

WAN ZARIFF ZIKRI BIN WAN MARZUKI

Bachelor of Electronics Engineering Technology (Telecommunications) with Honours

2023

INITIAL DEVELOPMENT OF A NANOELECTRONIC BIOSENSOR FOR GLUCOSE DETECTION

WAN ZARIFF ZIKRI BIN WAN MARZUKI

A project report submitted in partial fulfillment of the requirements for the degree of Bachelor of Electronics Engineering Technology (Telecommunications) with Honours

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2023

UNIVERSITI TEKNIKAL MALAYSIA MELAKA Tajuk Projek : Initial Development Of Sesi Pengajian : 1-2022/2023	RSITI TEKNIKAL MALAYSIA MELAKA EKNOLOGI KEJUTERAAN ELEKTRIK DAN ELEKTRONIK BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II A Nanoelectronic Biosensor For Glucose Detection
 Saya Wan Zariff Zikri bin Wan Marzuki Muda ini disimpan di Perpustakaan deng 1. Laporan adalah hakmilik Universiti T 2. Perpustakaan dibenarkan membuat sa 3. Perpustakaan dibenarkan membuat sa 4. Sila tandakan (x): 	mengaku membenarkan laporan Projek Sarjana gan syarat-syarat kegunaan seperti berikut: eknikal Malaysia Melaka. linan untuk tujuan pengajian sahaja. nembuat salinan laporan ini sebagai bahan pengajian tinggi.
4. Sila tandakan (V): SULIT* TERHAD TIDAK TERHAD	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972) (Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan) Disahkan oleh:
(TANDATANGAN PENULIS)	NAJMIAH RADIAH BINTI MOHAMAD Pensyarah Kanan Jabatan Teknologi Kejuruteraan Elektronik dan Komputer Fakulti Teknologi Kejuruteraan Elektrik dan Elektronik Universiti Teknikal Malaysia Melaka
Alamat Tetap: 29, Persiaran Klebang Selatan 17, Taman Bertuah, 31200, Chemor, Perak	
Tarikh: 20/2/23	Tarikh: 24/2/2023

*CATATAN: Jika laporan ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh laporan ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I declare that this project report entitled "Initial Development of A Nanoelectronic Biosensor for Glucose Detection" is the result of my own research except as cited in the references. The project report has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

APPROVAL

I hereby declare that I have checked this project report and in my opinion, this project report is adequate in terms of scope and quality for the award of the degree of Bachelor of Electronics Engineering Technology (Telecommunications) with Honours.

DEDICATION

To my beloved mother, Sayuti binti Mat Ali, Thank you for supporting me when I continue my studies for my bachelor degree in UTeM.

To my siblings, Wan Nur Nadia Hanim binti Wan Marzuki, Wan Nur Maisarah binti Wan Marzuki and Wan Nur Adriana binti Wan Marzuki, Thank you for providing creativity, expertise and suggestion For completing this project.

To my supervisor, Madam Najmiah Radiah binti Mohamad, Thank you for your dedication, organization, enthusiasm and hard work.

> You are an inspiring lecturer. Thanks for making me brave.

Thank you everyone for the emotional support.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ABSTRACT

A nanoelectronic biosensor for glucose detection often employs a nanomaterial as the sensing element such as carbon nanotubes or graphene. The nanomaterial is functionalized with a biomolecule such as an enzyme that binds with glucose for higher selectively. The binding of glucose to the biomolecule changes the electrical characteristics of the nanomaterial which is evaluated by electrochemical impedance spectroscopy or cyclic voltammetry. However, biosensor development have detection limit, detection time, and specificity. Detection time introduces significant challenges when designing biosensor systems, such as finding a suitable technology while maintaining the highest sensitivity and specificity. Therefore, in this research, Polypyrrole (PPY)/Multiwalled Carbon Nanotube (MWCNT) nanofilm is fabricated by using choronoamperometry method. This electrodeposition and cyclic voltammetry of fabricated nanofilm is experimented by AutoLAB potentiostat with NOVA 2.0 AutoLAB software. Then, it is characterized by using Fourier transform infrared spectroscopy (FTiR), scanning electron microscopy (SEM), and X-ray diffraction (XRD) to check the morphology and analyse the materials' properties. Based on the chronoamperometry of PPY/MWCNTnanofilm for 1 minute, carbon electrode shows the highest current at 0.001A. However, the result changes after a longer chronoamperometry process. After chronoamperometry for 3 minutes, copper electrode have the highest current at 0.0011A followed by stainless steel electrode at 0.001A. Lastly, for chronoamperometry for 5 minute results, copper electrode maintain the highest current at 0.0011A followed by aluminium electrode at 0.0009A. The cyclic voltammetry of carbon and stainless steel have been set between -0.8V and +0.4V in PBS solution. Based on the cyclic voltammetry results, the current in PBS solution for carbon is at -0.0025A and in glucose solution for carbon is at -0.0037A. Then, the current in PBS solution for stainless steel is -0.0010 A, and the current in glucose solution for stainless steel is -0.0015 A. As conclusion, the changes in current for both PBS and glucose solution shows that the glucose have been successfully detected and nanobiosenser is successfuly developed.

ABSTRAK

Penderia bio nanoelektronik untuk pengesanan glukosa selalunya menggunakan bahan nano sebagai elemen penderiaan seperti tiub nano karbon atau graphene. Bahan nano difungsikan dengan biomolekul seperti enzim yang mengikat dengan glukosa untuk lebih selektif. Pengikatan glukosa kepada biomolekul mengubah ciri elektrik bahan nano yang dinilai oleh spektroskopi impedans elektrokimia atau voltammetri kitaran. Walau bagaimanapun, pembangunan penderia bio mempunyai had pengesanan, masa pengesanan dan kekhususan. Masa pengesanan memperkenalkan cabaran penting apabila mereka bentuk sistem biosensor, seperti mencari teknologi yang sesuai sambil mengekalkan kepekaan dan kekhususan tertinggi. Oleh itu, dalam penyelidikan ini, nanofilem Polypyrrole (PPY)/Multiwalled Carbon Nanotube (MWCNT) difabrikasi menggunakan kaedah koronoamperometri. Elektrodeposisi dan voltammetri kitaran nanofilem rekaan ini diuji oleh potensiostat AutoLAB dengan perisian AutoLAB NOVA 2.0. Kemudian, ia dicirikan dengan menggunakan spektroskopi inframerah transformasi Fourier (FTiR), mikroskop elektron pengimbasan (SEM), dan pembelauan sinar-X (XRD) untuk memeriksa morfologi dan menganalisis sifat bahan. Berdasarkan kronoamperometri PPY/MWCNTnanofilm selama 1 minit, elektrod karbon menunjukkan arus tertinggi pada 0.001A. Walau bagaimanapun, keputusan berubah selepas proses kronoamperometri yang lebih panjang. Selepas kronoamperometri PPY/MWCNT selama 3 minit, elektrod kuprum mempunyai arus tertinggi pada 0.0011A diikuti oleh elektrod keluli tahan karat pada 0.001A. Akhir sekali, untuk chronoamperometry pada PPY/MWCNT untuk keputusan 5 minit, elektrod kuprum mengekalkan arus tertinggi pada 0.0011A diikuti oleh elektrod aluminium pada 0.0009A. Voltammetri kitaran karbon dan keluli tahan karat telah ditetapkan antara -0.8V dan +0.4V dalam larutan PBS. Berdasarkan keputusan voltammetri kitaran, arus dalam larutan PBS untuk karbon adalah pada -0.0025A dan dalam larutan glukosa untuk karbon adalah pada -0.0037A. Kemudian, arus dalam larutan PBS untuk keluli tahan karat ialah -0.0010 A, dan arus dalam larutan glukosa untuk keluli tahan karat ialah -0.0015 A. Sebagai kesimpulan, perubahan arus untuk kedua-dua larutan PBS dan glukosa menunjukkan bahawa glukosa telah berjaya dikesan dan nanobiosensor berjaya dibangunkan.

ACKNOWLEDGEMENTS

To complete this project, many people had helped and inspired me. I have received a lot of support from each of them.

First and foremost, I would like to express my gratitude to my supervisor, NAJMIAH RADIAH BINTI MOHAMAD for her precious guidance, words of wisdom and patient throughout this project.

I am also my fellow colleague and housemates for the willingness of assisting me regarding the project. They are never relentless to share their knowledge, information, and experience with me.

My highest appreciation goes to my parents, and family members for their love and prayer during the period of my study.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

An honorable mention also goes to both of my long-time friends for brainstorming together to form this project idea.

TABLE OF CONTENT

APPROVAL	
DECLARATION	
DEDICATION	
ABSTRACT	i
ABSTRAK	ii
ACKNOWLEDGEMENTS	iii
LIST OF TABLES	iv
LIST OF FIGURES	v
LIST OF SYMBOLS	vi
LIST OF ABBREVIATIONS	vii
LIST OF APPENDICES	viii
CHAPTER 1INTRODUCTION1.1Background1.2Problem Statement1.3Project Objective	1 1 1 2
1.4 Scope of Project	2
CHAPTER 2LITERATURE REVIEW2.1Introduction to Glucose Biosensor2.2Non-Enzymatic Electrochemical Glucose Sensors2.3Three Generation Glucose Biosensor2.3.1First Generation Glucose Biosensors2.3.2Second Generation Glucose Biosensors2.3.2Letest Comparison Glucose Biosensors	4 4 5 6 8 8
 2.3.5 Latest Generation Officese Biosensors 2.4 Construction of Electrochemical Cells for Glucose Biosensors 2.4.1 Immobilization Of Enzymes On Sensing Electrodes 2.4.2 The Determination of Enzymatic Activity Error! Bookmark 2.4.3 The Integration of Electrochemical Cells of Biosensors 	9 9 10 not defined.
 2.4.5 The integration of Electrochemical Cens of Biosensors 2.5 Electrodeposition 2.6 Characteristics 2.7 Previous Recent Projects 2.8 Summary 	14 15 17 25 36
CHAPTER 3METHODOLOGY3.1List Of Equipments3.1.1Potentiostat	37 37 38

3.1.2	NOVA 2.0 – Advance Electrochemistry Software	39
3.1.3 (Carbon plate	40
3.1.4	Aluminium plate	41
3.1.5 (Copper plate	42
3.1.6 \$	Stainless steel plate	43
3171	Hand notcher	43
3181	Foot shear	44
3191	Bandsaw machine	44
3.1.71	Glucose biosensor fabrication	 /15
2.2	Different Material Process For Electrode	
5.5	2.2.1 Copper Disto	47
	2.2.2 Aluminium Disto	47
	2.2.2 Stainlass Steel Diete	49
	2.2.4 Carbon plate	51
2.4	5.5.4 Carbon plate	51
3.4	Electrode coating inti PPY/MWCNT	53
	3.4.1 MWCN1 Solution Process	53
	3.4.2 Sonication Process	54
	3.4.3 Stirring And Electrodepositon Ppy/MWCNT Process	55
3.5	Cyclic Voltammetry on PBS (Phosphate Buffered Saline) process	56
	3.5.1 Putting PBS (Phosphate Buffered Saline) on Deionized Water	56
	3.5.2 Electrodeposition of PBS	57
3.6	X-RAY DIFFRACTION MACHINE (XRD)	58
3.7	SCANNING ELECTRON MICROSCOPE (SEM)	59
3.8	FOURIER TRANSFORM INFRARED SPECTROSCOPY	60
3.9	Mixing PBS (Phosphate Buffered Saline) With Glucose	61
		()
	PIER4 MAN RESULTS	63
4.1	Introduction	63
4.2	Results and Analysis	63
4.3	Electrode Process Results	66
	4.3.1 Aluminium Plate	66
	4.3.2 UStainless Steel Plate MIRAL MALAT JIA MELARA	66
		67
	4.3.3 Carbon Plate	
	4.3.3Carbon Plate4.3.4Copper Plate	67
4.4	4.3.3 Carbon Plate4.3.4 Copper PlateElectrode Coating Results	67 68
4.4	 4.3.3 Carbon Plate 4.3.4 Copper Plate Electrode Coating Results 4.4.1 Electrode Coating Results In Ppy/MWCNT 	67 68 68
4.4	 4.3.3 Carbon Plate 4.3.4 Copper Plate Electrode Coating Results 4.4.1 Electrode Coating Results In Ppy/MWCNT 4.4.2 Electrode Coating Results In PBS 	67 68 68 69
4.4 4.5	 4.3.3 Carbon Plate 4.3.4 Copper Plate Electrode Coating Results 4.4.1 Electrode Coating Results In Ppy/MWCNT 4.4.2 Electrode Coating Results In PBS Electrode Coating Results On SEM 	67 68 68 69 71
4.4 4.5	 4.3.3 Carbon Plate 4.3.4 Copper Plate Electrode Coating Results 4.4.1 Electrode Coating Results In Ppy/MWCNT 4.4.2 Electrode Coating Results In PBS Electrode Coating Results On SEM 4.5.1 Carbon 	67 68 68 69 71 71
4.4 4.5	 4.3.3 Carbon Plate 4.3.4 Copper Plate Electrode Coating Results 4.4.1 Electrode Coating Results In Ppy/MWCNT 4.4.2 Electrode Coating Results In PBS Electrode Coating Results On SEM 4.5.1 Carbon 4.5.2 Copper 	67 68 68 69 71 71 73
4.4 4.5	 4.3.3 Carbon Plate 4.3.4 Copper Plate Electrode Coating Results 4.4.1 Electrode Coating Results In Ppy/MWCNT 4.4.2 Electrode Coating Results In PBS Electrode Coating Results On SEM 4.5.1 Carbon 4.5.2 Copper 4.5.3 Aluminium 	67 68 69 71 71 73 75
4.44.54.6	 4.3.3 Carbon Plate 4.3.4 Copper Plate Electrode Coating Results 4.4.1 Electrode Coating Results In Ppy/MWCNT 4.4.2 Electrode Coating Results In PBS Electrode Coating Results On SEM 4.5.1 Carbon 4.5.2 Copper 4.5.3 Aluminium Electrodes Coating Results on XRD 	67 68 68 69 71 71 71 73 75 77
4.44.54.6	 4.3.3 Carbon Plate 4.3.4 Copper Plate Electrode Coating Results 4.4.1 Electrode Coating Results In Ppy/MWCNT 4.4.2 Electrode Coating Results In PBS Electrode Coating Results On SEM 4.5.1 Carbon 4.5.2 Copper 4.5.3 Aluminium Electrodes Coating Results on XRD 4.6.1 Stainless Steel + Ppy/MWCNT (5 minutes) 	67 68 68 69 71 71 73 75 77 77
4.44.54.6	 4.3.3 Carbon Plate 4.3.4 Copper Plate Electrode Coating Results 4.4.1 Electrode Coating Results In Ppy/MWCNT 4.4.2 Electrode Coating Results In PBS Electrode Coating Results On SEM 4.5.1 Carbon 4.5.2 Copper 4.5.3 Aluminium Electrodes Coating Results on XRD 4.6.1 Stainless Steel + Ppy/MWCNT (5 minutes) 4.6.2 Carbon + Ppy/MWCNT (5 minutes) 	67 68 69 71 71 73 75 77 77 77
4.44.54.6	 4.3.3 Carbon Plate 4.3.4 Copper Plate Electrode Coating Results 4.4.1 Electrode Coating Results In Ppy/MWCNT 4.4.2 Electrode Coating Results In PBS Electrode Coating Results On SEM 4.5.1 Carbon 4.5.2 Copper 4.5.3 Aluminium Electrodes Coating Results on XRD 4.6.1 Stainless Steel + Ppy/MWCNT (5 minutes) 4.6.2 Carbon + Ppy/MWCNT (5 minutes) 4.6.3 Aluminum + Ppy/MWCNT (5 minutes) 	67 68 69 71 71 73 75 77 77 77 78 79
4.44.54.64.7	 4.3.3 Carbon Plate 4.3.4 Copper Plate Electrode Coating Results 4.4.1 Electrode Coating Results In Ppy/MWCNT 4.4.2 Electrode Coating Results In PBS Electrode Coating Results On SEM 4.5.1 Carbon 4.5.2 Copper 4.5.3 Aluminium Electrodes Coating Results on XRD 4.6.1 Stainless Steel + Ppy/MWCNT (5 minutes) 4.6.2 Carbon + Ppy/MWCNT (5 minutes) 4.6.3 Aluminum + Ppy/MWCNT (5 minutes) Electrodes Coating Results on FTIR 	67 68 69 71 71 73 75 77 77 77 78 79 80
 4.4 4.5 4.6 4.7 4.8 	 4.3.3 Carbon Plate 4.3.4 Copper Plate Electrode Coating Results 4.4.1 Electrode Coating Results In Ppy/MWCNT 4.4.2 Electrode Coating Results In PBS Electrode Coating Results On SEM 4.5.1 Carbon 4.5.2 Copper 4.5.3 Aluminium Electrodes Coating Results on XRD 4.6.1 Stainless Steel + Ppy/MWCNT (5 minutes) 4.6.2 Carbon + Ppy/MWCNT (5 minutes) 4.6.3 Aluminum + Ppy/MWCNT (5 minutes) Electrodes Coating Results on FTIR Electrodes Coating Results In PBS And Glucose Solution 	67 68 69 71 71 73 75 77 77 78 79 80 83

СНА	APTER 5	CONCLUSIONS & RECOMMENDATIONS	84
5.1	Conclusions		82
5.2	Future Works		82
5.3	Project Potentia	1	83
REF	ERENCES		86

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1	Examples of Nanomaterials	10-12
Table 2.2	Previous Projects	16-26
Table 3.1	List of Equipments	23

LIST OF FIGURES

FIGURE TITLE PAGE

Figure 2.1	The number of publications about glucose sensors	3
Figure 2.2	Summary of Enzymatic Glucose	6
Figure 2.3	Procedure of Immobilzation of GOx	9
Figure 2.4	A commercial strip for self-testing blood glucose	15
Figure 2.5	Schematic of a scanning electron microscope	18
Figure 2.6	Schematic of electron beam interaction.	19
Figure 2.7	Optical microscope image of nanofibers	19
Figure 2.8	Scanning elecmicroscope image at 4000x magnification	20
Figure 2.9	A schematic of a generic Michelson interferometer.	21
Figure 2.10	Overlay of the FTIR spectrum	21
Figure 2.11	Bragg's Law reflection	23
Figure 2.12	Figure X-ray diffraction plots of cubic silicon carbide	24
Figure 3.1	UPotentiostatITI TEKNIKAL MALAYSIA MELAKA	38
Figure 3.2	Comsol Multiphysics software	39
Figure 3.3	Carbon plate	40
Figure 3.4	Aluminium plate	41
Figure 3.5	Copper plate	42
Figure 3.6	Stainless steel plate	43
Figure 3.7	Hand notcher	43
Figure 3.8	Foot shear	44
Figure 3.9	Bandsaw Machine	44
Figure 3.10	Flow chart of glucose biosensor fabrication	46

Figure 3.11	Cutting of the copper plate using Hand Notcher	47
Figure 3.12	Copper plate that has been cutted using foot shear	47
Figure 3.13	Copper plate that has been cut their width of the copper is 2cm.	48
Figure 3.14	Cutting process of the aluminium plate using Bandsaw machine	49
Figure 3.15	Removing rusty part of the Aluminium plate	49
Figure 3.16	Marked the stainless steel	50
Figure 3.17	Cutting process of marked Stainless Steel plate	50
Figure 3.18	Marked the Carbon plate	51
Figure 3.19	Cutting process of marked Carbon plate	52
Figure 3.20	Deionized Water	53
Figure 3.21	Multi-walled Carbon Nanotubes	53
Figure 3.22	Measuring SDBS	53
Figure 3.23	Measuring MWCNT	53
Figure 3.24	Inserting SDBS and MWCNT into Deionized Water	54
Figure 3.25	Sonicating the MWCNT solution for 4	54
Figure 3.26	اونيوم سيني تيڪنيڪل مليسPolypyrrole	55
Figure 3.27	Putting Polypyrrole into MWCNT solution	55
Figure 3.28	Stir the PPY/MWCNTM solution using Magnetic Stirrer	55
Figure 3.29	Electrodeposition process PPY/MWCNTM solution on electrode	56
Figure 3.30	PBS (Phosphate Buffered Saline)	56
Figure 3.31	Deionized Water	56
Figure 3.32	Inserting PBS into 100 ml Deionized Water	57
Figure 3.33	Electrodeposition process PBS on electrode	57
Figure 3.34	XRD Machine	58
Figure 3.35	Sample delivering for XRD machine	58
Figure 3.36	SEM Machine	59

Figure 3.37	Sample delivering for SEM checking.	59
Figure 3.38	XRD Machine	60
Figure 3.39	Sample delivering for FTIR checking	60
Figure 3.40	Glucose	61
Figure 3.41	Glucose Measurement	61
Figure 4.1	Setting parameters input for scan rate 50mV	62
Figure 4.2	Setting parameters input for scan rate 100Mv	63
Figure 4.3	Cyclic voltammetry output graph for 50 mV	63
Figure 4.4	Cyclic voltammetry output readings for 50 mV	64
Figure 4.5	Cyclic voltammetry output graph for 100 mV	64
Figure 4.6	Cyclic voltammetry output readings for 100mV	64
Figure 4.7	Aluminuim plate after been cut	65
Figure 4.8	Stainless steel after been cut	65
Figure 4.9	Carbon plate after been cut	66
Figure 4.10	Copper plate after been cut	66
Figure 4.11	Chronoamperomtery on different material at 1 minute	67
Figure 4.12	Chronoamperomtery on different material at 3 minutes	67
Figure 4.13	Chronoamperomtery on different material at minute	68
Figure 4.14	Chronoamperomtery on aluminium electrode	68
Figure 4.15	Chronoamperomtery on stainless steel electrode	69
Figure 4.16	Chronoamperomtery on carbon electrode	69
Figure 4.17	SEM image for carbon elecctrode at micrometer	70
Figure 4.18	Aluminuim plate after cut	71
Figure 4.19	SEM properties on carbon electrode	71
Figure 4.20	SEM image for copper electrode at micrometer	72
Figure 4.21	SEM peak points for copper electrode	72

Figure 4.22	SEM properties on carbon electrode	73
Figure 4.23	SEM image for aluminium electrode at micrometer	74
Figure 4.24	SEM peak points for aluminium electrode	74
Figure 4.25	SEM properties on carbon electrode	75
Figure 4.26	XRD peak points on stainless steel electrode	76
Figure 4.27	XRD properties on stainless steel electrode	76
Figure 4.28	XRD peak points on carbon electrode	77
Figure 4.29	XRD properties on carbon electrode	77
Figure 4.30	XRD peak points on aluminium electrode	78
Figure 4.31	XRD properties on carbon electrode	78
Figure 4.32	FTIR data on copper electrode	79
Figure 4.33	FTIR data on carbon electrode	79
Figure 4.34	FTIR data on stainless steel electrode	80
Figure 4.34	FTIR data on aluminum electrode	80
Figure 4.35	FTIR data on aluminum electrode	80
Figure 4.36	Cyclic Voltammetry graph of 4 samples in PBS solution	81
Figure 4.37	Cyclic Voltammetry graph of 4 samples in PBS mix with glucose solution	81

LIST OF SYMBOLS

μM mM Micrometre -

Milimetre -

LIST OF ABBREVIATIONS

V	-	Voltage	
SPR	-	Surface Plasmon Resonanse	
FET	-	Field-Effect Biosensor	
AuNPs	-	Gold nanoparticles	
MOH	-	Oxidative Adsorbed Hydroxide	
QCM	-	Quartz Crystal Microbalance	
MHz	-	Megahertz	
ng/ml	-	Nanograms per Milliliter	
fg/ml	-	Femtogram per Molliliter	
pН	-	Potential of Hydrogen	
MoS_2	-	Molybdenum Disulphide	
EGFET	-	Extended Gate Field Effect Transistor	
PPy	-	Polypyrrole	
MBs	=	Magnetic Beads	
GO	1. St.	Graphene Oxide	
NiO	- E	Nickel Oxide	
LED	2-	Light-Emitting Diode	
MTM	P.	Multi-mode Thincore Multi-mode	
Ag NPs	- 41	Silver nanoparticle	
RuO2	451	Ruthenium(IV) oxide	
Т	2131	اويوم سيني بيڪيڪل مليسTime	
mV	_	Millivolt	
Μ	UNIV	Reductive Metal Adsorption ALAYSIA MELAKA	
FDTD	-	Finite-difference time-domain	
CO2	-	Carbon dioxide	
SEM	-	Scanning Electron Microscope	
XRD	-	X-ray diffraction	
FTIR	-	Fourier-transform infrared spectroscopy	
Cm	-	Centimeter	
XRD	-	X-ray diffraction	
GOx	-	Glucose Oxidation	

LIST OF APPENDICES

APPENDIX		TITLE	
Appendix A	Gantt Chart PSM 1		83
Appendix B	Gantt Chart PSM 2		84

CHAPTER 1

INTRODUCTION

1.1 Background

Biosensor research and development is becoming a hot issue since they are simple, rapid, low-cost, extremely sensitive, and selective. They enable improvements in point-ofcare applications like disease marker detection. Surface chemistry advances have opened up a slew of new possibilities for constructing target molecule identification systems. New transducers, as well as the downsizing and integration of high-throughput biosensors, areexpected to be developed as a result of nanofabrication advances.

1.2 Problem Statement

Biosensors were become used as experts in various fields especially in engineering and medicine, which need large number of trials to overcome the best result. The manufacture of biosensor need integrated laboratory with materials, structures and equipment and this insufficiency in the world. To avoid this problem, the simulation is designed by used of COMSOL Multiphysics software as tool to complete the design with approximate result [1].

The development of biosensors has a detection limit, a detection time, and specificity. When constructing biosensor systems, detection time poses important obstacles, such as selecting a suitable technology while retaining the maximum sensitivity and specificity.

Several techniques for glucose detection such as electrochemical and optical methods.

However, the process for enzyme immobilization of a glucose biosensor requires extra work, time and equipment to ensure covalent bonding occured and maintain the bioactivity during operation.

1.3 Project Objective

This project's major objective is to develop a nanoelectronic biosensor for glucose detection. The following below are the specific objectives:

- a) To fabricate PPY/MWCNT nanofilm by using chronoamperometry.
- b) To characterize Polypyrrole/MWCNT at nanofilm by using Fourier Transform Infrared Spectroscopy (FTiR), Scanning Electron Microscope (SEM), and X-Ray Diffraction (XRD).
- c) To analyze the relationship between voltage and current for different materials of electrodes.

1.4 Scope of Project

To avoid any ambiguity about the project's scope owing to various limits and constraints, the project's scope is stated as follows:

- a) Study the relationship between the voltage , current and the surface area by using cyclic voltammetry method.
- b) Design and simulate the experiment using software for simulation electrochemistry.
- c) Comparing the electrodes on which are is better at sensitivity for detecting glucose based on sensogram results.
- d) Electrodeposition and cyclic voltammetry is experimented by using AutoLAB potentiostat with NOVA 2.0 AutoLAB software.
- e) Using different types of electrode materials such as copper, carbon, aluminium and stainless steel.
- f) Using PBS and glucose solution for cyclic voltammetry process.

