COMPUTER AIDED EDUCATION ON PHOTOVOLTAIC SYSTEMS

WAN NORSARINA BINTI WAN HASSAN

MAY 2008

C Universiti Teknikal Malaysia Melaka

"I hereby declared that I have read through this report and found that it has comply the partial fulfillment for awarding the degree of Bachelor of Electrical Engineering (Power Electronic and Drives)"

Signature:Supervisor's Name: Aida Fazliana Binti Abdul KadirDate: 7 May 2008

COMPUTER AIDED EDUCATION ON PHOTOVOLTAIC SYSTEMS

WAN NORSARINA BINTI WAN HASSAN

This Report Is Submitted In Partial Fulfillment Of Requirements For The Degree of Bachelor In Electrical Engineering (Power Electronic and Drives).

> Fakulti Kejuruteraan Elektrik Universiti Teknikal Malaysia Melaka

> > MAY 2008

C Universiti Teknikal Malaysia Melaka

"I hereby declared that this report is a result of my own work except for the excerpts that have been cited clearly in the references."

Signature	:
Name	: Wan Norsarina Binti Wan Hassan
Date	: 7 May 2008

Especially thanks to my families and my all friend for your support and understanding. To my supervisor Mrs. Aida Fazliana Binti Abdul Kadir, thank you for your guidance and advised

ACKNOWLEDGEMENT

First and foremost, grateful to the Almighty Allah S.W.T. for all His blessing. I would like to take this opportunity to express my sincere appreciation and gratitude to my supervisor, Mrs Aida Fazliana Binti Abdul Kadir for her consistent encouragement, guidance, advice, and invaluable knowledge that has brought to the completion of this final year project. This project finished and completed because of her guidance and advised me very well. Actually, I had a problem to complete the project but she gives me a lot of support to finish this project.

In this chance, a special thanks to my parent for the moral and spiritual support to carry this project until complete. Finally, I would like to thanks to lecturers, friends and peoples that has directly or indirectly contributed giving me support and confidence while finishing this project.

ABSTRACT

The objective of this project is to design and develop an e-learning courseware for photovoltaic (PV) systems. Its has been develop by using Macromedia Flash MX and Swish Max software. Its designed to be an interesting and interactive learning environment and allow everybody to learn about these technologies with their own way. Photovoltaic technology has been in use over 40 years and it is very reliable and well proven on earth and in space. Photovoltaic or solar energy the most is easy, quiet, clean and portable. Solar electricity requires no fuel except the sun. This project focus on introduction of PV Basics, PV system design (grid connection and stand alone system), PV Components for typical system, and analysis of the stand alone system and grid system. All this tutorial and virtual lab will contains on the build up software, then at the end the user should be able to understand a detail about Photovoltaic system.

ABSTRAK

Projek ini bertujuan untuk membina e-pembelajaran bagi sistem kuasa solar atau dengan nama lain "sistem photovoltaic". Ia di bina dengan menggunakan perisian Macromedia Flash MX dan juga Swish Max. Ia di reka berkonsepkan suasana pembelajaran yang menarik dan interaktif. Di mana sistem atau kaedah pembelajaran ini membenarkan sesiapa sahaja untuk belajar tentang teknologi ini dengan gaya atau cara tersendiri sesuai mengikut keselesaan termasuklah di rumah. Kuasa elektrik dari photovoltaic (PV) telah di gunakan sejak 40 tahun yang lalu. Ia terbukti berkesan dan boleh diguna pakai untuk semua keperluan termasuklah di ruang angkasa. Photovoltaic (PV) adalah satu sumber kuasa yang paling senang, senyap, bersih dan mudah alih. Ia tidak memerlukan bahan api selain dari sinar cahaya matahari. Projek ini menekankan pengenalan asas bagi photovoltaic, rekabentuk sistem PV, komponen- kompenen dalam sistem PV serta analisis sistem PV berdiri sendiri dan sistem PV yang bersambung ke grid. Selain itu, perisian ini dilengkapkan dengan makmal maya dan juga tutorial bagi menambahkan pengetahuan pelajar tentang sistem PV.

TABLE OF CONTENTS

CHAPTER CONTENT

DECLARATION ii **DEDICATION** iii ACKNOWLEDGEMENT iv ABSTRACT v ABSTRAK vi **TABLE OF CONTENTS** vii LIST OF TABLES xii **LIST OF FIGURES** xiii LIST OF APPENDIXES xvi LIST OF ABBREVIATIONS xvii

I PROJECT BACKGROUND

1.1 Introduction	
1.1.1 Problem Statement	1
1.2 Objectives	2
1.3 Scopes Of Work	2
1.4 Report Structure	3

II LITERATURE REVIEW

2.1	Study of	f Similar System	4
	2.1.1	E - Learning of Fluid Power	4
	2.1.1.1	Methodology of The Project	5

C Universiti Teknikal Malaysia Melaka

PAGE

	2.1.1.2	Significant and Contribution Of The Research	5
	2.1.2	Control of Three-Phase Stand-Alone Systems	5
	2.1.2.1	Sumarization Of Reference	5
	2.1.2.2	Significant and Contribution Of The Research	6
	2.1.2.3	Content Of Reference	6
2.2	Others	Literature	14

III THEORITICAL BACKGROUND

3.1	Photovoltaic (PV)	16
	3.1.1 Photovoltaic Technology	17
	3.1.2 Discovery And Development Of Photovoltaic	17
	Power	
3.2	Photovoltaic (PV) Basics	19
	3.2.1 Photovoltaic Cells	19
	3.2.2 Making a Photovoltaic Cells	19
3.3	Photovoltaic (PV) Physics	20
	3.3.1 Photovoltaic effect	20
	3.3.2 The Crystalline Silicon Solar Cells	21
	3.3.2.1 An Atomic Description of Silicon	22
	3.3.2.2 Built-In Electric Field	22
	3.3.3 Absorption and Conduction	23
	3.3.4 Electrical Contacts	24
3.4	Photovoltaic (PV) Devices	25
	3.4.1 Solar Cell Materials	26
	3.4.1.1 Crystallinity	26
	3.4.2 Type Of Silicon	27
	3.4.2.1 Single-Crystalline Silicon	27
	3.4.2.2 Multicrystalline Silicon	28
	3.4.2.3 Amorphous Silicon	29
	3.4.3 Solar Cell Structures	30
	3.4.3.1 Homojunction Devices	30
	3.4.3.2 Heterojunction Devices	31

	3.4.3.3	p-i-n and n-i-p Devices	32
	3.4.3.4	Multijunction Devices	32
3.5	Basic o	f Photovoltaic (PV) System	34
	3.5.1	Describing Material And Process	35
	3.5.2	Photovoltaic (PV) Cell	36
	3.5.3	Photovoltaic (PV) Module	37
	3.5.4	Photovoltaic (PV) Array	37
3.6	PV Sys	tem Component	38
	3.6.1	Solar array	38
	3.6.2	Charge Controller	39
	3.6.3	Battery	39
	3.6.4	Inverter	40
	3.6.5	DC Load	41
	3.6.5.1	Lighting and other resistive loads	41
	3.6.5.2	Inductive loads	52
	3.6.6	AC Loads	52
	3.6.6.1	Lighting and other resistive loads	43
	3.6.6.2	Inductive loads	43
	3.6.6.3	Electronic loads	44
	3.6.7	Balance of system	44
	3.6.7.1	Combiner Box	45
	3.6.7.2	Blocking Diode	45
	3.6.7.3	Surge Arresters	46
3.7	Photov	oltaic Inverter	47
	3.7.1	PV inverters with DC-DC converter and isolation	47
	3.7.2	PV Inverters With DC-DC Converter Without	50
		Isolation	
	3.7.3	PV inverters without DC-DC converter	52
	3.7.4	PV inverters without DC-DC converter and	53
		without isolation	
	3.7.5	Single Phase PV Inverters	54
	3.7.5.1	Central Inverters	55
	3.7.5.2	String Inverter	55

3.7.5.3 Module integrated inverter	56
3.8 Example of Calculation For PV System	57
3.9 Macromedia Flash MX Software	62
3.10 Swish Max Software	62

75

IV METHODOLOGY

4.1	Flow Chart	64
4.2	Courseware Development	65
	4.2.1 Creation Of Animation Using Mac. Flash MX	66
	4.2.2 Frame By Frame Animation	67
	4.2.3 Tweened Animation	68
	4.2.4 Creation Of Animation Using Swish Max	69

V RESULT AND DISCUSSION

5.1	Courseware Content	71
5.2	Review Of The Contents	71
	5.2.1 Main Page	73
	5.2.2 Introduction Page	73
	5.2.3 Photovoltaic Basic Page	77
	5.2.4 Type Of Photovoltaic (PV) Page	79
	5.2.5 Photovoltaic Component Page	81
	5.2.6 Tutorial Page	82
	5.2.7 Virtual Lab Page	83
5.3	Analysis on Tutorial For Stand Alone System	85
5.4	Type of Photovoltaic System	87
	5.4.1 Grid-Connected To Photovoltaic System	87
	5.4.1.1 PV Systems Without Battery Storage	87
	5.4.1.2 PV Systems with Battery Storage	90
	5.4.2 Stand-Alone System	92
	5.4.2.1 PV Powered Water Pumping Systems	92
	5.4.2.2 PV Powered Lighting Systems	93

VI	CONCLUSION & RECOMMENDATION	
	6.1 Conclusion	95
	6.2 Recommendation Of Future Work	96
REFERE	NCES	97
APPEND	IXES A – H	100

5.4.2.3 Remote Residential PV Systems

93

LIST OF TABLES

NO	TITLE	PAGE
3.1	Early photovoltaic development	19
3.2	Classification scheme for silicon	28
3.3	Actual daily load for Classroom System	57

LIST OF FIGURES

NO TITLE

PAGE

2.1	System description	8
2.2	Proposed inner current control loop for iA	11
2.3	Proposed inner current loop for Ib	11
2.4	Nominal load operation	12
2.5	System response to a single-phase nominal load connection	12
	and disconnection	
2.6	System operation with a single-phase half diode bridge load	13
2.7	System response to transient 1ms short-circuit	13
3.1	Process of PV System	17
3.2	Side View of the Pv Cell that has been doped with other	19
	chemicals	
3.3	Doping N – Type	20
3.4	Doping P – Type	20
3.5	Photons converted to electric charge movement	21
3.6	Atomic Description of silicon	22
3.7	Electrical Charges in Electric Field	23
3.8	How to make efficient solar cell	24
3.9	Grid contacts on the top surface of a typical pv cell	25
3.10	Example of Single Crystal Silicon	28
3.11	Example of Multicrystalline silicon	28
3.12	Example of Amorphous Silicon	30
3.13	Photons absorbed through the cell	33
3.14	Structure of multijunction cell	33
3.15	Interconnected from cell to form module and array	35
3.16	Operation of basic photovoltaic cell	35

3.17	Cell, Module, Array	36
3.18	Component in typical PV system	38
3.19	PV array as a roof top	39
3.20	Example of Charge Controller	39
3.21	Deep cycle lead acid battery	40
3.22	Example of an inverter	41
3.23	Combiner box	45
3.24	Blocking diode	46
3.25	Surge arrester	46
3.26	Power configurations for PV inverters.	47
3.27	PV inverter system with DC-DC converter and isolation	48
	transformer	
3.28	PV inverter with HF transformer in the dc-dc converter	48
3.29	Dc-dc converter topologies with isolation	49
3.30	PV inverter system with DC-DC converter without isolation	50
	transformer	
3.31	Time-sharing dual-mode sinewave modulated	51
3.32	PV inverter system without DC-DC converter and with	52
	isolation transformer	
3.33	Transformerless PV inverter system without DC-DC	53
	converter	
3.34	General schema for single-phase grid connected photovoltaic	54
	systems	
4.1	Flow Chart to develop a courseware	65
4.2	Flash working environments	66
4.3	Creation of animation using frame by frame method	68
4.4	Picture showing creation of a simple motion using motion	69
	tweening	
4.5	Working environment of Swish Max	70
5.1	Loading page of Computer Aided Education On	72
	Photovoltaic Systems (CAEPVS)	
5.2	Initial page of CAEPVS	72
5.3	Main menu of CAEPVS	73

5.4	Contents of Introduction	74
5.5	First subcontent of introduction	75
5.6	Second subcontent of introduction	75
5.7	Third subcontent of introduction	76
5.8	Video of how electricity was produced	76
5.9	Contents of Photovoltaic (PV) Basic	77
5.10	First subcontent of PV Basic	78
5.11	Second subcontent of PV Basic	78
5.12	Third subcontent of PV Basic	79
5.13	Contents for Type Of PV Systems	80
5.14	Animation of how electricity flow on the PV system.	80
5.15	Electrical drawing for grid connected to PV System	81
5.16	PV components for Typical System	81
5.17	Tutorial to calculate sizing for Stand Alone System	82
5.18	Contents of Virtual Lab	83
5.19	How PV Cell convert sunlight to electricity	84
5.20	Connection of wiring for each PV Module	84
5.21	Block diagram grid connected PV System without battery	88
5.22	Electrical drawing for grid connected PV System without	89
	battery	
5.23	Block diagram of Grid-connected PV systems with battery	90
5.24	Electrical drawing Grid connected PV System with battery	91
5.25	Block diagram of PV Powered Pumping systems	92
5.26	Block diagram of PV Powered Lighting Systems	93
5.27	Block diagram of Remote Residential PV Systems	94

LIST OF APPENDIXES

NO TITLE

PAGE

A	Gantt Chart	100
В	Example of site drawing	101
С	Electrical drawing Grid connected PV System with battery	102
D	Block diagram Grid connected PV System with battery	103
Е	Electrical Drawing Grid connected PV System without battery	104
F	Block diagram Grid connected PV System without battery	105
G	Battery capacity tests evaluation for stand-alone photovoltaic	106
	systems	
Η	Design considerations for three-phase grid connected	112
	photovoltaic inverters	

LIST OF ABBREVIATIONS

PV Photovoltaic _ UPS Uninterruptible Power Supply -IGBT -Insulated Gate Bipolar Transistor Si -Silicon sc-Si -Single Crystalline Silicon mc-Si -Multicrystalline silicon pc-Si -Polycrystalline Silicon a-Si Amorphous Silicon -CIS _ Copper Indium Diselenide CdTe -Cadmium Telluride DC Direct Current _ AC -Alternate Current BOS Balance Of System -PCU -Power Conditioning Unit PWM -Pulse Width Modulation MPP _ Maximum Power Point Wh Watt Hour -Ah Amp Hour -

82

CHAPTER I

PROJECT BACKGROUND

1.1 Introduction

One revolutionary impact of the information technology in today's knowledge-driven economy is that it changes the way people learn, communicate, work and live. With the presence of the Internet, learning will no longer be bounded by the old traditional form that is merely dependent on classroom training or based on books alone. In fact, nowadays people can easily obtain knowledge or information by just a simple click of the mouse in the comfort of their home. E-Learning has become a new trend whereby each individual is able to set their own learning pace anytime anywhere. It can be a very rich learning experience that can even surpass the level of training experienced in a crowded classroom.

1.1.1 Problem Statement

This project like all others is created to solve problems that we humans encounter everyday. Upon completion of this project, the problems that we face will hopefully be solved or at least reduced.

Here are several encounter problem:

- i. There are no such type of e learning for Photovoltaic (PV) system.
- ii. Many users not have proper understanding about Photovoltaic.
- iii. Always need to be evaluate (battery due to capacity lost).

The objective of this project is to design and construct a computer aided education by using macromedia flash software consist of photovoltaic system that can be used for education especially teaching & learning of high technology used computer.

The main purpose of this project is :

- i. To built the new interactive learning education for Photovoltaic System.
- ii. To present a comprehensive picture of present state and application of photovoltaic energy.
- iii. To built a useful tutorial for calculate battery and module sizing
- iv. To analyze the Stand Alone System and grid connected to Photovoltaic System.

1.3 Scopes Of Work

This project is software based, which consists a learning courseware for photovoltaic (PV) system. Its has been designed and develop to be used as the most interactive learning. This type of learning is a new way to everybody learn in variety condition with condusif environment and allow students to learn about these technologies at their own pace, in the comfort of their own home.

Below are the scope for this project:

- i. Design and build up computer aided education of a control system consist of photovoltaic system as one of renewable energy recently have.
- ii. Design using Macromedia Flash MX and Swish Max software.
- iii. The software design consist for its system design, basic of PV, PV sizing array, sizing battery,stand alone system and grid connected to PV system design, PV component and virtual lab of PV system.

1.4 Report Structure

There are six chapter in this report, first chapter is about project background. In this chapter includes for an introduction, problem statement, objective and scope of work. Second chapter is about literature review and its wrap up for study of similar system and others literature. Third chapter is about theoritical background, its contain theoritical for photovoltaic review and calculation of system sizing and also e-Learning review. Follow by chapter IV, methodology, in this part, its shows the flow chart of the project and courseware development. Then chapter V covers for result of project and discussion for courseware content. Last chapter is about conclusion and recommendation for future work.

C Universiti Teknikal Malaysia Melaka

CHAPTER II

LITERATURE REVIEW

2.1 Study Of Similar System

2.1.1 E-Learning Of Fluid Power: Pneumatics by C.L. Kho, Patrick S.K. Chua and F.L. Tan[13]

This paper describes the development of a multimedia teaching package in pneumatic circuit design. It discusses the concept of e-learning, presents the pneumatic contents covered in the package and also the development processes. Various types of emergency circuit design techniques have been incorporated into the package to suit different needs of users. Macromedia Flash MX has been used as the main development platform for this interactive teaching package. The courseware has been fully tested. It serves as a supplementary teaching package for the instructor or a self-learning package for learners who are interested in pneumatic circuit design.

The focus of this paper is on emergency circuit design although the courseware developed also covers other topics in pneumatic circuit design and pneumatics components/system. Multimedia teaching package in fluid power hardly exists today. The only one reported in the literature is by Tieh and Lee (2002) whose work is aimed at vocational trainees (National Trade Certificate NTC-3) in basic pneumatics and the work was only at the beginning stage. The work reported in this paper is part of a continuing effort to develop a complete multimedia teaching package in pneumatics especially on the design of pneumatic circuits.

C Universiti Teknikal Malaysia Melaka

2.1.1.1 Methodology Of The Project

The authors use Macromedia Flash MX as the major development software in constructing the courseware. Macromedia Flash MX is a powerful development tool, with the ability to pull in and deliver a wide variety of web media and data sources. It is suitable for creating multimedia teaching package, animated logos, web site navigation controls, long-form animations, entire Flash websites, or web applications.

2.1.1.2 Significant and Contribution Of The Research

This reference give me a guide lines on what is the actual need to design and develop the course ware. The criteria of e- Learning need to be consider while build the course ware which is, the content must be easy for user to used it. In other word friendly user. Beside that, this e – Learning must be well built functionality, so that user can used that without any problem for example fast when operating the courseware.

2.1.2 Control of Three-Phase Stand-Alone Photovoltaic Systems with Unbalanced Loads by P. Sanchis, Member, IEEE, A. Ursúa, E. Gubía, J. López and L. Marroyo, Department of Electrical and Electronic Engineering, Public University of Navarra, Pamplona, Spain.[14]

2.1.2.1 Sumarization Of Reference

This case deals with the control of three-phase four-wire stand-alone photovoltaic systems. In these systems, the structure consisting of a three-phase inverter and a delta-wye transformer is especially interesting. It includes galvanic isolation, as demanded by many regulations, and can provide a neutral point in order to supply single-phase loads. This paper proposes a new control strategy for this system that deals with the natural coupling between variables and external