PIC TAPE MEASURE

CHE WAN NURUL HIDAYAH BINTI CHE WAN ZAKARIA

A project report submitted in partial fulfillment of the requirements for the Bachelor the Electronic Engineering (Computer Electronic) With Honours

Faculty of Electronic Engineering & Computer Engineering
Universiti Teknikal Malaysia Melaka

May 2008

UNIVERSTI TEKNIKAL MALAYSIA MELAKA

FAKULTI KEJURUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II

Tajuk Projek PIC TAPE MEASURE

Sesi 2004-2008 Pengajian

CHE WAN NURUL HIDAYAH BINTI CHE WAN ZAKARIA Saya

mengaku membenarkan Laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syaratsyarat kegunaan seperti berikut:

- Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.
- Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi.

4. Sila tandakan	()	:
------------------	---	--	---	---

SULIT*	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
TERHAD*	(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
 TIDAK TERHAD	

(TANDATANGAN PENULIS)

Alamat Tetap: 112 RUMAH MURAH GONG PASIR, 23000 DUNGUN, **TERENGGANU**

(COP DAN TANDATANGAN PENYELIA)

Disahkan oleh:

CHAIRULSYAH WASLI

Lecturer Faculty Electronics and Computer Engineering (FKEKK) Universiti Teknikal Malaysia Melaka (UTeM),

Locked Bag 1200, Ayer Keroh, 75450 Melaka

Tarikh: 9/5/3008

Tarikh:

DECLARATION

"I declare that this report entitled "PIC Tape Measure" was written by my own except as cited in the references."

Signature

Author's Name: Che Wan Nurul Hidayah Binti Che Wan Zakaria

Date : April 2008

"I hereby declare that I have read this report and in my opinion the report is sufficient in terms of scope and quality for granted in Bachelor Degree of Electronic Engineering (Electronics Computer)."

Signature Supervisor's Name Date

: Encik Chairulsyah Wasli

To My parents Cw Zakaria & Halipah

My siblings, Hasmaria, Halmi, Hasmariza,, Hazwani and Hanapi

For your infinite and unfading love, sacrifice, patience, encouragement and Best wishes

ACKNOWLEDGEMENT

All praises and thanks be to Allah (S.W.T), who has guided us to this, never could we have found guidance, were it not that Allah had guided us.

Words cannot express my gratitude towards my supervisor, Mr Chairulsyah Wasli for the patience, humble supervision and fatherly advice I received from him in the course of his project. He always gives me the wisdom to think and work independently

I would also like to thank other lecturers and technicians in Electronic Engineering and Computer Engineering Faculty for giving me the advices and the opportunity to handle this project as well as their encouragement. Thanks also to my friends who have lend me their helping hand that made the task of the project much easier and able to complete on time. At last but not least, I would like to express my gratitude to both of my parents who had provided me with financial support and encouragement throughout my course of studies.

"THANK YOU

ABSTRACT

"Design of PIC Tape Measure" is a design used to measure distance object and record the result that is obtained. The concept in used for this project is that the LCD screen and will display the reading of distance reading and user can use switch button when measure value is taken. In the circuit, there have Send switch, Store, Mask and Recall. Besides that, the project use PIC16F84A microcontroller, which treated as the main component in hardware part, where the PIC will control operation the circuit while execute.

ABSTRAK

PIC tape measure di bangunkan bertujuan untuk mengesan jarak objek dan menyimpan nilai yang didapati ke dalam tape measure. Konsep yang digunakan dengan memaparkan keputusan bacaan ke paparan LCD dan dimana pengguna juga boleh menggunakan suis yang terdapat di dalam litar tersebut yang terdiri daripada suis "Send", "Store", "Mask" dan "Recall". Selain itu juga, projek ini juga menggunakan PIC 16F84A microcontroller yang merupakan sebagai komponen utama dalam litar ini, dimana PIC microcontroller akan mengawal segala operasi litar semasa dalam pemprosesan.

TABLE OF CONTENTS

CHAPTER	DESCRIPTION	PAGE
	DECLARATION	i
	APPROVAL	ii
	DEDICATION	iii
	ACKNOWLEDGEMENTS	iv
	ABSTRACT	v
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLE	xi
	LIST OF FIGURES	xii
	LIST OF ABBREVIATION	xiv
1	INTRODUCTION	1
	1.1 INTRODUCTION	1
	1.2 OBJECTIVE	2
	1.3 SCOPE OF WORK	2
	1.4 PROBLEM STATEMENT	4
	1.5 DEDODT STRICTIDE	4

2	LITI	ERATURE REVIEW	6
	2.1	TAPE MEASURE FOR DETECT DISTANCE	6
	2.2	CURRENT SIMILAR PRODUCT	7
	2.3	WHAT IS TAPE MEASURE?	8
	2.4	MICROCONTROLLER	8
		2.4.1 Applications	9
		2.4.2 Pin description	10
		2.4.3 Central Processing unit (CPU)	11
		2.4.4 Reset	12
		2.4.5 Types of Microcontroller	13
		2.4.6 Comparison between microprocessor and	
		microcontroller	14
		2.4.7 Overview of PIC Microcontroller	14
	2.5	TYPES OF OSCILLATORS	16
		2.5.1 XT Oscillator	16
		2.5.2 RC Oscillator	17
	2.6	ULTRASONIC TRANSDUCER	18
	2.7	ALPHANUMERIC LCD DISPLAY MODULE	20
		2.7.1 Blocks Overview	20
	2.8	IC LM358P	22
3	PRO	DJECT METHODOLOGY	24
	3.1	INTRODUCTION	24
	3.2	BLOCK DIAGRAM	24
	3.3	FLOW OF THE PROJECT	26
	3.4	HARDWARE	28
		3.4.1 LCD display HD44780	28
		3.4.1.1 Busy Flag	29

			3.4.1.2 Address Counter (AC)	29
			3.4.1.3 Display data ram (DDRAM)	30
		3.4.2	Ultrasonic Transducer	31
	3.5	PIC 1	6F84A	31
		3.5.1	Calculations	31
		3.5.2	Measurement recording	32
		3.5.3	Playback	33
		3.5.4	EEPROM Reset	33
		3.5.5	Masking	33
4	RESU	JLT &	ANALYSIS	35
	4.1	D ITTO	ODLIGORON	25
	4.1		ODUCTION	35
	4.2	•	UIT DIAGRAM	35
	4.3		STRUCTION	37
	4.4	POWI	ER SUPPLY	38
	4.5	AMPI	LIFICATION	38
	4.6	DISTA	ANCES EXTREMES	39
	4.7	BIAS	LEVEL	39
	4.8	DATA	A RECALL	40
	4.9	DATA	A RECORDING	40
	4.10	RESU	LT	40
		4.10.1	Result from circuit	41
	4.11	SWIT	CHING SUMMARY	44
	4.12	TAPE	MEASURE MODEL	46

5	DISC	DISCUSSION AND CONCLUSION	
	5.1	DISCUSSION	47
		5.1.1 Proteus 7 Professional	47
	5.2	CONCLUSION	48
	5.3	SUGGESTION FOR FUTURE WORK	49
	REF	ERENCES	50
	APP	ENDIX	51

LIST OF TABLE

NO	TITLE	PAGE
2.1	Specification of Electronic Tape Measure	7
2.2	Application of the microcontroller	9
2.3	Types of Microcontroller	13
3.1	Operation of Registers	29
3.2	Instruction Code	30
4.1	Result 1	43
4.2	Result from PIC Tape Measure	43

LIST OF FIGURES

NO	TITLE	PAGE
1.1	Flow chart of scope of work	3
2.1	PIC Tape Measure	6
2.2	Electronic Tape measure	7
2.3	Pin description	10
2.4	The internal reset circuit	12
2.5	The comparison between microprocessor	
	And microcontroller	14
2.6	Harvard architecture block diagram	15
2.7	Types of PICs device from Microchip	16
2.8	Connecting the oscillator	17
2.9	Connecting resonator to microcontroller	17
2.10	RC Oscillator	18
2.11	Ultrasonic transmitter and receiver transducer	19
2.12	Ultrasonic Transducer	20
2.13	LCD Display	20
2.14	LCD Block Diagram	21
2.15	IC LM 358P	22
2.16	Pin description	22
2.17	Symbol (each amplifier)	23
3.1	Block Diagram of PIC Tape Measure	25
3.2	Flow chart of project methodology	27

3.3	LCD display	28
3.4	Ultrasonic transducer	31
4.1	Circuit diagram	36
4.2	PIC tape measure PCB topside component layout,	
	interwiring, and copper foil master pattern	37
4.3	PIC tape measure PCB topside component layout,	
	interwiring, and copper foil master pattern	37
4.4	Circuit power supply	38
4.5	Circuit Board	41
4.6	Test the circuit	41
4.7	Display the result 1	42
4.8	Display the result 2	42
4.9	Display the send button	44
4.10	Display the saved button	44
4.11	Display the mask button	45
4.12	Display the store button	45
4.13	Tape measure model	46

LIST OF ABBREVIATION

AC**Address Counter**

A/D analog to digital

CPU Central Processing Unit

D/A Digital to analog

Display data ram DR Data register

DDRAM

Electrically Erasable Programmable Read-Only Memory **EEPROM**

I/O Input/Output

LCD Liquid Crystal Display

Master Clear **MCLR**

OSC Oscillator

Printed Circuit Board PCB

PIC Peripheral Interface Controller

PSM Projek Sarjana Muda

RAM Random-Access Memory

RC Resistor-Capacitor RS Register selector

RISC Reduced Instruction Set Computer

ROM Read-Only Memory

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

In this chapter introduction is made on some general information about PIC Tape Measure, basic block transmitter, receiver, problem statement, objectives and the scope of the project.

PIC tape measure is an efficient way to detect distance and check measure value that is stored in memory, where the device can record and recall 32 distance measurements, allowing several readings to be taken before copying them to paper. Besides that, the devices have four switches button and switch pressed while switching on

- Send Basic correction mode.
- Store EEPROM measurement clear (timing factors untouched).
- Mask Mask correction mode.
- Recall clear entire EEPROM data and set default timing factors.

The PIC microcontroller (IC2) is the mastermind that controls the whole operation. When prompted by the pressing of Send switch, the PIC transmits a series of

40 kHz pulses via the ultrasonic transmitting transducer TX. The pulses are accurately generated.

1.2 OBJECTIVE

The objective of this project is to create one device can detect distance something object further get keep stated information by using PIC 16F84A. Than that, information can in display by using LCD screen on circuit.

1.3 SCOPES OF WORK

While doing the project, the scope of work plays a very important role. In order to do in guideline method, student should fulfill the project requirement. The scope of this project is listed as below:

- i. To study the basic idea and operation of PIC tape measure.
- ii. To identify the suitable type of PIC microcontroller for the project and design the microcontroller board.
- iii . To study the operation of ultrasonic transmitter transducer and receiver sensor and its implementation into circuit.
- iv To develop between hardware circuit and software programming
- v. To display the reading of distance value at LCD screen display.



Figure 1.1: Flow chart of scope of work

1.4 PROBLEM STATEMENTS

Mostly job which involves measurement still using equipment manual to take reading something distance as ruler etc. This process indirectly will take long time before something reading obtainable.

Measurement manually very limited to specific location, where ideal when taking measurement in difficult to access locations and terms of security would be unsafe his example measurement in the place high. Besides that, reading take unable in keep and must writing manually before reading further taken.

Caused problem that, PIC tape measure is necessary to do process of measurement quickly and accurate without should do measurement manually. It also has the advantage to store information as many as 32 memories at one time.

1.5 REPORT STRUCTURE

The report overall consists of five chapters. Following is an each chapter description in this thesis.

Chapter 1 is delivering term of computerized room control. It also contains objective, scopes of works, and problem statement of the project.

Chapter 2 is a literature review on theoretical concepts applied in this project. The chapter consist explanation about what is PIC tape measure and differentiate with existing of tape measure system other. The type of PIC chosen, suitable components and sensor also been discussed.

Chapter 3 is Methodology. It is important part of the whole project because it shows out how is the project's activity developed for Chapter 3. Thus, it is divided in two parts, hardware development and software development, which involves the

overview of microcontroller, circuit and PCB fabrication. It also contains some of the reason why have chosen the hardware and a list of typical tools and approaches used in this project. For the software part, it discuss about the software development of the project. The process also stated from download the program into the PIC microcontroller through programmer board.

In Chapter 4, all the analysis result from the hardware and software experiments is included in the form of table, and discussion.

Chapter 5 is the last chapter that will be the summary of the whole project. The problems facing during work progress also will be discussed in this chapter. Beside it also concludes with some recommendations that can be implemented in future.

CHAPTER 2

LITERATURE REVIEW

2.1 TAPE MEASURE FOR DETECT DISTANCE

Tape measure is device that can record and recall 30 or 32 distance measurements, allowing several readings to be taken before copying them to paper. These measurements are displayed on the X2 16-character 2 line LCD (liquid crystal display module). Meters are shown top left, followed by letters "mt", Feet and inches are shown bottom left, complete with letters of "ft" and "in".

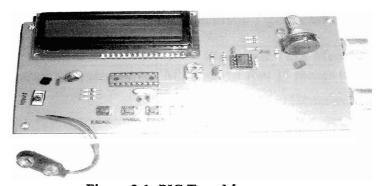


Figure 2.1: PIC Tape Measure

2.2 CURRENT SIMILAR PRODUCTS

Currently there are product in market with features of detect distance, but stated product sends out narrow beams of sound waves that bounce off solid objects back to the hand-held receiver. Custom electronics and a microprocessor then convert elapsed time into a distance measurement and display it on the LCD. When used with its electronic target, the Combo PRO model uses both sound waves and an infrared beam [8]

Figure 2.2: Electronic Tape measure

Table 2.1: Specification of Electronic Tape Measure

Model	Electronic Tape Measure
Range without the Target unit	Minimum: 1 foot 11 inches (0.60m)
	Maximum: 59 Feet(18Meters)
Range with Target unit	Minimum: 3 feet 3 inches(1 meter)
	Maximum: 246 Feet (75 Meter)
Accuracy	99.5% ± 1 cm
Main unit size	5 5/8" X 3" X 1 1/2 "
Target unit size	5 3/4 "X 2 3/4 "X 1 "
Price	\$ 149.95

2.3 WHAT IS TAPE MEASURE?

Tape measure is the device can detect distance, where it uses transmitter detector and receiver to take reading and further display to LCD.

The device good is, user can detect distance easily without doing measurement. User can also adjust unit is wanted. The devices also afford to keep as many as 32 memories as savings. Besides that the devices has also function as recall, and mask.

2.4 MICROCONTROLLER

Microcontroller is an integrated circuit, which all the component of the microcomputer system combined together onto it. It is also represented a key impact technology for 21st century. Microcontroller provide inexpensive, programmable logic control and interfacing to external devices. The microcontroller's ability to store and run unique programs makes it extremely versatile. For example, a microcontroller is programmed to make decision (perform function) based on predetermined situations (I/O line logic) and selections. The microcontroller's ability to perform mathematic and logic functions allows it to mimic sophisticated logic and electronic circuit [4].

The basic microcontroller features contain of central processing unit (CPU), random access memory (RAM), read only memory (ROM), electrically erasable programmable read only memory (EEPROM), input/output (I/O) lines, serial and parallel parts, timers, and other built-in peripherals, such as analog to digital (A/D) and digital to analog (D/A) converters [4].