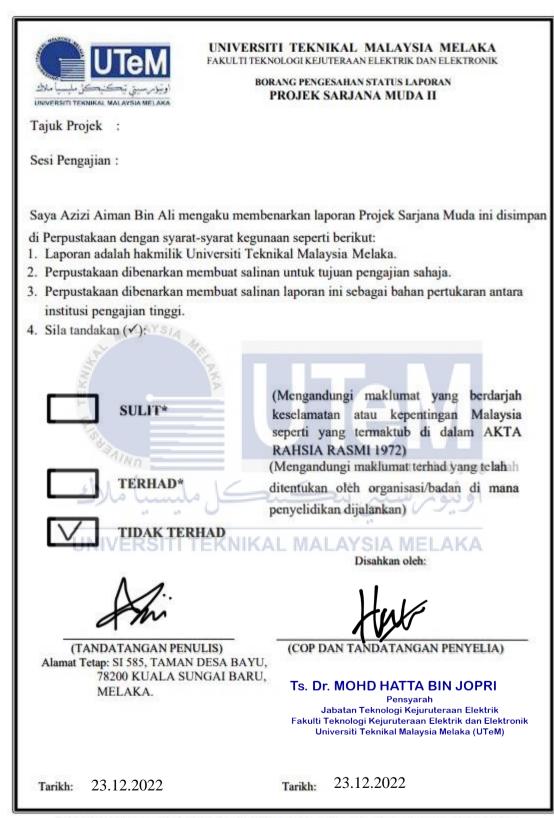


Faculty of Electrical and Electronic Engineering Technology

AZIZI AIMAN BIN ALI

Bachelor of Electrical Engineering Technology (Industrial Power) with Honours


DEVELOPMENT OF SOLAR WATER HEATER SYSTEM

AZIZI AIMAN BIN ALI

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

*CATATAN: Jika laporan ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh laporan ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I declare that this project report entitled "Development of Solar Water Heater System" is the result of my own research except as cited in the references. The project report has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	Aler
Student Name	AZIZI AIMAN BIN ALI
Date Contraction	23.12.2022
) ملاك	اونيۆم,سيتي تيڪنيڪل مليسي
UNIVER	RSITI TEKNIKAL MALAYSIA MELAKA

APPROVAL

I hereby declare that I have checked this project report and in my opinion, this project report is adequate in terms of scope and quality for the award of the degree of Bachelor of Electrical Engineering Technology (Industrial Power) with Honours.

Signature :
Supervisor Name : DR. MOHD HATTA BIN JOPRI.
Date 23.12.2022
10/NO
اونيۇم,سيتي تيڪنيڪل مليسيا ملاك Signature
Co-Supervisor :
Name (if any)
Date :

APPROVAL

I approve that this Bachelor Degree Project 2 (PSM2) report entitled "Development of Solar Water Heater System" is sufficient for submission.

Signature : DR. MOHD HATTA BIN JOPRI. Supervisor Name : ____ Date 23.12.2022 : **UNIVERSITI TEKNIKAL MALAYSIA MELAKA**

DEDICATION

I dedicate this essay to my beloved mother, Zaimah binti Hasim, and father, Ali bin Saat, for their unwavering support throughout my degree journey.

ABSTRACT

The existing solar water heating systems and their applications are studied in this review paper. Hot water is now used in the home, the workplace, and the industrial sector. To heat water and produce steam, various resources such as coal, diesel, and gas are used. Solar energy is the primary replacement option for traditional energy sources. The solar water heating technology system that heats water using the sun's to convert free electrical energy. A solar energy system is designed to fulfil the energy needs. A dimensions of system is defined by factors such as the amount of available solar radiation, the temperature requirements of the customer, the geographical area of a solar system, and so on. In this article, one type of photovoltaic was selected which is poly crystalline to measure the perfomance about voltage and current during charging and discharging session. Consequently, the solar hot water system should be designed with the above parameters in mind. In addition to understanding a development, layout, implementations, as well as type of solar panel that will be used in, the relevant literature is reviewed.

تيكنيكل مليسي UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ABSTRAK

Sistem pemanasan air suria sedia ada dan aplikasinya dikaji dalam kertas kajian ini. Air panas kini digunakan di rumah, tempat kerja, dan sektor perindustrian. Untuk memanaskan air dan menghasilkan wap, pelbagai sumber seperti arang batu, diesel, dan gas digunakan. Tenaga suria ialah pilihan penggantian utama untuk sumber tenaga tradisional. Sistem teknologi pemanasan air suria yang memanaskan air menggunakan matahari untuk menukar tenaga elektrik percuma. Sistem tenaga suria direka untuk memenuhi keperluan tenaga. Dimensi sistem ditakrifkan oleh faktor seperti jumlah sinaran suria yang tersedia, keperluan suhu pelanggan, kawasan geografi sistem suria, dan sebagainya. Dalam artikel ini, satu jenis fotovoltaik telah dipilih iaitu panel kristal poli untuk mengukur prestasi voltan dan arus elektrik semasa pengecasan bateri daripada solar panel dan semasa pengeluaran kuasa kepada beban. Oleh itu, sistem air panas suria harus direka bentuk dengan mengambil kira parameter di atas. Di samping memahami pembangunan, susun atur, pelaksanaan, serta jenis panel solar yang akan digunakan, literatur yang berkaitan disemak.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

al al

ل مليسيا ملاك

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my supervisor, Ts.Dr. Mohd Hatta Bin Jopri, for their invaluable guidance, wise words, and patience throughout this project.

I am also grateful to Universiti Teknikal Malaysia Melaka (UTeM) and my beloved parent for their financial assistance in completing the project. Not to mention my coworkers Syahmi Taqiyuddin, Zaim Razak, Rasyhid Ridzuan, Irfaan Rosley, and others for their willingness to share their thoughts and ideas about the project.

My heartfelt gratitude goes to my parents, Zaimah Binti Hasim and Ali Bin Saat, for their love and prayers during my studies.

TABLE OF CONTENTS

		PAGE
APP	PROVAL	
DEC	CLARATION	IV
APP	PROVAL	\mathbf{V}
DED	DICATION	ii
ABS	STRACT	iii
ABS	JTRAK	iv
ACK	KNOWLEDGEMENTS	v
ТАВ	BLE OF CONTENTS	vi
LIST	Г OF TABLES	ix
LIST	r of figures	x
LIST	T OF SYMBOLS	xiii
LIST	Γ OF ABBREVIATIONS	xiv
LIST	اوييوم سيتي تيڪنيڪل مليدof Appendices	XV
	APTER 1 INTRODUCTION ALAYSIA MELAKA	1
1.1 1.2	Background Problem Statement	1 2
1.2	Project Objective	$\frac{2}{3}$
1.4	Scope of Project	3
	APTER 2 LITERATURE REVIEW	4
2.1	Introduction	4
2.2	Type of solar panel	6
	2.2.1 Monocrystalline Solar Panel.2.2.2 Polycrystalline Solar Panel	6 7
2.3	2.2.2 Polycrystalline Solar Panel Type Of Motor Pumps	8
2.5	2.3.1 Dynamic pump	8
	2.3.2 Centrifugal Motor Pump	9
	2.3.3 Submersible Motor Pump	10
	2.3.4 Positive Displacement Motor pump	10
	2.3.5 Diaphragm Motor Pump	13
2.4	Type of Microcontroller	14
	2.4.1 Raspberry Pi:	14
	2.4.2 Arduino UNO R3	16

	Type of Solar Charge Controller	19
	2.5.1 PWM SOLAR CHARGE CONTROLLER	20
	2.5.2 MPPT Maximum Power Point Tracking SOLAR CHARGE	
	CONTROLLER	22
2.6	Type of Sensor:	24
	2.6.1 Water Level Sensor:	24
	2.6.2 Digital Temperature Controller Thermostat	26
2.7	Type of Switch	27
	2.7.1 Electromechanical Relay	27
2.8	Electrical Device	29
	2.8.1 Water heating element	29
2.9	Type of Battery	30
	2.9.1 Nickel Cadmium Battery	30
	2.9.2 Lithium Ion Battery	31
	2.9.3 Lead-Acid Solar Gel Battery	33
CILAI		35
CHAI 3.1	PTER 3 METHODOLOGY	35 35
3.1 3.2	Introduction LAYSIA Cinquit Design	35 35
	Circuit Design	35 39
3.3	Calculation to determine the equipment specifications 3.3.1 Estimated Load Wattage	39 39
	3.3.2 Calculation the approximate size of Solar Panel	39 39
	3.3.3 Calculation Battery Ah	39 39
	3.3.4 Solar charge controller amperage evaluation	40
3.4	Equipment and Component	40 40
3.4		40
	3 / 1 Arduino UNO R3	40
	3.4.1 Arduino UNO R3 3.4.2 Water Level Sensor (HW 038)	40 42
	3.4.2 Water Level Sensor (HW 038)	42
	 3.4.2 Water Level Sensor (HW 038) 3.4.3 Waterproof temperature sensor (DS18B20) 	
	3.4.2 Water Level Sensor (HW 038)	42
	 3.4.2 Water Level Sensor (HW 038) 3.4.3 Waterproof temperature sensor (DS18B20) 3.4.4 2 Relay (Electromechanical 1 Channel 5V Relay Module For 	42 43
	 3.4.2 Water Level Sensor (HW 038) 3.4.3 Waterproof temperature sensor (DS18B20) 3.4.4 2 Relay (Electromechanical 1 Channel 5V Relay Module For Arduino) 	42 43 44
	 3.4.2 Water Level Sensor (HW 038) 3.4.3 Waterproof temperature sensor (DS18B20) 3.4.4 2 Relay (Electromechanical 1 Channel 5V Relay Module For Arduino) 3.4.5 Water Heating Element (Immersion Dc Heater) 	42 43 44 45
	 3.4.2 Water Level Sensor (HW 038) 3.4.3 Waterproof temperature sensor (DS18B20) 3.4.4 2 Relay (Electromechanical 1 Channel 5V Relay Module For Arduino) 3.4.5 Water Heating Element (Immersion Dc Heater) 3.4.6 Polycrsytalline Solar Panel 	42 43 44 45 47
	 3.4.2 Water Level Sensor (HW 038) 3.4.3 Waterproof temperature sensor (DS18B20) 3.4.4 2 Relay (Electromechanical 1 Channel 5V Relay Module For Arduino) 3.4.5 Water Heating Element (Immersion Dc Heater) 3.4.6 Polycrsytalline Solar Panel 3.4.7 R385 DC 12V Pneumatic Diaphragm water Pump Motor 6W 	42 43 44 45 47 48
3.5	 3.4.2 Water Level Sensor (HW 038) 3.4.3 Waterproof temperature sensor (DS18B20) 3.4.4 2 Relay (Electromechanical 1 Channel 5V Relay Module For Arduino) 3.4.5 Water Heating Element (Immersion Dc Heater) 3.4.6 Polycrsytalline Solar Panel 3.4.7 R385 DC 12V Pneumatic Diaphragm water Pump Motor 6W 3.4.8 Solar Charge Controller (30A PWM) 	42 43 44 45 47 48 49
	 3.4.2 Water Level Sensor (HW 038) 3.4.3 Waterproof temperature sensor (DS18B20) 3.4.4 2 Relay (Electromechanical 1 Channel 5V Relay Module For Arduino) 3.4.5 Water Heating Element (Immersion Dc Heater) 3.4.6 Polycrsytalline Solar Panel 3.4.7 R385 DC 12V Pneumatic Diaphragm water Pump Motor 6W 3.4.8 Solar Charge Controller (30A PWM) 3.4.9 12V Lead-Acid Solar Gel Battery (7Ah) Summary 	42 43 44 45 47 48 49 50 51
CHAI	 3.4.2 Water Level Sensor (HW 038) 3.4.3 Waterproof temperature sensor (DS18B20) 3.4.4 2 Relay (Electromechanical 1 Channel 5V Relay Module For Arduino) 3.4.5 Water Heating Element (Immersion Dc Heater) 3.4.6 Polycrsytalline Solar Panel 3.4.7 R385 DC 12V Pneumatic Diaphragm water Pump Motor 6W 3.4.8 Solar Charge Controller (30A PWM) 3.4.9 12V Lead-Acid Solar Gel Battery (7Ah) Summary 	42 43 44 45 47 48 49 50 51 52
CHAI 4.1	 3.4.2 Water Level Sensor (HW 038) 3.4.3 Waterproof temperature sensor (DS18B20) 3.4.4 2 Relay (Electromechanical 1 Channel 5V Relay Module For Arduino) 3.4.5 Water Heating Element (Immersion Dc Heater) 3.4.6 Polycrsytalline Solar Panel 3.4.7 R385 DC 12V Pneumatic Diaphragm water Pump Motor 6W 3.4.8 Solar Charge Controller (30A PWM) 3.4.9 12V Lead-Acid Solar Gel Battery (7Ah) Summary 	42 43 44 45 47 48 49 50 51 52 52
CHAI 4.1 4.2	 3.4.2 Water Level Sensor (HW 038) 3.4.3 Waterproof temperature sensor (DS18B20) 3.4.4 2 Relay (Electromechanical 1 Channel 5V Relay Module For Arduino) 3.4.5 Water Heating Element (Immersion Dc Heater) 3.4.6 Polycrsytalline Solar Panel 3.4.7 R385 DC 12V Pneumatic Diaphragm water Pump Motor 6W 3.4.8 Solar Charge Controller (30A PWM) 3.4.9 12V Lead-Acid Solar Gel Battery (7Ah) Summary PTER 4 RESULT AND DISCUSSIONS Introduction Circuit Design for Development of Solar Water Heater System 	42 43 44 45 47 48 49 50 51 52
CHAI 4.1	 3.4.2 Water Level Sensor (HW 038) 3.4.3 Waterproof temperature sensor (DS18B20) 3.4.4 2 Relay (Electromechanical 1 Channel 5V Relay Module For Arduino) 3.4.5 Water Heating Element (Immersion Dc Heater) 3.4.6 Polycrsytalline Solar Panel 3.4.7 R385 DC 12V Pneumatic Diaphragm water Pump Motor 6W 3.4.8 Solar Charge Controller (30A PWM) 3.4.9 12V Lead-Acid Solar Gel Battery (7Ah) Summary 	42 43 44 45 47 48 49 50 51 52 52 53
CHAI 4.1 4.2	 3.4.2 Water Level Sensor (HW 038) 3.4.3 Waterproof temperature sensor (DS18B20) 3.4.4 2 Relay (Electromechanical 1 Channel 5V Relay Module For Arduino) 3.4.5 Water Heating Element (Immersion Dc Heater) 3.4.6 Polycrsytalline Solar Panel 3.4.7 R385 DC 12V Pneumatic Diaphragm water Pump Motor 6W 3.4.8 Solar Charge Controller (30A PWM) 3.4.9 12V Lead-Acid Solar Gel Battery (7Ah) Summary PTER 4 RESULT AND DISCUSSIONS Introduction Circuit Design for Development of Solar Water Heater System Determination of Variables and Location of Data Collection 30 days in November 2022 	42 43 44 45 47 48 49 50 51 52 52
CHAI 4.1 4.2 4.3	 3.4.2 Water Level Sensor (HW 038) 3.4.3 Waterproof temperature sensor (DS18B20) 3.4.4 2 Relay (Electromechanical 1 Channel 5V Relay Module For Arduino) 3.4.5 Water Heating Element (Immersion Dc Heater) 3.4.6 Polycrsytalline Solar Panel 3.4.7 R385 DC 12V Pneumatic Diaphragm water Pump Motor 6W 3.4.8 Solar Charge Controller (30A PWM) 3.4.9 12V Lead-Acid Solar Gel Battery (7Ah) Summary PTER 4 RESULT AND DISCUSSIONS Introduction Circuit Design for Development of Solar Water Heater System Determination of Variables and Location of Data Collection 30 days in November 2022 This project's steps and procedures. 	42 43 44 45 47 48 49 50 51 52 52 53 54
CHAI 4.1 4.2 4.3 4.4	 3.4.2 Water Level Sensor (HW 038) 3.4.3 Waterproof temperature sensor (DS18B20) 3.4.4 2 Relay (Electromechanical 1 Channel 5V Relay Module For Arduino) 3.4.5 Water Heating Element (Immersion Dc Heater) 3.4.6 Polycrsytalline Solar Panel 3.4.7 R385 DC 12V Pneumatic Diaphragm water Pump Motor 6W 3.4.8 Solar Charge Controller (30A PWM) 3.4.9 12V Lead-Acid Solar Gel Battery (7Ah) Summary PTER 4 RESULT AND DISCUSSIONS Introduction Circuit Design for Development of Solar Water Heater System Determination of Variables and Location of Data Collection 30 days in November 2022 This project's steps and procedures. Voltage Monitoring for Battery 	42 43 44 45 47 48 49 50 51 52 52 53 53 54 55 58
CHAI 4.1 4.2 4.3 4.4 4.5	 3.4.2 Water Level Sensor (HW 038) 3.4.3 Waterproof temperature sensor (DS18B20) 3.4.4 2 Relay (Electromechanical 1 Channel 5V Relay Module For Arduino) 3.4.5 Water Heating Element (Immersion Dc Heater) 3.4.6 Polycrsytalline Solar Panel 3.4.7 R385 DC 12V Pneumatic Diaphragm water Pump Motor 6W 3.4.8 Solar Charge Controller (30A PWM) 3.4.9 12V Lead-Acid Solar Gel Battery (7Ah) Summary PTER 4 RESULT AND DISCUSSIONS Introduction Circuit Design for Development of Solar Water Heater System Determination of Variables and Location of Data Collection 30 days in November 2022 This project's steps and procedures. Voltage Monitoring for Battery Hardware Design for 20Wp polycrystalline solar panel connected to batter 	42 43 44 45 47 48 49 50 51 52 52 53 53 54 55 58
CHAI 4.1 4.2 4.3 4.4 4.5 4.6	 3.4.2 Water Level Sensor (HW 038) 3.4.3 Waterproof temperature sensor (DS18B20) 3.4.4 2 Relay (Electromechanical 1 Channel 5V Relay Module For Arduino) 3.4.5 Water Heating Element (Immersion Dc Heater) 3.4.6 Polycrsytalline Solar Panel 3.4.7 R385 DC 12V Pneumatic Diaphragm water Pump Motor 6W 3.4.8 Solar Charge Controller (30A PWM) 3.4.9 12V Lead-Acid Solar Gel Battery (7Ah) Summary PTER 4 RESULT AND DISCUSSIONS Introduction Circuit Design for Development of Solar Water Heater System Determination of Variables and Location of Data Collection 30 days in November 2022 This project's steps and procedures. Voltage Monitoring for Battery 	42 43 44 45 47 48 49 50 51 52 52 53 54 55 58 58 58 58

4.10	Combination Arduino Instructions Programming for HV sensor and DS18B20 waterproof temperature sensor	V 038 water level 65
4.11	Statistical analysis, Mean and Standard Deviation for No	
4.11	charging phase	67 veniber 2022 during
4.12	Statistical analysis, Mean and Standard Deviation for No	•••
4.14	discharging phase	70 vember 2022 during
4.13	Statistical analysis, Daily Power Wh and Total Power Wh	
	2022	77
4.14	Investment Return (ROI)	79
CHA	PTER 5 CONCLUSION	84
5.1	Conclusion	84
5.2	Recommendation	86
REFI	ERENCES	87
APPE	ENDICES	91
APPE	ENDIX A: GANTT CHART OF PROJECT	91
APPE	ENDIX B: CHARGING BATTERY FROM SOLAR PANE	L TO BATTERY
	STORAGE.	93
APPE	ENDIX C: DISCHARGING BATTERY TO LOAD (12VD)	C MOTOR WATER
	PUMP AND 12VDC IMMERSION HEATER.	124
APPE	ENDIX D: CHARGING BATTERY FROM SOLAR PANE	L TO BATTERY
	STORAGE STATISTICAL ANALYSIS.	155
APPE	ENDIX E: DISCHARGING BATTERY TO LOAD STATIS	STICAL ANALYSIS.
	alwn	156
APPE	ENDIX F: PROGRAMMING FOR DEVELOPMENT OF	SOLAR WATER
	HEATER SYSTEM.	158 اويوم

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF TABLES

TABLETITLE	PAGE
Table 1: Specification of Arduino UNO R3	41
Table 2: Specification of Water level sensor (HW038)	42
Table 3: Specification of Waterproof Temperature Sensor	43
Table 4: Specification of Electromechanical relay 1 channel 5V relay module for arduino	45
Table 5: Specification of Electromechanical relay 1 channel 5V relay module for arduino.	45
Table 6: Specification of Immersion DC heater	46
Table 7: Specification of 20Wp polycrystalline solar panel	47
Table 8: Specification of R385 12V Diaphragm water pump	48
Table 9: Specification of PWM Solar Charge Controller	49
Table 10 : Solar Experiment Variables	54
اويو، سيني تيڪنيڪ	59
Table 12: Declaration of intergers and Arduino pin LAYSIA MELAKA	63
Table 13: Statistical analysis during charging phase	67
Table 14: Statistical analysis during discharging phase for motor water pump	70
Table 15: Statistical analysis during discharging phase for immersion heater	74
Table 16: Statistical analysis for power consumed	77
Table 17: The material list	80
Table 18: Real application dimension situation concept	81
Table 19: Tenaga Nasional Berhad Tariff A- Domestic Tariff	81

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 1: Monocrystalline Solar P	anel	6
Figure 2: Growth process of mono	ocrystalline silicon rod	7
Figure 3: Polycrystalline Solar Pa	nel	7
Figure 4: Growth process of polyc	crsytalline silicon ingot	8
Figure 5: Centrifugal motor pump)	9
Figure 6: Centrifugal pump worki	ng	10
Figure 7: Submersible motor pum	р	10
Figure 8: Submersible pump work	cing	12
Figure 9: Diaphragm motor pump		13
Figure 10: Diaphragm pump work		14
Figure 11: Raspberry Pi		14
Figure 12: Proposed EMS	اويومرسيتي تيكنيكل	15
Figure 13: EMS tasks RSITI TE	EKNIKAL MALAYSIA MELAKA	16
Figure 14: Arduino UNO		16
Figure 15: Schematic of the exper	imental setup	18
Figure 16: Solar charge controller		19
Figure 17: Working of solar energ	SY	20
Figure 18: PWM solar charge con	troller	20
Figure 19: Solar panel with PWM	charge controller	21
Figure 20: Flowchart of Pulse Wig	dth Modulation (PWM) charge controller	22
Figure 21: MPPT Solar Charge Co	ontroller	22
Figure 22: Solar Panel with MPPT	Γ charge controller	23

Figure 23: Water level sensor diagram	24
Figure 24: Water level sensor	24
Figure 25: Water level sensor working mechanism	25
Figure 26: Digital temperature controller thermostat	26
Figure 27: Electromechanical Relay	27
Figure 28: Electromechanical working mechanism	28
Figure 29: Tubular heating element	29
Figure 30: Nickel-Cadmium Battery	30
Figure 31: Nickel-Cadmium battery formula.	31
Figure 32: Nickel-Cadmium Battery working mechanism	31
Figure 33: Lithium Ion Battery	31
Figure 34: Lithium Ion Battery working mechanism	33
Figure 35: Lead-Acid Solar Gel Battery	33
Figure 36: Solar panel with PWM Solar charge controller circuit design	36
Figure 37: Arduino connection and water heater system circuit design using Proteus simulation	37
Figure 38: Overall project flowchart	38
Figure 39: Arduino UNO R3	40
Figure 40: Water level sensor (HW038)	42
Figure 41: Waterproof Temperature Sensor	43
Figure 42: Electromechanical relay 1 channel 5V relay module for arduino	44
Figure 43: Immersion DC heater	45
Figure 44: 20Wp polycrystalline solar panel	47
Figure 45: R385 12V Diaphragm water pump	48
Figure 46: PWM Solar Charge Controller	49
Figure 47: Lead-Acid solar gel battery	50

Figure 48: Circuit design for solar water heater system	53
Figure 49: Location Collecting Data	55
Figure 50: Development of solar water heater system setup	
Figure 51: Collecting discharging data for motor waterpump	57
Figure 52: Collecting discharging data for immersion heater	
Figure 53: 20Wp Polycrystalline solar panel hardware design during charging session	60
Figure 54: PWM Solar charge controller	61
Figure 55: Design for Arduino UNO R3	
Figure 56: List of libraries	64
Figure 57: Combination coding for this project	
Figure 58: Voltage Mean for charging battery	67
Figure 59: Current Mean for charging battery	68
Figure 60: Voltage standard deviation for charging battery	69
Figure 61: Current standard deviation for charging battery	69
Figure 62: Voltage Mean dor 12Vdc motor water pump	71
Figure 63: Current Mean for 12Vdc motor water pump	71
Figure 64: Voltage standard deviation for 12Vdc motor water pump	72
Figure 65: Current standard deviation for 12Vdc motor water pump	72
Figure 66: Voltage Mean for 12Vdc immersion heater	74
Figure 67: Current Mean for 12Vdc immersion heater	75
Figure 68: Voltage standard deviation for 12Vdc immersion heater	76
Figure 69: Current standard deviation for 12Vdc immersion heater	76
Figure 70: Daily watt per hour consumed in November, 2022	77
Figure 71: Total watt per hour usage in November, 2022	78

LIST OF SYMBOLS

- η Efficiency.
- x Average.

LIST OF ABBREVIATIONS

V	-	Voltage
А	-	Ampere
W	-	Watt
PV	-	Photovoltaic
Wp	-	Watt peak
Si	-	Silicon
DC	-	Direct Current
AC	-	Alternating Current
PWM	-	Pulse Width Modulation
MPPT	-	Maximum Power Point Tracking
COM	-	Common
NC	-	Normally close
NO	-	Normally open
	15	ALAYSIA WA
	~	Ma

LIMIN	/EDCITI	TEKNIK	CAL	MALAY	ZCIA I	MELAKA
UNIT	CROTH	ICANIN	ML I	MALA	I OIM I	MELANA

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
APPENDIX A	: GANTT CHART OF PROJECT	93
APPENDIX B	: CHARGING BATTERY FROM SOLAR PANEL TO	
BATTERY ST	ORAGE.	95
APPENDIX C	: DISCHARGING BATTERY TO LOAD (12VDC MOTOR	
WATER PUM	IP AND 12VDC IMMERSION HEATER.	126
APPENDIX D	: CHARGING BATTERY FROM SOLAR PANEL TO	
BATTERY ST	ORAGE STATISTICAL ANALYSIS.	157
APPENDIX E	DISCHARGING BATTERY TO LOAD STATISTICAL	
ANALYSIS.	St We Me	158
APPENDIX F	PROGRAMMING FOR DEVELOPMENT OF SOLAR	
WATER HEA	TER SYSTEM.	160
6	اونيۈم,سيتي تيڪنيڪل مليسيا ملا	
U	NIVERSITI TEKNIKAL MALAYSIA MELAKA	

CHAPTER 1

INTRODUCTION

1.1 Background

The sun has been a powerful presence and force throughout the history of the human race existence on earth. Many cultures worship it in some form, and the vast majority consider it to be the greatest source of life on earth. Over the centuries, it has also been exploited by a variation of cunning means in order to successfully utilise this life-giving energy regarding renewable energy, the sun is the most reliable and effective. It is infinite on all practical timescales, incredibly potent, well-understood, and easy to predict in its overall trends, as well as beyond the influence of humans in the foreseeable future. To summarise, the effective power source; nevertheless, it is not devoid of obstacles. A solar heater is a device that employs solar energy to heat water and generate heat for domestic and industrial applications. Automated systems for capturing the sun's energy and transferring it to water for immediate use or storage have been studied and implemented since 1970s, when they were first used for pool heating in California. Solar water heating (SWH) is the method of heating water with the help of the sun and a solar thermal collector. A variety of configurations with varying costs are available to provide solutions for different climates and latitudes. SWHs are utilised frequently in homes and some industrial sites. The working fluid is heated by a solar collector and then saved in a system for future use. It is a device which converts the sun's light into electrical energy and make heat energy, which is then transferred to the necessary medium. This project will help the users using the hot water without using any electrical supply from power grid. Hence, will reduce their electrical monthly cost.

1.2 Problem Statement

In today's modern world, where new technologies are introduced every day, electrical energy use is increasing quickly Fossil fuel particularly petroleum fuel is the major contributor to electrical production. Quickly depleting reserve of petroleum and decreasing air quality raise question about the future. Solar can be used as a clean alternative energy to reduce electrical production and is promising in the effect to establish environmentally friendly for electrical system.[1] So far, many extensive studies investigated solar water heating system and become the famous application for home and building.

The using of solar water heating system not familiar in Malaysia and the people in Malaysia still not realize about the practical of using solar water heating systems. It's important to study about the power produce to run this experiment system and proving about polycrystalline solar panel are able to develop water heating system.[2]

Due to the unpredictable weather, the availability of sunlight depend on the condition as weather can change from time to time. In addition, sunlight clearly unavailable during night while there is still demand for electricity. As a result, determining the best equipment to construct a stand-alone system.[3]

To make a dependable water heater system, the battery should be installed in this system.[4] Thus, the reserve supply from the solar panel which stored in the battery still can be used when there is still a demand.

To build flexibility system with an automatic feed-back is a challenging part for this project. In order to control the temperature and level of water, a decent sensor need to be

determined for the installation. This is because, the sensor can integrate circuit which detects a specific physical parameter and converts it to an electrical signal.

- Determining the polycrystalline solar panel will be able to supply many loads.
- Identify the equipment to make a self-control system.
- Calculate a sufficient solar energy storage capacity.

1.3 Project Objective

This project's main goal is to propose a systematic and effective methodology for developing a solar water heater system. The following are the specific goals:

- To design a compatibility polycrystalline solar panel in supplying both DC water pump and DC immersion heater sufficiency.
- To construct a systematic and self-control water heater system using sensor and relay controlled by Arduino UNO R3.
- To observe statistical trends by collecting data of solar panel.

1.4 Scope of Project

To prevent any uncertainty regarding this project as a result of certain limitations, the project's scope has been defined as follows:

- Using 20Wp polycrystalline solar panel in developing of solar water heater system.
- PWM solar charge controller will connect from solar panel and regulate power to battery storage.
- Arduino UNO R3 as a brain that control this experiment.
- This experiment will perform in direct current (DC).
- Construct Arduino UNO R3 circuit using Proteus 8 Professional and Arduino IDE.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Photovoltaic (PV) modules are currently seeing widespread adoption as a solution to the ever-increasing need for energy around the world. Solar energy is the renewable energy source that is the most easily accessible, and the process of converting solar energy into electricity using PV modules is straightforward, doesn't produce any unwanted noise, and requires very little upkeep. Modules that are available on the market are almost always based on silicon technology and can be purchased in either the monocrystalline or polycrystalline form of the crystalline structure. In spite of the fact that the monocrystalline module has a higher price per watt than the polycrystalline module, monocrystalline solar cells are able to generate more usable power thanks to their distinct crystal structure and other advantageous cell characteristics. This project applies the 20 Wp for polycrystalline solar panels.[5] The Solar Water Heater (SWH) industry is a traditional manufacturing industry whose product is wholly reliant on the amount of solar thermal energy that is present in the environment. Heating water is a necessary task in the home, and there are a variety of approaches to choose from, including water heaters that run on electricity and water heaters that run on LPG gas. Although they have a lower overall cost of ownership over time, solar water heaters demand an upfront expenditure that is approximately twice as much as that of alternative water