

Faculty of Electrical and Electronic Engineering Technology

DEVELOPMENT OF DRONE DETECTION SYSTEM USING

ARDUINO FOR ENHANCE PRIVACY PURPOSE

MUHAMMAD ELWAN BIN MOHD ROSLAN

Bachelor of Electronics Engineering Technology (Telecommunications) with Honours

2023

DEVELOPMENT OF DRONE DETECTION SYSTEM USING ARDUINO FOR

ENHANCE PRIVACY PURPOSE

MUHAMMAD ELWAN BIN MOHD ROSLAN

A project report submitted

in partial fulfillment of the requirements for the degree of

Bachelor of Electronics Engineering Technology (Telecommunications) with Honours

Faculty of Electrical and Electronic Engineering Technology

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2023

DECLARATION

I declare that this project report entitled “Development of Drone Detection System Using

Arduino for Enhance Privacy Purpose” is the result of my own research except as cited in

the references. The project report has not been accepted for any degree and is not

concurrently submitted in candidature of any other degree.

Signature :

Student Name : Muhammad Elwan Bin Mohd Roslan

Date :

27 JANUARY 2023

APPROVAL

I approve that this Bachelor Degree Project 1 (PSM1) report entitled “Project Title” is

sufficient for submission.

Signature :

Supervisor Name :

Date :

DR. A K M ZAKIR HOSSAIN

27.01.2022

APPROVAL

I hereby declare that I have checked this project report and in my opinion, this project report

is adequate in terms of scope and quality for the award of the degree of Bachelor of

Electronics Engineering Technology (Telecommunications) with Honours.

Signature :

Supervisor Name :

Date :

Signature :

Co-Supervisor

Name (if any)

:

Date :

DEDICATION

To my beloved mother, Salbiah Binti Nasir

and

To my dearest siblings Irfan, Aiman, Iman and Ain.

i

ABSTRACT

Today, we continue to see significant increases in the use of robots (airborne or non-

airborne) in various aspects of our lives. Drones are common examples of unmanned

airborne robots. Drones are not only used for military purposes; they are also used in the

civilian sector. Some of these applications include logistical operations, reconnaissance,

search-and-rescue, disaster assessment, and others. The Federal Aviation Administration

(FAA) reports that over 1.5 million drones are registered in the United States. Twenty-eight

percent of these registered drones are used for commercial purposes, while the rest are

purchased for recreational purposes. Because there are numerous benign applications for

drones and no strict regulations on who can buy and operate a drone, there is also an increase

in safety and security concerns. The use of a drone to infiltrate a secured or restricted area is

a common security concern. Extremist or terrorist groups can also use drones to deliver

explosive payloads or chemicals to a specific location, putting public safety at risk. Radar

has been widely used in the detection of drones and small aircraft. However, there are some

restrictions. Radar, for example, cannot tell the difference between birds and drones. Several

other detection methods, based on sensing mechanisms such as sound, video, thermal, and

radio frequency, have been used in DDI systems (RF). There are various tradeoffs when

using any of these approaches, and these tradeoffs influence system performance. Weather

conditions can have a significant impact on the thermal approach. When there is a lot of

noise around, the effectiveness and efficiency of a sound detection system suffers. Similarly,

low light visibility and coverage are disadvantages for using video detection mechanisms.

ii

ABSTRAK

Hari ini, kita terus melihat peningkatan ketara dalam penggunaan robot (bawaan udara atau

bukan udara) dalam pelbagai aspek kehidupan kita. Dron adalah contoh biasa robot bawaan

udara tanpa pemandu. Drone bukan sahaja digunakan untuk tujuan ketenteraan; ia juga

digunakan dalam sektor awam. Beberapa aplikasi ini termasuk operasi logistik, peninjauan,

mencari dan menyelamat, penilaian bencana dan lain-lain. Pentadbiran Penerbangan

Persekutuan (FAA) melaporkan bahawa lebih 1.5 juta dron didaftarkan di Amerika Syarikat.

Dua puluh lapan peratus daripada dron berdaftar ini digunakan untuk tujuan komersial,

manakala selebihnya dibeli untuk tujuan rekreasi. Oleh kerana terdapat banyak aplikasi jinak

untuk dron dan tiada peraturan ketat tentang siapa yang boleh membeli dan mengendalikan

dron, terdapat juga peningkatan dalam kebimbangan keselamatan dan keselamatan.

Penggunaan dron untuk menyusup ke kawasan yang selamat atau terhad adalah

kebimbangan keselamatan yang biasa. Kumpulan pelampau atau pengganas juga boleh

menggunakan dron untuk menghantar muatan bahan letupan atau bahan kimia ke lokasi

tertentu, meletakkan keselamatan awam pada risiko. Radar telah digunakan secara meluas

dalam pengesanan dron dan pesawat kecil. Walau bagaimanapun, terdapat beberapa sekatan.

Radar, sebagai contoh, tidak dapat membezakan antara burung dan dron. Beberapa kaedah

pengesanan lain, berdasarkan mekanisme penderiaan seperti bunyi, video, terma dan

frekuensi radio, telah digunakan dalam sistem DDI (RF). Terdapat pelbagai pertukaran

apabila menggunakan mana-mana pendekatan ini, dan pertukaran ini mempengaruhi prestasi

sistem. Keadaan cuaca boleh memberi kesan yang ketara ke atas pendekatan terma. Apabila

terdapat banyak bunyi di sekeliling, keberkesanan dan kecekapan sistem pengesanan bunyi

terjejas. Begitu juga, keterlihatan dan liputan cahaya rendah adalah kelemahan untuk

menggunakan mekanisme pengesanan video.

iii

ACKNOWLEDGEMENTS

First and foremost, I would like to express my gratitude to my supervisor, Dr. AKM

Zakir Hossain for his precious guidance, words of wisdom, and patience throughout this

project.

I am also indebted to Universiti Teknikal Malaysia Melaka (UTeM) for the financial

support through the Faculty of Electrical and Electronic Engineering Technology which

enables me to accomplish the project. Not forgetting my fellow colleagues, for their

willingness of sharing their thoughts and ideas regarding the project.

My highest appreciation goes to my parents and family members for their love and

prayer during the period of my study. An honorable mention also goes to my mother Salbiah

Binti Nasir for all her motivation and understanding.

Finally, I would like to thank all the staff at the Faculty of Electrical and Electronic

Engineering Technology, fellow colleagues and classmates, the Faculty members, as well as

other individuals who are not listed here for being cooperative and helpful.

i

TABLE OF CONTENTS

PAGE

DECLARATION

APPROVAL

DEDICATIONS

ABSTRACT i

ABSTRAK ii

ACKNOWLEDGEMENTS iii

TABLE OF CONTENTS i

LIST OF TABLES iv

LIST OF FIGURES v

LIST OF SYMBOLS vi

LIST OF ABBREVIATIONS vii

LIST OF APPENDICES viii

 INTRODUCTION 9
1.1 Background 9

1.2 Problem Statement 10
1.3 Project Objective 11

1.4 Scope of Project 12

 LITERATURE REVIEW 13

2.1 Introduction 13

2.2 Introduction to Drone detection System 14
2.3 Methods of Drone Detection 14

2.3.1 Video-Based Detection 15
2.3.2 Sound-Based Detection 15
2.3.3 Radar-Based Detection 15

2.3.4 Radio Frequency Detection 16
2.3.5 Wi-Fi-Based Detection 17

2.4 Drone Monitoring Equipment 18
2.4.1 Radio Frequency (RF) Analyzers 18
2.4.2 Acoustic Sensors (Microphones) 18

2.4.3 Optical Sensors (Cameras) 19
2.4.4 Radar 19

2.5 Drone Countermeasures Equipment 20
2.5.1 RF Jammers 20

ii

2.5.2 GPS Spoofers 20
2.5.3 High Power Microwave (HPM) Device 20

2.5.4 Nets & Guns 21
2.5.5 High-Energy Laser 21
2.5.6 Birds of Prey 21

2.6 Camera Tracking 22
2.6.1 Single-View Tracking 22

2.6.2 Multi-View Tracking 22
2.6.3 Multi-view 3D reconstruction 23
2.6.4 Constrained Bundle Adjustment 23

2.7 Previous Project Research 23
2.7.1 Detecting Drone Attacks Using Wi-fi 23
2.7.2 Video with a Static Background 25
2.7.3 Deep Learning Techniques 26
2.7.4 UAV Trajectory Based On Flight Dynamics 28

2.8 Comparison of Previous Research Paper 30
2.9 Summary 32

 METHODOLOGY 33

3.1 Introduction 33
3.2 Study Design 33

3.3 Flowchart Explanation 35

3.4 Hardware specification 36

3.4.1 Arduino microcontroller 36
3.4.2 RF analyser 37

3.4.3 Camera 38
3.4.4 Battery 38
3.4.5 Buzzer 39

3.4.6 LCD Display 39
3.5 Software Application 40

3.5.1 Arduino IDE 40
3.5.2 Telegram 40

3.6 Block Diagram 41

3.7 Circuit Diagram 42

3.8 Summary 42

 RESULTS AND DISCUSSIONS 44
4.1 Introduction 44
4.2 Software Development 44

4.3 Interface Of The System 44
4.4 Hardware development 45
4.5 Analysis Of The System 47

4.5.1 Analysis On The Distance of Detection Using Power of 5V 2A 47
4.5.2 Analysis On The Distance of Detection Using Power of 11V 3A 48

4.5.3 Analysis On The Time Delay Vs Distance Using Power of 5V 2A 49
4.5.4 Analysis On The Time Delay Vs Distance Using Power of 11V 3A 50

4.6 Summary 50

 CONCLUSION AND RECOMMENDATIONS 51

iii

5.1 Conclusion 51
5.2 Future Works 51

REFERENCES 52

APPENDICES 55

iv

LIST OF TABLES

TABLE TITLE PAGE

Table 2.1 Comparison of Methods of Detection 18

Table 2.2 Journals Comparison 32

Table 3.1 Flowchart Of The System 35

Table 4.1 Data of the Detection Using Power of 5V 2A 47

Table 4.2 Data on The Distance of Detection Using Power of 11V 3A 49

Table 4.3 Data On The Time Delay Vs Distance Using Power of 5V 2A 50

Table 4.4 Data On The Time Delay Vs Distance Using Power of 11V 3A 50

v

LIST OF FIGURES

FIGURE TITLE PAGE

Figure 2.1 Drone Monitoring Equipment 19

Figure 2.2 Drone Countermeasures Equipment 22

Figure 3.1 Flowchart of Project 34

Figure 3.2 Arduino UNO 37

Figure 3.3 nRF24L01 RF Analyser 37

Figure 3.4 ESP32-CAM 38

Figure 3.5 Lipo SM connector battery LJ 501855 7.4v 1400mah 39

Figure 3.6 Buzzer 39

Figure 3.7 LCD Display 16x2 40

Figure 3.8 Block Diagram of the System 41

Figure 3.9 Circuit Diagram 42

Figure 4.1 Telegram Bot 45

Figure 4.2 Base Station 46

Figure 4.3 Hardware on Drone 46

Figure 4.4 Distance of the Testing Area 48

Figure 4.5 Distance of the Testing Area 100m 49

vi

LIST OF SYMBOLS

𝑚 - meter

s - seconds

vii

LIST OF ABBREVIATIONS

𝑈𝐴𝑉 - unmanned aerial vehicle
RF - radio frequency

GPS - global positioning system

DOA - direction of arrival

RCS - radar cross-section

FMCW - frequency-modulated continuous-wave

MIMO - multiple-input multiple-output

MDR - motion detection radar

SDR - Software-defined radio

FPV - First-Person View

OUI - Organizationally Unique Identifier

3D - Three dimentional

COTS - commercially available off-the-shelf

LOS - line of sight

FOV - field of view

NLOS - non-line of sight

RSS - received signal strength

LBP - local binary pattern

DPM - deformable parts model

GFD - generic Fourier descriptor

SIFT - scale-invariant feature transform

HOG - histogram of oriented gradients

SSD - single shot detector

YOLO - you only look once

KCF - kernelized correlation filter

CNN - convolutional neural network

CRNN - Convolutional Recurrent Neural Network

RNN - Recurrent Neural Network

GAN - Generative Adversarial Network

DSP - digital signal processing

SVM - Support Vector Machine

PIL - Plotted Image Learning

K-NN - K-Nearest Neighbour

SfM - structure from the motion

BA - bundle adjustment

GMM - Gaussian Mixture Models

KF - Kalman Filter
GSM - Global System for Mobiles

viii

LIST OF APPENDICES

APPENDIX TITLE PAGE

Appendix A Coding for transmitter 55

Appendix B Coding for receiver 55

Appendix C Coding For ArduinoJson Library 57

Appendix D Coding for creating telegram Bot 57

Appendix E Coding For Importing Library 76

Appendix F Coding For ESP32-CAM Initialization 79

Appendix G Gant Chart for PSM 1 104

Appendix H Gant Chart for PSM 2 105

9

INTRODUCTION

1.1 Background

Over the past few years, we have seen drones have become very popular among all ages of

people. We can see them being sold in all kinds of places whether it is a department stores, online,

or even at the convenience store. Nowadays, it came at all sizes and prices. You can get a drone

that has the same size as an apple and with a price that everyone can afford. The drone also can be

referred to as an unmanned aerial vehicle (UAV). A drone is a flying robot that may be commanded

remotely or fly autonomously by using a radio frequency (RF) controller or software-controlled

flight plans that connect with onboard sensors and a global positioning system (GPS)[1]. A drone

most commonly refers to a multirotor, which has three or more propellers and may hover or fly in

any direction. A quadcopter is the most common type, with four propellers[2]. Drones have so many

cool features that make them so popular. Many drones include cameras that allow you to observe

the world through the eyes of the drone. You may also make videos with the camera to share your

flying experiences with others. A flight controller is embedded into every drone to keep it stable. If

it tips over due to a gust of wind, the flight controller will immediately alter the propeller speeds to

level it out[3]. This makes learning to fly easier for novices. A full-sized airplane or helicopter was

formerly necessary for aerial flight. Drones can now perform many of the same tasks at a fraction

of the cost. Drones require a power source, such as a battery or fuel, to fly. Rotors, propellers, and

a frame are all included. To save weight and improve manoeuvrability, drone frames are often

composed of lightweight composite materials[4]. Drones need a controller, which enables the user

10

to use remote controls to launch, navigate, and land the drone. Controllers communicate with the

drone via radio waves such as Wi-Fi.

1.2 Problem Statement

Drones that master the art of data collection efficiently are now part of the current

inspection standard[2]. UAV technology has prompted various businesses to adopt new methods.

However, all of the benefits come with a few drawbacks. Even while Drones strive toward

perfection, they aren't perfect. When a new technology is introduced, some new problems will come

with it. The most common problem that everyone has with a drone is a breach of privacy[5]. Drones

give users the ability to position a flying camera practically anywhere they choose, including on

other people or property. Even though there are rules governing where drones can fly, some users

disregard them. The drone is easily manipulated and can invade the privacy of a group or individual.

While many people want to use drones to keep themselves safe, doing so could violate a variety of

individual liberties for the sake of public safety[2]. Drones are frequently used by criminals to target

their victims and keep track of them[6]. The loud propeller noises are no longer a problem because

they are unnoticed, allowing attackers to breach someone's privacy. Many drones equipped with

thermal and night sensors detect vital signs and efficiently target people the spy is now interested

in[7]. Because UAVs can collect reliable data, they can track routine habits and detect suspicious

activity without requiring authorization.

Unmanned Aircraft Systems (UAS) are already widely used, yet because it is a new

technology in the market, the legislation is continually evolving[8]. Specific rules for small drones

apply to commercial and recreational users as well but are still ambiguous in various ways. Drone

movement regulation and property protection from airborne trespassing are still

11

in the works, therefore UAV technology operates in a legal grey area. There are several

conflicts between federal standards and any state or local laws governing aerial property rights,

which can lead to drone pilots breaking statutes they are unaware of[9]. Drones' rapid acceptance

over the last decade has aroused privacy, security, and safety concerns. Drones are used by

voyageurs and paparazzi to photograph people in their homes and other formerly private locales.

Drones are often employed in dangerous regions like cities and near airports[3]. Increased

commercial and personal drone use has raised the risk of mid-air crashes and drone control loss.

Concerns about drones flying too close to commercial planes have led to calls for regulation. UAV

rules have been created in many nations. Laws are constantly changing as drone use becomes more

widespread[8]. Drone pilots, both personal and commercial, must familiarise themselves with the

rules of the country and region in which they are flying the devices. Drones pose a threat to large

planes and helicopters, and they can obstruct firefighting and rescue efforts. Wildfires have grown

deeper in certain cases because a drone hovered nearby, preventing firefighting planes and

helicopters from reaching the blaze. So it has become part of airspace issues.

1.3 Project Objective

The primary goal of this research is to present a functional and methodical progress

approach. The following are the specific objectives:

a) To design and simulate an efficient system for detecting drones.

b) To fabricate the proposed prototype for detecting drones.

c) To benchmark and compare the result with the current trend and industry.

12

1.4 Scope of Project

For this project, the scope is to design a system that can be used in detecting the unknown

drone and prevent it from trespassing the private property. The way that the drone can be detected

is by using the radio frequency (RF) signal of the drone. A camera also will be used to feed the live

footage of the intruder. Both the inputs that are being used will be controlled by Arduino which can

also be the brain of this system. The range of frequency of the signal that can be detected is around

2.4GHz and the distance is around 100 meters.

13

LITERATURE REVIEW

2.1 Introduction

Small unmanned aerial vehicles (UAV) or drones have become increasingly popular

nowadays. People are using drones for recreational use or as a hobby[10]. There is also a company

that replaces their staff with drones such as food delivery. Drones are becoming a necessity in our

daily lives. However, as technology improves, it becomes easier to spy on people in otherwise

private places, such as a person's home, posing a greater risk to privacy[10]. Anybody nowadays

can buy a drone and fly it over someone’s fences without having difficulty climbing over the fence

to get the inside view. The best solution for this situation is to equip ourselves with something that

can detect and counter the personal drones that invade our private property[10]. Unfortunately, the

existing product of drone detection systems are inaccessible to the general public because they

require specialized equipment and costly deployment procedures.

The creation of an automatic drone detection system has become necessary in every home

to have[6]. But the market for drone detection only targeting the industrial uses or bigger, that can

cover a large area, so the product they offer are not affordable for civilian[10]. The manufacturer

of this drone detector comes in many types of sensors implements inside the system depending on

the needs of the users, so that it can become more flexible based on the situation of the area they

are implementing it on[8]. But for the use of household properties they doesn’t need so many types

of sensors just one or two and also it only need to cover a small space enough to cover their house

and yard.

14

In this report, I am going to present a type of drone detection that doesn’t require a

complicated setup to configure and only cost less than the industrial kind of product. The hardware

and equipment we will be using are also off the shelves equipment and component. This system

will only detect the drone that invade the privacy of home owner but also include the way to counter

the intruder drone. Drones may carry out operations using a variety of technologies[6]. As a result,

drone detection systems must be comprehensive enough to detect any type of drone. Current

technologies, on the other hand, usually fail to recognise the many types of drones with harmful

missions[8]. But in this system, it will detect all types of drones but it will leave the decision whether

the drone are malicious or safe on the user hands.

2.2 Introduction to Drone detection System

The purpose of distribution feeder (cable or line) is to provide path for energy flow from

GSS all the way to the distribution customer. Traditional distribution feeders (without DER) are

usually operated in radial configurations - the energy flows uni-directionally from the GSS to the

load. The feeders are typically categorized by its: (i) voltage level, (ii) conductor material, (iii)

conductor size (cross sectional area), (iv) insulation type and (v) no of phases. These feeders

scattered all over different supply zones. Hence, they are extensive and large in numbers.

2.3 Methods of Drone Detection

There are many ways to detect and track drone. There are five methods that are mostly

used by the drone detection manufacturer which is Video-based detection, sound- based detection,

radar-based detection, radio-based detection and Wi-fi based detection[14].

These five methods require their own types of sensors in order for the system to operate

and detecting the drone.

15

2.3.1 Video-Based Detection

Video-based detection relies on the graphical and electrical camera sensors to detect and

study the movable object and identify the objects in the monitored area[12]. The sensor can cover

up to 100 meter area of monitoring. A quiet environment can be achieved by using this kind of

detection method. The camera sensors that are being used in this system must able to characterized

object based on their colour, contour lines, shapes, and edges in order for the system to differentiate

the drone from the other things. This method require the complex monitoring algorithm that can

evaluate various elements over consecutive frames. The algorithm are required so that it can identify

and differentiate all the moving object that comes on the camera and it can automatically detect the

drone and not bird or other unnecessary object. This kind of camera sensor usually very sensitive

on the lighting condition and require to be place at the place that receive a suitable amount of

lighting in order for the sensor to operate successfully.

2.3.2 Sound-Based Detection

An acoustic camera is used as sensor in sound-based detection system based on its ability

to detect the sound and voice through the air[12]. There are many research and study that focussing

on identifying and detecting the sound that drone makes so that they can make an algorithm that

works against drones. The other way is to use direction of arrival (DOA) rating in order to track the

drone. The famous method is to use the emission sound of drone and detecting it using the acoustic

camera to distinguishing the difference from other things[7].

2.3.3 Radar-Based Detection

A broad radar cross-section (RCS) is used in a conventional radar-based detection system

that observe the small aircraft and flying objects[2]. The theory behind radar-based detection uses

electromagnetic principle of backscattering to detect drone[12]. However, as proven by the existing

16

literature, the majority of current drones are mechanical quadcopters with a low RCS. The

conventional radar detection depends strongly on the build materials and it has trouble detecting

the dielectric materials that have characteristic similar to the air[12]. That where the electronic

principle of backscattering comes in to cover the inconvenience from the previous types of radar[4].

Additionally, drones' scope, kind, range, and radial velocity were measured using frequency-

modulated continuous-wave (FMCW) radar. A multiple-input multiple-output (MIMO) were

introduced to create virtual components and can be used to determine the position of the drone

whether it stays within the range of angular cells[12]. This method is more mobile and motion

detection radar (MDR) usually comes with it onboard. Some researchers suggested a method that

can automatically identify and detect three types of drones in a laboratory environment. Lastly, a

radar that relies on the vision of computer to differentiate the drone from a bird are also used as a

way to detect a drone.

2.3.4 Radio Frequency Detection

The fact that all drones fly by using the RF signal to connect with the controller makes this

method can be used to detect drones. Drone networking protocols are usually carried by the same

radios that are used for Wi-Fi communications, particularly in the 2.4 and 5 GHz bands[12]. Drones

with cameras often transmit a video stream to their control system over the same wireless channel.

The RF sensor has a range of more than 400 meters

area of detection. It is one of the longest distances operational among all types of sensors

but it relies deeply on the transmission energy and response of the detector. Software-defined radio

(SDR) was introduced and by combining it with wireless acoustic sensors it can estimate the

direction and track the location of the drone[12]. A new portable universal radio minor that uses

SDR was introduced recently that can monitor the drone location and simulate the drone the

different situations.

17

2.3.5 Wi-Fi-Based Detection

Many operational drones are built and developed to be operated through Wi-Fi, allowing

experts to monitor the drone using their own smart devices. These systems frequently contain a

First-Person View (FPV) video capability, which allows the integrated camera to relay the stream

straight to the intelligent device monitor[12]. Few proposals in prior research have looked into

exploiting the Wi-Fi signal to detect the presence of illegal drones. The main idea is to use a Wi-Fi

channel network packet capture to capture drone power and video transfer packet streams. This

approach is used in drones that are designed to detect specific sorts of adjacent machinery.

However, these solutions are usually reliant on prior knowledge of the remotely controlled aircraft,

such as information about the Organizationally Unique Identifier (OUI) vendor that is used to

classify the sender/receiver of unique packets[12]. There is also some proposal about a model for

classifying drone positions in the monitored area based on the statistical fingerprints of Wi-Fi

traffic[12]. A conducted research on drone identification using Wi-Fi sniffing by statistically

analysing Wi-Fi traffic for drone fingerprints has been introduced. A power-saving system was

installed so that the system can detect and remove video streams from Wi-Fi-connected drones,

which might be a useful mitigation tool for privacy-conscious systems.

Methods Advantages Disadvantages

Video

• Can see info on the UAV

and any cargo it carries

immediately.

• Takes photos and videos

that could be used as proof

in the event of a

prosecution.

• Impractical for detection on

its own

• False reports are frequent.

• Hard to use in low-light, fog,

and or poor-visibility

situations

Sound
• very accurate in drone

detection

• very expensive equipment

• have a very complicated

algorithm for drone detection

18

Radar

• long range

• can handle multiple

targets simultaneously

• Visual conditions do not

limit their use

• can catch autonomous

drones

• required transmission licence

• Frequency checks are

required to prevent

interference

Radio

Frequency

• Capable of

simultaneously detecting,

identifying, and locating

several drones and their

handlers

• limited range

• In places where there is a

mix of radio frequencies, it is

less efficient.

Table 2.1 Comparison of Methods of Detection

2.4 Drone Monitoring Equipment

Drone monitoring equipment is often divided into four categories. This equipment is

basically the sensors that can be installed inside the detection method.

2.4.1 Radio Frequency (RF) Analyzers

One type of electromagnetic energy is radio frequency (RF). Undesired wireless signals

usually cause interference as a result of one or more variables influencing communication devices'

receiving systems, resulting in a deterioration in the required signal's requirements or the

information loss about the signal that is present if the signal disappears unexpectedly[12]. Any of

the following phenomena or acts can cause radio frequency interference.

2.4.2 Acoustic Sensors (Microphones)

Ultrasound waves that are higher in frequency than human-made sounds but lower than

20,000 Hz are captured by acoustic sensors (microphones). Acoustic sensors are used in a variety

of sectors including physics, chemistry, technology, and medicine[12].

19

2.4.3 Optical Sensors (Cameras)

Digital sensors, such as optical sensors (cameras), are a sort of digital sensors. Optical

sensors detect objects using light. Optical sensors detect the presence or absence of light using a

light detector (receiver) and a light source (transmitter)[12].

2.4.4 Radar

Radar is an electromagnetic sensor that is used to monitor, locate, and recognise things at

long distances. The size and shape of these objects may also be determined via radar. The

performance of radar equipment is dependent on the transmission of electromagnetic energy

towards certain targets and the monitoring of the echoes that return. Because radio waves can travel

longer distances and accomplish work even when the signal is weak, radar devices use them instead

of sound waves[10].

Figure 2.1 Drone Monitoring Equipment

Figure 2.1 Drone Monitoring Equipment

20

2.5 Drone Countermeasures Equipment

There are many kinds of drone countermeasures equipment in the market nowadays. There

are some that is passive which only tracking and monitoring and there are also which is active that

can send the signal out and analysing the response and perform a variety of tasks, including

detection, classification and identification, locating and tracking and alerting[6]. But the drone

countermeasures that we are about to show are all about countering and fighting back against the

unwanted drone. There are some technologies that we can obtain anywhere and there is also some

equipment that only military personnel has access to.

2.5.1 RF Jammers

Using RF frequency and GPS signal, the technology shoots down dangerous drones[12]. It

employs dual remote control, navigation signals, and control, preventing the malicious drone from

entering the defence zone, which is located outside the emergency landing zone.

2.5.2 GPS Spoofers

GPS spoofers are technologies that prohibit drones from getting signals from control

towers by jamming their GPS signals. They are sophisticated systems in which the jamming is

accomplished via GPS systems on the system layer, which transmit incorrect data[7].

2.5.3 High Power Microwave (HPM) Device

One of the new high-voltage applications, such as diodes, is this high-power device[12].

Large power sources demand the use of extremely high-quality equipment. High-power microwave

devices consistently perform their task when utilised for drone detection, allowing attacking drones

to be efficiently halted utilising non-kinetic neutralisation.

21

2.5.4 Nets & Guns

The net gun is a non-lethal weapon that fires projectiles from a network that obstructs and

foils target movement[2]. It's used to detect drones, to sway birds away from aircraft, and even save

wild birds. The net gun technology identifies drones and captures them physically, allowing for

better forensics and prosecution. They have a high mission success accuracy, a minimal danger of

collateral damage, and a large range for deployed

nets[12].

2.5.5 High-Energy Laser

UAV and drones take off from a safe distance are being developed by military forces all

over the world. The present armament systems, on the other hand, are huge and heavy and cannot

be mounted on motorised vehicles or combat planes[12]. This encouraged big defence industry

firms to investigate fibre laser weapons as a possible alternative.

2.5.6 Birds of Prey

Eagles and falcons are birds of prey recognised for their excellent vision and great speed,

as well as their fluid wings that allow them to fly quickly[3]. They have big bodies, sharp beaks,

and powerful claws that can crush prey.

22

Figure 2.2 Drone Countermeasures Equipment

2.6 Camera Tracking

2.6.1 Single-View Tracking

Most trackers have trouble monitoring small things like flying birds, and even with infrared

cameras, tracking many small targets is challenging. A recent study has attempted into creating

realistic sense-and-avoid programs for distance flying objects employing passive cameras that can

manage low-resolution pictures and movable cameras. These approaches, however, are unable to

retrieve precise 3D UAV trajectories[13].

2.6.2 Multi-View Tracking

Tracking objects in a 3D scene is substantially more reliable with synchronised passive

multi-camera setups[13]. They have traditionally been offered for comprehending human activities,

assessing sports scenes, and surveillance of indoor, outdoor, and traffic situations. These

approaches are rarely used to monitor small objects in a large 3D volume when the above

optimization methods are unfeasible.

23

2.6.3 Multi-view 3D reconstruction

While most existing solutions necessitate meticulous pre-calibration, several techniques

allow cameras to be calibrated on the fly. A researcher presented a method for simple linear or

conical object motion, which was later expanded to include curved and generic planar

trajectories[13]. For joint tracking and camera calibration, more recent approaches have taken

advantage of other geometric limitations. These approaches, however, necessitate precise feature

monitoring and matching among views and are ineffective for small objects.

2.6.4 Constrained Bundle Adjustment

In classic bundle adjustment, camera settings are modified alongside the 3D structure,

which is typically displayed as a 3D point cloud. Planarity, 3D symmetry, bound limits, and prior

knowledge of 3D shapes are examples of soft geometric constraints on 3D structures, which are

sometimes used to incorporate regularisation into bundle adjustment[13].

2.7 Previous Project Research

2.7.1 Detecting Drone Attacks Using Wi-fi

Here's how to make a drone detector out of commercially available off-the-shelf (COTS)

gear that targets homeowners as consumers[10]. Network fingerprints from the drone's Wi-Fi

connectivity can be used in some approaches. They must rely on an unencrypted connection

between the drone and the controller for this strategy to work, which is not the case with newer

models. They based their model based on three-phase of attack which is approach, surveillance, and

escape[10]. To carry out the attack, the attacker launches the drone from outside at launch distance

and then flies it to surveillance distance. The window has a motion detector fitted. The detector's

line of sight (LOS) is limited by the window's field of view (FOV)[10]. In the window, there is a

24

little Wi-Fi receiver. The receiver is set up to catch traffic in monitor mode, switching channels on

a regular basis to cover the full band. The detection part consists of three phases.

Pre-processing provides the stream of packets received for processing in the first phase.

Individual transmitters are next tested statistically to see if they are traveling and working in free

space. Unless the statistical checks pass, the attack analysis phase represents the current attack

phase and whether the drone has approached within close range. They are testing four kinds of

approach patterns to the window which are direct, zig-zag, back and forth, and non-line of sight

(NLOS)[10]. Raspberry Pi Model A15 was used as receivers and a Wi-Pi USB Wi-Fi adaptor was

added to received packets. The drone was equipped with a Raspberry Pi, which interacted with a

computer using the iPerf 217 benchmark program at a rate that was comparable to live footage (4

MB/s, 400 packets/s)[10]. And a 3D Robotics X8+ drone was used. Background communication

from the other Wi-Fi transmitters in the neighbourhood was used to calibrate the noise limit[10].

Finally, using the data from the studies, they began evaluating how effectively the metrics can

recognize a drone. They discovered that the detection of drones happens quicker than they expected.

A drone's initial movement takes off, but communication begins far earlier. This earlier

communication aids our detection since the received messages generate a beginning measurement

in each window, such that in many situations, the takes off alone is sufficient to raise the standard

deviation above the detection threshold[10]. As a result of the early identification, the user has

plenty of time to be alerted to a privacy violation and take precautionary measures. It also gives

you the option of just informing a user of nearby drone activity that isn't, or hasn't yet escalated

into, a privacy violation effort.

From their observation, as it becomes possible to see the drone firsthand while flying, the

operator's reliance on the drone's FPV live feed will grow. When executing a privacy assault on

one's own, the operator requires fast feedback to guarantee that the drone has a decent view of the

interior of the house, and it has proven easy to record detailed film of a window frame by

25

accident[10]. It would have been beneficial to investigate the influence of cross-traffic on detection

in order to truly comprehend the system's predicted effectiveness in an urban setting. The amount

of successfully recorded received signal strength (RSS) samples in a given period decreases as the

cross-traffic packet rate increases, and we would anticipate this to slow down recognition speed and

accuracy, albeit the exact behaviour is unknown[10]. Because this detection method relies solely

on RSS measurements, the equipment employed in this study is just one of many options. RSS is

supported by the vast majority of Wi-Fi hardware. This information is available thanks to data and

a large number of drivers. In short, their system can identify drones flying nearby and can provide

an alert when one approaches a window. Even for the greatest physical windows, detection occurs

at such a distance that an attacker will not have had time to perform comprehensive surveillance

before the alarm is raised. Only low-cost, readily available hardware was employed in their

implementation. Furthermore, the system is based on measures found in the vast majority of Wi-

Fi-capable equipment, allowing for a wide range of deployment options.

2.7.2 Video with a Static Background

Handcrafted feature-based approaches and deep learning-based algorithms are used to

detect drones using visual data[14]. Handcrafted feature-based approaches use classic descriptors

and are centred on traditional machine learning algorithms for example local binary pattern (LBP),

deformable parts model (DPM), generic Fourier descriptor (GFD), scale-invariant feature transform

(SIFT), and histogram of oriented gradients (HOG) that have low-level handcrafted characteristics

(colour information, drops, edges, and blobs) and classical classifiers (support vector machine

(SVM), AdaBoost)), the second group, on the other hand, uses two-stage learning to rely on learned

traits (Mask R-CNN, Fast R-CNN, Faster R-CNN, and region-based convolutional neural network

(R-CNN)) and single-stage (single shot detector (SSD), RetinaNet, and you only look once

(YOLO)) deep object detectors[14]. GFD vision-based features were developed for this method to

26

characterise the binary patterns (like silhouettes) of drones and birds which are insensitive to

rotation and translation alterations. Using the deep learning technology, a real-time drone detector

are created. Because developing a successful detector necessitates a large number of training

images, the scientists first created a semi-automatic dataset using a KCF (kernelized correlation

filter) tracker rather than hand labelling[14]. The KCF tracker-based semi- automatic approach of

labelling datasets sped up the process of preparing the training images. Deep learning-based

detectors have produced the best results in drone detection. This is demonstrated by the fact that

most studies on drone detection have depended on CNNs to solve the problem in part or

entirely[14].

Drone-vs.-Bird Challenge is the challenge's main goal is to identify and differentiate drones

from birds in brief films captured by a static camera from a great distance. A researcher tested the

Faster R-CNN object detector with several CNN backbones to identify flying objects. Real

photographs of drones and birds were removed from their surroundings and mixed with frames

from coastal region films to produce a fake dataset[14]. The authors concentrated their research on

detecting drones in real-time against a static background. A background subtraction method was

used to create the motion detector. This module's outputs are all of the scene's moving objects.

Drones are distinguished from other objects moving by placing all observed objects into a

classifier[14]. The classifier is a CNN that was trained on the dataset of birds, drone, and

background photos that we gathered.

2.7.3 Deep Learning Techniques

The goal of this study is to address the shortcomings of drone detection methods by

developing an autonomous system that, in addition to recognizing drones, can also distinguish them

depending on their acoustic signatures that use distinctive deep learning methods such as the

Recurrent Neural Network (RNN), Convolutional Recurrent Neural Network (CRNN), and

27

Convolutional Neural Network (CNN), all without the need for human interference[5]. However,

there are two issues. The first is a shortage of big acoustic drone datasets, that are required to

adequately train deep learning algorithms. The second is that most drone databases only include a

few different types of drones. As a result, failing to include all types and models of drones accessible

degrades the detection process and exposes it to new drone types. To solve these challenges, we

use the Generative Adversarial Network (GAN), a cutting-edge deep learning method for

generating artificial data, to construct a huge artificial drone acoustic dataset with the goal of

enhancing the presence of drone recognition[5].

Analyze the efficiency of the chosen deep learning algorithms in drone identification and

detection using specified assessment methods such as F1 score, recall, accuracy, and F1 score, as

well as the computational time necessary to develop and test the proposed models[5]. The first is

to compare the reliability and effectiveness of merging an artificially induced dataset with an actual

drone audio dataset in improving drone identification. The next step is to make an open-source

drone audio collection comprising both recorded and generated drone audio available to academic

researchers in order to address the lack of drone training samples for deep learning models.

Here also has conducted research and developed a new way of detecting the presence of

drones in a region using digital signal processing (DSP). Similarly, the scientists developed a new

drone detection technique by merging DSP with Machine Learning algorithms for example the

Support Vector Machine (SVM) algorithm in their study[5]. The studies report on the performance

of SVM in drone recognition, with high accuracy, but the investigation was limited to clear ambient

noises. Furthermore, to fine-tune the model, SVM hand-crafted features must be extracted and

optimised manually, which is an extra step in the categorization process. Deep learning models, on

the other hand, have the potential to overcome these flaws and eliminate the additional steps

necessary in traditional machine learning algorithms by automatically training the model from start

to finish[5]. In this vein, proposed a method for detecting drones utilising DSP and two Machine

28

Learning techniques, the K-Nearest Neighbour (K-NN) and the Plotted Image Learning (PIL)[5].

While the algorithms exhibited their efficacy and identification ability, the KNN technique's total

accuracy was surprisingly small. To minimise biases and overfit the noise, PIL requires a large

number of pre-stored image datasets with consistently variable background noises; consequently,

deploying such a system in the real world is difficult[5]. Two of the most significant obstacles to

implementing an acoustic-based method for drone recognition have been identified. The first one

is the impact of a noisy environment on the performance of an acoustic-based approach, and the

other is the abundance of diverse drone acoustic data[5]. Deep learning algorithms are useful in

audio applications such as speech recognition a recent study. However, nothing is known about the

use of deep learning approaches in drone recognition based on the drone's auditory properties at

this time. The absence of acoustic drone datasets limits the capacity to use deep learning techniques

to build an effective solution.

2.7.4 UAV Trajectory Based On Flight Dynamics

This study offers a new approach for estimating a flying object's 6-of trajectory inside a

3D airspace under surveillance by numerous fixed ground cameras, such as a quadrotor UAV[13].

It uses a new structure from movement formulation to recreate a single moving point with known

motion dynamics in 3D. Their significant benefit is a unique bundle adjustment approach that

improves camera positions while also regularising the point direction using a motion dynamics-

based prior or, more precisely, flight dynamics[13]. The fundamental control input delivered to the

UAV's autopilot, which dictated its flight route, can also be deduced. Existing single-camera

tracking and detection methods are typically inappropriate for drone surveillance due to their

limited field of view and the challenge of properly calculating the length of objects far from the

camera that occupies very low pixels in the image sequence[13]. These constraints can be overcome

by using many overlapping cameras. Existing multi-camera tracking approaches, on the other hand,

29

are designed to follow people and vehicles for interior and outdoor surveillance activities, where

the targets are frequently on the ground. Small drones, on the other hand, must be tracked inside a

three- dimensional volume that is orders of magnitude larger. The 6-of motion trajectory of a

quadrotor recorded by numerous fixed cameras is recovered using a new structure from the motion

(SfM) formulation presented in this research[13].

The simulation manage to achieve contributions as three folds, researchers offer a new

bundle adjustment (BA) approach that not only optimises camera poses and 3D trajectory, but also

regularises it using a prior relying on an existing flight dynamics model[13]. This strategy allows

them to identify the essential control inputs that dictated the trajectory of the UAV's autopilot. This

might supply drone pilots with analytics or allow them to learn controllers from the demos. Finally,

a new cost function is used in their BA technique. It is based on standard picture reprojection error

but does not require explicit information association formed from photo correspondences, which is

usually regarded a requirement in traditional point-based SfM[13].

Ceres non-linear least squares minimizer was used to implement their approach in

C++[11]. To detect the UAV, we used the OpenCV implementation of Gaussian Mixture Models

(GMM)-based noise reduction. In a word, it creates a GMM model for the background and updates

it with each new frame. Furthermore, foreground parts of the image that do not match the model

are considered foreground and are used as detections. However, because this results in a huge

number of false positives for the outside films, we used a Kalman Filter (KF) with a constant

acceleration model to process the detections[13]. Our BA optimization uses detections from the

generated tracks. We only considered tracks with more than three times steps to decrease the

number of false positives. Researchers then tested their suggested technique on synthetic results

acquired from a realistic quadrotor flight sim to examine the precision and resilience of the

predicted courses and command inputs in the face of picture distortion, outliers in tracing, and faults

in the initial camera posture settings. They also provide many results based on real data recorded

30

indoors and in a huge outside scenario where ground truth trajectory information is available. By

strongly aligning our trajectory estimate to the ground truth trajectory, we can assess the accuracy

of our predicted trajectories. The root means the squared error is then calculated in the ground truth

coordinate system (RMSE)[13]. They demonstrated a unique method for recreating the 3D route of

a quadrotor UAV from several cameras. We've demonstrated that using motion data enhances the

precision of the rebuilt route of an object in a three-dimensional environment. Moreover, the system

can infer the quadrotor's internal characteristics, such as pitch angles, thrust, and roll from the

operator's commands.

2.8 Comparison of Previous Research Paper

Authors Research Title Software/hardware
main

Features

Simon Birnbach,
Richard Baker,
Ivan
Martinovic[10]

Wi-Fly? : Detecting
Privacy Invasion Attacks
by Consumer Drones

Raspberry Pi, DJI
Phantom 3
Standard, Parrot
Bebop,

Considering three
phase of attack which
is approach,
surveillance, and
escape. Also testing
different kind of
approach patterns.

Aishah
Moafa[12]

DRONES DETECTION
USING SMART SENSORS

Only proposing and
comparing different
models

Proposing camera-
based and camera
and radar-based
model and listing its
risk assessment

Ulzhalgas
Seidaliyeva,
Daryn
Akhmetov,

Real-Time and Accurate
Drone Detection in a
Video with a Static
Background

GoPro, Faster R-
CNN, Inception v2
and ResNet-101

Drone detection is
based on deep
learning to distinguish
the drones from birds

31

Lyazzat
Ilipbayeva,
Eric T.
Matson[14]

 with static
background

Sara Al-Emadi,
Abdulla Al-Ali,
Abdulaziz Al-
Ali[5]

Audio-Based Drone
Detection and
Identification Using
Deep Learning
Techniques with Dataset
Enhancement through
Generative Adversarial
Networks

Static camera, RNN,
CNN, CRNN

Training and testing
different kinds of
audio from the drone
and studying the
difference between
each result and trying
to differentiate the
results to every type
of drone used

Artem
Rozantsev,
Sudipta N Sinha,
Debadeepta
Dey,
Pascal Fua[13]

Flight Dynamics-based
Recovery of a UAV
Trajectory using Ground
Cameras

Six ground cameras,
laptop

Uses six cameras
which consist of two
Top, two Middle, and
two Bottom cameras
in order to get a 3D
volume within the set
amount of space

M, Vidyasagar P,
Shoaib, Syed,
Prasad, Shiva M,
Kashyap,
Sathwik R, N,
Lethan M[15]

Detection and
Surveillance of UAVs
Based on RF and Radar
Technology

Radar, RF Analyser,
Web Camera,
Arduino

Uses three types of
surveillance which is
RF, radar and video
and a microcontroller
board to interface all
these components.

Xiufang Shi,
Chaoqun Yang,
Weige Xie, Chao
Liang, Zhiguo
Shi and Jiming
Chen[6]

Anti-Drone System with
Multiple Surveillance
Technologies:
Architecture,
Implementation, and
Challenges

Spectrum analyzer,
optical camera,
acoustic arrays

Uses three types of
sensing unit which is
sound, video and RF
and a central
processing unit to
conduct drone
feature extraction,
drone detection and
drone localization.

Al-Emadi, Sara,
Al-Senaid,
Felwa[8]

Drone Detection
Approach Based on
Radio-Frequency Using
Convolutional Neural
Network

2 different CPU, 2
different GPU, 2
different OS and RF
sensor

Employed deep
learning in the
processes of
detection,
identification and
classification
problem.

Huynh-The,
Thien, Pham,
Quoc Viet,
Nguyen, Toan

RF-UAVNet: High-
Performance
Convolutional Network

2 units of Universal
Software Radio
Peripheral (USRP)

Intercept the RF signal
from the drone by the
software-defined
radio configurable

32

Van, Costa,
Daniel
Benevides Da,
Kim, Dong
Seong[4]

for RF-Based Drone
Surveillance Systems

 devices and store in
the lacal database
repository for
processing.

Basak, Sanjoy,
Rajendran,
Sreeraj, Pollin,
Sofie, Scheers,
Bart[2]

Combined RF-based
drone detection and
classification

RF analyser, SDR The YOLO-lite
architecture is
recreated from
scratch and modified
to perform the
combined drone
signal detection and
classification.

Phuc Nguyen,
Mahesh
Ravindranathan,
Anh Nguyen,
Richard Han and
Tam Vu[11]

Investigating Cost-
effective RF-based
Detection of Drones

RF analyser, USRP,
SDR

Presented different
approached for drone
detection using RF
technology

Table 2.2 Journals Comparison

2.9 Summary

Based on the previous research and existing product, we can conclude that the best sensor

for drone detection is radar and the acoustic sensor comes second with the last place being a ground

camera. However, both the best sensors have complex construction and simulation and the price

for each sensor is too expensive and is not affordable, especially if the target market for this product

is the homeowner and not big company. So, we settle with RF and camera because of their

efficiency and affordable market price.

Aside from that, the main component which is microcontroller will be Arduino Uno. This

microcontroller is easy to program and edit by using its own software editor, Aduino IDE. Arduino

is able to operate multiple sensors at once and has been used by thousands all around the world so

it is a trusted component.

33

METHODOLOGY

3.1 Introduction

The methodology chapter will be about the project in more detailed parts. In this part of

the report, we will discuss more in detail how the project will be conducted in order to meet the

goal of this project. In this chapter, we will include three parts of the workflow, the first one is the

flow chart. In this part, we will show the flow of process of the system that will be conducted. Then

the next part is the hardware, this part will include all the equipment and materials that are used in

the process of completing this project. Lastly, the project will show the complete circuit diagram of

the system that will run the program in order to run this project smoothly.

3.2 Study Design

The main objective of this project is to develop a system of drone detection that is accurate

but also affordable. In order to achieve this aim, we must use the type of sensor that is easy to get

your hands on but also must be dependable. Based on this objective we have chosen the RF sensor

and also using video-based detection. Both of these methods have an easy to get equipment that is

affordable and also precise. An Arduino Uno will be used as a microcontroller that will control and

run the process of detection in the system. Arduino IDE software will be used in order to edit and

compile the program that is being run in the system.

34

Figure 3.1 Flowchart of Project

35

Table 3.1 Flowchart Of The System

3.3 Flowchart Explanation

This project uses two types of drone detection methods in order to achieve the objective of

this project. If either of the sensors detects any abnormality, the system will start processing the

data from the sensor and determine whether the abnormality comes from any

UAVs or other things. If the system has determined that the trespasser is a drone, it will

continue to determine the level of threat of that drone. This step is important to prevent the

36

destruction of an innocent drone. Because nowadays many couriers company use drones as their

way to transport something replacing humans. If the drone is harmless, the system will contact the

homeowner to inform the arrival of the drone. But if the drone poses threat to the property, the

system will move to the last step, which is to stop the drone from advancing any further. This flow

will continue after the system has determined that the environment is safe.

3.4 Hardware specification

The hardware that we will be focussing on in this project is the microcontroller and sensors.

These components are the most important part of the system. We are using two types of sensors RF

sensors and also Wi-fi connection sensors.

3.4.1 Arduino microcontroller

 In this project, we are using Arduino Uno as a microcontroller. This type of

microcontroller can be programmed by using C and C++ programming languages. Arduino Nano

are also used in this project as a controller for the receiver side on the drone system. Arduino Nano

has a small form factor which are perfect to be place inside the body of the drone. Although this

microcontroller has a small size, the functionality of this Arduino is still the same as the other kind

of Arduino. The only significant differences between it and the UNO are the lack of a DC power

jack, the use of a Mini USB port rather than a USB B port, and the USB-TTL converter chip unlike

Arduino UNO that is powered by ATMega328P microcontroller. Arduino UNO has a much more

input/output port compared to Arduino Nano.

37

Figure 3.2 Arduino UNO

3.4.2 RF analyser

The nRF24L01 is a single-chip radio transceiver that operates in the global 2.4 - 2.5 GHz

ISM band[15]. A fully integrated frequency synthesiser, a power amplifier, a crystal oscillator, a

demodulator, a modulator, and an Enhanced ShockBurstTM protocol engine comprise the

transceiver. A SPI interface allows you to easily programme output power, frequency channels, and

protocol setup. The current consumption is extremely low, only 9.0mA at -6dBm output power and

12.3mA in RX mode. Built-in Power Down and Standby modes make power conservation simple.

Figure 3.3 nRF24L01 RF Analyser

38

3.4.3 Camera

The ESP32-CAM are used as the device for monitoring and collecting image and video

data of the intruding drone. The small size and the low-cost of this cam module are perfect for this

project. This camera module are widely used in todays IoT application because of its small factor

and its special features. The ESP32-CAM are commonly used in the QR identification, home

applications and wireless surveying. It is a perfect answer for the IoT applications.

Figure 3.4 ESP32-CAM

3.4.4 Battery

Lithium Polymer (LiPo) type of battery used as the power supply for the Arduino Nano

and Rx placed at drone body. LiPo rechargeable battery are used widely in many electronic sector

including drone manufacturing. We are using 7.4V of ordinary voltage at 1400mAh capacity. The

battery must be charge with LiPo battery charger itself. It has a small size and lightweight that

became the critical factor in choosing this kind of battery.

39

Figure 3.5 Lipo SM connector battery LJ 501855 7.4v 1400mah

3.4.5 Buzzer

The buzzer is a sounding device capable of converting audio signals into sound signals. It

is typically powered by direct current (DC). It is widely used as a sound device in alarm clocks,

computers, printers, and other electronic products.

Figure 3.6 Buzzer

3.4.6 LCD Display

These LCDs are designed specifically for displaying text/characters, hence the name

'Character LCD.' The display has an LED backlight and can display 32 ASCII characters in two

rows of 16, each with 16 characters.

40

Figure 3.7 LCD Display 16x2

3.5 Software Application

3.5.1 Arduino IDE

The Arduino Integrated Development Environment (IDE), also known as the Arduino

Software (IDE), includes a code editor, a message area, a text console, a toolbar with buttons for

common functions, and a series of menus. It communicates with and uploads programmes to the

Arduino hardware.

3.5.2 Telegram

Telegram messenger is a online chatting planform that can be used to send image, video,

document, location, audio file and animated sticker to other users. Unlike Whatsapp, telegram

includes build-in browser that allow users to browse website while still inside the app. Telegram

also supports third party bot that provide additional features. These bots can do almost any task

including converting files, playing games and translates words. But in our case, we used a bot to

create a new bot that can interact with ESP32-CAM. This new bot will allow the ESP32-CAM to

capture image and record video and send the files to the telegram app.

41

3.6 Block Diagram

Figure 3.8 Block Diagram of the System

From this block diagram, the radio frequency or RF analyser is acting as a detector for any

incoming drones. The camera used to feed live feed of footage in situation where the

RF analyser detected RF signal. The footage will be displayed to the homeowner for

making a decision whether the drone is safe or not. The data that it collects when detecting the

drones then will be transferred to the Arduino and the Arduino will also determine whether the

drone is harmless or a threat. If the drone possess a threat to the homeowner, the alarm will go off

and the GSM module will notify the owner about the intruder. However, if the drone was proved

harmless the alarm will not go off but the GSM module will still notify the owner about the arrival

of the drone.

42

3.7 Circuit Diagram

Figure 3.9 Circuit Diagram

From the figure above, the circuit of drone detection consist of Modula TX and Modula

RX as RF module that act as input for the circuit. The Arduino UNO are used as central processing

unit that process the flow and transmit the data to the output. For the output part we have three

components. The first one is buzzer that act as alarm to warn the user about the intruder. Then, the

ESP32-Cam will send the notification through the Telegram application to your phone using

ESP32-Cam Bot. The last component we have is LCD display that will be displaying all the process

or the output of the process.

3.8 Summary

This chapter presents the proposed methodology in order to develop a new, effective and

integrated approach in estimating large scale/system wide TL of medium voltage (MV) network.

The primary focus of the proposed methodology is in accomplishing a simple, less rigorous and

effective estimation in such a way that it would not cause a significant loss of accuracy of the

results. The methods also intended to use the generally available and limited data of the network

and load from the power utilities. The ultimate intend of the method is not to obtain highest

43

accuracy, but, for efficiency, easy to use and manipulate and practicality of deployment on a large-

scale distribution network.

44

RESULTS AND DISCUSSIONS

4.1 Introduction

This chapter will follow through with the development of software and hardware used in

this project. The simulation and result will be analysed and discussed based on the development of

drone detection system using Arduino to enhance privacy purposes. This chapter will also discuss

the existing current market device and compare it with the actual project. This part will help with

the outcome of this project based on the availability and the current market of the component.

4.2 Software Development

For this project, Arduino IDE are used in software development. This project's software

development is done using the Arduino IDE. The Arduino IDE is code and compiler software in

which we begin by selecting the library that will be implemented and applying it to the software.

The library recognises the software and makes it easier for the developer to use the component that

will be constructed.

4.3 Interface Of The System

The system of this project starts when the nRF24L01 detecting the radio frequency emitted

from the drone to its controller. The frequency will be transmitted to the receiver end of the RF

analyzer. When the microcontroller has receive the detection from the RF analyzer, it will activate

the buzzer, displaying intruder alert on LED display and send the image and also video of the event

through ESP32-CAM. The data will be sent to the telegram application. The image will be sent to

the bot on the app on the spot, however the video has delay around one minute before reaching the

45

user. The duration of the video are around 10 seconds and the buzzer and LED display will continue

active until the drone leave the area or by resetting the system.

Figure 4.1 Telegram Bot

4.4 Hardware development

Hardware used in this project consist of two types Arduino which is Arduino Uno and

Arduino Nano. Next, for the sensor we have nRF24L01 and ESP32-CAM. For the output, we have

buzzer and also LCD display. Last but not least, we also use Lipo Lipo SM connector battery LJ

501855 7.4v 1400mah as power supply for Arduino Nano. Figure 4.2 shows the configuration of

hardware for the base station.

46

Figure 4.2 Base Station

Figure 4.3 Hardware on Drone

In the figure 4.3 shown how the systems looks like on the body of the drone. On the drone’s

body , we connect the battery, Arduino Nano and transmitter without the enclosure. The other

components are placed at the base station.

47

4.5 Analysis Of The System

The analysis of this system will contain a few numbers of test on the distance of the

receiving of the RF of the drone to the system. We will test how much distance it takes for the

system to detect the drone and also the difference between RC car and drone.

4.5.1 Analysis On The Distance of Detection Using Power of 5V 2A

Distance (meter) Detection

10 YES

20 YES

30 YES

40 YES

50 NO

Table 4.1 Data of the Detection Using Power of 5V 2A

Based on the Table 4.5.1.1, the test was conducted to measure the distance of detection of

the system using power bank which power is 5V and 2A. the maximum distance that the system

can detect is around 40 meter.

48

Figure 4.4 Distance of the Testing Area

4.5.2 Analysis On The Distance of Detection Using Power of 11V 3A

Distance (meter) Detection

20 YES

40 YES

60 YES

80 YES

100 NO

49

Table 4.2 Data on The Distance of Detection Using Power of 11V 3A

Based on Table 4.5.2.1, the test was conducted using a power adapter with the power of

11V 3A. As we can see from the data, the distance of detection are much bigger than when using a

power bank. The maximum distance of the detection that we get is around 80 meter.

Figure 4.5 Distance of the Testing Area 100m

4.5.3 Analysis On The Time Delay Vs Distance Using Power of 5V 2A

Distance (meter) Delay (second)

10 0

20 0.5

30 0.5

40 1

50 0

50

Table 4.3 Data On The Time Delay Vs Distance Using Power of 5V 2A

Based on Table 4.5.3.1, we run the test same as the distance but we added the delay time

for the system to detect the frequency of the drone. The test ran on the same place with addition of

timer to record the time of detection. From the data that was recorded, the longest time for the

system to detect the drone was about 0.9 seconds at 40 meters.

4.5.4 Analysis On The Time Delay Vs Distance Using Power of 11V 3A

Distance (meter) Delay (second)

20 0.5

40 1

60 1.5

80 2

100 0

Table 4.4 Data On The Time Delay Vs Distance Using Power of 11V 3A

Based on Table 4.5.4.1, the test ran for the distance of 100 meter. And during this test once

again testing on the time delay of the drone detection system using the power adapter. Then we

record the time taken for the system to detect the active drone. At the maximum distance of 80

meters we get the time delay of 1.2 seconds.

4.6 Summary

This section discussed the project's development, which included the hardware, software,

and system interface. Aside from that, the analysis in this chapter compares an RF based monitoring

and Arduino to a generic device to determine the tolerance value.

51

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

From this project, we can conclude that the aim to detect the drone using Arduino has been

achieved. The drone detection using Arduino is successful by using the RF analyser and camera as

the sensor and by adding other technologies into the system, the system has been completed. Aside

from that, the system also is simple and affordable and can be afforded by all people that want their

property safe from any invasion from drones.

Based on the result, the analysis showed that the objective of this project has been

successfully achieved. However, there are a lot of improvements that can be added into the system

to make it more reliable and convenient such as adding storage that can store footage of the invasion

and upload it into the cloud.

5.2 Future Works

This system can still be improvised to make it more reliable and convenient such as adding

storage that can store footage of the invasion and upload it into the cloud. The footage that has been

stored can be used as proof for future use. The RF sensor also can be improved, by using new and

advanced technologies such as Universal Software Radio Peripheral (USRP) software defined

radios (SDR). This type of sensor is more advanced and reliable compared to the RF analyser

because it has a bigger range of frequency and it is a software- defined RF architecture provided

for rapidly designing, prototyping, and deploying wireless systems with custom signal processing.

52

REFERENCES

[1] P. Nguyen et al., “DroneScale: Drone load estimation via remote passive RF

sensing,” in SenSys 2020 - Proceedings of the 2020 18th ACM Conference on

Embedded Networked Sensor Systems, Nov. 2020, pp. 326–339. doi:

10.1145/3384419.3430778.

[2] “Combined RF-based drone detection and classification”, doi:

10.36227/techrxiv.14991999.v1.

[3] P. Nguyen, H. Truong, M. Ravindranathan, A. Nguyen, R. Han, and T. Vu,

“Matthan: Drone presence detection by identifying physical signatures in the

drone’s RF communication,” in MobiSys 2017 - Proceedings of the 15th Annual

International Conference on Mobile Systems, Applications, and Services, Jun. 2017,

pp. 211–224. doi: 10.1145/3081333.3081354.

[4] T. Huynh-The, Q. V. Pham, T. Van Nguyen, D. B. Da Costa, and D. S. Kim, “RF-

UAVNet: High-Performance Convolutional Network for RF-Based Drone

Surveillance Systems,” IEEE Access, vol. 10, pp. 49696–49707, 2022, doi:

10.1109/ACCESS.2022.3172787.

[5] S. Al-Emadi, A. Al-Ali, and A. Al-Ali, “Audio-based drone detection and

identification using deep learning techniques with dataset enhancement through

generative adversarial networks†,” Sensors, vol. 21, no. 15, Aug. 2021, doi:

10.3390/s21154953.

[6] X. Shi, C. Yang, W. Xie, C. Liang, Z. Shi, and J. Chen, “Anti-Drone System with

Multiple Surveillance Technologies: Architecture, Implementation, and

Challenges,” IEEE Commun. Mag., vol. 56, no. 4, pp. 68–74, Apr. 2018, doi:

10.1109/MCOM.2018.1700430.

53

[7] V. Matić, V. Kosjer, A. Lebl, B. Pavić, and J. Radivojević, “Methods for Drone

Detection and Jamming,” 2020.

[8] S. Al-Emadi and F. Al-Senaid, “Drone Detection Approach Based on Radio-

Frequency Using Convolutional Neural Network,” in 2020 IEEE International

Conference on Informatics, IoT, and Enabling Technologies, ICIoT 2020, Feb.

2020, pp. 29–34. doi: 10.1109/ICIoT48696.2020.9089489.

[9] “2003.02656”.

[10] S. Birnbach, R. Baker, and I. Martinovic, “Wi-Fly?: Detecting Privacy Invasion

Attacks by Consumer Drones,” May 2017. doi: 10.14722/ndss.2017.23335.

[11] P. Nguyen, M. Ravindranathan, A. Nguyen, R. Han, and T. Vu, “Investigating cost-

effective RF-based detection of drones,” in DroNet 2016 - Proceedings of the 2nd

Workshop on Micro Aerial Vehicle Networks, Systems, and Applications for Civilian

Use, co-located with MobiSys 2016, Jun. 2016, pp. 17–22. doi:

10.1145/2935620.2935632.

[12] A. Moafa, “DRONES DETECTION USING SMART SENSORS,” 2020.

[13] A. Rozantsev, S. N. Sinha, D. Dey, and P. Fua, “Flight Dynamics-based Recovery

of a UAV Trajectory using Ground Cameras.”

[14] U. Seidaliyeva, D. Akhmetov, L. Ilipbayeva, and E. T. Matson, “Real-time and

accurate drone detection in a video with a static background,” Sensors

(Switzerland), vol. 20, no. 14, pp. 1–18, Jul. 2020, doi: 10.3390/s20143856.

[15] V. P. M, S. Shoaib, S. M. Prasad, S. R. Kashyap, and L. M. N, “Detection and

Surveillance of UAVs Based on RF and Radar Technology,” Int. Res. J. Eng.

Technol., 2021, [Online]. Available: www.irjet.net

[16] OmniVision Technologies, “OV7670/OV7171 CMOS VGA (OmniPixel ®)

CAMERACHIPTM Sensor Omnivision,” pp. 1–43, 2006, [Online]. Available:

http://www.irjet.net/

54

https://www.voti.nl/docs/OV7670.pdf

http://www.voti.nl/docs/OV7670.pdf
http://www.voti.nl/docs/OV7670.pdf

55

APPENDICES

Coding For Transmitter

#include <SPI.h>

#include <nRF24L01.h>

#include <RF24.h>

RF24 radio(10, 9); // CE, CSN

const byte address[6] = "00001";

void setup() {

 Serial.begin(9600);

 if (!radio.begin()) {

 Serial.println(F("radio hardware is not responding!!"));

 while (1) {} // hold in infinite loop

 }

 radio.openWritingPipe(address);

 radio.setPALevel(RF24_PA_MIN);

 radio.stopListening();

}

void loop() {

 const char text[] = "Hello World";

// radio.write(&text, sizeof(text));

 int tests=1288;

 radio.write(&tests, sizeof(tests));

 delay(1000);

}

Coding For Receiver

#include <Wire.h>

#include <LiquidCrystal_I2C.h>

#include <SPI.h>

#include <nRF24L01.h>

#include <RF24.h>

RF24 radio(9, 8); // CE, CSN

LiquidCrystal_I2C lcd(0x27, 16, 2);

#define buzzers 7

#define trigger 2

const byte address[6] = "00001";

56

void setup() {

 Serial.begin(9600);

 // initialize the LCD

 lcd.init();

 lcd.backlight();

 lcd.print("Drone Detection");

 lcd.setCursor(3,1);

 lcd.print("System");

 //lcd.clear();

 pinMode(buzzers,OUTPUT);

 pinMode(trigger,OUTPUT);

 radio.begin();

 radio.openReadingPipe(0, address);

 radio.setPALevel(RF24_PA_MIN);

 digitalWrite(buzzers,0);

 digitalWrite(trigger,0);

}

void loop() {

 radio.startListening();

 int rec=0;

 if (radio.available()>0) {

// char text[32] = {0};

// radio.read(&text, sizeof(text));

 radio.read(&rec, sizeof(rec));

 Serial.print("Receive : ");

 Serial.println(rec);

 Serial.print("Sizeof : ");

 Serial.println(sizeof(rec));

// if(sizeof(rec)>2)

 if(rec==1288)

 {

 digitalWrite(trigger,1);

 lcd.setCursor(0,0);

 lcd.print("Drone Detected!");

 lcd.setCursor(0,1);

 lcd.print(" ");

 digitalWrite(buzzers,1);

 delay(1000);

 digitalWrite(buzzers,0);

 delay(1000);

 }

 }

 else

 {

 lcd.setCursor(0,0);

57

 lcd.print("Drone Detection");

 lcd.setCursor(0,1);

 lcd.setCursor(3,1);

 lcd.print("System");

 digitalWrite(buzzers,0);

 digitalWrite(trigger,0);

 }

}

Coding For ArduinoJson Library

{

 "name":"Arduino on ESP32",

 "toolchainPrefix":"xtensa-esp32-elf",

 "svdFile":"esp32.svd",

 "request":"attach",

 "postAttachCommands":[

 "set remote hardware-watchpoint-limit 2",

 "monitor reset halt",

 "monitor gdb_sync",

 "thb setup",

 "c"

],

 "overrideRestartCommands":[

 "monitor reset halt",

 "monitor gdb_sync",

 "thb setup",

 "c"

]

Coding For Creating Telegram Bot

#include "UniversalTelegramBot.h"

#define ZERO_COPY(STR) ((char*)STR.c_str())

#define BOT_CMD(STR) buildCommand(F(STR))

UniversalTelegramBot::UniversalTelegramBot(const String& token, Client &client) {

 updateToken(token);

 this->client = &client;

}

void UniversalTelegramBot::updateToken(const String& token) {

 _token = token;

}

58

String UniversalTelegramBot::getToken() {

 return _token;

}

String UniversalTelegramBot::buildCommand(const String& cmd) {

 String command;

 command += F("bot");

 command += _token;

 command += F("/");

 command += cmd;

 return command;

}

String UniversalTelegramBot::sendGetToTelegram(const String& command) {

 String body, headers;

 bool avail;

 // Connect with api.telegram.org if not already connected

 if (!client->connected()) {

 #ifdef TELEGRAM_DEBUG

 Serial.println(F("[BOT]Connecting to server"));

 #endif

 if (!client->connect(TELEGRAM_HOST, TELEGRAM_SSL_PORT)) {

 #ifdef TELEGRAM_DEBUG

 Serial.println(F("[BOT]Conection error"));

 #endif

 }

 }

 if (client->connected()) {

 #ifdef TELEGRAM_DEBUG

 Serial.println("sending: " + command);

 #endif

 client->print(F("GET /"));

 client->print(command);

 client->println(F(" HTTP/1.1"));

 client->println(F("Host:" TELEGRAM_HOST));

 client->println(F("Accept: application/json"));

 client->println(F("Cache-Control: no-cache"));

 client->println();

 readHTTPAnswer(body, headers);

 }

 return body;

}

59

bool UniversalTelegramBot::readHTTPAnswer(String &body, String &headers) {

 int ch_count = 0;

 long now = millis();

 bool finishedHeaders = false;

 bool currentLineIsBlank = true;

 bool responseReceived = false;

 while (millis() - now < longPoll * 1000 + waitForResponse) {

 while (client->available()) {

 char c = client->read();

 responseReceived = true;

 if (!finishedHeaders) {

 if (currentLineIsBlank && c == '\n') {

 finishedHeaders = true;

 } else {

 headers += c;

 }

 } else {

 if (ch_count < maxMessageLength) {

 body += c;

 ch_count++;

 }

 }

 if (c == '\n') currentLineIsBlank = true;

 else if (c != '\r') currentLineIsBlank = false;

 }

 if (responseReceived && ch_count > 5) { //jz

 #ifdef TELEGRAM_DEBUG

 Serial.print(">");

 Serial.print(body);

 Serial.println("<");

 #endif

 break;

 }

 }

 return responseReceived;

}

String UniversalTelegramBot::sendPostToTelegram(const String& command, JsonObject

payload) {

 String body;

 String headers;

 // Connect with api.telegram.org if not already connected

 if (!client->connected()) {

60

 #ifdef TELEGRAM_DEBUG

 Serial.println(F("[BOT Client]Connecting to server"));

 #endif

 if (!client->connect(TELEGRAM_HOST, TELEGRAM_SSL_PORT)) {

 #ifdef TELEGRAM_DEBUG

 Serial.println(F("[BOT Client]Conection error"));

 #endif

 }

 }

 if (client->connected()) {

 // POST URI

 client->print(F("POST /"));

 client->print(command);

 client->println(F(" HTTP/1.1"));

 // Host header

 client->println(F("Host:" TELEGRAM_HOST));

 // JSON content type

 client->println(F("Content-Type: application/json"));

 // Content length

 int length = measureJson(payload);

 client->print(F("Content-Length:"));

 client->println(length);

 // End of headers

 client->println();

 // POST message body

 String out;

 serializeJson(payload, out);

 client->println(out);

 #ifdef TELEGRAM_DEBUG

 Serial.println(String("Posting:") + out);

 #endif

 readHTTPAnswer(body, headers);

 }

 return body;

}

String UniversalTelegramBot::sendMultipartFormDataToTelegram(

 const String& command, const String& binaryPropertyName, const String& fileName,

 const String& contentType, const String& chat_id, int fileSize,

 MoreDataAvailable moreDataAvailableCallback,

 GetNextByte getNextByteCallback,

 GetNextBuffer getNextBufferCallback,

 GetNextBufferLen getNextBufferLenCallback) {

 String body;

 String headers;

61

 const String boundary = F("------------------------b8f610217e83e29b");

 // Connect with api.telegram.org if not already connected

 if (!client->connected()) {

 #ifdef TELEGRAM_DEBUG

 Serial.println(F("[BOT Client]Connecting to server"));

 #endif

 if (!client->connect(TELEGRAM_HOST, TELEGRAM_SSL_PORT)) {

 #ifdef TELEGRAM_DEBUG

 Serial.println(F("[BOT Client]Conection error"));

 #endif

 }

 }

 if (client->connected()) {

 String start_request = "";

 String end_request = "";

 start_request += F("--");

 start_request += boundary;

 start_request += F("\r\ncontent-disposition: form-data; name=\"chat_id\"\r\n\r\n");

 start_request += chat_id;

 start_request += F("\r\n" "--");

 start_request += boundary;

 start_request += F("\r\ncontent-disposition: form-data; name=\"");

 start_request += binaryPropertyName;

 start_request += F("\"; filename=\"");

 start_request += fileName;

 start_request += F("\"\r\n" "Content-Type: ");

 start_request += contentType;

 start_request += F("\r\n" "\r\n");

 end_request += F("\r\n" "--");

 end_request += boundary;

 end_request += F("--" "\r\n");

 client->print(F("POST /"));

 client->print(buildCommand(command));

 client->println(F(" HTTP/1.1"));

 Serial.print("*") ; delay(jzdelay);

 // Host header

 client->println(F("Host: " TELEGRAM_HOST)); //jz <<<<<<<<<<<<<<<<<<<<<

println !!!!!!!! >>>>>>>>>>>>>>>>>>>>

 client->println(F("User-Agent: arduino/1.0"));

 Serial.print("*") ; delay(jzdelay);

 client->println(F("Accept: */*"));

 Serial.print("*") ; delay(jzdelay);

 int contentLength = fileSize + start_request.length() + end_request.length();

62

 #ifdef TELEGRAM_DEBUG

 Serial.println("Content-Length: " + String(contentLength));

 #endif

 client->print(F("Content-Length: "));

 client->println(String(contentLength));

 Serial.print("*") ; delay(jzdelay);

 client->print(F("Content-Type: multipart/form-data; boundary="));

 client->println(boundary);

 //Serial.print(" --- bef ---") ; delay(jzdelay);

 client->println(); // client->println(F"");

 //Serial.print(" --- aft ---") ; delay(jzdelay);

 client->print(start_request);

 Serial.print("*") ; delay(jzdelay);

 #ifdef TELEGRAM_DEBUG

 Serial.print("Start request: " + start_request);

 #endif

 if (getNextByteCallback == nullptr) {

 while (moreDataAvailableCallback()) {

 client->write((const uint8_t *)getNextBufferCallback(),

getNextBufferLenCallback());

 #ifdef TELEGRAM_DEBUG

 Serial.println(F("Sending photo from buffer"));

 #endif

 }

 } else {

 #ifdef TELEGRAM_DEBUG

 Serial.println(F("Sending photo by binary"));

 #endif

 //byte buffer[jzblocksize];

 int count = 0;

 char ch;

 while (moreDataAvailableCallback()) {

 buffer[count] = getNextByteCallback();

 count++;

 if (count == jzblocksize) {

 // yield();

 #ifdef TELEGRAM_DEBUG

 //jz Serial.println(F("Sending binary photo full buffer"));

 #endif

 client->write((const uint8_t *)buffer, jzblocksize);

 Serial.print("*") ; delay(jzdelay);

 count = 0;

 }

 }

 if (count > 0) {

 #ifdef TELEGRAM_DEBUG

63

 Serial.println(F("Sending binary photo remaining buffer"));

 #endif

 client->write((const uint8_t *)buffer, count);

 Serial.print("*") ; delay(jzdelay);

 }

 }

 client->print(end_request);

 Serial.print("*") ; delay(jzdelay);

 #ifdef TELEGRAM_DEBUG

 Serial.print("End request: " + end_request);

 #endif

 //Serial.print("... Done Sending. Client.Available = "); Serial.println(client-

>available());

 //delay(2000);

 //Serial.print("... 2 secs later. Client.Available = "); Serial.println(client->available());

 readHTTPAnswer(body, headers);

 }

 closeClient();

 return body;

}

String UniversalTelegramBot::sendMultipartFormDataToTelegramWithCaption(

 const String& command, const String& binaryPropertyName, const String& fileName,

 const String& contentType, const String& caption, const String& chat_id, int fileSize,

 MoreDataAvailable moreDataAvailableCallback,

 GetNextByte getNextByteCallback,

 GetNextBuffer getNextBufferCallback,

 GetNextBufferLen getNextBufferLenCallback) {

 String body;

 String headers;

 const String boundary = F("------------------------b8f610217e83e29b");

 // Connect with api.telegram.org if not already connected

 if (!client->connected()) {

 #ifdef TELEGRAM_DEBUG

 Serial.println(F("[BOT Client]Connecting to server"));

 #endif

 if (!client->connect(TELEGRAM_HOST, TELEGRAM_SSL_PORT)) {

 #ifdef TELEGRAM_DEBUG

 Serial.println(F("[BOT Client]Conection error"));

 #endif

 }

 }

 if (client->connected()) {

64

 String start_request = "";

 String end_request = "";

 start_request += F("--");

 start_request += boundary;

 start_request += F("\r\ncontent-disposition: form-data; name=\"chat_id\"\r\n\r\n");

 start_request += chat_id;

 start_request += F("\r\n" "--");

// jz caption start

 start_request += boundary;

 start_request += F("\r\ncontent-disposition: form-data; name=\"caption\"\r\n\r\n");

 start_request += caption;

 start_request += F("\r\n" "--");

// jz caption end

 start_request += boundary;

 start_request += F("\r\ncontent-disposition: form-data; name=\"");

 start_request += binaryPropertyName;

 start_request += F("\"; filename=\"");

 start_request += fileName;

 start_request += F("\"\r\n" "Content-Type: ");

 start_request += contentType;

 start_request += F("\r\n" "\r\n");

 end_request += F("\r\n" "--");

 end_request += boundary;

 end_request += F("--" "\r\n");

 client->print(F("POST /"));

 client->print(buildCommand(command));

 client->println(F(" HTTP/1.1"));

 Serial.print("*") ; delay(jzdelay);

 // Host header

 client->println(F("Host: " TELEGRAM_HOST)); //jz <<<<<<<<<<<<<<<<<<<<<

println !!!!!!!! >>>>>>>>>>>>>>>>>>>>

 client->println(F("User-Agent: arduino/1.0"));

 Serial.print("*") ; delay(jzdelay);

 client->println(F("Accept: */*"));

 Serial.print("*") ; delay(jzdelay);

 int contentLength = fileSize + start_request.length() + end_request.length();

 #ifdef TELEGRAM_DEBUG

 Serial.println("Content-Length: " + String(contentLength));

 #endif

 client->print(F("Content-Length: "));

 client->println(String(contentLength));

 Serial.print("*") ; delay(jzdelay);

65

 client->print(F("Content-Type: multipart/form-data; boundary="));

 client->println(boundary);

 Serial.print("*") ; delay(jzdelay);

 client->println(); // client->println(F("")); <--- jz 1.05 bug

 Serial.print("*") ; delay(jzdelay);

 client->print(start_request);

 Serial.print("*") ; delay(jzdelay);

 #ifdef TELEGRAM_DEBUG

 Serial.print("Start request: " + start_request);

 #endif

 if (getNextByteCallback == nullptr) {

 while (moreDataAvailableCallback()) {

 client->write((const uint8_t *)getNextBufferCallback(),

getNextBufferLenCallback());

 #ifdef TELEGRAM_DEBUG

 Serial.println(F("Sending photo from buffer"));

 #endif

 }

 } else {

 #ifdef TELEGRAM_DEBUG

 Serial.println(F("Sending photo by binary"));

 #endif

 //byte buffer[jzblocksize];

 int count = 0;

 char ch;

 while (moreDataAvailableCallback()) {

 buffer[count] = getNextByteCallback();

 count++;

 if (count == jzblocksize) {

 // yield();

 #ifdef TELEGRAM_DEBUG

 //jz Serial.println(F("Sending binary photo full buffer"));

 #endif

 client->write((const uint8_t *)buffer, jzblocksize);

 Serial.print("*") ; delay(jzdelay);

 count = 0;

 }

 }

 if (count > 0) {

 #ifdef TELEGRAM_DEBUG

 Serial.println(F("Sending binary photo remaining buffer"));

 #endif

 client->write((const uint8_t *)buffer, count);

 Serial.print("*") ; delay(jzdelay);

 }

 }

66

 client->print(end_request);

 Serial.print("*") ; delay(jzdelay);

 #ifdef TELEGRAM_DEBUG

 Serial.print("End request: " + end_request);

 #endif

 //Serial.print("... Done Sending. Client.Available = "); Serial.println(client-

>available());

 //delay(2000);

 //Serial.print("... 2 secs later. Client.Available = "); Serial.println(client->available());

 readHTTPAnswer(body, headers);

 }

 closeClient();

 return body;

}

bool UniversalTelegramBot::getMe() {

 String response = sendGetToTelegram(BOT_CMD("getMe")); // receive reply from

telegram.org

 DynamicJsonDocument doc(maxMessageLength);

 DeserializationError error = deserializeJson(doc, ZERO_COPY(response));

 closeClient();

 if (!error) {

 if (doc.containsKey("result")) {

 name = doc["result"]["first_name"].as<String>();

 userName = doc["result"]["username"].as<String>();

 return true;

 }

 }

 return false;

}

/**

 * SetMyCommands - Update the command list of the bot on the telegram server *

 * (Argument to pass: Serialied array of BotCommand) *

 * CAUTION: All commands must be lower-case *

 * Returns true, if the command list was updated successfully *

*******/

bool UniversalTelegramBot::setMyCommands(const String& commandArray) {

 DynamicJsonDocument payload(maxMessageLength);

 payload["commands"] = serialized(commandArray);

 bool sent = false;

 String response = "";

67

 #if defined(_debug)

 Serial.println(F("sendSetMyCommands: SEND Post /setMyCommands"));

 #endif // defined(_debug)

 unsigned long sttime = millis();

 while (millis() < sttime + 8000ul) { // loop for a while to send the message

 response = sendPostToTelegram(BOT_CMD("setMyCommands"),

payload.as<JsonObject>());

 #ifdef _debug

 Serial.println("setMyCommands response" + response);

 #endif

 sent = checkForOkResponse(response);

 if (sent) break;

 }

 closeClient();

 return sent;

}

/***

 * GetUpdates - function to receive messages from telegram *

 * (Argument to pass: the last+1 message to read) *

 * Returns the number of new messages *

 ***/

int UniversalTelegramBot::getUpdates(long offset) {

 #ifdef TELEGRAM_DEBUG

 Serial.println(F("GET Update Messages"));

 #endif

 String command = BOT_CMD("getUpdates?offset=");

 command += offset;

 command += F("&limit=");

 command += HANDLE_MESSAGES;

 if (longPoll > 0) {

 command += F("&timeout=");

 command += String(longPoll);

 }

 String response = sendGetToTelegram(command); // receive reply from telegram.org

 if (response == "") {

 #ifdef TELEGRAM_DEBUG

 Serial.println(F("Received empty string in response!"));

 #endif

 // close the client as there's nothing to do with an empty string

 closeClient();

 return 0;

 } else {

 #ifdef TELEGRAM_DEBUG

68

 Serial.print(F("incoming message length "));

 Serial.println(response.length());

 Serial.println(F("Creating DynamicJsonBuffer"));

 #endif

 // Parse response into Json object

 DynamicJsonDocument doc(maxMessageLength);

 DeserializationError error = deserializeJson(doc, ZERO_COPY(response));

 if (!error) {

 #ifdef TELEGRAM_DEBUG

 Serial.print(F("GetUpdates parsed jsonObj: "));

 serializeJson(doc, Serial);

 Serial.println();

 #endif

 if (doc.containsKey("result")) {

 int resultArrayLength = doc["result"].size();

 if (resultArrayLength > 0) {

 int newMessageIndex = 0;

 // Step through all results

 for (int i = 0; i < resultArrayLength; i++) {

 JsonObject result = doc["result"][i];

 if (processResult(result, newMessageIndex)) newMessageIndex++;

 }

 // We will keep the client open because there may be a response to be

 // given

 return newMessageIndex;

 } else {

 #ifdef TELEGRAM_DEBUG

 Serial.println(F("no new messages"));

 #endif

 }

 } else {

 #ifdef TELEGRAM_DEBUG

 Serial.println(F("Response contained no 'result'"));

 #endif

 }

 } else { // Parsing failed

 if (response.length() < 2) { // Too short a message. Maybe a connection issue

 #ifdef TELEGRAM_DEBUG

 Serial.println(F("Parsing error: Message too short"));

 #endif

 } else {

 // Buffer may not be big enough, increase buffer or reduce max number of

 // messages

 #ifdef TELEGRAM_DEBUG

 Serial.print(F("Failed to parse update, the message could be too "

 "big for the buffer. Error code: "));

 Serial.println(error.c_str()); // debug print of parsing error

 #endif

69

 }

 }

 // Close the client as no response is to be given

 closeClient();

 return 0;

 }

}

bool UniversalTelegramBot::processResult(JsonObject result, int messageIndex) {

 int update_id = result["update_id"];

 // Check have we already dealt with this message (this shouldn't happen!)

 if (last_message_received != update_id) {

 last_message_received = update_id;

 messages[messageIndex].update_id = update_id;

 messages[messageIndex].text = F("");

 messages[messageIndex].from_id = F("");

 messages[messageIndex].from_name = F("");

 messages[messageIndex].longitude = 0;

 messages[messageIndex].latitude = 0;

 messages[messageIndex].reply_to_message_id = 0;

 messages[messageIndex].reply_to_text = F("");

 messages[messageIndex].query_id = F("");

 if (result.containsKey("message")) {

 JsonObject message = result["message"];

 messages[messageIndex].type = F("message");

 messages[messageIndex].from_id = message["from"]["id"].as<String>();

 messages[messageIndex].from_name = message["from"]["first_name"].as<String>();

 messages[messageIndex].date = message["date"].as<String>();

 messages[messageIndex].chat_id = message["chat"]["id"].as<String>();

 messages[messageIndex].chat_title = message["chat"]["title"].as<String>();

 messages[messageIndex].hasDocument = false;

 if (message.containsKey("text")) {

 messages[messageIndex].text = message["text"].as<String>();

 } else if (message.containsKey("location")) {

 messages[messageIndex].longitude = message["location"]["longitude"].as<float>();

 messages[messageIndex].latitude = message["location"]["latitude"].as<float>();

 } else if (message.containsKey("document")) {

 String file_id = message["document"]["file_id"].as<String>();

 messages[messageIndex].file_caption = message["caption"].as<String>();

 messages[messageIndex].file_name =

message["document"]["file_name"].as<String>();

 if (getFile(messages[messageIndex].file_path, messages[messageIndex].file_size,

file_id) == true)

 messages[messageIndex].hasDocument = true;

 else

 messages[messageIndex].hasDocument = false;

 }

 if (message.containsKey("reply_to_message")) {

70

 messages[messageIndex].reply_to_message_id =

message["reply_to_message"]["message_id"];

 // no need to check if containsKey["text"]. If it doesn't, it default to null

 messages[messageIndex].reply_to_text =

message["reply_to_message"]["text"].as<String>();

 }

 } else if (result.containsKey("channel_post")) {

 JsonObject message = result["channel_post"];

 messages[messageIndex].type = F("channel_post");

 messages[messageIndex].text = message["text"].as<String>();

 messages[messageIndex].date = message["date"].as<String>();

 messages[messageIndex].chat_id = message["chat"]["id"].as<String>();

 messages[messageIndex].chat_title = message["chat"]["title"].as<String>();

 } else if (result.containsKey("callback_query")) {

 JsonObject message = result["callback_query"];

 messages[messageIndex].type = F("callback_query");

 messages[messageIndex].from_id = message["from"]["id"].as<String>();

 messages[messageIndex].from_name = message["from"]["first_name"].as<String>();

 messages[messageIndex].text = message["data"].as<String>();

 messages[messageIndex].date = message["date"].as<String>();

 messages[messageIndex].chat_id = message["message"]["chat"]["id"].as<String>();

 messages[messageIndex].reply_to_text = message["message"]["text"].as<String>();

 messages[messageIndex].chat_title = F("");

 messages[messageIndex].query_id = message["id"].as<String>();

 } else if (result.containsKey("edited_message")) {

 JsonObject message = result["edited_message"];

 messages[messageIndex].type = F("edited_message");

 messages[messageIndex].from_id = message["from"]["id"].as<String>();

 messages[messageIndex].from_name = message["from"]["first_name"].as<String>();

 messages[messageIndex].date = message["date"].as<String>();

 messages[messageIndex].chat_id = message["chat"]["id"].as<String>();

 messages[messageIndex].chat_title = message["chat"]["title"].as<String>();

 if (message.containsKey("text")) {

 messages[messageIndex].text = message["text"].as<String>();

 } else if (message.containsKey("location")) {

 messages[messageIndex].longitude = message["location"]["longitude"].as<float>();

 messages[messageIndex].latitude = message["location"]["latitude"].as<float>();

 }

 }

 return true;

 }

 return false;

}

/***

 * SendMessage - function to send message to telegram *

 * (Arguments to pass: chat_id, text to transmit and markup(optional)) *

71

 ***/

bool UniversalTelegramBot::sendSimpleMessage(const String& chat_id, const String&

text,

 const String& parse_mode) {

 bool sent = false;

 #ifdef TELEGRAM_DEBUG

 Serial.println(F("sendSimpleMessage: SEND Simple Message"));

 #endif

 long sttime = millis();

 if (text != "") {

 while (millis() < sttime + 8000) { // loop for a while to send the message

 String command = BOT_CMD("sendMessage?chat_id=");

 command += chat_id;

 command += F("&text=");

 command += text;

 command += F("&parse_mode=");

 command += parse_mode;

 String response = sendGetToTelegram(command);

 #ifdef TELEGRAM_DEBUG

 Serial.println(response);

 #endif

 sent = checkForOkResponse(response);

 if (sent) break;

 }

 }

 closeClient();

 return sent;

}

bool UniversalTelegramBot::sendMessage(const String& chat_id, const String& text,

 const String& parse_mode) {

 DynamicJsonDocument payload(maxMessageLength);

 payload["chat_id"] = chat_id;

 payload["text"] = text;

 if (parse_mode != "")

 payload["parse_mode"] = parse_mode;

 return sendPostMessage(payload.as<JsonObject>());

}

bool UniversalTelegramBot::sendMessageWithReplyKeyboard(

 const String& chat_id, const String& text, const String& parse_mode, const String&

keyboard,

 bool resize, bool oneTime, bool selective) {

 DynamicJsonDocument payload(maxMessageLength);

72

 payload["chat_id"] = chat_id;

 payload["text"] = text;

 if (parse_mode != "")

 payload["parse_mode"] = parse_mode;

 JsonObject replyMarkup = payload.createNestedObject("reply_markup");

 replyMarkup["keyboard"] = serialized(keyboard);

 // Telegram defaults these values to false, so to decrease the size of the

 // payload we will only send them if needed

 if (resize)

 replyMarkup["resize_keyboard"] = resize;

 if (oneTime)

 replyMarkup["one_time_keyboard"] = oneTime;

 if (selective)

 replyMarkup["selective"] = selective;

 return sendPostMessage(payload.as<JsonObject>());

}

bool UniversalTelegramBot::sendMessageWithInlineKeyboard(const String& chat_id,

 const String& text,

 const String& parse_mode,

 const String& keyboard) {

 DynamicJsonDocument payload(maxMessageLength);

 payload["chat_id"] = chat_id;

 payload["text"] = text;

 if (parse_mode != "")

 payload["parse_mode"] = parse_mode;

 JsonObject replyMarkup = payload.createNestedObject("reply_markup");

 replyMarkup["inline_keyboard"] = serialized(keyboard);

 return sendPostMessage(payload.as<JsonObject>());

}

/***

 * SendPostMessage - function to send message to telegram *

 * (Arguments to pass: chat_id, text to transmit and markup(optional)) *

 ***/

bool UniversalTelegramBot::sendPostMessage(JsonObject payload) {

 bool sent = false;

 #ifdef TELEGRAM_DEBUG

 Serial.print(F("sendPostMessage: SEND Post Message: "));

73

 serializeJson(payload, Serial);

 Serial.println();

 #endif

 long sttime = millis();

 if (payload.containsKey("text")) {

 while (millis() < sttime + 8000) { // loop for a while to send the message

 String response = sendPostToTelegram(BOT_CMD("sendMessage"), payload);

 #ifdef TELEGRAM_DEBUG

 Serial.println(response);

 #endif

 sent = checkForOkResponse(response);

 if (sent) break;

 }

 }

 closeClient();

 return sent;

}

String UniversalTelegramBot::sendPostPhoto(JsonObject payload) {

 bool sent = false;

 String response = "";

 #ifdef TELEGRAM_DEBUG

 Serial.println(F("sendPostPhoto: SEND Post Photo"));

 #endif

 long sttime = millis();

 if (payload.containsKey("photo")) {

 while (millis() < sttime + 8000) { // loop for a while to send the message

 response = sendPostToTelegram(BOT_CMD("sendPhoto"), payload);

 #ifdef TELEGRAM_DEBUG

 Serial.println(response);

 #endif

 sent = checkForOkResponse(response);

 if (sent) break;

 }

 }

 closeClient();

 return response;

}

String UniversalTelegramBot::sendPhotoByBinary(

 const String& chat_id, const String& contentType, int fileSize,

 MoreDataAvailable moreDataAvailableCallback,

 GetNextByte getNextByteCallback, GetNextBuffer getNextBufferCallback,

GetNextBufferLen getNextBufferLenCallback) {

74

 #ifdef TELEGRAM_DEBUG

 Serial.println(F("sendPhotoByBinary: SEND Photo"));

 #endif

 String response = sendMultipartFormDataToTelegram("sendPhoto", "photo", "img.jpg",

 contentType, chat_id, fileSize,

 moreDataAvailableCallback, getNextByteCallback, getNextBufferCallback,

getNextBufferLenCallback);

 #ifdef TELEGRAM_DEBUG

 Serial.println(response);

 #endif

 return response;

}

String UniversalTelegramBot::sendPhoto(const String& chat_id, const String& photo,

 const String& caption,

 bool disable_notification,

 int reply_to_message_id,

 const String& keyboard) {

 DynamicJsonDocument payload(maxMessageLength);

 payload["chat_id"] = chat_id;

 payload["photo"] = photo;

 if (caption.length() > 0)

 payload["caption"] = caption;

 if (disable_notification)

 payload["disable_notification"] = disable_notification;

 if (reply_to_message_id && reply_to_message_id != 0)

 payload["reply_to_message_id"] = reply_to_message_id;

 if (keyboard.length() > 0) {

 JsonObject replyMarkup = payload.createNestedObject("reply_markup");

 replyMarkup["keyboard"] = serialized(keyboard);

 }

 return sendPostPhoto(payload.as<JsonObject>());

}

bool UniversalTelegramBot::checkForOkResponse(const String& response) {

 int last_id;

 DynamicJsonDocument doc(response.length());

 deserializeJson(doc, response);

 // Save last sent message_id

75

 last_id = doc["result"]["message_id"];

 if (last_id > 0) last_sent_message_id = last_id;

 return doc["ok"] | false; // default is false, but this is more explicit and clear

}

bool UniversalTelegramBot::sendChatAction(const String& chat_id, const String& text) {

 bool sent = false;

 #ifdef TELEGRAM_DEBUG

 Serial.println(F("SEND Chat Action Message"));

 #endif

 long sttime = millis();

 if (text != "") {

 while (millis() < sttime + 8000) { // loop for a while to send the message

 String command = BOT_CMD("sendChatAction?chat_id=");

 command += chat_id;

 command += F("&action=");

 command += text;

 String response = sendGetToTelegram(command);

 #ifdef TELEGRAM_DEBUG

 Serial.println(response);

 #endif

 sent = checkForOkResponse(response);

 if (sent) break;

 }

 }

 closeClient();

 return sent;

}

void UniversalTelegramBot::closeClient() {

 if (client->connected()) {

 #ifdef TELEGRAM_DEBUG

 Serial.println(F("Closing client"));

 #endif

 client->stop();

 }

}

bool UniversalTelegramBot::getFile(String& file_path, long& file_size, const String&

file_id)

{

 String command = BOT_CMD("getFile?file_id=");

76

 command += file_id;

 String response = sendGetToTelegram(command); // receive reply from telegram.org

 DynamicJsonDocument doc(maxMessageLength);

 DeserializationError error = deserializeJson(doc, ZERO_COPY(response));

 closeClient();

 if (!error) {

 if (doc.containsKey("result")) {

 file_path = F("https://api.telegram.org/file/");

 file_path += buildCommand(doc["result"]["file_path"]);

 file_size = doc["result"]["file_size"].as<long>();

 return true;

 }

 }

 return false;

}

bool UniversalTelegramBot::answerCallbackQuery(const String &query_id, const String

&text, bool show_alert, const String &url, int cache_time) {

 DynamicJsonDocument payload(maxMessageLength);

 payload["callback_query_id"] = query_id;

 payload["show_alert"] = show_alert;

 payload["cache_time"] = cache_time;

 if (text.length() > 0) payload["text"] = text;

 if (url.length() > 0) payload["url"] = url;

 String response = sendPostToTelegram(BOT_CMD("answerCallbackQuery"),

payload.as<JsonObject>());

 #ifdef _debug

 Serial.print(F("answerCallbackQuery response:"));

 Serial.println(response);

 #endif

 bool answer = checkForOkResponse(response);

 closeClient();

 return answer;

}

Coding For Importing Library

#ifndef UniversalTelegramBot_h

#define UniversalTelegramBot_h

//#define TELEGRAM_DEBUG 0 //jz

#define ARDUINOJSON_DECODE_UNICODE 1

#define ARDUINOJSON_USE_LONG_LONG 1

#include <Arduino.h>

77

#include <ArduinoJson.h>

#include <Client.h>

#define TELEGRAM_HOST "api.telegram.org"

#define TELEGRAM_SSL_PORT 443

#define HANDLE_MESSAGES 1

//unmark following line to enable debug mode

//#define _debug

typedef bool (*MoreDataAvailable)();

typedef byte (*GetNextByte)();

typedef byte* (*GetNextBuffer)();

typedef int (GetNextBufferLen)();

struct telegramMessage {

 String text;

 String chat_id;

 String chat_title;

 String from_id;

 String from_name;

 String date;

 String type;

 String file_caption;

 String file_path;

 String file_name;

 bool hasDocument;

 long file_size;

 float longitude;

 float latitude;

 int update_id;

 int reply_to_message_id;

 String reply_to_text;

 String query_id;

};

class UniversalTelegramBot {

public:

 UniversalTelegramBot(const String& token, Client &client);

 void updateToken(const String& token);

 String getToken();

 String sendGetToTelegram(const String& command);

 String sendPostToTelegram(const String& command, JsonObject payload);

 String

 sendMultipartFormDataToTelegram(const String& command, const String&

binaryPropertyName,

 const String& fileName, const String& contentType,

 const String& chat_id, int fileSize,

 MoreDataAvailable moreDataAvailableCallback,

78

 GetNextByte getNextByteCallback,

 GetNextBuffer getNextBufferCallback,

 GetNextBufferLen getNextBufferLenCallback);

//jz caption

 String

 sendMultipartFormDataToTelegramWithCaption(const String& command, const String&

binaryPropertyName,

 const String& fileName, const String& contentType,

 const String& caption,

 const String& chat_id, int fileSize,

 MoreDataAvailable moreDataAvailableCallback,

 GetNextByte getNextByteCallback,

 GetNextBuffer getNextBufferCallback,

 GetNextBufferLen getNextBufferLenCallback);

 bool readHTTPAnswer(String &body, String &headers);

 bool getMe();

 bool sendSimpleMessage(const String& chat_id, const String& text, const String&

parse_mode);

 bool sendMessage(const String& chat_id, const String& text, const String& parse_mode

= "");

 bool sendMessageWithReplyKeyboard(const String& chat_id, const String& text,

 const String& parse_mode, const String& keyboard,

 bool resize = false, bool oneTime = false,

 bool selective = false);

 bool sendMessageWithInlineKeyboard(const String& chat_id, const String& text,

 const String& parse_mode, const String& keyboard);

 bool sendChatAction(const String& chat_id, const String& text);

 bool sendPostMessage(JsonObject payload);

 String sendPostPhoto(JsonObject payload);

 String sendPhotoByBinary(const String& chat_id, const String& contentType, int

fileSize,

 MoreDataAvailable moreDataAvailableCallback,

 GetNextByte getNextByteCallback,

 GetNextBuffer getNextBufferCallback,

 GetNextBufferLen getNextBufferLenCallback);

 String sendPhoto(const String& chat_id, const String& photo, const String& caption = "",

 bool disable_notification = false,

 int reply_to_message_id = 0, const String& keyboard = "");

 bool answerCallbackQuery(const String &query_id,

 const String &text = "",

 bool show_alert = false,

 const String &url = "",

 int cache_time = 0);

79

 bool setMyCommands(const String& commandArray);

 String buildCommand(const String& cmd);

 int getUpdates(long offset);

 bool checkForOkResponse(const String& response);

 telegramMessage messages[HANDLE_MESSAGES];

 long last_message_received;

 String name;

 String userName;

 int longPoll = 0;

 int waitForResponse = 1500;

 int _lastError;

 int last_sent_message_id = 0;

 int maxMessageLength = 1500;

 int jzdelay = 0; // delay between multipart blocks

 //int jzblocksize = 32 * 512;

#define jzblocksize 32 * 512

 byte buffer[jzblocksize];

private:

 // JsonObject * parseUpdates(String response);

 String _token;

 Client *client;

 void closeClient();

 bool getFile(String& file_path, long& file_size, const String& file_id);

 bool processResult(JsonObject result, int messageIndex);

};

#endif

Coding For ESP32-CAM Initialization

// ----------------------------

// Standard Libraries - Already Installed if you have ESP32 set up

// ----------------------------

#include <WiFi.h>

#include <WiFiClientSecure.h>

#include "esp_camera.h"

// ----------------------------

// Additional Libraries - each one of these will need to be installed.

// ----------------------------

//#include <UniversalTelegramBot.h>

80

#include "UniversalTelegramBot.h" // use local library which is a modified copy of an old

version

// Library for interacting with the Telegram API

// Search for "Telegram" in the Library manager and install

// The universal Telegram library

// https://github.com/witnessmenow/Universal-Arduino-Telegram-Bot

#include <ArduinoJson.h>

// Library used for parsing Json from the API responses

// Search for "Arduino Json" in the Arduino Library manager

// https://github.com/bblanchon/ArduinoJson

static const char vernum[] = "drone-detection-cam 8.9";

String devstr = "base_station";

int max_frames = 150;

framesize_t configframesize = FRAMESIZE_VGA; // FRAMESIZE_ +

QVGA|CIF|VGA|SVGA|XGA|SXGA|UXGA

int frame_interval = 0; // 0 = record at full speed, 100 = 100 ms delay between frames

float speed_up_factor = 0.5; // 1 = play at realtime, 0.5 = slow motion, 10 = speedup

10x

int framesize = FRAMESIZE_VGA; //FRAMESIZE_HD;

int quality = 10;

int qualityconfig = 5;

// Initialize Wifi connection to the router and Telegram BOT

char ssid[] = "sbahri6@unifi"; // your network SSID (name)

char password[] = "0132523694"; // your WiFi network password

// https://sites.google.com/a/usapiens.com/opnode/time-zones -- find your timezone here

String TIMEZONE = "SGT-8";//your timezone

// you can enter your home chat_id, so the device can send you a reboot message,

otherwise it responds to the chat_id talking to telegram

String chat_id = "453141460";//your telegram ID

#define BOTtoken "5960330722:AAGQAFHGsWvpGfgwAt5HTG1C_sKqkNMWiQM"

// your Bot Token (Get from Botfather)

// see here for information about getting free telegram credentials

// https://github.com/witnessmenow/Universal-Arduino-Telegram-Bot

// https://randomnerdtutorials.com/telegram-esp32-motion-detection-arduino/

bool reboot_request = false;

#define CAMERA_MODEL_AI_THINKER

#define PWDN_GPIO_NUM 32

#define RESET_GPIO_NUM -1

#define XCLK_GPIO_NUM 0

#define SIOD_GPIO_NUM 26

81

#define SIOC_GPIO_NUM 27

#define Y9_GPIO_NUM 35

#define Y8_GPIO_NUM 34

#define Y7_GPIO_NUM 39

#define Y6_GPIO_NUM 36

#define Y5_GPIO_NUM 21

#define Y4_GPIO_NUM 19

#define Y3_GPIO_NUM 18

#define Y2_GPIO_NUM 5

#define VSYNC_GPIO_NUM 25

#define HREF_GPIO_NUM 23

#define PCLK_GPIO_NUM 22

#include "esp_system.h"

bool setupCamera() {

 camera_config_t config;

 config.ledc_channel = LEDC_CHANNEL_0;

 config.ledc_timer = LEDC_TIMER_0;

 config.pin_d0 = Y2_GPIO_NUM;

 config.pin_d1 = Y3_GPIO_NUM;

 config.pin_d2 = Y4_GPIO_NUM;

 config.pin_d3 = Y5_GPIO_NUM;

 config.pin_d4 = Y6_GPIO_NUM;

 config.pin_d5 = Y7_GPIO_NUM;

 config.pin_d6 = Y8_GPIO_NUM;

 config.pin_d7 = Y9_GPIO_NUM;

 config.pin_xclk = XCLK_GPIO_NUM;

 config.pin_pclk = PCLK_GPIO_NUM;

 config.pin_vsync = VSYNC_GPIO_NUM;

 config.pin_href = HREF_GPIO_NUM;

 config.pin_sscb_sda = SIOD_GPIO_NUM;

 config.pin_sscb_scl = SIOC_GPIO_NUM;

 config.pin_pwdn = PWDN_GPIO_NUM;

 config.pin_reset = RESET_GPIO_NUM;

 config.xclk_freq_hz = 20000000;

 config.pixel_format = PIXFORMAT_JPEG;

 //init with high specs to pre-allocate larger buffers

 if (psramFound()) {

 config.frame_size = configframesize;

 config.jpeg_quality = qualityconfig;

 config.fb_count = 4;

 } else {

 config.frame_size = FRAMESIZE_SVGA;

 config.jpeg_quality = 12;

 config.fb_count = 1;

 }

82

 //Serial.printf("Internal Total heap %d, internal Free Heap %d\n", ESP.getHeapSize(),

ESP.getFreeHeap());

 //Serial.printf("SPIRam Total heap %d, SPIRam Free Heap %d\n",

ESP.getPsramSize(), ESP.getFreePsram());

 static char * memtmp = (char *) malloc(32 * 1024);

 static char * memtmp2 = (char *) malloc(32 * 1024); //32767

 // camera init

 esp_err_t err = esp_camera_init(&config);

 if (err != ESP_OK) {

 Serial.printf("Camera init failed with error 0x%x", err);

 return false;

 }

 free(memtmp2);

 memtmp2 = NULL;

 free(memtmp);

 memtmp = NULL;

 //Serial.printf("Internal Total heap %d, internal Free Heap %d\n", ESP.getHeapSize(),

ESP.getFreeHeap());

 //Serial.printf("SPIRam Total heap %d, SPIRam Free Heap %d\n",

ESP.getPsramSize(), ESP.getFreePsram());

 sensor_t * s = esp_camera_sensor_get();

 // drop down frame size for higher initial frame rate

 s->set_framesize(s, (framesize_t)framesize);

 s->set_quality(s, quality);

 delay(200);

 return true;

}

#define FLASH_LED_PIN 4

WiFiClientSecure client;

UniversalTelegramBot bot(BOTtoken, client);

int Bot_mtbs = 5000; //mean time between scan messages

long Bot_lasttime; //last time messages' scan has been done

bool flashState = LOW;

camera_fb_t * fb = NULL;

camera_fb_t * vid_fb = NULL;

TaskHandle_t the_camera_loop_task;

void the_camera_loop (void* pvParameter) ;

static void IRAM_ATTR PIR_ISR(void* arg) ;

bool video_ready = false;

83

bool picture_ready = false;

bool active_interupt = false;

bool pir_enabled = false;

bool avi_enabled = false;

int avi_buf_size = 0;

int idx_buf_size = 0;

bool isMoreDataAvailable();

//////////////////////////////// send photo as 512 byte blocks or jzblocksize

int currentByte;

uint8_t* fb_buffer;

size_t fb_length;

bool isMoreDataAvailable() {

 return (fb_length - currentByte);

}

uint8_t getNextByte() {

 currentByte++;

 return (fb_buffer[currentByte - 1]);

}

//////////////////////////////// send avi as 512 byte blocks or jzblocksize

int avi_ptr;

uint8_t* avi_buf;

size_t avi_len;

bool avi_more() {

 return (avi_len - avi_ptr);

}

uint8_t avi_next() {

 avi_ptr++;

 return (avi_buf[avi_ptr - 1]);

}

bool dataAvailable = false;

///////////////////////////////

uint8_t * psram_avi_buf = NULL;

uint8_t * psram_idx_buf = NULL;

uint8_t * psram_avi_ptr = 0;

uint8_t * psram_idx_ptr = 0;

char strftime_buf[64];

84

void handleNewMessages(int numNewMessages) {

 //Serial.println("handleNewMessages");

 //Serial.println(String(numNewMessages));

 for (int i = 0; i < numNewMessages; i++) {

 chat_id = String(bot.messages[i].chat_id);

 String text = bot.messages[i].text;

 Serial.printf("\nGot a message %s\n", text);

 String from_name = bot.messages[i].from_name;

 if (from_name == "") from_name = "Guest";

 String hi = "Got: ";

 hi += text;

 bot.sendMessage(chat_id, hi, "Markdown");

 client.setHandshakeTimeout(120000);

 if (text == "/flash") {

 flashState = !flashState;

 digitalWrite(FLASH_LED_PIN, flashState);

 }

 if (text == "/status") {

 String stat = "Device: " + devstr + "\nVer: " + String(vernum) + "\nRssi: " +

String(WiFi.RSSI()) + "\nip: " + WiFi.localIP().toString() + "\nEnabled: " + pir_enabled +

"\nAvi Enabled: " + avi_enabled;

 if (frame_interval == 0) {

 stat = stat + "\nFast 3 sec";

 } else if (frame_interval == 125) {

 stat = stat + "\nMed 10 sec";

 } else {

 stat = stat + "\nSlow 40 sec";

 }

 stat = stat + "\nQuality: " + quality;

 bot.sendMessage(chat_id, stat, "");

 }

 if (text == "/reboot") {

 reboot_request = true;

 }

 if (text == "/enable") {

 pir_enabled = true;

 }

 if (text == "/disable") {

 pir_enabled = false;

 }

85

 if (text == "/enavi") {

 avi_enabled = true;

 }

 if (text == "/disavi") {

 avi_enabled = false;

 }

 if (text == "/fast") {

 max_frames = 150;

 frame_interval = 0;

 speed_up_factor = 0.5;

 pir_enabled = true;

 avi_enabled = true;

 }

 if (text == "/med") {

 max_frames = 150;

 frame_interval = 125;

 speed_up_factor = 1;

 pir_enabled = true;

 avi_enabled = true;

 }

 if (text == "/slow") {

 max_frames = 150;

 frame_interval = 500;

 speed_up_factor = 5;

 pir_enabled = true;

 avi_enabled = true;

 }

 /*

 if (fb) {

 esp_camera_fb_return(fb);

 Serial.println("Return an fb ???");

 if (fb) {

 esp_camera_fb_return(fb);

 Serial.println("Return another fb ?");

 }

 }

 */

 for (int j = 0; j < 4; j++) {

 camera_fb_t * newfb = esp_camera_fb_get();

 if (!newfb) {

 Serial.println("Camera Capture Failed");

 } else {

 //Serial.print("Pic, len="); Serial.print(newfb->len);

86

 //Serial.printf(", new fb %X\n", (long)newfb->buf);

 esp_camera_fb_return(newfb);

 delay(10);

 }

 }

 if (text == "/photo" || text == "/caption") {

 fb = NULL;

 // Take Picture with Camera

 fb = esp_camera_fb_get();

 if (!fb) {

 Serial.println("Camera capture failed");

 bot.sendMessage(chat_id, "Camera capture failed", "");

 return;

 }

 currentByte = 0;

 fb_length = fb->len;

 fb_buffer = fb->buf;

 if (text == "/caption") {

 Serial.println("\n>>>>> Sending with a caption, bytes= " + String(fb_length));

 String sent = bot.sendMultipartFormDataToTelegramWithCaption("sendPhoto",

"photo", "img.jpg",

 "image/jpeg", "Your photo", chat_id, fb_length,

 isMoreDataAvailable, getNextByte, nullptr, nullptr);

 Serial.println("done!");

 } else {

 Serial.println("\n>>>>> Sending, bytes= " + String(fb_length));

 bot.sendPhotoByBinary(chat_id, "image/jpeg", fb_length,

 isMoreDataAvailable, getNextByte,

 nullptr, nullptr);

 dataAvailable = true;

 Serial.println("done!");

 }

 esp_camera_fb_return(fb);

 }

 if (text == "/vga") {

 fb = NULL;

87

 //sensor_t * s = esp_camera_sensor_get();

 //s->set_framesize(s, FRAMESIZE_VGA);

 Serial.println("\n\n\nSending VGA");

 // Take Picture with Camera

 fb = esp_camera_fb_get();

 if (!fb) {

 Serial.println("Camera capture failed");

 bot.sendMessage(chat_id, "Camera capture failed", "");

 return;

 }

 currentByte = 0;

 fb_length = fb->len;

 fb_buffer = fb->buf;

 Serial.println("\n>>>>> Sending as 512 byte blocks, with jzdelay of 0, bytes= " +

String(fb_length));

 bot.sendPhotoByBinary(chat_id, "image/jpeg", fb_length,

 isMoreDataAvailable, getNextByte,

 nullptr, nullptr);

 esp_camera_fb_return(fb);

 }

 if (text == "/clip") {

 // record the video

 bot.longPoll = 0;

 xTaskCreatePinnedToCore(the_camera_loop, "the_camera_loop", 10000, NULL, 1,

&the_camera_loop_task, 1);

 //xTaskCreatePinnedToCore(the_camera_loop, "the_camera_loop", 10000, NULL, 1,

&the_camera_loop_task, 0); //v8.5

 if (the_camera_loop_task == NULL) {

 //vTaskDelete(xHandle);

 Serial.printf("do_the_steaming_task failed to start! %d\n", the_camera_loop_task);

 }

 }

 if (text == "/start") {

 String welcome = "ESP32Cam Telegram bot.\n\n";

 welcome += "/photo: take a photo\n";

 welcome += "/flash: toggle flash LED\n";

 welcome += "/caption: photo with caption\n";

88

 welcome += "/clip: short video clip\n";

 welcome += "\n Configure the clip\n";

 welcome += "/enable: enable trigger detector\n";

 welcome += "/disable: disable trigger detector\n";

 welcome += "/enavi: enable avi\n";

 welcome += "/disavi: disable avi\n";

 welcome += "\n/fast: 25 fps - 3 sec - play .5x speed\n";

 welcome += "/med: 8 fps - 10 sec - play 1x speed\n";

 welcome += "/slow: 2 fps - 40 sec - play 5x speed\n";

 welcome += "\n/status: status\n";

 welcome += "/reboot: reboot\n";

 welcome += "/start: start\n";

 bot.sendMessage(chat_id, welcome, "Markdown");

 }

 }

}

//~~

~~~~~~~~~~~~~~~ 

// 

// Make the avi functions 

// 

//   start_avi() - open the file and write headers 

//   another_pic_avi() - write one more frame of movie 

//   end_avi() - write the final parameters and close the file 

 

 

char devname[30]; 

 

struct tm timeinfo; 

time_t now; 

 

camera_fb_t * fb_curr = NULL; 

camera_fb_t * fb_next = NULL; 

 

#define fbs 8 // how many kb of static ram for psram -> sram buffer for sd write - not really 

used because not dma for sd 

 

char avi_file_name[100]; 

long avi_start_time = 0; 

long avi_end_time = 0; 

int start_record = 0; 

long current_frame_time; 

long last_frame_time; 

 

static int i = 0; 

uint16_t frame_cnt = 0; 

uint16_t remnant = 0; 

uint32_t length = 0; 

uint32_t startms; 



89 

uint32_t elapsedms; 

uint32_t uVideoLen = 0; 

 

unsigned long movi_size = 0; 

unsigned long jpeg_size = 0; 

unsigned long idx_offset = 0; 

 

uint8_t zero_buf[4] = {0x00, 0x00, 0x00, 0x00}; 

uint8_t dc_buf[4] = {0x30, 0x30, 0x64, 0x63};    // "00dc" 

uint8_t avi1_buf[4] = {0x41, 0x56, 0x49, 0x31};    // "AVI1" 

uint8_t idx1_buf[4] = {0x69, 0x64, 0x78, 0x31};    // "idx1" 

 

struct frameSizeStruct { 

  uint8_t frameWidth[2]; 

  uint8_t frameHeight[2]; 

}; 

 

//  data structure from here https://github.com/s60sc/ESP32-

CAM_MJPEG2SD/blob/master/avi.cpp, extended for ov5640 

 

static const frameSizeStruct frameSizeData[] = { 

  {{0x60, 0x00}, {0x60, 0x00}}, // FRAMESIZE_96X96,    // 96x96 

  {{0xA0, 0x00}, {0x78, 0x00}}, // FRAMESIZE_QQVGA,    // 160x120 

  {{0xB0, 0x00}, {0x90, 0x00}}, // FRAMESIZE_QCIF,     // 176x144 

  {{0xF0, 0x00}, {0xB0, 0x00}}, // FRAMESIZE_HQVGA,    // 240x176 

  {{0xF0, 0x00}, {0xF0, 0x00}}, // FRAMESIZE_240X240,  // 240x240 

  {{0x40, 0x01}, {0xF0, 0x00}}, // FRAMESIZE_QVGA,     // 320x240 

  {{0x90, 0x01}, {0x28, 0x01}}, // FRAMESIZE_CIF,      // 400x296 

  {{0xE0, 0x01}, {0x40, 0x01}}, // FRAMESIZE_HVGA,     // 480x320 

  {{0x80, 0x02}, {0xE0, 0x01}}, // FRAMESIZE_VGA,      // 640x480   8 

  {{0x20, 0x03}, {0x58, 0x02}}, // FRAMESIZE_SVGA,     // 800x600   9 

  {{0x00, 0x04}, {0x00, 0x03}}, // FRAMESIZE_XGA,      // 1024x768  10 

  {{0x00, 0x05}, {0xD0, 0x02}}, // FRAMESIZE_HD,       // 1280x720  11 

  {{0x00, 0x05}, {0x00, 0x04}}, // FRAMESIZE_SXGA,     // 1280x1024 12 

  {{0x40, 0x06}, {0xB0, 0x04}}, // FRAMESIZE_UXGA,     // 1600x1200 13 

  // 3MP Sensors 

  {{0x80, 0x07}, {0x38, 0x04}}, // FRAMESIZE_FHD,      // 1920x1080 14 

  {{0xD0, 0x02}, {0x00, 0x05}}, // FRAMESIZE_P_HD,     //  720x1280 15 

  {{0x60, 0x03}, {0x00, 0x06}}, // FRAMESIZE_P_3MP,    //  864x1536 16 

  {{0x00, 0x08}, {0x00, 0x06}}, // FRAMESIZE_QXGA,     // 2048x1536 17 

  // 5MP Sensors 

  {{0x00, 0x0A}, {0xA0, 0x05}}, // FRAMESIZE_QHD,      // 2560x1440 18 

  {{0x00, 0x0A}, {0x40, 0x06}}, // FRAMESIZE_WQXGA,    // 2560x1600 19 

  {{0x38, 0x04}, {0x80, 0x07}}, // FRAMESIZE_P_FHD,    // 1080x1920 20 

  {{0x00, 0x0A}, {0x80, 0x07}}  // FRAMESIZE_QSXGA,    // 2560x1920 21 

 

}; 

 

 

#define AVIOFFSET 240 // AVI main header length 



90 

 

uint8_t buf[AVIOFFSET] = { 

  0x52, 0x49, 0x46, 0x46, 0xD8, 0x01, 0x0E, 0x00, 0x41, 0x56, 0x49, 0x20, 0x4C, 0x49, 

0x53, 0x54, 

  0xD0, 0x00, 0x00, 0x00, 0x68, 0x64, 0x72, 0x6C, 0x61, 0x76, 0x69, 0x68, 0x38, 0x00, 

0x00, 0x00, 

  0xA0, 0x86, 0x01, 0x00, 0x80, 0x66, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x00, 

0x00, 0x00, 

  0x64, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 

0x00, 0x00, 

  0x80, 0x02, 0x00, 0x00, 0xe0, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 

0x00, 0x00, 

  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x4C, 0x49, 0x53, 0x54, 0x84, 0x00, 

0x00, 0x00, 

  0x73, 0x74, 0x72, 0x6C, 0x73, 0x74, 0x72, 0x68, 0x30, 0x00, 0x00, 0x00, 0x76, 0x69, 

0x64, 0x73, 

  0x4D, 0x4A, 0x50, 0x47, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 

0x00, 0x00, 

  0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0A, 0x00, 

0x00, 0x00, 

  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x73, 0x74, 

0x72, 0x66, 

  0x28, 0x00, 0x00, 0x00, 0x28, 0x00, 0x00, 0x00, 0x80, 0x02, 0x00, 0x00, 0xe0, 0x01, 

0x00, 0x00, 

  0x01, 0x00, 0x18, 0x00, 0x4D, 0x4A, 0x50, 0x47, 0x00, 0x84, 0x03, 0x00, 0x00, 0x00, 

0x00, 0x00, 

  0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x49, 0x4E, 

0x46, 0x4F, 

  0x10, 0x00, 0x00, 0x00, 0x6A, 0x61, 0x6D, 0x65, 0x73, 0x7A, 0x61, 0x68, 0x61, 0x72, 

0x79, 0x20, 

  0x76, 0x38, 0x38, 0x20, 0x4C, 0x49, 0x53, 0x54, 0x00, 0x01, 0x0E, 0x00, 0x6D, 0x6F, 

0x76, 0x69, 

}; 

 

 

// 

// Writes an uint32_t in Big Endian at current file position 

// 

static void inline print_quartet(unsigned long i, uint8_t * fd) { 

  uint8_t y[4]; 

  y[0] = i % 0x100; 

  y[1] = (i >> 8) % 0x100; 

  y[2] = (i >> 16) % 0x100; 

  y[3] = (i >> 24) % 0x100; 

  memcpy( fd, y, 4); 

} 

 

// 

// Writes 2 uint32_t in Big Endian at current file position 

// 



91 

static void inline print_2quartet(unsigned long i, unsigned long j, uint8_t * fd) { 

  uint8_t y[8]; 

  y[0] = i % 0x100; 

  y[1] = (i >> 8) % 0x100; 

  y[2] = (i >> 16) % 0x100; 

  y[3] = (i >> 24) % 0x100; 

  y[4] = j % 0x100; 

  y[5] = (j >> 8) % 0x100; 

  y[6] = (j >> 16) % 0x100; 

  y[7] = (j >> 24) % 0x100; 

  memcpy( fd, y, 8); 

} 

 

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~ 

//

// get_good_jpeg() - take a picture and make sure it has a good jpeg

//

camera_fb_t * get_good_jpeg() {

 camera_fb_t * fb;

 long start;

 int failures = 0;

 do {

 int fblen = 0;

 int foundffd9 = 0;

 fb = esp_camera_fb_get();

 if (!fb) {

 Serial.println("Camera Capture Failed");

 failures++;

 } else {

 int get_fail = 0;

 fblen = fb->len;

 for (int j = 1; j <= 1025; j++) {

 if (fb->buf[fblen - j] != 0xD9) {

 } else {

 if (fb->buf[fblen - j - 1] == 0xFF) {

 foundffd9 = 1;

 break;

 }

 }

 }

 if (!foundffd9) {

 Serial.printf("Bad jpeg, Frame %d, Len = %d \n", frame_cnt, fblen);

92

 esp_camera_fb_return(fb);

 failures++;

 } else {

 break;

 }

 }

 } while (failures < 10); // normally leave the loop with a break()

 // if we get 10 bad frames in a row, then quality parameters are too high - set them lower

 if (failures == 10) {

 Serial.printf("10 failures");

 sensor_t * ss = esp_camera_sensor_get();

 int qual = ss->status.quality ;

 ss->set_quality(ss, qual + 3);

 quality = qual + 3;

 Serial.printf("\n\nDecreasing quality due to frame failures %d -> %d\n\n", qual, qual +

5);

 delay(1000);

 }

 return fb;

}

//~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

// the_camera_loop()

void the_camera_loop (void* pvParameter) {

 vid_fb = get_good_jpeg(); // esp_camera_fb_get();

 if (!vid_fb) {

 Serial.println("Camera capture failed");

 //bot.sendMessage(chat_id, "Camera capture failed", "");

 return;

 }

 picture_ready = true;

 if (avi_enabled) {

 frame_cnt = 0;

 ///////////////////////////// start a movie

 avi_start_time = millis();

 Serial.printf("\nStart the avi ... at %d\n", avi_start_time);

 Serial.printf("Framesize %d, quality %d, length %d seconds\n\n", framesize, quality,

max_frames * frame_interval / 1000);

 fb_next = get_good_jpeg(); // should take zero time

93

 last_frame_time = millis();

 start_avi();

 ///////////////////////////// all the frames of movie

 for (int j = 0; j < max_frames - 1 ; j++) { // max_frames

 current_frame_time = millis();

 if (current_frame_time - last_frame_time < frame_interval) {

 if (frame_cnt < 5 || frame_cnt > (max_frames - 5))Serial.printf("frame %d, delay

%d\n", frame_cnt, (int) frame_interval - (current_frame_time - last_frame_time));

 delay(frame_interval - (current_frame_time - last_frame_time)); // delay for

timelapse

 }

 last_frame_time = millis();

 frame_cnt++;

 if (frame_cnt != 1) esp_camera_fb_return(fb_curr);

 fb_curr = fb_next; // we will write a frame, and get the camera preparing a new

one

 another_save_avi(fb_curr);

 fb_next = get_good_jpeg(); // should take near zero, unless the sd is faster than

the camera, when we will have to wait for the camera

 digitalWrite(33, frame_cnt % 2);

 if (movi_size > avi_buf_size * .95) break;

 }

 ///////////////////////////// stop a movie

 Serial.println("End the Avi");

 esp_camera_fb_return(fb_curr);

 frame_cnt++;

 fb_curr = fb_next;

 fb_next = NULL;

 another_save_avi(fb_curr);

 digitalWrite(33, frame_cnt % 2);

 esp_camera_fb_return(fb_curr);

 fb_curr = NULL;

 end_avi(); // end the movie

 digitalWrite(33, HIGH); // light off

 avi_end_time = millis();

 float fps = 1.0 * frame_cnt / ((avi_end_time - avi_start_time) / 1000) ;

 Serial.printf("End the avi at %d. It was %d frames, %d ms at %.2f fps...\n", millis(),

frame_cnt, avi_end_time - avi_start_time, fps);

 frame_cnt = 0; // start recording again on the next loop

 video_ready = true;

 }

94

 Serial.println("Deleting the camera task");

 delay(100);

 vTaskDelete(the_camera_loop_task);

}

//~~

~~~~~~~~~~~~~~~ 

// 

// start_avi - open the files and write in headers 

// 

 

void start_avi() { 

 

  Serial.println("Starting an avi "); 

 

  time(&now); 

  localtime_r(&now, &timeinfo); 

  strftime(strftime_buf, sizeof(strftime_buf), "Cam from Base Station %F 

%H.%M.%S.avi", &timeinfo); 

 

  //memset(psram_avi_buf, 0, avi_buf_size);  // save some time 

  //memset(psram_idx_buf, 0, idx_buf_size); 

 

  psram_avi_ptr = 0; 

  psram_idx_ptr = 0; 

 

  memcpy(buf + 0x40, frameSizeData[framesize].frameWidth, 2); 

  memcpy(buf + 0xA8, frameSizeData[framesize].frameWidth, 2); 

  memcpy(buf + 0x44, frameSizeData[framesize].frameHeight, 2); 

  memcpy(buf + 0xAC, frameSizeData[framesize].frameHeight, 2); 

 

  psram_avi_ptr = psram_avi_buf; 

  psram_idx_ptr = psram_idx_buf; 

 

  memcpy( psram_avi_ptr, buf, AVIOFFSET); 

  psram_avi_ptr += AVIOFFSET; 

 

  startms = millis(); 

 

  jpeg_size = 0; 

  movi_size = 0; 

  uVideoLen = 0; 

  idx_offset = 4; 

 

} // end of start avi 

 

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~ 

//

95

// another_save_avi saves another frame to the avi file, uodates index

// -- pass in a fb pointer to the frame to add

//

void another_save_avi(camera_fb_t * fb) {

 int fblen;

 fblen = fb->len;

 int fb_block_length;

 uint8_t* fb_block_start;

 jpeg_size = fblen;

 remnant = (4 - (jpeg_size & 0x00000003)) & 0x00000003;

 long bw = millis();

 long frame_write_start = millis();

 memcpy(psram_avi_ptr, dc_buf, 4);

 int jpeg_size_rem = jpeg_size + remnant;

 print_quartet(jpeg_size_rem, psram_avi_ptr + 4);

 fb_block_start = fb->buf;

 if (fblen > fbs * 1024 - 8) { // fbs is the size of frame buffer static

 fb_block_length = fbs * 1024;

 fblen = fblen - (fbs * 1024 - 8);

 memcpy(psram_avi_ptr + 8, fb_block_start, fb_block_length - 8);

 fb_block_start = fb_block_start + fb_block_length - 8;

 } else {

 fb_block_length = fblen + 8 + remnant;

 memcpy(psram_avi_ptr + 8, fb_block_start, fb_block_length - 8);

 fblen = 0;

 }

 psram_avi_ptr += fb_block_length;

 while (fblen > 0) {

 if (fblen > fbs * 1024) {

 fb_block_length = fbs * 1024;

 fblen = fblen - fb_block_length;

 } else {

 fb_block_length = fblen + remnant;

 fblen = 0;

 }

 memcpy(psram_avi_ptr, fb_block_start, fb_block_length);

96

 psram_avi_ptr += fb_block_length;

 fb_block_start = fb_block_start + fb_block_length;

 }

 movi_size += jpeg_size;

 uVideoLen += jpeg_size;

 print_2quartet(idx_offset, jpeg_size, psram_idx_ptr);

 psram_idx_ptr += 8;

 idx_offset = idx_offset + jpeg_size + remnant + 8;

 movi_size = movi_size + remnant;

} // end of another_pic_avi

//~~

~~~~~~~~~~~~~~~ 

// 

//  end_avi writes the index, and closes the files 

// 

 

void end_avi() { 

 

  Serial.println("End of avi - closing the files"); 

 

  if (frame_cnt <  5 ) { 

    Serial.println("Recording screwed up, less than 5 frames, forget index\n"); 

  } else { 

 

    elapsedms = millis() - startms; 

 

    float fRealFPS = (1000.0f * (float)frame_cnt) / ((float)elapsedms) * speed_up_factor; 

 

    float fmicroseconds_per_frame = 1000000.0f / fRealFPS; 

    uint8_t iAttainedFPS = round(fRealFPS) ; 

    uint32_t us_per_frame = round(fmicroseconds_per_frame); 

 

    //Modify the MJPEG header from the beginning of the file, overwriting various 

placeholders 

 

    print_quartet(movi_size + 240 + 16 * frame_cnt + 8 * frame_cnt, psram_avi_buf + 4); 

    print_quartet(us_per_frame, psram_avi_buf + 0x20); 

 

    unsigned long max_bytes_per_sec = (1.0f * movi_size * iAttainedFPS) / frame_cnt; 

    print_quartet(max_bytes_per_sec, psram_avi_buf + 0x24); 

    print_quartet(frame_cnt, psram_avi_buf + 0x30); 

    print_quartet(frame_cnt, psram_avi_buf + 0x8c); 



97 

    print_quartet((int)iAttainedFPS, psram_avi_buf + 0x84); 

    print_quartet(movi_size + frame_cnt * 8 + 4, psram_avi_buf + 0xe8); 

 

    Serial.println(F("\n*** Video recorded and saved ***\n")); 

 

    Serial.printf("Recorded %5d frames in %5d seconds\n", frame_cnt, elapsedms / 1000); 

    Serial.printf("File size is %u bytes\n", movi_size + 12 * frame_cnt + 4); 

    Serial.printf("Adjusted FPS is %5.2f\n", fRealFPS); 

    Serial.printf("Max data rate is %lu bytes/s\n", max_bytes_per_sec); 

    Serial.printf("Frame duration is %d us\n", us_per_frame); 

    Serial.printf("Average frame length is %d bytes\n", uVideoLen / frame_cnt); 

 

 

    Serial.printf("Writng the index, %d frames\n", frame_cnt); 

 

    memcpy (psram_avi_ptr, idx1_buf, 4); 

    psram_avi_ptr += 4; 

 

    print_quartet(frame_cnt * 16, psram_avi_ptr); 

    psram_avi_ptr += 4; 

 

    psram_idx_ptr = psram_idx_buf; 

 

    for (int i = 0; i < frame_cnt; i++) { 

      memcpy (psram_avi_ptr, dc_buf, 4); 

      psram_avi_ptr += 4; 

      memcpy (psram_avi_ptr, zero_buf, 4); 

      psram_avi_ptr += 4; 

 

      memcpy (psram_avi_ptr, psram_idx_ptr, 8); 

      psram_avi_ptr += 8; 

      psram_idx_ptr += 8; 

    } 

  } 

 

  Serial.println("---"); 

  digitalWrite(33, HIGH); 

} 

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~ 

//

// setup some interupts during reboot

//

// int read13 = digitalRead(13); -- pir for video

int PIRpin = 13;

static void setupinterrupts() {

// pinMode(PIRpin, INPUT_PULLDOWN) ; //INPUT_PULLDOWN);

98

 pinMode(PIRpin,INPUT);

 Serial.print("Setup PIRpin = ");

 for (int i = 0; i < 5; i++) {

 Serial.print(digitalRead(PIRpin)); Serial.print(", ");

 }

 Serial.println(" ");

 esp_err_t err = gpio_isr_handler_add((gpio_num_t)PIRpin, &PIR_ISR, NULL);

 if (err != ESP_OK) Serial.printf("gpio_isr_handler_add failed (%x)", err);

 gpio_set_intr_type((gpio_num_t)PIRpin, GPIO_INTR_POSEDGE);

}

//~~

~~~~~~~~~~~~~~~ 

// 

//  PIR_ISR - interupt handler for PIR  - starts or extends a video 

// 

static void IRAM_ATTR PIR_ISR(void* arg) { 

 

//  int PIRstatus = digitalRead(PIRpin) + digitalRead(PIRpin) + digitalRead(PIRpin) ; 

  int PIRstatus = digitalRead(PIRpin); 

//  if (PIRstatus == 3) 

  if (PIRstatus == 1){ 

    Serial.print("PIR Interupt>> "); Serial.println(PIRstatus); 

 

    if (!active_interupt && pir_enabled) { 

      active_interupt = true; 

      digitalWrite(33, HIGH); 

      Serial.print("PIR Interupt ... start recording ... "); 

      xTaskCreatePinnedToCore( the_camera_loop, "the_camera_loop", 10000, NULL, 1, 

&the_camera_loop_task, 1); 

      //xTaskCreatePinnedToCore( the_camera_loop, "the_camera_loop", 10000, NULL, 1, 

&the_camera_loop_task, 0);  //v8.5 

 

      if ( the_camera_loop_task == NULL ) { 

        Serial.printf("do_the_steaming_task failed to start! %d\n", the_camera_loop_task); 

      } 

    } 

  } 

} 

 

#include "esp_wifi.h" 

#include "soc/soc.h" 

#include "soc/rtc_cntl_reg.h" 

#include <ESPmDNS.h> 

 



99 

bool init_wifi() { 

  uint32_t brown_reg_temp = READ_PERI_REG(RTC_CNTL_BROWN_OUT_REG); 

  WRITE_PERI_REG(RTC_CNTL_BROWN_OUT_REG, 0); 

  // Attempt to connect to Wifi network: 

  Serial.print("Connecting Wifi: "); 

  Serial.println(ssid); 

 

  // Set WiFi to station mode and disconnect from an AP if it was Previously connected 

  devstr.toCharArray(devname, devstr.length() + 1);        // name of your camera for 

mDNS, Router, and filenames 

  WiFi.mode(WIFI_STA); 

  WiFi.setHostname(devname); 

  WiFi.begin(ssid, password); 

 

  while (WiFi.status() != WL_CONNECTED) { 

    Serial.print("."); 

    delay(500); 

  } 

 

  wifi_ps_type_t the_type; 

 

  //esp_err_t get_ps = esp_wifi_get_ps(&the_type); 

 

  esp_err_t set_ps = esp_wifi_set_ps(WIFI_PS_NONE); 

 

  WRITE_PERI_REG(RTC_CNTL_BROWN_OUT_REG, brown_reg_temp); 

 

  configTime(0, 0, "pool.ntp.org"); 

  char tzchar[80]; 

  TIMEZONE.toCharArray(tzchar, TIMEZONE.length());          // name of your camera for 

mDNS, Router, and filenames 

  setenv("TZ", tzchar, 1);  // mountain time zone from #define at top 

  tzset(); 

 

  if (!MDNS.begin(devname)) { 

    Serial.println("Error setting up MDNS responder!"); 

    return false; 

  } else { 

    Serial.printf("mDNS responder started '%s'\n", devname); 

  } 

  time(&now); 

 

  Serial.println(""); 

  Serial.println("WiFi connected"); 

  Serial.print("IP address: "); 

  Serial.println(WiFi.localIP()); 

  return true; 

} 

 

 



100 

////////////////////////////////////////////////////////////////////////////////////// 

 

void setup() { 

  Serial.begin(115200); 

  Serial.println("---------------------------------"); 

  Serial.printf("ESP32-CAM Video-Telegram %s\n", vernum); 

  Serial.println("---------------------------------"); 

 

  pinMode(FLASH_LED_PIN, OUTPUT); 

  digitalWrite(FLASH_LED_PIN, flashState); //defaults to low 

 

  pinMode(12, INPUT_PULLUP);        // pull this down to stop recording 

 

  pinMode(33, OUTPUT);             // little red led on back of chip 

  digitalWrite(33, LOW);           // turn on the red LED on the back of chip 

 

  avi_buf_size = 3000 * 1024; // = 3000 kb = 60 * 50 * 1024; 

  idx_buf_size = 200 * 10 + 20; 

  psram_avi_buf = (uint8_t*)ps_malloc(avi_buf_size); 

  if (psram_avi_buf == 0) Serial.printf("psram_avi allocation failed\n"); 

  psram_idx_buf = (uint8_t*)ps_malloc(idx_buf_size); // save file in psram 

  if (psram_idx_buf == 0) Serial.printf("psram_idx allocation failed\n"); 

 

  if (!setupCamera()) { 

    Serial.println("Camera Setup Failed!"); 

    while (true) { 

      delay(100); 

    } 

  } 

 

  for (int j = 0; j < 7; j++) { 

    camera_fb_t * fb = esp_camera_fb_get(); 

    if (!fb) { 

      Serial.println("Camera Capture Failed"); 

    } else { 

      Serial.print("Pic, len="); Serial.print(fb->len); 

      Serial.printf(", new fb %X\n", (long)fb->buf); 

      esp_camera_fb_return(fb); 

      delay(50); 

    } 

  } 

   

  bool wifi_status = init_wifi(); 

 

  // Make the bot wait for a new message for up to 60seconds 

  //bot.longPoll = 60; 

  bot.longPoll = 5; 

 

  client.setInsecure(); 

 



101 

  setupinterrupts(); 

 

  String stat = "Reboot\nDevice: " + devstr + "\nVer: " + String(vernum) + "\nRssi: " + 

String(WiFi.RSSI()) + "\nip: " +  WiFi.localIP().toString() + "\n/start"; 

  bot.sendMessage(chat_id, stat, ""); 

 

  pir_enabled = true; 

  avi_enabled = true; 

  digitalWrite(33, HIGH); 

} 

 

int loopcount = 0; 

 

 

void loop() { 

  loopcount++; 

 

  client.setHandshakeTimeout(120000); // workaround for esp32-arduino 2.02 bug 

https://github.com/witnessmenow/Universal-Arduino-Telegram-

Bot/issues/270#issuecomment-1003795884 

 

  if (reboot_request) { 

    String stat = "Rebooting on request\nDevice: " + devstr + "\nVer: " + String(vernum) + 

"\nRssi: " + String(WiFi.RSSI()) + "\nip: " +  WiFi.localIP().toString() ; 

    bot.sendMessage(chat_id, stat, ""); 

    delay(10000); 

    ESP.restart(); 

  } 

 

  if (picture_ready) { 

    picture_ready = false; 

    send_the_picture(); 

  } 

 

  if (video_ready) { 

    video_ready = false; 

    send_the_video(); 

  } 

 

  if (millis() > Bot_lasttime + Bot_mtbs )  { 

 

    if (WiFi.status() != WL_CONNECTED) { 

      Serial.println("***** WiFi reconnect *****"); 

      WiFi.reconnect(); 

      delay(5000); 

      if (WiFi.status() != WL_CONNECTED) { 

        Serial.println("***** WiFi rerestart *****"); 

        init_wifi(); 

      } 

    } 



102 

 

    int numNewMessages = bot.getUpdates(bot.last_message_received + 1); 

 

    while (numNewMessages) { 

      //Serial.println("got response"); 

      handleNewMessages(numNewMessages); 

      numNewMessages = bot.getUpdates(bot.last_message_received + 1); 

    } 

    Bot_lasttime = millis(); 

  } 

  if(Serial.available()>0) 

  { 

    int v=Serial.read(); 

    if(v==49) 

    { 

      Serial.println(v); 

      xTaskCreatePinnedToCore( the_camera_loop, "the_camera_loop", 10000, NULL, 1, 

&the_camera_loop_task, 1); 

    } 

     

  } 

} 

 

 

void send_the_picture() { 

  digitalWrite(33, LOW);          // light on 

  currentByte = 0; 

  fb_length = vid_fb->len; 

  fb_buffer = vid_fb->buf; 

 

  Serial.println("\n>>>>> Sending as 512 byte blocks, with jzdelay of 0, bytes=  " + 

String(fb_length)); 

 

  if (active_interupt) { 

    String sent = bot.sendMultipartFormDataToTelegramWithCaption("sendPhoto", 

"photo", "img.jpg", 

                  "image/jpeg", "Drone Event!", chat_id, fb_length, 

                  isMoreDataAvailable, getNextByte, nullptr, nullptr); 

  } else { 

    String sent = bot.sendMultipartFormDataToTelegramWithCaption("sendPhoto", 

"photo", "img.jpg", 

                  "image/jpeg", "Telegram Request", chat_id, fb_length, 

                  isMoreDataAvailable, getNextByte, nullptr, nullptr); 

  } 

  esp_camera_fb_return(vid_fb); 

  bot.longPoll =  0; 

  digitalWrite(33, HIGH);          // light oFF 

  if (!avi_enabled) active_interupt = false; 

} 

 



103 

void send_the_video() { 

  digitalWrite(33, LOW);          // light on 

  Serial.println("\n\n\nSending clip with caption"); 

  Serial.println("\n>>>>> Sending as 512 byte blocks, with a caption, and with jzdelay of 

0, bytes=  " + String(psram_avi_ptr - psram_avi_buf)); 

  avi_buf = psram_avi_buf; 

 

  avi_ptr = 0; 

  avi_len = psram_avi_ptr - psram_avi_buf; 

 

  String sent2 = bot.sendMultipartFormDataToTelegramWithCaption("sendDocument", 

"document", strftime_buf, 

                 "image/jpeg", "Drone Detected!", chat_id, psram_avi_ptr - psram_avi_buf, 

                 avi_more, avi_next, nullptr, nullptr); 

 

  Serial.println("done!"); 

  digitalWrite(33, HIGH);          // light off 

 

  bot.longPoll = 5; 

  active_interupt = false; 

}



104 

Gant Chart PSM 1 

PROJECT 

ACTIVITY 
/TASK 

WEEK 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Project Briefing X              

Research project X              

Background, 

Problem 

statement & 

Objective 

 X X X           

Identify 
component 

  X X X X X X       

Project flow chart      X X X  X X    

Methodology      X X X  X X    

Review report      X X X  X X X   

Submit report            X X  

Presentation              X 

 

 

 

 

 

 

 

 



105 

Gant Chart PSM 2 

PROJECT 

ACTIVITY 
/TASK 

WEEK 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Preparing hardware X X X X X X X X X      

Researching code    X X X X X X X X    

Testing 

Prototype 

     X X X X X X    

Troubleshoot 

Project 
     X X X X X X X   

Project Hardware 
Planning 

     X X X X X X    

Project Design 
Planning 

     X X X X X X    

Review report      X X X X X X    

Final draft submission             X  

Submit PSM 2 Report 
Panel 

             X 

Presentation              X 

 




