

Faculty of Electrical and Electronic Engineering Technology

ASHRAF FARHAN BIN SAFIEE


Bachelor of Electrical Engineering Technology (Industrial Power) with Honours

2022

DEVELOPMENT OF PIEZOELECTRIC FOOTSTEP POWER GENERATOR SYSTEM WITH IoT MONITORING

ASHRAF FARHAN BIN SAFIEE

A project report submitted in partial fulfillment of the requirements for the degree of Bachelor of Electrical Engineering Technology (Industrial Power) with Honours

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2022

UNIVERSITI TEKNIKAL MALAYSIA MELAKA FAKULTI TEKNOLOGI KEJUTERAAN ELEKTRIK DAN ELEKTRONIK

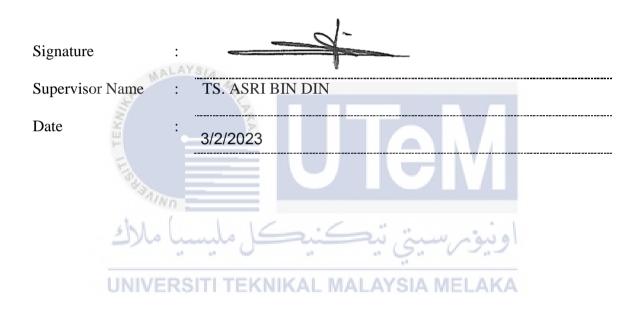
BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II

Tajuk Projek: Development of Piezoelectric Footstep Power Generator System With IoT Monitoring Sesi Pengajian : 2022/2023

Saya Ashraf Farhan Bin Safiee mengaku membenarkan laporan Projek Sarjana

- Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut:
- 1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.
- 2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (\checkmark): (Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia SULIT* seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972) (Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana **TERHAD*** penyelidikan dijalankan) MALAYSIA MELAKA TIDAK TERHAD Disahkan oleh: (TANDATANGAN PENULIS) (COP DAN TANDATANGAN PENYELIA) Ts. ASRI BIN DIN Alamat Tetap: Pensyarah Kanan No.52, Lorong Teratai 2/10, Jabatan Teknologi Elektrik dan Elektronik Fakulti Teknologi Kejuruteraan Elektrik dan Elektronik Universiti Teknikal Malaysia Melaka Bandar Baru ,45000, Kuala Selangor, Selangor Tarikh: 1/2/2023 Tarikh: 3/2/2023

*CATATAN: Jika laporan ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh laporan ini perlu dikelaskan sebagai SULIT atau TERHAD.


DECLARATION

I declare that this project report entitled "Development of Piezoelectric Footstep Power Generator System With IoT Monitoring" is the result of my own research except as cited in the references. The project report has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

APPROVAL

I approve that this Bachelor Degree Project 2 (PSM2) report entitled "Development of Piezoelectric Footstep Power Generator System With IoT Monitoring" is sufficient for submission.

APPROVAL

I hereby declare that I have checked this project report and in my opinion, this project report is adequate in terms of scope and quality for the award of the degree of Bachelor of Electrical Engineering Technology (Industrial Power) with Honours.

DEDICATION

I would want to dedicate the success of this final year project degree, in particular to my parents, Safiee Bin Samsudin and Khalijah Binti Ismail. This report will be dedicated to them because I want to express my gratitude for the sacrifices, they made for me during my time at this university. The second recipients of this commitment are my siblings, who provided guidance, financial assistance, and moral support in the creation of this report. Next, I would like to express my appreciation to my supervisor, TS. Asri Bin Din, and to my friends who provided a great deal of assistance throughout the completion of this Final Year Project.

ABSTRACT

Electricity has been more significant and in demand in recent years. Many energy resources have been squandered and depleted. A new approach to produce power has been discovered by relying on humans' movements. The footsteps vibrations produced by humans are usually gone to waste because there were no uses for that. By reusing this wasted energy, electrical energy may be produced. A piezoelectric transducer is the kind of transducer used to detect vibrations. The electrical energy can be produced by converting the mechanical energy by using the transducer. The electrical energy is converted from the pressure produced by human footsteps that are delivered to the transducer. A series-parallel connection is used to connect the piezoelectric transducer. The transducer is then placed on a wooden tile that will function as a footstep platform to produce pressure to the transducer. This tile may be used in a congested location, on a walking path, or crowded area. The goal of this research project is to focus on producing energy using piezoelectric footstep and act as backup power source. Various methods have been taken in conducting the research by referring to previous articles and research to further deepen the knowledge about this project. The results for this project are achieved when the footstep piezoelectric prototype can successfully charge electronic devices and can be monitored by using Blynk applications and controlled through electronic devices such as mobile phones. Different output power have been successfully produced and measured depending on the different human weight and different time to pressure used during the testing. In conclusion, the results of this prototype piezoelectric power outputs shown the potential of this type of renewable energy source to be implemented in congested public area.

ABSTRAK

Sejak beberapa tahun kebelakangan ini, sumber elektrik adalah sangat penting dan mempunyai permintaan yang tinggi dalam penggunaanya. Jadi banyak sumber tenaga telah dibazirkan dan habis. Oleh itu, pendekatan baru untuk menghasilkan kuasa telah ditemui iaitu dengan bergantung pada pergerakan manusia. Seperti yang diketahui, manusia dapat menghasilkan tenaga yang terhasil daripada berjalan kaki. Dengan menggunakan semula tenaga terbuang ini, tenaga elektrik mungkin dihasilkan. Oleh itu, transduser piezoelektrik akan digunakan untuk menghasilkan projek ini, transduder piezoelektrik adalah jenis transduser yang digunakan untuk mengesan getaran dan tekanan. Dengan itu, tenaga elektrik boleh dihasilkan dengan menukar tenaga mekanikal dengan menggunakan transduser tersebut. Tenaga elektrik ditukar daripada tekanan yang dihasilkan oleh tapak kaki manusia yang dihantar ke transduser. Projek ini akan menggunakan sambungan secara siri-selari untuk menyambungkan transduser piezoelektrik. Transduser kemudiannya diletakkan di atas jubin kayu yang akan berfungsi sebagai platform pijak untuk menghasilkan tekanan kepada transduser. Jubin ini boleh digunakan di lokasi yang sesak, di laluan berjalan kaki atau kawasan yang ramai orang melaluinya. Matlamat projek penyelidikan ini adalah untuk memberi tumpuan kepada penghasilan tenaga menggunakan piezoelektrik dan bertindak sebagai sumber kuasa simpanan. Pelbagai kaedah telah diambil dalam menjalankan kajian dengan merujuk artikel dan kajian lepas bagi mendalami lagi pengetahuan tentang projek ini. Keputusan untuk projek ini dicapai apabila prototaip piezoelektrik footstep berjaya mengecas peranti elektronik dan boleh dipantau dengan menggunakan aplikasi Blynk melalui peranti elektronik seperti telefon bimbit. Output kuasa yang berbeza telah berjaya dihasilkan dan diukur, tetapi bergantung pada berat badan manusia yang berbeza dan masa yang berbeza untuk tekanan yang digunakan semasa ujian dijalankan. Kesimpulannya, hasil keluaran kuasa piezoelektrik prototaip ini menunjukkan potensi sumber tenaga boleh diperbaharui dan serta boleh dilaksanakan di kawasan awam yang sesak.

ACKNOWLEDGEMENTS

First and foremost I would like to thank my supervisor, Ts. Asri Bin Din for their invaluable assistance, wise words, and patience during this project.

I am also grateful to Universiti Teknikal Malaysia Melaka (UTeM) and parents for their unending support, which has enabled me to complete the project. Not to mention my colleagues and dearest buddies for their openness to share their opinions and ideas about the project.

My heartfelt gratitude goes to my parents and family members for their love and prayers throughout my studies. My housemate, TTU 98, deserve special recognition for providing me with all the drive and in-depth information about excellent thesis writing.

Finally, I'd want to express gratitude to everyone who has helped me out, from the panels I've had from the beginning of the semester to my colleagues, friends, and instructors. I couldn't have completed this task without the help of everyone involved. So, again, I appreciate it.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

TABLE OF CONTENTS

	PAG
DECLARATION	
APPROVAL	
DEDICATIONS	
ABSTRACT	i
ABSTRAK	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	ivv
LIST OF TABLES	vii
LIST OF FIGURES	ixx
LIST OF SYMBOLS	xiiii
LIST OF ABBREVIATIONS	xiiiiii
LIST OF APPENDICES	xivv
CHAPTER 1 INTRODUCTION 1.1 Background 1.2 Problem Statement 1.3 Project Objective 1.4 Scope of Project STI TEKNIKAL MALAYSIA MELAKA	1 1 2 2 3
CHAPTER 2 LITERATURE REVIEW	4
2.1 Introduction	4
2.2 Piezoelectric cell for generation of electrical energy2.2.1 Piezoelectric	5 6
2.2.1 Types of Piezoelectric	0 7
2.2.2.1 Piezoelectric Discs	7
2.2.2.2 Piezoelectric Bending Strip	8
2.2.2.3 Piezoelectric Rings	8
2.3 Battery storage monitoring using IoT	9
2.4 Batteries	10 10
2.4.1.1 Primary Cells I. Alkaline	10
II. Zinc carbon	11
2.4.1.2 Secondary Cells	10
I. Lithium Ion (Li-on)	14
II. Lead-acid battery	15
2.5 Internet of Things	16
2.5.1 Blynk Application	17

2.5.2	ThingSpeak Application	18	
2.5.3	Raspberry Pi	19	
2.5.4	Arduino Uno		
2.6	Battery Storage Capacity		
2.6.1	Voltage in Battery	21 22	
2.6.2	Charging of 3.7 voltage lithium-ion battery	22	
2.0.2		22	
2.1	Summary	24	
СНАР	PTER 3 METHODOLOGY	25	
3.1	Introduction	25	
3.2	Flow Chart of Project	25	
3.3	Project Methodology	28	
3.3.1	Stage 1: Developing the Project Structure Plan	29	
3.3.2	Stage 2: Project Determination	29	
I.	Development of Mechanical Design Piezoelectric Footstep Power Generator		
	System for Piezoelectric Tiles	29	
II.	Electronic Design	31	
3.3.3	Stage 3: Complete Project Integrations	33	
3.4	Component List	33	
3.4.1	ESP 32	33	
3.4.2	Arduino UNO	35	
3.4.3	Piezoelectric Sensor	33 37	
3.4.4	LCD Display Module	39	
3.4.5	Voltage Sensor	41	
3.4.6	Lithium-Ion Battery	42	
3.4.7	Current sensor ACS712	42 43	
3.4.8	2 Relay Module	44	
3.5	Software	45	
3.5.1	Blynk Application	45 45	
3.5.2	SketchUp	45 46	
3.7	Summary VERSITI TEKNIKAL MALAYSIA MELAKA	46	
5.7	Sumury IVERSITI TEKNIKAL MALAYSIA MELAKA	40	
CHAP	PTER 4 RESULTS AND DISCUSSIONS	48	
4.1	Introduction	48	
4.2	Hardware Design	48	
4.3	Software Design	50	
4.3.1	Arduino Instructions Programming	51	
4.3.2	Arduino Instructions Programming for ESP32 connected to Wi-Fi	52	
4.3.3	Arduino Instructions Programming for notify battery condition	52	
4.3.4	Blynk Application	53	
4.4	Steps and Procedures of this project	55	
4.5	Results	57	
4.5.1	The test on thirty-six Piezoelectric in Series-Parallel Connection	57	
4.5.1.1	Weight difference results output voltage, current and holding period produce	58	
	Weight differenced results for number of steps, volage and current	63	
4.5.2	Lithium-Ion Battery Charging Test	68	
4.5.2.1	Calculation battery charging time based on output from different weight	69	
I.	Battery charging time for 60kg in twenty-six steps	69	
II.	Battery charging time for 60kg in twenty-six steps	70	
III.	Battery charging time for 60kg in twenty-six steps	70	

IV.	Battery charging time for 60kg in twenty-six steps		71
5.1	PTER 5 Conclusion Future Works	CONCLUSION AND RECOMMENDATIONS	72 72 73
REF	REFERENCES		74
APPENDICES		78	

LIST OF TABLES

TABLETITLEPAGE

Table 2.1	Results and different types of configuration	6
Table 2.2	Advantages and disadvantages of Alkaline battery	12
Table 2.3	Advantages and disadvantages of Zinc-carbon battery	13
Table 2.4	Advantages and disadvantages of Lithium-ion battery	14
Table 2.5	Advantages and disadvantages of lead acid battery	16
Table 3.1	Project protoype design explanation	31
Table 3.2	Features and specification of ESP32	34
Table 3.3	Specification of Arduino UNO	36
Table 3.4	Specification of Piezoelectric sensor	38
Table 3.5	LCD 16x2 module pinout configuration	40
Table 3.6	Voltage sensor module pinout configuration	41
Table 3.7	Lithium Ion Battery	42
Table 3.8	Sspecification of current sensor ACS712YSIA MELAKA	44
Table 3.9	Features and specification of 2 relay module	45
Table 4.1	Weight difference result with output voltage, current and holding period produced	58
Table 4.2	60 kilogram output voltage, current and holding period produced	59
Table 4.3	65 kilogram output voltage, current and holding period produced	60
Table 4.4	70 kilogram output voltage, current and holding period produced	61
Table 4.5	75 kilogram output voltage, current and holding period produced	62
Table 4.6	Weight difference result with output voltage, current and number of steps produced	63
Table 4.7	60 kilogram output voltage, current and number of steps produced	64
Table 4.8	65 kilogram output voltage, current and number of steps produced	65

Table 4.9	70 kilogram output voltage, current and number of steps produced	66
Table 4.10	75 kilogram output voltage, current and number of steps produced	67
Table 4.11	Average current output produced with 26 steps	68

LIST OF FIGURES

FIGURE TITLE PAGE

Figure 2.1	Results and different types of configuration	б
Figure 2.2	Explanation of Piezoelectric	6
Figure 2.3	Piezoelectric Disc	7
Figure 2.4	Piezoelectric Binding Strip	8
Figure 2.5	Piezoelectric Rings	9
Figure 2.6	Explanation of batteries	10
Figure 2.7	Alkaline battery	12
Figure 2.8	Zinc-Carbon battery	13
Figure 2.9	Lithium-ion battery explanation	15
Figure 2.10	Lead Acid battery	16
Figure 2.11	Internet of Things	17
Figure 2.12	اويور سيبي بيڪييڪ مشيب مارد Blynk Application	18
Figure 2.13	UThingSpeak Application KAL MALAYSIA MELAKA	18
Figure 2.14	The raspberry Pi Model A (left) and Model B (right) board	20
Figure 2.15	Arduino Uno	21
Figure 2.16	Results and different types of connection between sensors	22
Figure 2.17	Results the voltage taken based on the jump o the piezoelectric	23
Figure 3.1	Flow chart of project	26
Figure 3.2	Flow chart of project development	28
Figure 3.3	Prototype of the project	30
Figure 3.4	Numbering details of prototype project	30
Figure 3.5	Numbering details of prototype project	30
Figure 3.6	Flow chart of project development	32

Figure 3.7	Proteus simulation circuit for piezoelectric footstep power generator system	32
Figure 3.8	ESP32	33
Figure 3.9	Arduino UNO	35
Figure 3.10	Piezoelectric Sensor	37
Figure 3.11	LCD 16x2	39
Figure 3.12	LCD 16x2 pin name	39
Figure 3.13	Voltage Sensor	41
Figure 3.14	Lihium Ion Battery	42
Figure 3.15	Current Sensor ACS712	43
Figure 3.16	2 Relay Module	44
Figure 3.17	Blynk Application	45
Figure 3.18	SketchUp	46
Figure 4.1	Top view and side view mosaic tile	48
Figure 4.2	Wiring connection electronic components in junction box	49
Figure 4.3	Schematic diagram	50
Figure 4.4	List of libraries	51
Figure 4.5	Program for ESP32 Module	52
Figure 4.6	Program for notify battery condition	52
Figure 4.7	Blynk Application	53
Figure 4.8	Design of Blynk Mobile Application	54
Figure 4.9	Blynk Notification	54
Figure 4.10	Display PIEZOELECTRIC FOOTSTEP	55
Figure 4.11	Wi-Fi connection	55
Figure 4.12	Measuring of voltage battery and battery percentage	56
Figure 4.13	Graph for 60 kilogram output voltage and holding period produced	59
Figure 4.14	Graph for 60 kilogram output current and holding period produced	59

Figure 4.15	Graph for 65 kilogram output voltage and holding period produced	60
Figure 4.16	Graph for 65 kilogram output current and holding period produced	60
Figure 4.17	Graph for 70 kilogram output voltage and holding period produced	61
Figure 4.18	Graph for 70 kilogram output current and holding period produced	61
Figure 4.19	Graph for 75 kilogram output voltage and holding period produced	62
Figure 4.20	Graph for 75 kilogram output current and holding period produced	62
Figure 4.21	Graph for 60 kilogram output voltage and number of steps produce	64
Figure 4.22	Graph for 60 kilogram output current and number of steps produced	64
Figure 4.23	Graph for 65 kilogram output voltage and number of steps produced	65
Figure 4.24	Graph for 65 kilogram output current and number of steps produced	65
Figure 4.25	Graph for 70 kilogram output voltage and number of steps produced	66
Figure 4.26	Graph for 70 kilogram output current and number of steps produced	66
Figure 4.27	Graph for 75 kilogram output voltage and number of steps produced	67
Figure 4.28	Graph for 75 kilogram output current and number of steps produced	67
Figure 4.29	Graph for Lithium-ion battery charging test output with 26 steps	68

.

LIST OF SYMBOLS

- δ °C _
- Voltage angle Degree celcius _
- Micro _ μ

LIST OF ABBREVIATIONS

V	-	Voltage
тA	-	Milliampere
mW	-	Milliwatt
Ah	-	Ampere hours
MHz	-	Megahertz
Ε	-	Electromotive force
KB	-	Kilobyte
MB	-	Megabyte
KHz	-	Kilohertz
mm	-	Millimeter
Α	-	Ampere
Ст	-	Centimeter

LIST OF APPENDICES

APPENDIX

TITLE

Appendix A	Piezoelectric Footstep Power Genrator System	78
Appendix B	Measuring Equipment	80
Appendix C	Coding of Arduino UNO	88
Appendix D	Coding of ESP32	92
Appendix E	Gantt Chart	95

CHAPTER 1

INTRODUCTION

1.1 Background

Electric is a very important source of energy in our daily lives. Every day people use electrical appliances. Not only that, it is also useful especially in electronic equipment, building lighting and so on. Next, Malaysia is a rising country with increasing number of human population and technological advances which also affect the use of electricity. This is because humans are active in several major industries.

Besides that, electrical energy can be produced through many ways and sources. Malaysia is one of the countries that use electrical energy from hydroelectric energy. However, hydroelectric energy can be categorized as a renewable source of energy, but not too many people are aware about the importance of electrical energy saving. So, to overcome this problem, the development of piezoelectric footstep power generator system with IoT monitoring is created to reduce the amount of energy wasted. As a lot of people know, many countries in Europe have already use piezoelectric footstep as an alternative way to save energy. By this, we can use these European countries as an example for us Malaysians to produce energy through other method.

This project is created so that it can be used in public and crowded places such as shopping malls. This device can be placed along the path where people can walk and step on it every day. Then, this device will produce voltage for every time people step on it and if the device is constructed in series-parallel connection, it will generate a considerable amount of electrical energy and it can be monitored by using IoT. So, with this footstep power generation by using piezoelectric sensors, it can produce non-conventional energy to electrical energy as well as reducing the amount of energy wasted by using human footsteps that can produce electrical energy.

1.2 Problem Statement

As the population of the country grows, so does the need for electricity. While this was going on, energy wastage also rose dramatically. As a result, the most important answer is to reform this energy and make it useable again.

Devices like computers and smartphones have become more commonplace as technology has progressed. Conservative energy sources are becoming insufficient. It becomes necessary to find a new way to generate electricity. At the same time, human mobility wastes energy in several ways.

As an alternative solution, a piezoelectric sensor may be used to transform waste energy into useable energy. A voltage is generated when pressure is applied to the sensor. This is the footstep power generation mechanism, and it's how we generate electricity by conserving energy. ERSITI TEKNIKAL MALAYSIA MELAKA

1.3 Project Objective

In creating and completing this project there are several objectives that have been set.

The main aim of this project is about:

- a) To generate electrical energy by using piezoelectric cell.
- b) To monitor battery storage using IoT system.
- c) To analyze battery storage capacity.

1.4 Scope of Project

To eliminate any confusion about this project as a result of specific limits and constraints, the project's scope is stated as follows:

- a) This project focuses on producing energy using piezoelectric footstep and act as backup power source.
- b) The project is designed to measure the output voltage produce by piezoelectric.
- c) The piezoelectric footstep can be monitored through Internet of Things by using the Blynk applications

