

CONCEPTUAL DESIGN OF SELF-ORGANISED USB CHARGER CABLE BY USING TRIZ METHOD

BACHELOR OF MANUFACTURING ENGINEERING TECHNOLOGY (PRODUCT DESIGN) WITH HONOURS

Faculty of Mechanical and Manufacturing Engineering Technology

Damia Syahirah Binti Saadon

Bachelor of Manufacturing Engineering Technology (Product Design) with Honours

2023

CONCEPTUAL DESIGN OF SELF-ORGANISED USB CHARGER CABLE BY USING TRIZ METHOD

DAMIA SYAHIRAH BINTI SAADON

Faculty of Mechanical and Manufacturing Engineering Technology

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2023

DECLARATION

I declare that this thesis entitled "Conceptual Design Of Self-Organised USB Charger Cable By Using TRIZ Method" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

APPROVAL

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the Bachelor of Manufacturing Engineering Technology (Product Design) with Honours.

Jahulul Signature : Supervisor Name TS. DR. SYAHIBUDIL IKHWAN BIN ABDUL KUDUS Date 25/01/2023 TEKNIKAL MALAYSIA MELAKA UNIVERSITI

DEDICATION

This thesis is dedicated to my mother, Nor Azizah Binti Atan, who has been a constant source of support and encouragement during my struggles in finishing this thesis. I am truly thankful for having you in my life. Besides, this work is also dedicated to my supervisor, Ts. Dr. Syahibudil Ikhwan Bin Abdul Kudus, Mr. Febrian Bin Idral, that has been guiding me throughout the whole journey of completing this. I also would like to dedicate this thesis to Allah almighty for the strength and health that have been given. Also, to my dearest little sister who have been encouraging and believe me into finishing my engineering degree.

ABSTRACT

This study introduces Conceptual Design of Self-Organised USB Charger Cable by using Inventive Problem Solving (TRIZ) as a solution to the problem of clean and neat workspace. This study aims to establish and determine the ideal component conceptual design based on product design criteria, with a focus on the ideal solution to retain the length of the charger cable when in use. This problem occurs when the user had difficulty in maintaining clean and neat workspace. Inventive principles were solved using the TRIZ contradiction matrix and 40 engineering instruments. This research aims to study and analyse design solution of self-organised USB Charger Cable by using TRIZ method. TRIZ technique is effective in assisting in outlining issues with organised solutions, in addition to having the capacity to provide unique ideas and solutions. Few design methods were used during the design and fabrication process such as TRIZ Inventive Principle. Self-organised USB Cable is a builtin charger cable that has space to store the cable by rolling or keeping it in depending on the findings and the final design concept. This method of TRIZ have been used to make new design and concept for the self- Organised cable organiser. 39 Engineering Parameters were included in the study. Besides, to design and fabricate a self-organised USB Cable organiser prototype. Concept generation by using TRIZ 39 Engineering Parameters Method, and weighted rating evaluation method are implemented to build a self-organised USB Charger Cable. In order to construct a solution for the contradiction, a number of general solutions, such as taking out, self-service, segmentation and parameter changes, were picked based on the TRIZ 40 innovative principles. The design of the finalised self-organised USB Charger Cable was designed by using SOLIDWORKS. This study recommend that System Usability Scale consists of 3 main categories, which is Usability, Applicability and Effectiveness. A usability test will be conducted to gather user feedback on the self-organized USB charger cable prototype. Concept design 6 is selected according to the Weighted Rating Evaluation Method results. Based on the result of System Usability Scale, it shows that 84.2% had positive perception toward the design of the prototype and this indicated the conceptual design are relevant for users.

Keyword: TRIZ, Conceptual Design, Self-organised USB Charger Cable

ABSTRAK

Kajian ini memperkenalkan Reka Bentuk Konsep Kabel Pengecas USB yang Disusun Sendiri dengan menggunakan Penyelesaian Masalah Inventif (TRIZ) sebagai penyelesaian untuk masalah ruang kerja yang bersih dan kemas. Kajian ini bertujuan untuk menetapkan dan menentukan reka bentuk konsep komponen yang ideal berdasarkan kriteria reka bentuk produk, dengan fokus pada penyelesaian yang ideal untuk mengekalkan panjang kabel pengecas semasa digunakan. Masalah ini berlaku apabila pengguna mengalami kesukaran untuk menjaga ruang kerja yang bersih dan kemas. Prinsip inventif diselesaikan menggunakan matriks kontradiksi TRIZ dan 40 instrumen kejuruteraan. Penyelidikan ini bertujuan untuk mengkaji dan menganalisis penyelesaian reka bentuk Kabel Pengecas USB yang disusun sendiri dengan menggunakan kaedah TRIZ. Teknik TRIZ berkesan dalam membantu menguraikan masalah dengan penyelesaian yang teratur, selain memiliki kemampuan untuk memberikan idea dan penyelesaian yang unik. Beberapa kaedah reka bentuk digunakan semasa proses reka bentuk dan fabrikasi seperti TRIZ Inventif Principle. Kabel USB yang diatur sendiri adalah kabel pengecas terbina dalam yang mempunyai ruang untuk menyimpan kabel dengan menggulung atau menyimpannya bergantung pada penemuan dan konsep reka bentuk akhir. Kaedah TRIZ ini telah digunakan untuk membuat reka bentuk dan konsep baru untuk penganjur kabel yang disusun sendiri. 39 Parameter Kejuruteraan dimasukkan dalam kajian. Selain itu, untuk merancang dan membuat prototaip penganjur Kabel USB yang diatur sendiri. Penjanaan konsep dengan menggunakan Kaedah Parameter Kejuruteraan TRIZ 39, dan kaedah penilaian penilaian berwajaran dilaksanakan untuk membina Kabel Pengecas USB yang disusun sendiri. Untuk membina penyelesaian untuk kontradiksi, sejumlah penyelesaian umum, seperti mengambil, layan diri, segmentasi dan perubahan parameter, dipilih berdasarkan prinsip inovatif TRIZ 40. Reka bentuk Kabel Pengecas USB yang disusun sendiri yang telah dirancang dengan menggunakan SOLIDWORKS. Kajian ini mengesyorkan bahawa Skala Kebolehgunaan Sistem terdiri daripada 3 kategori utama, iaitu Kebolehgunaan, Kebolehlaksanaan dan Keberkesanan. Ujian kebolehgunaan akan dilakukan untuk mengumpulkan maklum balas pengguna mengenai prototaip kabel pengecas USB yang disusun sendiri. Reka bentuk konsep 6 dipilih mengikut hasil Kaedah Penilaian Berat Berat. Berdasarkan hasil Skala Kebolehgunaan Sistem, ini menunjukkan bahawa 84.2% mempunyai persepsi positif terhadap reka bentuk prototaip dan ini menunjukkan reka bentuk konseptual relevan untuk pengguna.

ACKNOWLEDGEMENTS

In the Name of Allah, the Most Gracious, the Most Merciful.

First and foremost, Alhamdulillah after long a due, I would like to dedicate this thesis to Allah almighty for the strength and health that have been given. Besides, to my mother, Nor Azizah Binti Atan, my source of inspiration, the one who have been supporting me financially and mentally. Also, to my dearest little sister who have been encouraging and believe me into finishing my engineering degree. On top of that, I would like to thank my supervisor, Ts. Dr. Syahibudil Ikhwan Bin Abdul Kudus, Mr. Febrian Bin Idral, that has been helping throughout this whole journey of completing this, had provided me the assistance, support and inspiration to embark on my study. I would like to extend my appreciation to the Universiti Teknikal Malaysia Melaka (UTeM) for providing the research platform.

UNIVERSITI

TEKNIKAL MALAYSIA MELAKA

TABLE OF CONTENTS

	PAGE
DECLARATION	
APPROVAL	
DEDICATION	
ABSTRACT	i
ABSTRAK	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vi
	1
LIST OF SYMBOLS AND ABBREVIATIONS	xi
LIST OF APPENDICES	xii
CHAPTER 1 1.1 Introduction 1.2 Background	
1.3 Problem Statement TI TEKNIKAL MALAYSIA MELA1.4 Research Objective	AKA 3 3
1.4Research Objective1.5Scope of Research	4
CHAPTER 2 LITERATURE REVIEW	5
2.1 Introduction	5
2.2 Primary Research 2.2.1 Self-observation	5 6
2.2.2 Online Survey	0 7
2.3 Secondary Research	10
2.3.1 Conceptual Design	10
2.3.2 USB Charger Cable	15
2.3.3 Circuit Board	18
2.3.4 Inventive of Problem Solving (TRIZ) Method2.3.5 3D Printing for prototype	23 41
2.4 Patent Search	44
2.5 Market Segmentation	49
2.6 Summary	54
CHAPTER 3 METHODOLOGY	55

3.1	Introduction	55
3.2	Product Development Process	56
3.3	Quality Function Deployment	57
3.4	TRIZ Method on Problem Solving/ Concept Selection	59
3.5	Prototype Fabrication	60
3.6	Prototype Testing	61
	3.6.1 Usability Test	61
3.7	Summary	61
CHAI	PTER 4 RESULT AND DISCUSSION	62
4.1	Introduction	62
4.2	Survey Results for Customer Needs	62
4.3	Quality Function Deployment	75
4.4	Product Design Specification	77
4.5	Concept Generation	78
	4.5.1 Identifying the root cause of USB charger cable by using root-cause	-
	diagram	78
	4.5.2 Modelling the problem using 40 Inventive TRIZ Contradiction	80
	4.5.3 Generating the specific solution for Self-organized USB Cable	82
	4.5.4 Conceptual Design	83
4.6	Concept Selection	90
	4.6.1 Criteria	90
. –	4.6.2 Weighted Rating Evaluation Method (WRM)	91
4.7	Detail Design	92
	4.7.1 3D Assembly Modelling	92
	4.7.2 Exploded View	95
1.0	4.7.3 Rendering	96
4.8	Prototype Fabrication	99
	4.8.1 Material Selection	99
	4.8.2 Prototype Fabrication Process	100
1.0	4.8.3 Final Prototype	104
4.9	Usability Test	106
	4.9.1 Questionnaire	106
	4.9.2 Findings	108
	4.9.3 System Usability Scale (SUS)	116
	PTER 5 CONCLUSION AND RECOMMENDATION	117
5.1	Conclusion	117
5.2	Limitation	118
5.3	Recommendation	119
5.4	Project Potential	119
REFE	CRENCES	120
APPENDICES		122

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1:	Related Research of Conceptual Design	12
Table 2.2:	Type of Plug and Country	17
Table 2.3:	The 39-Engineering Parameters of TRIZ methodology	27
Table 2.4:	List of TRIZ 40 Inventive Principle	29
Table 2.5:	Related Research of TRIZ	39
Table 2.6:	Machine Specification	43
Table 2.7:	Patent Search of USB Charger Cable Organiser	44
Table 2.8:	Product Design Specification of USB Charger Cable Organiser	49
Table 4.1:	Customer needs of Self-organised USB charger cable	75
Table 4.2:	House of Quality of Self-Organised USB Charger Cable	76
Table 4.3:	Summary of the inventive principles recommended using the contradiction	1
matrix	UNIVERSITI TEKNIKAL MALAYSIA MELAKA	81
Table 4.4:	TRIZ Principles to find the solution of Self-organised USB Charger Cable	82
Table 4.5:	Criteria of Self-Organised USB Charger Cable	90
Table 4.6:	Construction of Weighted Rating Method (6 selected concepts)	91
Table 4.7:	List of statements for usability test	107
Table 4.8:	Participant's Details	108
Table 4.9:	Participants' responses on Self-Organised USB Charger Cable	115
Table 4.10): Details on SUS Score	115
Table 4.11	I: Usability Result	116

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2.1: Problem of messy and tangling	charger cable when not in use	6
Figure 2.2: Conceptual Design Process (Ge	organi, 2016)	11
Figure 2.3: Types of USB Cable		16
Figure 2.4: Types of Plug and Socket		17
Figure 2.5: Printed Circuit Board		19
Figure 2.6: Resistor		19
Figure 2.8: 400v capacitor		20
Figure 2.7: Ceramic Capacitor		20
Figure 2.9: Transformer		21
Figure 2.10: USB A Female Port	· (_ * * * * * * * *	22
Figure 2.11: Operational Amplifier	اويوم سيي بيڪية	22
Figure 2.12: TRIZ basic steps of problem s	solving ALAYSIA MELAKA	23
Figure 2.13: Ender-5 Pro 3D Printer		43
Figure 3.1: Flow Chart of Self-organised U	JSB Charger Cable	56
Figure 3.2: House of Quality Table		58
Figure 3.3: Flow chart of TRIZ Method on	Problem Solving	59
Figure 3.4: Flow Chart of Prototype Fabric	ation	60
Figure 4.1: Age of users		63
Figure 4.2: Gender of respondents		63
Figure 4.3: User's education level		64
Figure 4.4: User's occupation		64

Figure 4.5: Analysis of quantity of charger cables used.	65
Figure 4.6: Analysis of usage frequency of USB Charger Cable	65
Figure 4.7: Analysis of familiar type of cables	66
Figure 4.8: Analysis of difficulty to keep cables neat.	66
Figure 4.9: Analysis of problem encountered.	67
Figure 4.10: Analysis of method of organising.	67
Figure 4.11: Analysis of method preferred.	68
Figure 4.12: Analysis of design solution	68
Figure 4.13: Analysis of the idea of organiser	69
Figure 4.14: Analysis of keeping work area neat and clean	69
Figure 4.15: Statement of keeping it shorter when in use and when not in use	70
Figure 4.16: Analysis of space tidy and clean	70
Figure 4.17: Analysis of organiser saves time to manage	71
Figure 4.18: Analysis of reduce cable clutter	71
Figure 4.19: Analysis of shape of self-organised USB Charger Cable	72
Figure 4.20: Analysis of the length of cable	72
Figure 4.21: Analysis of grip	73
Figure 4.22: Analysis of compact design and user-friendly	73
Figure 4.23: Analysis of retractable cable	74
Figure 4.24: Root Cause of Self-Organised USB Cable Charger	79
Figure 4.25: Concept Design 1	83
Figure 4.26: Concept Design 2	84
Figure 4.27: Concept Design 3	85
Figure 4.28: Concept Design 4	86

Figure 4.29: Concept Design 5	87
Figure 4.30: Concept Design 6	88
Figure 4.31: Parameter Changes	89
Figure 4.32: Back View of Self-Organised USB Charger Cable	92
Figure 4.33: Front View of Self-Organised USB Charger Cable	92
Figure 4.34: Side View of Self-Organised USB Charger Cable	93
Figure 4.35: Top View of Self Organised USB Charger Cable	93
Figure 4.36: Bottom View of Self-Organised USB Charger Cable	93
Figure 4.37: Isometric View of Self-Organised USB Charger Cable (Front)	94
Figure 4.38: Isometric View of Self-Organised USB Charger Cable (Back)	94
Figure 4.39: Exploded view of Self-organised USB Charger Cable	95
Figure 4.40: Perspective View Rendering (Front)	96
Figure 4.41: Perspective View Rendering (Back)	97
Figure 4.42: Visualise Product Rendering	98
Figure 4.43: Visualise Product Rendering (when in use)	98
Figure 4.44: PLA Filament	99
Figure 4.45: Tolerance and resistance checking	100
Figure 4.46: Slicing on Ultimaker Cura	101
Figure 4.47: 3D Print Process	102
Figure 4.48: Finished Prototype	103
Figure 4.49: Assembly process Figure 4.50: Assemble metal pin to the plug part	103
Figure 4.51: Front View of self-organised USB Charger Cable prototype	104
Figure 4.52: Top View of self-organised USB Charger Cable prototype	104
Figure 4.53: Perspective View of self-organised USB Charger Cable prototype	105

Figure 4.54: Usability Question 1	109
Figure 4.55: Usability Question 2	109
Figure 4.56: Usability Question 3	110
Figure 4.57: Applicability Question 1	111
Figure 4.58: Applicability Question 2	111
Figure 4.59: Applicability Question 3	112
Figure 4.60: Effectiveness Question 1	113
Figure 4.61: Effectiveness Question 2	113
Figure 4.62: Effectiveness Question 3	114
Figure 4.63: Effectiveness Question 4	114
Figure 4.64: SUS Grading Scale ((Bangor et al., 2008)	116
UNIVERSITI TEKNIKAL MALAYSIA MELAKA	

LIST OF SYMBOLS AND ABBREVIATIONS

Algorithm of Inventive Problem Solving ARIZ Polylactic Acid PLA 3D 3 Dimensional _ Weighted Rating Method WRM _ Conceptual Design CD _ Fused Deposition Modelling FDM _ Product Design Specification PDS _ TRIZ Theory Inventive of Problem Solving Universal Serial Bus USB

UTERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
APPENDIX A	Gantt Chart of Self-organised USB Charger Cable	122
APPENDIX B	Part Design Drawing	123
APPENDIX C	Product Rendering	130
APPENDIX D	Prototype Making Process	131
APPENDIX E	Usability Questionnaire	134
APPENDIX F	Turnitin Result	137
APPENDIX G	BDP Thesis Status Verification Form اونيونرسيني تيڪنيڪل مليسيا RSITI TEKNIKAL MALAYSIA MELAKA	138

CHAPTER 1

INTRODUCTION

1.1 Introduction

In this chapter, introduction includes background, problem statement, research objective. Moreover, the scope of research for this project will also be discussed in this chapter.

1.2 Background

ALAYS!

An organiser is a device, often with many compartments, used to more effectively arrange goods on a desk, the contents of a closet, etc. Self-organised USB Cable is a builtin charger cable that has space to store the cable by rolling or keeping it in depending on the findings and the final design concept. With the help of Self-organised USB Charger cable, user can keep our place tidy and clean, which also saves a lot of time to pick up each piece of cables.

Innovation and creativity have always been the driving forces behind initiatives to raise the standard of living for people all around the globe. Humans not only have the capacity to organise their lives and do activities associated with control, but they also have the desire to do so, making the study important. The drive to organise is a characteristic of people. A typical person typically maintains their home neat and clean.

Furthermore, the Theory of Inventive Problem Solving (TRIZ) is an additional strategy that may be used to develop creative and innovative capabilities. The TRIZ approach was developed in the 1940s by a Russian patent engineer by the name of Genrich Altshuller.

Its primary objective is to resolve technical contradictions by using a collection of universal solution principles. After doing an analysis of patent applications made by innovators working in a variety of industries, he had the inspiration for the concept. On the basis of his investigation, he arrived to the conclusion that, in general, there are recurring patterns and principles that are employed in the process of generating the patent innovation solution.

Consecutively, he compiled all of the solution principles and gave them the name 40 inventive principles. He also created a matrix to assist the users in identifying the most appropriate solution to be used by mapping the contradiction that occurred within the problem to be solved to the most commonly used 40 solution principles. As the TRIZ approach matured, other solution models were created to assist in the formulation of more inventive solutions. These models include the substance field (Su-field) method, physical contradiction, and the Algorithm of Inventive Problem Solving (ARIZ).

There are a great number of case studies that describe the effective use of the TRIZ technique, particularly in the process of conceptual design creation. (Frillici et al., 2015) proposed using the TRIZ method in order to experience the structured solutions in generating ideas in the conceptual design stage and providing scholars with assistance in generating inventive solutions to the engineering problem. This would be accomplished through the utilisation of the TRIZ method. Using the contradiction matrix and the 40 innovative principles technique developed by TRIZ, (Mansor et al., 2017) come up with the concepts for the self-organised usb charger cable that the TRIZ technique is effective in assisting in outlining issues with organised solutions, in addition to having the capacity to provide unique ideas and solutions.

1.3 Problem Statement

Based on background research, every device has own charging cables. Every addition of each device may cause messy wire tangling on the charging port. The problems arise when users often encounter the difficulty of organizing the USB charger cable when not in used. At the same time, the user also preferred a solution which is simple to use and retain the actual length of the cable. As a result, a self-organised charger cable can help to eliminate the problem of USB cable management. Hence, this method of TRIZ have been used to make new design and concept for the self-organised cable organiser so that it satisfied the user. When the cable is in used, it is stick together so that it won't tangle and also can be carried around easily or when travelling. Moreover, TRIZ are great tools to solve this problem, 39 parameters or contradiction matrix can be used in order to solve the problems. The problem that are encountered is as follows:

- 1. Cable tangling due to the shape of the cable.
- 2. The difficulty of organizing the USB charger cable when not in used.
- 3. Lack of cable management.

4. It takes a lot of time to organise the cable. SIA MELAKA

1.4 Research Objective

The main aim of this research is to design a self-organised USB Charger Cable. Specifically, the objectives are as follows:

- a) To study and analyse design solution of self-organised USB Charger Cable by using TRIZ method.
- b) To design and fabricate a self-organised USB Cable organiser prototype.
- c) Usability Testing of fabricated prototype.

1.5 Scope of Research

The scope of this research are as follows:

- Conceptual Design of self-organised USB charger cable.
- Voice of Customer (VOC) by using Quality Function Deployment.
- Design analysis by using TRIZ Method.
- Decision making by using weighted decision matrix (WDM).
- Fabrication of conceptual prototype.
- Prototype testing.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

In this chapter, literature review includes definition, past research related to the Conceptual Design, USB cable organizer and Theory of Inventive Problem-Solving Technique (TRIZ). Besides, there is Primary Research and Secondary Research that consists of self-observation, online survey.

2.2 Primary Research

ALAYS!

Information obtained via primary research is gained by the researcher themselves using selfdone research. Primary research is conducted with the intention of obtaining information in order to provide responses to questions that have not previously been asked. Primary research that has been done for this study is self-observation and user survey. Primary **UNVERSITIEEXNIXAL MALAYSIA MELAKA** research is of the crucial relevance for businesses and other organisations because it enables them to collect information about the requirements of the market from first-hand sources. The results of primary research provide important new information, which is typically used to guide the development of new products and comparable adjustments to organisational policy.

2.2.1 Self-observation

The users often have trouble in managing the USB charger cord while it is not in use, and they preferred a straightforward solution that maintained the actual cable length. Figure 2.1 below shows un-organised and tangling charger cable.

