

Preparation and characterization of linseed/tung oil-filled urea–formaldehyde microcapsules and their effect on mechanical properties of an epoxy-based coating

BACHELOR OF ENGINEERING TECHNOLOGY MANUFACTURING WITH HONOURS

2023

Faculty of Mechanical and Manufacturing Engineering Technology

MUHAMMAD SYAFIQ IZWAN BIN MD. AKHIR

Bachelor of Engineering Technology Manufacturing with Honours

2023

Preparation and characterization of linseed/tung oil-filled urea–formaldehyde microcapsules and their effect on mechanical properties of an epoxy-based coating

MUHAMMAD SYAFIQ IZWAN BIN MD. AKHIR

Faculty of Mechanical and Manufacturing Engineering Technology

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2023

DECLARATION

I declare that this thesis entitled "Preparation and characterization of linseed/tung oil-filled urea–formaldehyde microcapsules and their effect on mechanical properties of an epoxybased coating" is the result of my own research except as cited in the references. The choose an item has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

APPROVAL

We hereby declare that we have checked this thesis and in our opinion, this thesis is adequate in terms of scope and quality for the award of the Bachelor of Manufacturing Engineering Technology (BMMW) with Honours.

	WALAYSIA A
Signature	
Supervisor N	Iame : MADAM NUR AIMAN HANIS BINTI HASIM
Date	11/1/2023
	اونيۇم،سيتي تيڪنيڪل مليسيا ملاك
ī	JNIVERSITI TEKNIKA. MALAYSIA MELAKA
Signature	:
Co.Supervise	or Name : Ts. DR. MOHD FAUZI BIN MAMAT
Date	: 11/1/2023

DEDICATION

I dedicate my dissertation work to my family and my supervisors and my co supervisors Madam Nur Aiman Hanis Binti Hasim and Ts. Dr. Mohd Fauzi Bin Mamat. A special feeling of gratitude to my loving parents, Md Akhir Bin Chin and Khoriah Binti Ismail whose words of encouragement and push for tenacity ring in my ears. My brothers and sisters have never left my side and are very special. I also dedicate this dissertation to my many friends and family who have supported me throughout the process. I will always appreciate all they have done. I dedicate this work and give special thanks to my supervisor Madam Nur Aiman Hanis Binti Hasim and my co supervisors Ts. Dr. Mohd Fauzi Bin Mamat for being there for me throughout the entire bachelor program.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ABSTRACT

One of the most formidable foes that metals have to contend with is corrosion. It is a natural occurrence that is brought on by the interaction of metal and the components of the environment. Nowadays, applying a protective coating to metal surfaces is a common method of protecting them against corrosion. In the event of defect such as crack, scratch and other unexpected damage on steel or pipeline, this layer may be rendered useless. A selfhealing coating was a new coating method for preserving steel against corrosion. There were self-healing coatings that can fix themselves. Self-healing coating is one of the smart coatings that may mend or restore coating damage in order to prevent additional corrosion. Micro container releases included into the polymer enable active functioning. The selfhealing properties of this coating help to save costs. The goal of this research project to developing self-healing coatings from polymeric materials and evaluating their performance and corrosion behavior on steel substrates. In this self-healing coating, Linseed oil have been mixture with Tung oil to get microcapsules and work together to repair the scartch at the low carbon steel. According to this research, the steel have been protected from corrosion by a self-healing coating. The self-healing coating on low carbon steel substrate in a 3.5wt% NaCl solution have been tested. Low carbon steel substrate with dimensions of 20mm length x 20mm width x 2mm thickness have been subjected to a hardness test for mechanical testing. To fabricate microcapsules that contain 50% linseed oil and 50% tung oil as a healing agent, this study had used an epoxy and hardener ratio of 4:1 to make microcapsule shells and have been analyse by using Attenuated total reflection - Fourier-transform infrared (ATR-FTIR). Immersion tests have been carry out by separating the samples into three categories: uncoated, epoxy-coated, and self-healing coated, all in a 3.5 wt% NaCl solution. There were 7, 14, 21, 21, 28 and 35 day intervals in which the immersion test have been done. Material characterization have been examined using a Scanning Electron Microscope / Energy Dispersive X-Ray (SEM/EDX). The result on analysis, the scratch on the substrate self healing coating were closed and protect the substrate from corrosion while for uncoated substrate the scratch were not closed and corrosion have been happen. The result after 35 days, the average weight loss for self healing coated was 0.008g, epoxy coated was 0.11g and uncoated was 0.029g and corrosion rate was 0.0039g for self healing coated, 0.0056 for epoxy coated and 0.0142 for uncoated. Based on this two measurements, self-healing coating have been the lowest values compared to uncoating and epoxy coating. The visual inspection when comparing the self-healing coating sample to epoxy coating and uncoating, the visual evaluation of the immersion test have been demonstrate greater corrosion resistance. The EDX result also have been prove that self healing coating were closed the scartch and uncoated were not based on Fe, which are 5.50wt% for self healing sample and 95.44wt% for uncoated sample. As conclusion, corrosion resistance was proved by the sample's ability to completely heal a scratch. The application of this self-healing coating can be use on oil and gas industry.

ABSTRAK

Salah satu musuh paling hebat yang perlu dihadapi oleh logam ialah kakisan. Ia adalah kejadian semula jadi yang dibawa oleh interaksi logam dan komponen alam sekitar. Pada masa kini, menggunakan salutan pelindung pada permukaan logam adalah kaedah biasa untuk melindunginya daripada kakisan. Sekiranya berlaku kecacatan seperti retak, taburan dan kerosakan lain yang tidak dijangka pada keluli atau saluran paip, lapisan ini mungkin menjadi tidak berguna. Salutan penyembuhan sendiri ialah kaedah salutan baharu untuk memelihara keluli daripada kakisan. Terdapat salutan penyembuhan diri yang boleh membaiki sendiri. Salutan penyembuhan sendiri ialah salah satu salutan pintar yang mungkin membaiki atau memulihkan kerosakan salutan untuk mengelakkan kakisan tambahan. Keluaran bekas mikro yang dimasukkan ke dalam polimer membolehkan berfungsi aktif. Ciri-ciri penyembuhan diri salutan ini membantu menjimatkan kos. Matlamat projek penyelidikan ini untuk membangunkan salutan penyembuhan diri daripada bahan polimer dan menilai prestasi dan kelakuan kakisannya pada substrat keluli. Dalam salutan penyembuhan sendiri ini, minyak biji rami telah dicampur dengan minyak tung untuk mendapatkan mikrokapsul dan bekerjasama untuk membaiki parut pada keluli karbon rendah. Menurut penyelidikan ini, keluli telah dilindungi daripada kakisan oleh salutan penyembuhan sendiri. Salutan penyembuhan sendiri pada substrat keluli karbon rendah dalam larutan NaCl 3.5wt% telah diuji. Substrat keluli karbon rendah dengan dimensi 20mm panjang x 20mm lebar x 2mm ketebalan telah tertakluk kepada ujian kekerasan untuk ujian mekanikal. Untuk membuat mikrokapsul yang mengandungi 50% minyak biji rami dan 50% minyak tung sebagai agen penyembuhan, kajian ini telah menggunakan nisbah epoksi dan pengeras 4:1 untuk membuat cangkerang mikrokapsul dan telah dianalisis dengan menggunakan Refleksi total yang dilemahkan - Fourier-transformasi inframerah (ATR-FTIR). Ujian rendaman telah dijalankan dengan mengasingkan sampel kepada tiga kategori: tidak bersalut, bersalut epoksi, dan bersalut penyembuhan sendiri, semuanya dalam larutan NaCl 3.5 wt%. Terdapat selang 7, 14, 21, 21, 28 dan 35 hari di mana ujian rendaman telah dilakukan. Pencirian bahan telah diperiksa menggunakan Mikroskop Elektron Pengimbasan / X-Ray Penyebaran Tenaga (SEM/EDX). Hasil analisis, calar pada salutan penyembuhan sendiri substrat telah ditutup dan melindungi substrat daripada kakisan manakala untuk substrat yang tidak bersalut parut tidak ditutup dan kakisan telah berlaku. Hasilnya selepas 35 hari, purata penurunan berat badan untuk bersalut penyembuhan sendiri ialah 0.008g, bersalut epoksi ialah 0.11g dan tidak bersalut ialah 0.029g dan kadar kakisan ialah 0.0039g untuk bersalut penyembuhan sendiri, 0.0056 untuk bersalut epoksi dan 0.0142 untuk tidak bersalut. Berdasarkan kedua-dua ukuran ini, salutan penyembuhan diri adalah nilai yang paling rendah berbanding salutan tanpa salutan dan epoksi. Pemeriksaan visual apabila membandingkan sampel salutan penyembuhan diri kepada salutan epoksi dan salutan, penilaian visual ujian rendaman telah menunjukkan rintangan kakisan yang lebih besar. Keputusan EDX telah membuktikan bahawa salutan penyembuhan sendiri telah ditutup parut dan tidak bersalut berdasarkan Fe, iaitu 5.50wt% untuk sampel penyembuhan sendiri dan 95.44wt% untuk sampel tidak bersalut. Kesimpulan, rintangan kakisan telah dibuktikan oleh keupayaan sampel untuk menyembuhkan sepenuhnya calar. Penggunaan salutan penyembuhan diri ini boleh digunakan pada industri minvak dan gas.

ACKNOWLEDGEMENTS

In the Name of Allah, the Most Gracious, the Most Merciful

First and foremost, I would like to thank and praise Allah the Almighty, my Creator, my Sustainer, for everything I received since the beginning of my life. I would like to extend my appreciation to the Universiti Teknikal Malaysia Melaka (UTeM) for providing the research platform. Thank you also to the Jabatan Perkhidmatan Awam(JPA) (Muhammad Syafiq Izwan Bin Md. Akhir(000524-08-0495)) for the financial assistance.

My utmost appreciations express to my project supervisor and co-supervisor, Madam Nur Aiman Hanis Binti Hasim and Ts. Dr. Mohd Fauzi Bin Mamat for the continuous support in my degree's study and research, and also for their patience, motivation, enthusiasm, and immense knowledge in the area of expertise. Their guidance had tremendously helped me throughout the research and writing of this thesis.

Last but not list, my deepest gratitude to my beloved parents, Md. Akhir Chin and Khoriah Ismail, and also my family for their endless love, prayers, and encouragement. I would also like to thank my beloved parents for their endless support, love and prayers. Finally, a great big thank you to my colleague, Hasif Zulkifli, who was always with me during the completion of this thesis. To those who had indirectly contributed in this research, your kindness really means a lot to me. Thank you very much.

TABLE OF CONTENTS

	PAGE
DECLARATION	
APPROVAL	
DEDICATION	
ABSTRACT	i
ABSTRAK	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vii
LIST OF FIGURES	viii
LIST OF SYMBOLS AND ABBREVIATIONS	xi
LIST OF APPENDICES	xii
CHAPTER 1INTRODUCTION1.1Background of study1.2Problem statement1.3Objective of study1.4Scope of Study1.5Significant of study1.6Organization of thesis	اونيوم سيتي ٽي 13 13 15 15 15 16 17 17
CHAPTER 2 LITERATURE REVIEW	19
 2.1 Introduction to carbon steel 2.1.1 Type of Carbon Steel 2.1.2 Low carbon steel 2.2 Overview of corrosion 2.2.1 Form of corrosion 2.2.2 Crevice corrosion 2.2.3 Pitting corrosion 	19 20 22 23 24 25 26
 2.2.4 Inter granular corrosion 2.2.5 Galvanic corrosion 2.2.6 Uniform corrosion 2.3 Corrosion on low carbon steel 2.4 Corrosion protection method 2.4.1 Corrosion inhibitor 	27 28 29 31 32 33
2.4.2 Sacrificial protection	34

	2.4.3 Cathodic protection	35
	2.4.4 Alloyed Steel (Stainless)	36
2.5	Coating as corrosion protection	37
	2.5.1 Type of coating	37
2.6	Self healing coating	39
	2.6.1 Type of self healing coating/microcapsule	40
	2.6.2 Plant oil or drying oil properties	41
	2.6.3 Linseed oil and tung oil as healing agent	45
2.7	Epoxy coating as matrix	48
2.8	Summary of literature review	50
CHA	APTER 3 METHODOLOGY	51
3.1	Introduction	51
3.2	Material preparation	53
	3.2.1 Preparation low carbon steel as substrate	53
	3.2.2 Preparation of self-healing coating	54
	3.2.2.1 Synthesis of Microcapsules	56
3.3	Mechanical testing	59
	3.3.1 Microstructure analysis	59
	3.3.2 Hardness test	61
3.4	Sandblasting process	62
3.5	Corrosion test	63
	3.5.1 Immersion test	63
	3.5.1.1 Visual inspection	64
	3.5.1.2 Weight loss measure	64
20	3.5.1.3 Corrosion rate measure	65
3.0 2.7	Attenuated Total Reflection - Fourier-Transform Infrared (ATR-FTIR)	60
3.7	(EDX) (EDX)	68
3.8	Summary of reasearch methodology	70
CHA	APTER 4RESULT AND DISCUSSION	71
4.1	Introduction	71
4.2	Substrate analysis	71
	4.2.1 Composition of low carbon steel	72
	4.2.2 Microstructure study	73
	4.2.3 Hardness test	74
4.3	Self Healing coating study	76
	4.3.1 Microcapsules analysis	77
	4.3.2 ATR-FTIR Analysis	78
	4.3.3 Performance of self healing coating	80
	4.3.4 Cross thickness of self healing coating	82
4.4	Immersion test	83
	4.4.1 Visual inspection	84
	4.4.2 Weight loss measurement	86
	4.4.5 Corrosion rate measurement	88
4 5	4.4.4 Surface morphology study	91
4.5	Summary of result and discussion	97

CHA	PTER 5	CONCLUSION AND RECOMMENDATION	99
5.1	Conclusion	1	99
5.2	Recommen	dation for future study	101
5.3	Project por	ntential	102
REFI	ERENCES		103
APPI	ENDICES		108

LIST OF TABLES

TABLETITLE	PAGE
Table 2.1 Carbon content, microstructure and features of carbon steel (Gandy, 2007	7). 20
Table 2.2 Composition element of low carbon steel (Ramesh Singh,2020)	23
Table 2.3 Summary of previous study on of self-healing coating by organic oil.	43
Table 2.4 Summary of previous study of substance in linseed oil and tung oil	46
Table 3.1 List of the material	55
Table 4. 1 The element value of low carbon steel	72
Table 4. 2 The results of the hardness tests	75
Table 4. 3 The condition of each sample	84
Table 4. 4 Result of weight loss in the immersion test	86
Table 4. 5 Result of corrosion rate measurement	89
Table 4. 6 Result of EDX after 7 days	95
Table 4. 7 Result of EDX after 35 days KAL MALAYSIA MELAKA	96

LIST OF FIGURES

FIGURE	FITLE	PAGE
Figure 2.1 Form of corrosion (Myer Kutz, 2	018)	24
Figure 2.2 Crevice corrosion was affected th	e steel (Ben DuBose, 2020)	25
Figure 2.3 Pitting corrosion on a steel pipe (David Wiley,2018)	27
Figure 2.4 Galvanic corrosion was happen o	n joining screw (Vargel C, 2020)	28
Figure 2.5 Illustration of the chain of proces	ses that take place during galvanic	
corrosion (Vargel C, 2020)		29
Figure 2.6 Uniform corrosion on pipeline (N	laseer Alhaboubi, 2014)	30
Figure 2.7 Type of corrosion prevention met	hod	33
Figure 2.8 Type on corrosion inhibition (Mi	oara Murariu et al, 2021)	38
Figure 2.9 Overview of self healing coating	(Zhang Y et al, 2022)	40
Figure 2.10 Tung oil made from seed in tung	g fruits (Man L et al, 2019)	42
Figure 2.11 Linssed oil came from seed and	make it to oil (Rosa Turco et al., 2021)	42
Figure 2.12 Applying epoxy to pipe (Zhang	Y et al, 2022)	49
Figure 3.1 Flowchat of the study		52
Figure 3.2 MADA Laser cut machine has be	en used to cut low-carbon steel	53
Figure 3.3 Flowchat of making microcapsule	2	58
Figure 3.4 Mecapol P 320 Grinding machine	e for polish material to get mirror finish	n 60
Figure 3.6 Mitutoyo Rockwell hardness test	ng machine	61
Figure 3.9 Three different compartment of s	pecimen 3.5wt% NaCl solution	63
Figure 3.10 The duration for immersion test	of (A) 7,(B) 14, (C) 21, (D) 28, (E) 35	
days and (F) extra sample		64

Figure 3. 11 Raw material that have been analyse by using ATR-FTIR	67
Figure 3.13 ZEISS EVO 18 Research Scanning electron microscope machine	68
Figure 3.14 JEOL JSM-6010PLUS/LV EDX machine analysis	69
Figure 4. 1 Microstructure of low carbon steel as substrates by using optical electron	
microscope by (a) using 20x and (b)using 50x	73
Figure 4. 2 Five-point hardness reading	75
Figure 4. 3 Bar chart representation of the HRB value	76
Figure 4. 4 The linseed oil mix tung oil microcapsules	77
Figure 4. 5 SEM micrograph microcapsule after synthesis (a) Linseed mix Tung oil	
at 50x, (b) at 100x , (c) Detail of (b), (d) EDX spectrum of Linseed mix	
Tung oil	78
Figure 4. 6 Graph of ATR-FTIR Analysis	80
Figure 4. 7 The SEM micrograph (a) without microcapsule and (b) self healing	
coating, (a1) without microcapsule and (b1) self healing coating after	
UNIVERSITI TEKNIKAL MALAYSIA MELAKA scratch at coating surface	81
Figure 4. 8 SEM morphology of top view (a) epoxy and (b) self healing coating, and	
the cross section of (a1) epoxy coating and (b1) self healing coating.	82
Figure 4. 9 Immersion test after 7 days	83
Figure 4. 10 The graph of weight loss measurement	88
Figure 4. 11 The graph of corrosion rate	90
Figure 4. 12 Result after 7 days of (a) uncoating, (b) epoxy and (c) self-healing	
coating	91
Figure 4. 13 Result after 21 days of (a) uncoating, (b) epoxy coating and (c) self-	
healing coating	92

Figure 4. 14 Result after 35 days of (a) uncoating, (b) epoxy and (c) self-healing	
coating	93
Figure 4. 15 Infographic of Self healing coating	98

LIST OF SYMBOLS AND ABBREVIATIONS

CO_2	-	Carbon dioxide		
NaCl	-	Sodium chloride		
NaOH	-	Sodium hydroxide		
wt%	-	Weight percentages		
SEM	-	Scanning Electron Microscope		
EDX	-	Energy Dispersive X-Ray		
pН	-	Potential Of Hydrogen		
S	-	Sulphur		
Р	- 14	Phosphorus		
Mn	The second	manganese		
Cu	<u>3</u> -	Cuprum		
Al	-	Aluminium		
С	Pages .	Carbon		
mm	- 101	Milimiter		
ml	ملاك	او نوم سنخ تنکنک مMililiter		
AISI / SAE	-	American Iron and Steel Institute / Society of Automotive Engineers		
ASTM	JNIVE	American Society for Testing and Materials		
HSLA	-	High-strength low-alloy steel		
ASM	-	American Society for Metals		
CRAs	-	corrosion-resistant alloys		
DCPD	-	Dicyclopentadiene		
UF	-	Urea formaldeyde		
LACs	-	Low alloy stars		
PVA	-	Polyvinyl alcohol		
CeO_2	-	Cerium(IV) oxide		
CaCO ₃	-	Calcium carbonate		
ATR-FTIR	-	Attenuated total reflection - Fourier-transform infrared		

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
APPENDIX A ASTMI G1		108
APPENDIX B ASTMI G31		109
APPENDIX C Gantt Chart PSM 1		110
APPENDIX D Gantt Chart PSM 2		111
APPENDIX E Plagiarism Check Result	(TURNITIN)	112

CHAPTER 1

INTRODUCTION

1.1 Background of study

Corrosion is commonly defined as the nearly unavoidable decomposition of a substance due to a chemical reaction with its surroundings that is determined by thermodynamics. Corrosion that goes unchecked wastes resources and infrastructure, and if left unattended, can result in unexpected infrastructure damage, injury, and death. An electrochemical reaction requires four ingredients for corrosion to occur which are the presence of an anode (where material is lost due to oxidation), the presence of a cathode (which is typically the driving element for electrochemical reactions to occur at the anode and is a reduction reaction), an electrical conductor to allow charge to flow via electron flow, and an electrolyte to allow charge to flow via ion flow. Any change to one (or more) of these four factors will have an impact on the total corrosion process (Ben DuBose, 2020).

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Any change to one or more of these four factors will have an impact on the total corrosion process. Corrosion can be localised or widespread (general). Both of these basic kinds are undesirable and result in waste and cost. Localized corrosion, on the other hand, is more insidious than general corrosion because it causes a large amount of metal loss in a limited area and is frequently not observed as quickly as general corrosion, leading to catastrophic failures that occur without any warning (Trethewey, Chamberlain, 1988).

However, corrosion genarally can be controlled by take the step to protected metal. Various methods can be taken to control corrosion on steel such as barrier coating, corrosion inhibitor, material selection (aloy steel), cathodic protection and sacrificial protection. Steel can also be protected with protective coatings from external causes such as the harmful effects of gases in the atmosphere. Epoxy, powder, or sel-healing coatings are some of the options for this type of surface treatment (Sauvant-Moynot et al., 2008).

With the advancement of technology in recent years, the need for smart materials has increased greatly. Self-healing materials are one of the newest smart materials to hit the market, and they have some impressive properties in polymeric coatings. During the service life of a coating or composite material, it is common to undergo unexpected and unwanted defects, cracks, and failure. Mechanical damage can occur during the production process in rare circumstances. Thus, strengthening the coating's ability to withstand unwanted mechanical loads is a top issue for the development of long-lasting coating materials (E. Brown et al., 2003).

Self-healing polymeric coatings on low carbon steel usually used in the oil and gas industry, were first tested for their anticorrosion capabilities. Combining electrical fieldsensitive film shapers with protective coatings and a pH close to the default layer structure resulted in self-healing metal structures (Sauvant-Moynot et al., 2008). In addition to mechanical performance, self-healing features like as electrical, optical, and physicochemical qualities are rapidly being added. In reality, maintaining the key materials' functionality may be less expensive than completely fixing them (Sauvant-Moynot et al., 2008).

1.2 Problem statement

Corrosion is one of the most harmful processes, especially for the automotive, marine, aerospace industries and oil and gas, which suffer greatly from it. There has been a concerted effort taken to reduce losses due to metal corrosion in sustainable resources and material selection. If the corrosive cannot be avoided and the repair procedure is lengthy, the cost of repair will be significant. Coating is the one of ways to protect iron from corrosion. It is because coating will give a cover to the metal as protection. While, when the coating barrier on a low carbon steel surface is disrupted, typically by a microcrack or a scratch, corrosion will begin to occur. In recent years, we've needed to develop a new approach or smart method of coating technology that allows for automatic and rapid replication of the action against mechanical damage caused by the external environment. The new coating design will act as an effective barrier, preserving mechanical qualities. Self-healing properties may aid in preventing corrosion and extending the life of the low carbon steel. The purpose of this research is to create a self-repairing layer that can protect low carbon steel from rust.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

1.3 Objective of study

The main purpose of this study is to prepare and characterise of linseed mix tung oil urea–formaldehyde microcapsules and know the effect on mechanical properties of an epoxy-based coating. Specifically, the objectives are as follows:

- i. To prepare self healing coating produce by linsed oil mix tung oil filled urea formaldeyde.
- ii. To study the impact of microcapsule loading and size on the mechanical properties and healing ability of an epoxy-based coating was investigated.

iii. To investigate the effect of self healing in corrosion between uncoated, coating and coated low carbon steel substrate in 3.5 wt% NaCl medium.

1.4 Scope of Study

The scope of this research are as follows:

- The purpose of this study is to identify the best healing agent composition for corrosion protection performance of self-healing coatings on low carbon steel substrates employed in the oil and gas industries.
- Cuting the material with dimension 20 x 20 mm size and 2 mm thickness by using laser cut machine.
- iii. Use a hardness test and an optical microscope to do mechanical testing on the substrate.
- iv. To perform self-healing on the base metal that has been coated with a healing agent-containing coating.
- v. To conduct the immersion test in a 3.5wt% NaCl solution to investigate corrosion behaviour. The exposure time which are 7, 14, 21, 28, and 35 days, all samples were submerged in a NaCl solution containing 3.5 wt% NaCl.
- vi. The sample have been divided into three groups: uncoated, epoxy coating, and self-healing coating, and immersed in 3.5wt% NaCl for immersion testing.
- vii. To study the weight loss and corrosion rate of each substrate after immersion test.
- viii. To study the corrosion behaviour on the substrate surface by using the Scanning Electron Microscope (SEM) and Energy Dispersive X-Ray (EDX).

1.5 Significant of study

The study is to find shed light on the significance of the research. This section also discusses the analysis' utility and potential benefits. The aim of this study is to develop a self-healing microcapsule that uses linseed oil mix tung oil as both a curative and a binding agent. These microcapsule-filled healing agents have been researched for their usefulness in treating fractures produced by paints or coatings. Encapsulating functional materials in hollow microspheres is a promising method for preserving and preserving such compounds until they are needed for a specific use. The purpose is to prevent corrosion of platform coatings in oil and gas industries. Findings from this study hopefully aid oil and gas companies in to reduce corrosion on onshore and offshore platforms and pipelines.

1.6 Organization of thesis

This study is actually divided into five chapters, but for PSM 1 just need to do three chapters which are introduction, literature review and methodology. For PSM 2, this thesis is continue another two chapters which are result and conclusion. The contents of **UNIVERSITI TEKNIKAL MALAYSIA MELAKA** which are summarised as describe:

- Chapter 1. Introduction. The study's background, research problems, objectives, scope, contributions, and significance are presented in this chapter.
- ii. Chapter 2. Literature review. This chapter is briefing about introduction of corbon steel and more spicified to low carbon steel. Corrosion then occurs on low carbon steel. An overview coating is discussed later in this

chapter. Additionally, a brief description of self-healing is included. Following that, a brief introduction to linseed oil and tung oil.

- iii. Chapter 3. Methodology. This chapter discusses the process for estimating the formula of a healing agent, as well as the strategy employed in this investigation. Additionally, it had a methods section.
- iv. Chapter 4. Result and Discussion. This chapter consists of a review of the study's results as well as an examination of the substrate, which is low-carbon steel, microstructural testing, hardness testing, the performance of self-healing coating, SEM/EDX testing, and immersion testing(corrosion rate and weight loss).

Chapter 5. Conclusion and Recommendation. This chapter is devoted to the conclusion and recommendations, which include a general conclusion regarding this study, recommendations, and the possibilities for further research on this topic.