various social
media platforms, and the demand for image enhancement tools has never been higher.
According to a report by the Malaysian Communications and Multimedia Commission
(MCMC) in 2021, approximately 94.8% of Malaysians own a smartphone, indicating
a widespread adoption of mobile devices. Among the activities of smartphone users,
74.8% use smartphone to take photos or videos (MCMC Hand Phone Users Survey,
2021). This high penetration rate of smartphones has contributed to a significant
increase in the number of photos taken and shared by Malaysians on various social
media platforms. Furthermore, a study conducted by Ipsos Malaysia in 2020 revealed
that 78% of Malaysians consider the visual quality of images to be essential when
sharing them online (Ipsos Malaysia Digital Trends Survey, 2020). This statistic
emphasizes the importance of image enhancement tools that can enhance the visual

appeal and quality of photos, enabling users to create captivating and engaging content.

In this project, several pretrained deep convolutional neural networks model
that are the Enhanced Deep Residual Network (EDSR), Efficient Sub-Pixel
Convolutional Neural Network (ESPCN) and deep Laplacian Pyramid Super-
Resolution Network (LapSRN) are employed for increasing the resolution of image
and the result of each model is analyzed and compared. The performance for each
model is measured using metrics such as Peak Signal-to-Noise Ratio (PSNR) and
Structural Similarity Index Measure (SSIM). PSNR is a widely used metric to evaluate

the quality of a reconstructed image. It measures the ratio between the maximum



possible power of a signal (usually the original, unaltered image) and the power of the
noise or distortion introduced by reconstruction. On the other hand, SSIM is a metric
used to assess the similarity between two images. It is designed to capture both
structural information and perceived changes in luminance, contrast, and structure
(Horé & Ziou, 2013).

Traditional image processing applications often lack the ability to perform
advanced image enhancement techniques such as neural style transfer, which can be
used to create artistic effects on images. These techniques require a deep understanding
of image processing and advanced technical knowledge, which is beyond the scope of
most users. The neural style transfer functionality is achieved by extracting the style
of the style image using the pretrained image classification network and applying it to
the content image to create artistic effects on images. Several pretrained image
classification networks such as Very Deep Convolutional Networks for Large-Scale
Image Recognition (VGG19), MobileNet and Residual Neural Network (ResNet)
network architecture are implemented to compare the quality of the output image
between these deep CNN models. The performance for each deep CNN models on
neural style transfer technique is evaluated using Art Fréchet Inception Distance
(ArtFID) metric. The ArtFID metric is used for assessing the quality of neural style
transfer technique and is inspired by the Fréchet Inception Distance (FID) that is used
to evaluate the quality of generated images. ArtFID measures the perceptual similarity
between the stylized image and a reference image, capturing both the content and style
aspects (Wright & Ommer, 2022).

Therefore, there is a need for an application that combines multiple image
enhancement tasks in a single, user-friendly platform. This is where ImageGenie
comes in. ImageGenie aims to provide users with a unified solution for enhancing

image resolution and applying artistic styles to their images.

1.2 Problem Statement

While image processing applications have become more accessible and user-
friendly, they still fall short in meeting the needs of users who want to enhance their
images without having advanced technical knowledge. Furthermore, low-quality

images are a common problem that many people encounter, particularly when taking



pictures with their mobile phones. The lack of image quality can result in images that
are blurry, pixelated, or have poor resolution. These low-quality images can be
frustrating for users who want to share their images on social media platforms or use
them for personal or professional purposes. According to a survey conducted by Ipsos
in Malaysia (2021), approximately 65% of social media users express dissatisfaction
with the quality of images they encounter online. This statistic highlights the need for
a solution that addresses image enhancement and empowers users to enhance their low

quality images.

With the increasing popularity of social media platforms, people will share
images that they think are attractive or interesting to social media. Moreover, many
individuals appreciate the beauty of visually captivating artwork, artistic images have
the power to evoke emotions, spark creativity, and inspire others. However, for
individuals that are lacking the advanced drawing skills, creating such artistic artwork
can be quite challenging.

1.3 Objective

This project embarks on the following objectives:

1. To increase the resolution of low quality images using EDSR.

2. To allow users to perform neural style transfer that can compose one super

resolved image in the style of another image using VGG19.

1.4 Scope

The scope of the project includes development of a deep learning-based image
processing application that can perform a range of image enhancement tasks, such as

increasing the resolution of an image and applying neural style transfer.

1.5 Project Significance

By providing a comprehensive solution for image enhancement, ImageGenie
will allow people to take their digital images to the next level, making it easier than

ever to create and share high-quality, visually appealing content.



1.6 Expected Output

The expected output of the project is a powerful, all-in-one tool for image

enhancement that will revolutionize the way people work with their digital images.

1.7 Conclusion

In conclusion, this project will use deep learning models to increase the
resolution of low quality images and allow users to perform neural style transfer that

can compose one image in the style of another image.



CHAPTER 2: LITERATURE REVIEW AND PROJECT METHODOLOGY

2.1 Introduction

In today's digital age, images have become a vital means of communication
and self-expression. People capture and share hundreds of photos daily on various
social media platforms, leading to a growing demand for image enhancement tools.
Low-quality images are a common problem, particularly when capturing pictures with
mobile phones. The lack of image quality can result in blurry, pixelated, or poorly
resolved images, causing frustration for users who aim to share their visuals on social
media platforms or use them for personal and professional purposes. This project aims
to address these challenges by developing an application that employs pretrained deep
convolutional neural network models to enhance image resolution and allow users to

perform neural style transfer that can compose one image in the style of another image.

This chapter provides a comprehensive review of the literature relevant to this
project. The method behind every image enhancement function which is super
resolution and neural style transfer is studied. The research paper for every method for
the purpose above is read and review. In order to achieve a better result, a thorough

review of the references is also conducted.

All of the articles and journals that are related to this project are discussed and

the method proposed in these articles is also analyzed in this chapter.

2.2 Facts and Findings

In this section, the detail of this project are concentrated in order to gain a better

understanding of the project concept.



2.2.1 Domain

This project focuses on the domain of image enhancement, image processing,
and neural networks. It explores various concepts and advancements in these domains
to lay the foundation for the project's objectives. Key areas of interest include image
resolution enhancement, neural style transfer and deep learning techniques.
Understanding these domains is crucial for effectively implementing the project's

objectives and achieving high-quality results.

2.2.2  Existing System

Other related projects that are related to this project will also be taken into

consideration.

2.2.2.1 Image Super Resolution

Image super resolution not only can be done with deep learning technique,
there are also other methods such as interpolation or super resolution forests method.
The deep learning method of super resolution is employed in this project because the
methods stated above cannot achieve good results of obtaining high quality of super

resolved image compare to deep learning method.

(a) Interpolation Upsampling Methods (Ong Si Ci, 2023)

1. Nearest Neighbour Interpolation

This method is straightforward and efficient as it requires minimal calculations.
It involves adding pixels based on the intensity values of neighboring pixels. While
this approach increases image resolution, it may result in blocky and unnatural-looking
images. Figure 2.1 below shows an example of a nearest neighbour interpolation with

an upsampling factor of 2 applied to a 2x2 array.





