

Faculty of Electrical and Electronic Engineering Technology

MUHAMMAD FAIZ BIN AHMAD ZOHRI

Bachelor of Electrical Engineering Technology (Industrial Power) with Honours

2022

A DEVELOPMENT OF VEHICLE DETECTION AUTOMATIC STREET LIGHT WITH SOLAR PANEL

MUHAMMAD FAIZ BIN AHMAD ZOHRI

A project report submitted in partial fulfillment of the requirements for the degree of Bachelor of Electronics Engineering Technology with Honours

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2022

UNIVERSITI TEKNIKAL MALAYSIA MELAKA FAKULTI TEKNOLOGI KEJUTERAAN ELEKTRIK DAN ELEKTRONIK

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II

Tajuk Projek : A DEVELOPMENT OF VEHICLE DETECTION AUTOMATIC STREET LIGHT WITH SOLAR PANEL

Sesi Pengajian : 2022/2023

Saya MUHAMMAD FAIZ BIN AHMAD ZOHRI mengaku membenarkan laporan

Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.
- 2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara
- institusi pengajian tinggi.
- 4. Sila tandakan (\checkmark):

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972) (Mengandungi maklumat terhad yang telah

ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

Disahkan oleh:

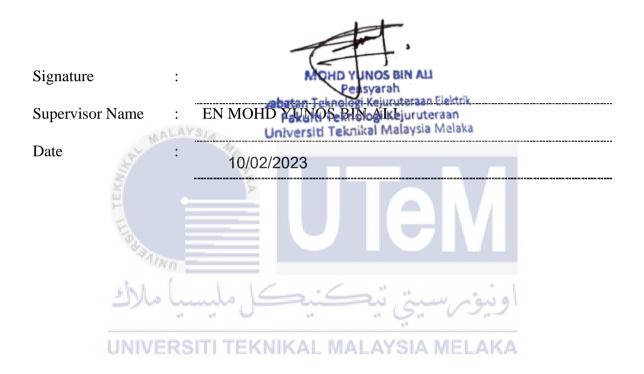
COP DANGTA NOVAPPI Kejuruteraan Elektrik (COP DANGTA NOVAPPI Kejuruteraan Elektrik Universiti Teknikal Malaysia Melaka

Type te

(TANDATANGAN PENULIS) Alamat Tetap:

103, JLN SAGA 3, TAMAN SAGA, 09000 KULIM, KEDAH DARUL AMAN

*CATATAN: Jika laporan ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan Tarikh: dengan menyatakan sekali tempoh laporan ini **featukik**elaskan sebagai SULIT atau TERHAD.


DECLARATION

I declare that this project report entitled "A DEVELOPMENT OF VEHICLE DETECTION AUTOMATIC STREET LIGHT WITH SOLAR PANEL" is the result of my own research except as cited in the references. The project report has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

APPROVAL

I approve that this Bachelor Degree Project 1 (PSM1) report entitled "Development of Vehicle Detection Automatic Street Light with Solar Panel" is sufficient for submission.

APPROVAL

I hereby declare that I have checked this project report and in my opinion, this project report is adequate in terms of scope and quality for the award of the degree of Bachelor of Electrical Engineering Technology (Industrial Power) with Honours.

Signature	MALAYSIA MOHD YUNOS BIN ALL Persyarah
Supervisor Na	ne : EN MOHDAKUNOS BINA Adjuruteraan Universiti Teknikal Malaysia Melaka
Date	: 10/02/2023
	A A A A A A A A A A A A A A A A A A A
Signature	اونيومرسيتي تيكنيكل مليسيا ملا
Co-Supervisor	NIVERSITI TEKNIKAL MALAYSIA MELAKA
Name (if any)	
Date	:

DEDICATION

To my beloved mother, SUZZANA BINTI MD SAAD, and father, DR. AHMAD ZOHRI BIN ISHAK,

and to my team member, Muhammad Akhmal Syafi (Co-Sv Dr. Cong), Muhammad Syukri Suliaman, Muhamad Taufiq MD Isa and Muhammad Haziq Kharil Azri.

ABSTRACT

Tenaga National Berhad (TNB) provides a large source of electricity for the existing Automatic Street Lights. This street lighting system also only lights up when it is turned on. Furthermore, the available Automatic Street Lights only emit light regardless of how much light is used. To solve this problem, the solar system, which is a renewable energy source, has been used to replace TNB's electricity consumption and save energy. LCD parameters are also stored in the electrical storage system to ensure that electricity consumption is always in line with the amount of energy used. The LDR sensor is also used as an on/off switch to control the light of the Automatic Street Light. The use of IR sensors to detect vehicle movement that control the brightness of the light helps reduce electricity consumption. When the car passes through the study area, the power of the light is 100%, and when the vehicle passes, the brightness is reduced stay at dim condition. The IR sensor position also will be analysis to ensure the system will operate smoothly. As a result, the efficiency of solar panels can be seen in a variety of ways, from light sources to direct current power sources. Solar panel capacity and battery capacity were also studied to accommodate the entire system to operate throughout the day. The streetlight also be monitor using smartphone based on the IoT concept. The system code will be written using Arduino software that has been learned and further simplifies the analysis process.

ABSTRAK

Tenaga National Berhad (TNB) menyediakan sumber elektrik yang besar untuk Lampu Jalan Automatik yang sedia ada dan hanya tertumpu di kawasan bandar. Sistem lampu jalan ini juga hanya menyala apabila ia dihidupkan. Tambahan pula, Lampu Jalan Automatik yang ada hanya memancarkan cahaya tanpa mengira berapa banyak cahaya yang digunakan. Untuk menyelesaikan masalah ini, sistem solar, yang merupakan sumber tenaga boleh diperbaharui, telah digunakan untuk menggantikan penggunaan elektrik TNB dan menjimatkan penggunaan elektrik yang tidak perlu. Selain itu, dengan penggunaan sistem solar dapat menyediakan lampu jalan di kawasan luar bandar. Parameter LCD juga digunakan dalam sistem penyimpanan elektrik untuk memastikan penggunaan elektrik sentiasa selaras dengan jumlah tenaga yang digunakan. Sensor LDR juga digunakan sebagai suis hidup/mati untuk mengawal cahaya Lampu Jalan Automatik. Penggunaan sensor IR untuk mengesan pergerakan kenderaan yang mengawal kecerahan cahaya membantu mengurangkan penggunaan elektrik. Apabila kereta melalui kawasan kajian, kuasa cahaya adalah 100%, dan apabila kenderaan itu lalu, kecerahan berkurangan kekal dalam keadaan malap. Kedudukan sensor IR juga akan menjadi analisis untuk memastikan sistem akan beroperasi dengan lancar. Hasilnya, kecekapan panel solar boleh dilihat dalam pelbagai cara, daripada sumber cahaya kepada sumber kuasa arus terus. Kapasiti panel solar dan kapasiti bateri turut dikaji untuk menampung keseluruhan sistem beroperasi sepanjang hari. Lampu jalan boleh dipantau menggunakan telefon pintar berdasarkan konsep IoT. Kod sistem akan ditulis menggunakan perisian Arduino yang telah dipelajari dan memudahkan lagi proses analisis.

ACKNOWLEDGEMENTS

First and foremost, I would like to express my gratitude to my supervisor, En Mohd Yunos Bin Ali for their precious guidance, words of wisdom and patient throughout this project.

I am also indebted to Universiti Teknikal Malaysia Melaka (UTeM) and my parent Suzzana Bt MD Saad and Dr. Ahmad Zohri B Ishak for the financial support, which enables me to accomplish the project. Not forgetting my fellow colleague, Muhammad Akhmal Syafi, Muhammad Syukri Suliaman, Muhamad Taufiq MD Isa and Muhammad Haziq Kharil Azri for the willingness of sharing his thoughts and ideas regarding the project.

Finally, I would like to thank all the staffs at the FTKEE, fellow colleagues and classmates, the faculty members, as well as other individuals who are not listed here for being co-operative and helpful.

MALAYSIA

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

TABLE OF CONTENTS

]	PAGE
DEC	CLARATION	
APP	ROVAL	
DED	DICATIONS	
ABS'	TRACT	i
ABS'	TRAK	ii
ACK	KNOWLEDGEMENTS	iii
ТАВ	BLE OF CONTENTS	i
LIST	T OF TABLES	iv
LIST	r of figures	v
LIST	T OF SYMBOLS	viii
LIST	T OF ABBREVIATIONS	ix
LIST	Γ OF APPENDICES	X
СНА	PTER 1 INTRODUCTION	11
1.1	Background	11
1.2	Problem Statement TI TEKNIKAL MALAYSIA MELAKA	12
1.3	Project Objective	13
1.4	Scope of Project	13
CHA 2.1	APTER 2 LITERATURE REVIEW	14 14
2.1	Previous Project Research	14
2.2	2.2.1 Type of Solar Power System	14
	2.2.1 Type of Solar Tower System 2.2.2 Table of comparison between the type of Solar system	17
	2.2.2 Types of Solar Panels: Pros and Cons	17
	2.2.4 Types of Solar Batteries	18
	2.2.5 Table of comparison of each Solar battery type	21
	2.2.6 Solar Charge Controllers using MPPT and PWM	21
	2.2.7 Lighting Technology Comparison	$\frac{1}{22}$
	2.2.8 Street Light Control with GSM Technology	23
	2.2.9 Intelligent Street Light System for Smart Cities	24
	2.2.10 Table of comparison between using GSM and without GSM at rural	
	area	26
	2.2.11 Solar panel power calculation	27
	2.2.12 Battery Sizing Calculation	27

2.3	2.2.13 Summa	Speed Limit According to Road Type ary	27 28
СНАР	TER 3	METHODOLOGY	29
3.1	Introdu		29
3.2	Method		29
3.3		Chart of the Street Light System	30
3.4		Diagram	31
3.5		mental Setup	32
		Hardware Project	32
		3.5.1.1 Arduino	32
		3.5.1.2 NodeMCU ESP8266	33
		3.5.1.3 Blynk	33
		3.5.1.4 Light Dependent Resistor (LDR)	34
		3.5.1.5 IR Sensor	34
		3.5.1.6 Mosfet Module	35
		3.5.1.7 LED	35
		3.5.1.8 Incandescent Light Bulb 3.5.1.9 Lithium-Ion Solar	36 36
		3.5.1.10 Solar Panel	30
		3.5.1.11 PWM Charger Controller	37
		3.5.1.12 Mosfet Module	38
		3.5.1.13 Breadboard	39
		3.5.1.14 Jumper Wire	39
		Software Project	40
		3.5.2.1 Arduino IDE	40
		3.5.2.2 TinkerCad	41
		3.5.2.3 Fritzing	42
3.6		t Design	43
3.7	Project	Simulation ITI TEKNIKAL MALAYSIA MELAKA	44
3.8	Summa	ary	47
СНАР	TER 4	RESULTS AND DISCUSSIONS	48
4.1	Introdu	action	48
4.2	Results	s and Analysis	49
	4.2.1 H	Iardware Setup	49
	4.2.2 Sc	oftware Setup	53
	4.2.3 Sy	ystem Operational	54
4.3	Analysi	sis Data	57
		Power generation of Solar Panel	57
		4.3.1.1 Procedure of measure the solar panel	57
		Position of the IR sensor	61
		4.3.2.1 Setup of IR sensor with different height	61
		Performance of IR Sensor	64
		Type of Light Bulb	66
		4.3.5.1 Incandescent DC Bulb Vs LED Light Bulb	66
		4.3.5.2 Performance Type of DC Light Data Analysis	67
		Full Load System Analysis	69 70
4.4	Summa	ary	72

CHA	PTER 5	CONCLUSION	73
5.1	Introduction		73
5.2	Conclusion		73
5.3	Future Works		75
REF	ERENCES		76
APP	ENDICES		78

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1 : Comparis	on between the type of Solar system	17
Table 2.2 : Comparis	on of each Solar battery type	21
Table 2.3 : Comparis	on Lighting Technology Comparison	22
Table 2.4 : Comparis	on between using GSM and without GSM at rural area	26
Table 4.1 : Solar Pan	el Generation Per Day	59
Table 4.2 : The succe	essful data of the IR sensor at different height by Motorcycle	63
Table 4.3 : The succe	essful data of the IR sensor at different height by Car	63
Table 4.4 : Speed Per	rformance of IR sensor	64
Table 4.6 : Type of E	Bulb Specifications	66
Table 4.7 : Measuren	nent of DC light	66
Table 4.8 : Performa	nce Type of DC Light Data Analysis اونيونر سينې نيڪنيڪر مليسيا RSITI TEKNIKAL MALAYSIA MELAKA	67

LIST OF FIGURES

FIGURE TITLE	PAGE
Figure 2.1 : ON- Grid Solar	15
Figure 2.2 : OFF-Grid Solar	15
Figure 2.3 : Hybrid Solar	16
Figure 2.4 : Pros and Cons of Solar Panel	18
Figure 2.5 : Ni-Cd Batteries	19
Figure 2.6 : Lead -Acid Batteries	19
Figure 2.7 : Lithium-Ion Solar Batteries	20
Figure 2.8 : Flow Batteries	20
Figure 2.9 : PWM and MPPT Charge Controllers	21
Figure 2.10 : Comparison PWM Solar Charge Controlle Controller	er and MPPT Solar Charge 22
Figure 2.11 : The System of Street light controller with	wireless technology 24
Figure 2.12 : The Block Diagram of Street light controlle UNIVERSITI TEKNIKAL MALA	
Figure 2.13 : The System design of Intelligent Street Lig	ht System for Smart Cities 25
Figure 2.14 : The Flow chart of Control Method of Intel for Smart Cities	ligent Street Light System 26
Figure 2.15 : Battery Sizing Calculation	27
Figure 3.1 : Flow Chart of the Vechile Detection Automic with Solar Panel	matic Street Light System 30
Figure 3.2 : Block diagram Vechile Detection Automatic Solar Panel	c Street Light System with 31
Figure 3.3 : Arduino Mega	32
Figure 3.4 : NodeMCU ESP8266	33
Figure 3.5 : Blynk	33

Figure 3.7 : IR Sensor34Figure 3.8 : Mosfet Module35Figure 3.9 : LED strip35Figure 3.10 : Incandescent Light Bulb36Figure 3.11 : Lithium-Ion Solar battery36Figure 3.12 : Solar Panel37Figure 3.13 : PWM Charger Controller38Figure 3.14 : Mosfet Module38Figure 3.15 : Breadboard39Figure 3.16 : Jumper Wire39Figure 3.17 : Arduino IDE40Figure 3.18 : TinkerCad41Figure 3.20 : Front View43Figure 3.21 : Top View43Figure 3.22 : Rear View44Figure 3.23 : LDR Sensor Circuit45Figure 4.1 : Full Project Hardware Setup49Figure 4.1 : LDR Sensor Setup50Figure 4.3 : LDR Sensor Setup50Figure 4.4 : Voltage Sensor Setup51Figure 4.6 : IR Sensor Setup51	Figure 3.6 : Light Dependent Resistor	34
Figure 3.9 : LED strip35Figure 3.10 : Incandescent Light Bulb36Figure 3.11 : Lithium-Ion Solar battery36Figure 3.12 : Solar Panel37Figure 3.13 : PWM Charger Controller38Figure 3.14 : Mosfet Module38Figure 3.15 : Breadboard39Figure 3.16 : Jumper Wire39Figure 3.17 : Arduino IDE40Figure 3.18 : TinkerCad41Figure 3.20 : Front View43Figure 3.21 : Top View43Figure 3.22 : Rear View44Figure 3.23 : LDR Sensor Circuit44Figure 4.1 : Full Project Hardware Setup49Figure 4.1 : LDR Sensor Setup50Figure 4.3 : LDR Sensor Setup50Figure 4.4 : Voltage Sensor Setup51Figure 4.5 : Current Sensor51	Figure 3.7 : IR Sensor	34
Figure 3.10 : Incandescent Light Bulb36Figure 3.11 : Lithium-Ion Solar battery36Figure 3.12 : Solar Panel37Figure 3.13 : PWM Charger Controller38Figure 3.13 : PWM Charger Controller38Figure 3.14 : Mosfet Module38Figure 3.15 : Breadboard39Figure 3.16 : Jumper Wire39Figure 3.17 : Arduino IDE40Figure 3.18 : TinkerCad41Figure 3.19 : Fritzing42Figure 3.20 : Front View43Figure 3.21 : Top View43Figure 3.22 : Rear View44Figure 3.23 : LDR Sensor Circuit45Figure 3.24 : IR Sensor Circuit45Figure 3.25 : LED Circuit46Figure 4.1 : Full Project Hardware Setup49Figure 4.2 : Microcontroller System Setup50Figure 4.3 : LDR Sensor Setup50Figure 4.3 : LDR Sensor Setup50Figure 4.4 : Voltage Sensor Setup51Figure 4.5 : Current Sensor51	Figure 3.8 : Mosfet Module	35
Figure 3.11 : Lithium-Ion Solar battery36Figure 3.12 : Solar Panel37Figure 3.13 : PWM Charger Controller38Figure 3.14 : Mosfet Module38Figure 3.15 : Breadboard39Figure 3.16 : Jumper Wire39Figure 3.17 : Arduino IDE40Figure 3.18 : TinkerCad41Figure 3.19 : Fritzing42Figure 3.20 : Front View43Figure 3.21 : Top View43Figure 3.22 : Rear View44Figure 3.23 : LDR Sensor Circuit45Figure 4.1 : Full Project Hardware Setup49Figure 4.2 : Microcontroller System Setup50Figure 4.3 : LDR Sensor Setup50Figure 4.4 : Voltage Sensor Setup51Figure 4.5 : Current Sensor51	Figure 3.9 : LED strip	35
Figure 3.12 : Solar Panel37Figure 3.13 : PWM Charger Controller38Figure 3.14 : Mosfet Module38Figure 3.15 : Breadboard39Figure 3.16 : Jumper Wire39Figure 3.16 : Jumper Wire39Figure 3.17 : Arduino IDE40Figure 3.18 : TinkerCad41Figure 3.19 : Fritzing42Figure 3.20 : Front View43Figure 3.21 : Top View43Figure 3.22 : Rear View44Figure 3.23 : LDR Sensor Circuit44Figure 3.25 : LED Circuit45Figure 4.1 : Full Project Hardware Setup49Figure 4.2 : Microcontroller System Setup50Figure 4.3 : LDR Sensor Setup50Figure 4.4 : Voltage Sensor Setup51Figure 4.5 : Current Sensor51	Figure 3.10 : Incandescent Light Bulb	36
Figure 3.13 : PWM Charger Controller38Figure 3.14 : Mosfet Module38Figure 3.15 : Breadboard39Figure 3.16 : Jumper Wire39Figure 3.17 : Arduino IDE40Figure 3.18 : TinkerCad41Figure 3.19 : Fritzing42Figure 3.20 : Front View43Figure 3.21 : Top View43Figure 3.22 : Rear View44Figure 3.23 : LDR Sensor Circuit44Figure 3.24 : IR Sensor Circuit45Figure 3.25 : LED Circuit46Figure 4.1 : Full Project Hardware Setup50Figure 4.3 : LDR Sensor Setup50Figure 4.3 : LDR Sensor Setup50Figure 4.4 : Voltage Sensor Setup51Figure 4.5 : Current Sensor51	Figure 3.11 : Lithium-Ion Solar battery	36
Figure 3.14 : Mosfet Module38Figure 3.15 : Breadboard39Figure 3.16 : Jumper Wire39Figure 3.17 : Arduino IDE40Figure 3.18 : TinkerCad41Figure 3.19 : Fritzing42Figure 3.20 : Front View43Figure 3.21 : Top View43Figure 3.22 : Rear View44Figure 3.23 : LDR Sensor Circuit44Figure 3.25 : LED Circuit45Figure 4.1 : Full Project Hardware Setup49Figure 4.2 : Microcontroller System Setup50Figure 4.3 : LDR Sensor Setup50Figure 4.4 : Voltage Sensor Setup51Figure 4.5 : Current Sensor51	Figure 3.12 : Solar Panel	37
Figure 3.15 : Breadboard39Figure 3.16 : Jumper Wire39Figure 3.17 : Arduino IDE40Figure 3.18 : TinkerCad41Figure 3.19 : Fritzing42Figure 3.20 : Front View43Figure 3.21 : Top View43Figure 3.22 : Rear View44Figure 3.23 : LDR Sensor Circuit44Figure 3.24 : IR Sensor Circuit45Figure 4.1 : Full Project Hardware Setup49Figure 4.2 : Microcontroller System Setup50Figure 4.3 : LDR Sensor Setup50Figure 4.4 : Voltage Sensor Setup51Figure 4.5 : Current Sensor51	Figure 3.13 : PWM Charger Controller	38
Figure 3.16 : Jumper Wire39Figure 3.17 : Arduino IDE40Figure 3.18 : TinkerCad41Figure 3.19 : Fritzing42Figure 3.20 : Front View43Figure 3.21 : Top View43Figure 3.22 : Rear View44Figure 3.23 : LDR Sensor Circuit44Figure 3.24 : IR Sensor Circuit45Figure 4.1 : Full Project Hardware Setup49Figure 4.2 : Microcontroller System Setup50Figure 4.3 : LDR Sensor Setup50Figure 4.4 : Voltage Sensor Setup51Figure 4.5 : Current Sensor51	Figure 3.14 : Mosfet Module	38
Figure 3.17 : Arduino IDE40Figure 3.18 : TinkerCad41Figure 3.19 : Fritzing42Figure 3.20 : Front View43Figure 3.21 : Top View43Figure 3.22 : Rear View44Figure 3.23 : LDR Sensor Circuit44Figure 3.24 : IR Sensor Circuit45Figure 4.1 : Full Project Hardware Setup49Figure 4.2 : Microcontroller System Setup50Figure 4.3 : LDR Sensor Setup50Figure 4.4 : Voltage Sensor Setup51Figure 4.5 : Current Sensor51	Figure 3.15 : Breadboard	39
Figure 3.18 : TinkerCad41Figure 3.19 : Fritzing42Figure 3.20 : Front View43Figure 3.21 : Top View43Figure 3.22 : Rear View44Figure 3.23 : LDR Sensor Circuit44Figure 3.24 : IR Sensor Circuit45Figure 3.25 : LED Circuit46Figure 4.1 : Full Project Hardware Setup49Figure 4.2 : Microcontroller System Setup50Figure 4.3 : LDR Sensor Setup50Figure 4.4 : Voltage Sensor Setup51Figure 4.5 : Current Sensor51	Figure 3.16 : Jumper Wire	39
Figure 3.19 : Fritzing42Figure 3.20 : Front View43Figure 3.21 : Top View43Figure 3.21 : Top View44Figure 3.22 : Rear View44Figure 3.23 : LDR Sensor Circuit44Figure 3.24 : IR Sensor Circuit45Figure 3.25 : LED Circuit46Figure 4.1 : Full Project Hardware Setup49Figure 4.2 : Microcontroller System Setup50Figure 4.3 : LDR Sensor Setup50Figure 4.4 : Voltage Sensor Setup51Figure 4.5 : Current Sensor51	Figure 3.17 : Arduino IDE	40
Figure 3.20 : Front View43Figure 3.21 : Top View SITT TEKNIKAL MALAYSIA MELAKA43Figure 3.22 : Rear View44Figure 3.23 : LDR Sensor Circuit44Figure 3.24 : IR Sensor Circuit45Figure 3.25 : LED Circuit46Figure 4.1 : Full Project Hardware Setup49Figure 4.2 : Microcontroller System Setup50Figure 4.3 : LDR Sensor Setup50Figure 4.4 : Voltage Sensor Setup51Figure 4.5 : Current Sensor51	Figure 3.18 : TinkerCad	41
Figure 3.21 : Top View SITI TEKNIKAL MALAYSIA MELAKA43Figure 3.22 : Rear View44Figure 3.23 : LDR Sensor Circuit44Figure 3.24 : IR Sensor Circuit45Figure 3.25 : LED Circuit46Figure 4.1 : Full Project Hardware Setup49Figure 4.2 : Microcontroller System Setup50Figure 4.3 : LDR Sensor Setup50Figure 4.4 : Voltage Sensor Setup51Figure 4.5 : Current Sensor51	Figure 3.19 : Fritzing	42
Figure 3.22 : Rear View44Figure 3.23 : LDR Sensor Circuit44Figure 3.24 : IR Sensor Circuit45Figure 3.25 : LED Circuit46Figure 4.1 : Full Project Hardware Setup49Figure 4.2 : Microcontroller System Setup50Figure 4.3 : LDR Sensor Setup50Figure 4.4 : Voltage Sensor Setup51Figure 4.5 : Current Sensor51	اويور، سيني تيڪنيڪ مليس Figure 3.20 : Front View	43
Figure 3.23 : LDR Sensor Circuit44Figure 3.24 : IR Sensor Circuit45Figure 3.25 : LED Circuit46Figure 4.1 : Full Project Hardware Setup49Figure 4.2 : Microcontroller System Setup50Figure 4.3 : LDR Sensor Setup50Figure 4.4 : Voltage Sensor Setup51Figure 4.5 : Current Sensor51	Figure 3.21 : Top View SITI TEKNIKAL MALAYSIA MELAKA	43
Figure 3.24 : IR Sensor Circuit45Figure 3.25 : LED Circuit46Figure 4.1 : Full Project Hardware Setup49Figure 4.2 : Microcontroller System Setup50Figure 4.3 : LDR Sensor Setup50Figure 4.4 : Voltage Sensor Setup51Figure 4.5 : Current Sensor51	Figure 3.22 : Rear View	44
Figure 3.25 : LED Circuit46Figure 4.1 : Full Project Hardware Setup49Figure 4.2 : Microcontroller System Setup50Figure 4.3 : LDR Sensor Setup50Figure 4.4 : Voltage Sensor Setup51Figure 4.5 : Current Sensor51	Figure 3.23 : LDR Sensor Circuit	44
Figure 4.1 : Full Project Hardware Setup49Figure 4.2 : Microcontroller System Setup50Figure 4.3 : LDR Sensor Setup50Figure 4.4 : Voltage Sensor Setup51Figure 4.5 : Current Sensor51	Figure 3.24 : IR Sensor Circuit	45
Figure 4.2 : Microcontroller System Setup50Figure 4.3 : LDR Sensor Setup50Figure 4.4 : Voltage Sensor Setup51Figure 4.5 : Current Sensor51	Figure 3.25 : LED Circuit	46
Figure 4.3 : LDR Sensor Setup50Figure 4.4 : Voltage Sensor Setup51Figure 4.5 : Current Sensor51	Figure 4.1 : Full Project Hardware Setup	49
Figure 4.4 : Voltage Sensor Setup51Figure 4.5 : Current Sensor51	Figure 4.2 : Microcontroller System Setup	50
Figure 4.5 : Current Sensor 51	Figure 4.3 : LDR Sensor Setup	50
	Figure 4.4 : Voltage Sensor Setup	51
Figure 4.6 : IR Sensor Setup51	Figure 4.5 : Current Sensor	51
	Figure 4.6 : IR Sensor Setup	51

Figure 4.7 : Mosfet Module Setup	52
Figure 4.8 : IoT Blynk Placement Setup	52
Figure 4.9 : Circuit Diagram of Microcontroller	53
Figure 4.10 : Iot Blynk Display	53
Figure 4.11 : Street when day-time	54
Figure 4.12 : Street when night-time	55
Figure 4.13 : IR Sensor located	56
Figure 4.14 : Position angle of Solar Panel	57
Figure 4.15 : Irradiance Meter	58
Figure 4.16 : Example of Voltage and Current Measurement	58
Figure 4.17 : Measure of the height of IR sensor	61
Figure 4.18 : Track for the motocycle and car speed test	62
UNIVERSITI TEKNIKAL MALAYSIA MELAKA	

LIST OF SYMBOLS

- Degree Celcius Current °C _
- Ι _
- Power Р _
- S Speed -
- Percentage % _

LIST OF ABBREVIATIONS

V	- Voltage
TNB	- Tenaga National Berhad
IR	- Infrared
LDR	- Light Dependent Resistor
Ni-Cd	- Nickel Cadmium
UPS	- Uninterruptible Power Supply
PWM	- Pulse Width Modulation)
MPPT	- Maximum Power Point Tracking
HPS	- High Pressure Sodium Lamp
LED	- Light-Emitting Diode
GSM	- Global System for Mobile communication
LED	- Light-Emitting Diode
LCD	- Liquid crystal display
OLED	- Organic Light-Emitting Diode
UART	- Universal Asynchronous Receiver-Transmitter
Hz	S - Hertz
ICSP	- In-Circuit Serial Programming
USB	- Universal Serial Bus
PV	Photovoltaic
А	- Ampere
DC	- Direct Current
AC	- Alternating Current
Km/h	Kilometer per hour

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix A	Source code simulation in TinkerCad of LDR Sensor	78
Appendix B	Source code simulation in TinkerCad of IR Sensor	79
Appendix C	Source code simulation in TinkerCad of LED Light	80
Appendix D	Source code full system in Arduino Mega	81
Appendix E	Source code full system in NodeMCU	85
Appendix F	Grant Chart	89
Appendix G	Equipment & Measurement Device	90
Appendix H	Measurement for Solar Panel	92
Appendix I	Setup the height and speed for IR sensor test	94
Appendix J	Measurement for Dc Light	96
	اونيۇم سىتى تيكنىكل مليسيا ملاك	

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

CHAPTER 1

INTRODUCTION

1.1 Background

Malaysia's technological advancements are growing more advanced, as evidenced by the introduction of solar systems, which have been seen to have a favourable impact on the people in addition to allowing the sun's energy to be used to generate electricity. The same might be said about rural areas with only dark roads, but technical advancements and a skilled labour have transformed the situation. This rural area now has power, and the streets have begun to be lit at night with street lights.

Tenaga Nasional Berhad (TNB) is solely responsible for the operation of street lights, which are always turned on to their maximum capacity during the night to provide lighting in these rural areas. The usage of electric energy in this developing area, however, has its own set of drawbacks. With the development of technologies such as solar, an advantage in the natural generation of electric energy can be gained without changes the operation of existing street light systems, and can help to mitigate the negative effects that exist in the previous system.

The upgrading of solar-powered street lighting systems, as well as other technology connectivity such as sensors and the use of the most modern types of lighting, allows for more cost-effective, efficient, and practical operation of street lighting systems in rural areas with lower night time activity rates than in urban areas.

1.2 Problem Statement

In Malaysia, street lights are installed on almost every road to provide lighting at night. However, there are still rural regions without street lights due to a variety of circumstances, including the fact that the area is located in a hilly terrain and at the far end of the district, which limits the distribution of electricity from Tenaga Nasional Berhad (TNB).

Furthermore, the operation of street lights in rural area faces the issue of wasted electricity consumption. Because there is no adequate lighting regulation in this remote location, street lights always operate and consume the most electricity at night, despite the fact that there are no road users.

Additionally, the sort of use of fluorescent street lights that demands excessive consumption of electrical energy to light up gloomy places is still in use. This is one of the disadvantages of using ancient street lights over the various types of contemporary lights available on the market that more efficient.

As a result, the usage of solar systems is to solve the problem of supplying electrical energy from TNB. This solar system is further supplemented by a battery, which serves as a storage facility for electricity used at night. Lighting control systems are also included to determine how much lighting is required in specific regions. To combat the problem of excessive usage of electric energy, the type of street lighting used is also taken into consideration. As a result of these modifications, a more effective street lighting system will be created, as well as shared benefits for citizens living outside of the city who are affected by rapid technological advancement.

1.3 Project Objective

The purpose of this study is to give a methodical and its functional approach to advancement. The precise objectives are as follows:

- 1) To develop automatic street lighting with Internet of Things (IoT).
- To provide an alternative source by using solar energy to generate electricity for the street lighting system.
- To analyze the efficiency of the streetlight by implementing different kind of DC light.

1.4 Scope of Project

The following are the project scopes that required to be addressed and concentrated on during the completion of this project:

- a) Design a small prototype of street lighting.
- b) Using Arduino to build source code. ALAYSIA MELAKA
- c) Find the best position for IR sensor.
- d) Calculate the capacity of battery storage that want to use.
- e) Comparison the performance between type of DC light

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

The literature and previous research on the Auto Street Light system, as well as how the issue is addressed, are discussed in this chapter. All of these sources help and underpin the experimental design and analysis. Various techniques for improving the Auto Street Light are offered based on prior investigations. A quick review at the end of the chapter aids in defining the approaches to be used during the project.

2.2 Previous Project Research

Based on the literature review, which can be summarised as research and finding information relating to my project using current resources such as the internet, books, journals, and other sources. To begin, an understanding of the project is possible.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2.2.1 Type of Solar Power System

Solar energy is a renewable energy source that is abundant in nature. There are several ways to generate power, such as by burning fossil fuels, however all of these methods have significant environmental consequences.

This paper focuses on the several methods of solar power generating. To begin, it discusses how solar panels convert solar energy into electrical energy during their operation. P-type and n-type semiconductors are used to make solar cells.

The main three types of solar power systems that can create electricity are also discussed in this study. On-grid solar, off-grid solar, and hybrid solar are all options.[1]