

Faculty of Electrical and Electronic Engineering Technology

MOHAMMAD ASYRAF ZAKWAN BIN LAJIM

Bachelor of Electronics Engineering Technology (Telecommunications) with Honours

2023

DEVELOPMENT OF OPTICAL MICROFIBER SENSOR FOR SODIUM ALGINATE DETECTION

MOHAMMAD ASYRAF ZAKWAN BIN LAJIM

A project report submitted in partial fulfillment of the requirements for the degree of Bachelor of Electronics Engineering Technology (Telecommunications) with Honours

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

UNIVERSITI TEKNIKAL MALAYSIA MELAKA FAKULTI TEKNOLOGI KEJUTERAAN ELEKTRIK DAN ELEKTRONIK

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II

Tajuk Projek : Development of Optical Microfiber Sensor for Sodium Alginate Detection

Sesi Pengajian : 2022/2023

Saya MOHAMMAD ASYRAF ZAKWAN BIN LAJIM mengaku membenarkan laporan Projek Sarjana

Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut: 1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.

- 2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
 - 3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi.

4. Sila tandakan (\checkmark):

SULIT*

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972) (Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana

penyelidikan dijalankan)

TIDAK TERHAD

(TANDATANGAN PENULIS) Alamat Tetap: Lot 221, Taman Hen Yii, Jalan Pandaruan, 98700 Limbang, SARAWAK

Disahkan oleh:

MD JOHARI DR. MD AS

Jabatan Teknologi Kejuruteraan Elektronik Dan Komputer (COP DAN TAN DAN DAN GAN PEN VELUA) Universiti Teknikal Malaysia Melaka

Tarikh: 13/01/2023

Tarikh: 27/01/2023

*CATATAN: Jika laporan ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh laporan ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I declare that this project report entitled "DEVELOPMENT OF OPTICAL MICROFIBER SENSOR FOR SODIUM ALGINATE DETECTION" is the result of my own research except as cited in the references. The project report has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

APPROVAL

I hereby declare that I have checked this project report and in my opinion, this project report is adequate in terms of scope and quality for the award of the degree of Bachelor of Electronics Engineering Technology (Telecommunications) with Honours

Signature	MALAYSIA 4
Supervisor	Name : DR. MD ASHADI BIN MD JOHARI
Date	27/01/2023
	Sea Allino
Signature	اونيوم سيتي تيكنيكل مليسيا ملاك
Co-Supervi	ENIVERSITI TEKNIKAL MALAYSIA MELAKA
Name (if an	ny)
Date	:

DEDICATION

This project is dedicated to God Almighty, my creator, my strong pillar, and my wisdom. I owe a special debt of gratitude to my parents, who have always been supportive of me and continue to speak to me about encouragement and tenacity. Next, I assigned the project to my supervisor, who has provided guidance throughout the project's duration. Last but not least, I must acknowledge my coworkers who have always been mentally supportive of my efforts to complete this project.

ABSTRACT

Fiber optic cables are capable of delivering large amounts of data at high speeds. As a result, internet connections typically use this strategy. Fiber optic cables are smaller, lighter, and more flexible than copper lines, and they convey more data. Fiber optics are widely employed in the fields of health and research. Endoscopy, which is a non-interruptive surgical method, relies heavily on optical technologies. In some circumstances, a small, bright light is used to illuminate the operation area inside the body, allowing for a reduction in the number and size of incisions. Fiber optics are used in both microscopy and biological research.

The most important and prevalent uses of fiber optics in medicine are the imaging and illumination components of endoscopes. Apart from it, Standards The medical industry requires higher measurement accuracy, along with lower radio frequency interference (radiation) to obtain patient information accurately without environmental interference.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ABSTRAK

Kabel gentian optik mampu menyampaikan sejumlah besar data pada kelajuan tinggi. Akibatnya, sambungan internet biasanya menggunakan strategi ini. Kabel gentian optik adalah lebih kecil, lebih ringan dan lebih fleksibel daripada talian tembaga, dan ia menyampaikan lebih banyak data. Gentian optik digunakan secara meluas dalam bidang kesihatan dan penyelidikan. Endoskopi, yang merupakan kaedah pembedahan tanpa gangguan, sangat bergantung pada teknologi optik. Dalam sesetengah keadaan, cahaya kecil dan terang digunakan untuk menerangi kawasan operasi di dalam badan, membolehkan pengurangan bilangan dan saiz hirisan. Gentian optik digunakan dalam kedua-dua mikroskop dan penyelidikan biologi.

Penggunaan gentian optik yang paling penting dan lazim dalam perubatan ialah komponen pengimejan dan pencahayaan endoskop. Selain itu, Piawaian industri perubatan memerlukan ketepatan pengukuran yang lebih tinggi, bersama dengan gangguan frekuensi radio (radiasi) yang lebih rendah untuk mendapatkan maklumat pesakit dengan tepat tanpa gangguan persekitaran.

ACKNOWLEDGEMENTS

First and foremost, I would like to express my gratitude to my supervisor, DR. MD ASHADI BIN MD JOHARI for their precious guidance, words of wisdom and patient throughout this project.

I am also indebted to Universiti Teknikal Malaysia Melaka (UTeM) for the financial support through them which enables me to accomplish the project. Not forgetting my fellow colleague, ABDUL HAFIZ BIN AHMAD ZAINI for the willingness of sharing his thoughts and ideas regarding the project.

My highest appreciation goes to my parents, and family members for their love and prayer during the period of my study. An honourable mention also goes to LAJIM BIN KARIA my father, for all the motivation and understanding. And to DAYANG FATIMAH BINTI ABD WAHAB my mother, thanks for understanding all the problem and give many advise for completing this project.

Finally, I would like to thank all the staffs at the labaratory, fellow colleagues and classmates, the Faculty members, as well as other individuals who are not listed here for being co-operative and helpful.

TABLE OF CONTENTS

		PAG
DEC	CLARATION	
APP	ROVAL	
DED	DICATIONS	
ABS	TRACT	i
ABS	TRAK	ii
ACK	KNOWLEDGEMENTS	iii
ТАВ	BLE OF CONTENTS	i
LIST	T OF TABLES	iii
LIST	T OF FIGURES	v
LIST	T OF SYMBOLS	viii
LIST	T OF ABBREVIATIONS	ix
LIST	r of appendices	X
CHA 1.1 1.2 1.3 1.4 1.5	INTRODUCTION Introduction Project Background I TEKNIKAL MALAYSIA MELAKA Problem Statement Project Objective Project Overview	11 11 13 14
CHA	APTER 2 LITERATURE REVIEW	15
2.1 2.2	Introduction Anatomy of Fiber Optics 2.2.1 Fiber Optic Cable Constructions 2.2.2 Type of Optical Fiber Cable 2.2.3 Single Mode Fiber 2.2.4 Multi-Mode Fiber	15 15 16 17 18 19
2.3	Pros and Cons Using Optical Fiber Cable 2.3.1 Advantages: 2.3.2 Disadvantages:	21 22 23
2.4 2.5	Light Ray Theory Fiber Optic sensor 2.5.1 Reflection and Refraction of light in Fiber Optic 2.5.2 Tapered Fiber	24 24 25 26
2.6	Various Type of Fiber Optic Sensor	27

2.7 2.8	Journal Comparison from Previous Work Related to the Project in table 2.3 Summary	30 32	
СПАБ	Σ ΣΤΕΡ 2 ΜΕΤΗΔΡΟΙ ΟΩΥ	22	
2 1	Introduction	22	
5.1	Drain at Mathadala an Elara Chart	22	
3.Z	Project Methodology Flow Charl	38	
5.5	2.2.1. Steinging Process	42	
	2.2.2 Chapting Process	42	
	2.2.2 Chearing Process	44	
	3.5.5 Cleaving Process	45	
	3.3.4 Tampering Process	40	
	3.3.5 Splicing Process	40	
	3.3.0 Final Check On Fiber Optic cable	40	
2.4	3.3.7 Checking thickness of the Optical MicroFiber cable	49	
3.4	2.4.1 Seture project	50	
	2.4.2 Ministry Sodium Algingto Detection and massure for 10ml for each	30	
	5.4.2 Mixture Sodium Aigmate Detection and measure for form for each	50	
35	Characterization	50	
5.5	3.5.1 Type of Connectors	52	
	3.5.2 Amplified Spontaneous Emission (ASE)	53	
	3.5.3 Ontical Power Meter (OPM)	53	
36	Sodium Alginate Detection	54	
3.7	Experimental Setup	55	
3.8	Expected Result	56	
3.9	Summary	56	
	او بنوم سبت مدر بعد المحال مار الم		
	Introduction	57	
4.1	Doguti NIVEDSITI TEKNIKAL MALAVSIA MELAKA	59	
4.2	A 2 1 1310 nm	58	
	4.2.1 1510 mm	50 64	
	4.2.3 Comparison	70	
	4.2.5 Comparison 4.2.4 Table and Graph for 50% to 100% for each minutes 1310nm and	70	
	1550nm	70	
4.3	Average	76	
СНАР	TER 5 CONCLUSION	78	
5.1	Conclusion	78	
5.2	Future Works	78	
J.2		70	
REFE	KENCES	79	
APPE	APPENDICES		

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1: Type of Fiber	Optic	18
Table 2.2: Summaries the 29	e physical measurement that may be monitored by a syst	em
Table 2.3: Journal Compa	arison from Previous Work Related to the Project	30
Table 4.1: Data Recorde	d for 50% Sodium Alginate Detection	58
Table 4.2 : Data Recorde	ed for 60% Sodium Alginate Detection	59
Table 4.3: Data Recorde	d for 70% Sodium Alginate Detection	60
Table 4.4 : Data Recorde	ed for 80% Sodium Alginate Detection	61
Table 4.5 : Data Recorde	ed for 90% Sodium Alginate Detection	62
Table 4.6 : Data Recorde	ed for 100% Sodium Alginate Detection	63
Table 4.7: Data Recorde	d for 50% Sodium Alginate Detection	64
Table 4.8 : Data Recorde	ed for 60% Sodium Alginate Detection	65
Table 4.9 : Data Recorde	ed for 70% Sodium Alginate Detection	66
Table 4.10 : Data Record	led for 80% Sodium Alginate Detection	67
Table 4.11 : Data Record	led for 90% Sodium Alginate Detection	68
Table 4.12 : Data Record	led for 100% Sodium Alginate Detection	69
Table 4.13: Recorded waveleng	data for sodium alginate solution (%) and Differ th(nm)	ent 70
Table 4.14: Data recorde	d for 1 minutes	70
Table 4.15 : Data record	ed for 2 minutes	71
Table 4.16 : Data record	ed for 3 minutes	72
Table 4.17: Data recorde	d for 4 minutes	73
Table 4.18 : Data record	ed for 5 minutes	74
Table 4.19: Data recorde	ed for 6 minutes	75

LIST OF FIGURES

FIGURE TITLE	PAGE
Figure 2.1: Light reaction to low and high refractive index material	16
Figure 2.2: Construction of Fiber Optic cable	16
Figure 2.3: single mode fiber optic	18
Figure 2.4: multimode fiber optic	19
Figure 2.5: comparison of the two modes of fiber cable	20
Figure 2.6: Reflection and Refraction of light in fiber optical cable	26
Figure 3.1: Fiber Stripper	33
Figure 3.2: Single Mode Fiber Pigtails	34
Figure 3.3: Hand Cleaver	34
Figure 3.4: Fusion splicer	35
Figure 3.5: Amplified Spontaneous Emitter (ASE)	35
ويوم سيني تيڪنيڪ	36
Figure 3.7: Soft Tissue and Isopropy Alcohol MALAYSIA MELAK	A 37
Figure 3.8: Sodium Alginate	37
Figure 3.9: Flowchart of Project Sarjana Muda (PSM)	40
Figure 3.10: Flowcart DEVELOPMENT OF OPTICAL MICROFIBER SI FOR SODUIM ALGINATE DETECTION	ENSOR 41
Figure 3.11: Design of the project	42
Figure 3.12: Stripping Single-Mode fiber middle and end to end	43
Figure 3.13: Stripping pigtail cable	43
Figure 3.14 : cleaning the cable after stripping	44
Figure 3.15 : Remove part that not being use using cleaver	45
Figure 3.16 : Tampering meachine	46

Figure 3.17: Shcematic of Splicing Process	47
Figure 3.18: Splicing process	47
Figure 3.19 : Test cable fiber with laser source	48
Figure 3.20 : checking thickness of Optical microfiber	49
Figure 3.21: preparing the project for Sodium Alginate Detection	50
Figure 3.22 : Sodium Alginate solution measure before pour in experiment	51
Figure 3.23 : experiment being conduct	51
Figure 3.24: Type of Connector	53
Figure 3.25: Sodium Alginate	55
Figure 4.1: Graph for 50% solution	58
Figure 4.2 : Graph for 60% solution	59
Figure 4.3 : Graph for 70% solution	60
Figure 4.4 : Graph for 80% solution	61
Figure 4.5 : Graph for 90% solution	62
ويبور سيني به Figure 4.6 : Graph for 100% solution	63
Figure 4.7 : Graph for 50%-solution NIKAL MALAYSIA MELAKA	64
Figure 4.8 : Graph for 60% solution	65
Figure 4.9: Graph for 70% solution	66
Figure 4.10: Graph for 80% solution	67
Figure 4.11: Graph for 90% solution	68
Figure 4.12: Graph for 100% solution	69
Figure 4.13 : microfiber sensor response at 1 minutes	71
Figure 4.14 : microfiber sensor response at 2 minutes	72
Figure 4.15 : microfiber sensor response at 3 minutes	73
Figure 4.16 : Data recorded for 4 minutes	74
Figure 4.17 : Data recorded for 5 minutes	75

Figure 4.18 : Data recorded for 6 minutes	76
Figure 4.19 : Optical Fiber sensor for both wavelength	77

LIST OF SYMBOLS

- Voltage angle

-

δ

- -
- -
- -
- -
- -

LIST OF ABBREVIATIONS

- Voltage

V

- -
- -
- -
- -
- -
- -

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

Appendix

81

CHAPTER 1

INTRODUCTION

1.1 Introduction

This chapter will offer a concise discussion on the history of the project, as well as the issue statement that elucidated the reasons why this project needed to be carried out. In this section of the research, we also elaborate on the project's overall goal and the breadth of its coverage.

1.2 Project Background

To create microfibers, optical fibers are heated and stretched to submicron dimensions. A Micro Fiber geometry is made up of a thin, uniform waist connected on either side to a transition area with a steadily increasing slope. Sub-wavelength dimensions and negligible operating losses may be found in these Micro Fiber, which are frequently referred to as nanowires. In the ever-expanding realm of nanotechnology, Micro Fiber have emerged as a suitable building block for a wide range of products. Additionally, Micro Fiber may be employed well in sensing applications because of their quick reaction time, broad evanescent field, compactness, and tailorable modal area. Many studies have been conducted on the optimal form and shape of these Micro Fiber in order to customise their output to the specific application.

Fiber optics is a technology that is widely acknowledged as an alternative to coaxial cable as a communication medium. Over great distances, light pulses (information) can be transferred via strands made of glass or plastic that are probably about the size of human

hair. Since they are non-metallic, they are immune to electromagnetic interference. Also, this technology is said to be safer as they do not carry current that may cause sparks. Their uniqueness makes them capable of transmitting faster over longer distances than other medium does.

There is a pretty simple and inexpensive way to make Micro Fiber. The first method for making low-loss, sub-micron diameter Micro Fiber used a two-step process, where the optical fiber was first drew to a micron size using a flame, and the resultant taper was subsequently drawn down to submicron dimensions by drawing the taper around a heated 80 nm sapphire rod. Using this technology, a taper with a radius of 440 nm and loss of 0.3dB/m at the telecom wavelength of 1.55 nm was created. The so-called flame brushing approach yielded lower losses, on the order of 0.001 dB/mm at 1.55 m. An electric microheater or flame brushing method is used to warm up the little section of the fiber before pulling it back through the translation phases (modified flame brushing technique).

The adaptability of Micro Fiber transmission to various sensing applications is one of the property's aspects that makes it one of the most fascinating for use in those applications. By simply tweaking the MF design, it is easy to get optimal performance in terms of the sensor's sensitivity, detection limit, and dynamic range.

Alginic acid's linear polysaccharide derivative sodium alginate (NaC6H7O6) is composed of 1,4-d-mannuronic (M) and -l-guluronic (G) acids. Marine brown algae cell walls include sodium alginate, which contains 30-60% alginic acid. When alginic acid is converted to sodium alginate by a chemical reaction, it becomes more water soluble, making it easier to extract. To attach to surfaces and protect themselves from the environment, bacteria create bacterial alginates, which are exclusively found in Pseudomonas (the most common) and Azotobacter (the most common) These bacteria can create alginates with a well-defined monomer composition, which may lead to the creation of "tailor-made" alginates.

Sodium alginate is a polymer derived from brown algae that is used in the food industry. -d-mannuronic acid (M) and -l-guluronic acid (G) are the two connected anionic monomers in this structure. Homopolymeric G (G blocks) and M (M blocks) units are interspersed with areas of mixed monomers in the polymer structure (MG blocks). In the presence of divalent cations, such as Ca2+, sodium alginate is able to convert into a hydrogel and retain more than 98% of the water it contains. Encapsulated cells need an aqueous environment to be active, and this is essential for that purpose. The Ca2+ binds to the G residues during hydrogel formation. Structures of neighbouring alginate chains are transformed from random coils to ribbon-like structures when G residues are folded and stacked via bond contact.

1.3 Problem Statement

Liquid sensors have been used in the medical industry for a long time to monitor human health. As in Malaysia, the number of patients with headache and heartburn is higher, it make people that have symptom take medicine that contain sodium alginate to reduce pain faster without properly take that can cause another side effect such as heart attack and sodium alginate is use in ice cream that some of their take after meals. Due to electromagnetic interference, the readings from recent liquid sensors are constantly uncertain. 'Biomedical usage of fiber optics is possible because of the fiber's unique charac teristics and excellent sensor performance. As a result, this research will be experimenting with optical microfiber in various concentrations of Sodium Alginate (N6H7NaO6) to find the sensitivity and linearity.

1.4 **Project Objective**

There are several objectives that will be achieved in this project;

- a) To observe the operation, sensitivity and linearity of the Optical MicroFiber.
- b) To develop Optical MicroFiber Sensor in different development of Sodium Alginate.
- c) To analyze the performance of the Optical MicroFiber Sensor in Sodium Alginate detection.

1.5 **Project Overview**

There are five chapters in this report. In Chapter 1, the backdrop of the project, the problem statement, the project objectives, and the project scope will be explained. Chapter 2 is a literature review that uses references from books, journals, the Internet, and past projects to acquire a better understanding of the project before it is developed. These materials are the primary source of information for the entire project. After that, Chapter 3 contains descriptions of the project methodology, methodology flowchart, and project process flow. This chapter is very important in order to run the project smoothly. In Chapter 4, the results of the experiments done during PSM 2, will be presented. Finally, the conclusion in Chapter 5 will provide the conclusion of the entire project, the final decision of choosing which optical fiber loop sensor function very well in detecting Sodium Chloride concentration. A few suggestions for future works also included at the last chapter of the project report.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This part of the project included both a study of the literature for the whole project and the development of the project. The extra materials for this project, like journals, papers, and books that are related to the project's topic, would be the primary sources. This chapter will go into detail about all the related research, from the basics to how it can be used. Before the next step, which is to design the Microfiber Optic Sensor for sodium alginate detection, it's important to understand what fiber optic is and how it works, and this process helps with that.

2.2 Anatomy of Fiber Optics

An optical fiber is a flexible, cylinder-shaped dielectric waveguide made of lowloss materials like silica glass and sometimes plastic. With the plastic covering, the core is a little bigger than a human hair. The sizes are the same across the country and around the world. Figure 2.1 shows that it has a light-guiding core in the middle and an outer layer with a slightly lower refractive index. The reason to make microfiber optics is it take up less room and be more lightweight by shrunk the fiber optic to a narrower diameter.