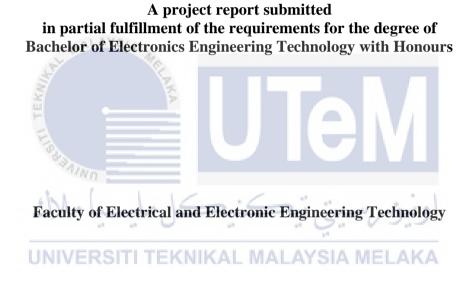


Faculty of Electrical and Electronic Engineering Technology

UNIVERSITI TEKNIKAL MALAYSIA MELAKA


MUHAMMAD HALIMI ISMA BIN MUHAMMAD GHANISMA

Bachelor of Electrical Engineering Technology with Honours

2022

Development of Solar Powered Automatic Retractable Cloth Hanger with Raining Sensor and IoT

MUHAMMAD HALIMI ISMA BIN MUHAMMAD GHANISMA

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2023

UNIVERSITI TEKNIKAL MALAYSIA MELAKA FAKULTI TEKNOLOGI KEJUTERAAN ELEKTRIK DAN ELEKTRONIK

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II

 Tajuk Projek
 : Development Of Solar Powered Automatic Retractable Cloth Hanger with Raining Sensor and IoT

Sesi Pengajian : 2022/2023

Saya MUHAMMAD HALIMI ISMA BIN MUHAMMAD GHANISMA mengaku membenarkan laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.
- 2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
 - 3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan
 - pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (✓):

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972) (Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

penyelidikan dijalankan)

(TANDATANGAN PENULIS) Alamat Tetap: No.9, Jalan Tilapia 2, Taman Sri Putra, 42700 Banting, Selangor.

Disahkan oleh: anafial

(COP DAN TANDATANGAN PENYELIA)

PROF. MADYA MOHD ARIFF BIN MAT HANAFIAH Pensyarah Kanan Jabatan Teknologi Kejuruteraan Elektrik Fakulit Rekologi Kejuruteraan Elektrik Dan Elektrolik Universiti Teknikal Maleysia Melaka

Tarikh: 12/1/2023

Tarikh: 12/1/2023

*CATATAN: Jika laporan ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh laporan ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I declare that this project report entitled "Development of Solar Powered Automatic Retractable Cloth Hanger with Raining Sensor and IoT" is the result of my own research except as cited in the references. The project report has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

APPROVAL

I hereby declare that I have checked this project report and in my opinion, this project report is adequate in terms of scope and quality for the award of the degree of Bachelor of Electrical Engineering Technology with Honours.

Signature :
Supervisor Name : PROF MADYA MOHD ARIFF BIN MAT HANAFIAH
Date : 12/1/2023
New Alling
اونيوم سيتي تيڪنيڪل مليسيا ملاك
Co-Supervisor IVERSITI TEKNIKAL MALAYSIA MELAKA
Name (if any)
Date :

DEDICATION

To my beloved mother, Zubaidah Binti Abdul Halim and father, Abu Bakar whose does not stop giving me full support and motivation throughout my whole journey in life and especially in studying at UTeM. Also thank you to my classmate and also to everyone who involve in brainstorming and contributing towards any ideas during execution of progress in my Final Year Project. Special thank you to all my siblings who always help me in advising, guiding, giving idea, and solving problems. Besides, giving inspiration by showing their hardworking in pursues studying and end up with a good career in life.

ABSTRACT

Because of the variable weather conditions, such as rainy days, it might be difficult for people to dry their garments outside these days. During rainy days, individuals often forget to bring in their clothing. Working people will be affected by this, since they will be unable to handle their daily activities and routines due to a shortage of time. As a result of this occurrence, a concept has been devised to protect clothing that have been dried outside from being exposed to rain and becoming wet. The primary control mechanism for this device is a microcontroller, which allows it to operate autonomously. The primary goal is to create a compartment and an electrical system that will automatically retrieve garments on sunny days and retrieve clothes on wet days. A linear actuator as the mechanical mechanism, LDR Light sensor, Rain sensor module, and ESP32 module as an IoT module were all required to make this system work correctly. All of the sensor's programming will be installed using an ESP32 module, which will supply the system with instructions on how to work effectively. This device has the advantages of being energy and time efficient, as well as making it simpler for employed individuals to conduct duties at home indirectly.

> اونيۈم سيتي تيڪنيڪل مليسيا ملاك UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ABSTRAK

Oleh kerana keadaan cuaca yang berubah-ubah, seperti hari hujan, mungkin sukar bagi orang ramai untuk mengeringkan pakaian mereka di luar hari ini. Semasa hari hujan, individu sering terlupa untuk membawa masuk pakaian mereka. Orang yang bekerja akan terjejas oleh perkara ini, kerana mereka tidak dapat mengendalikan aktiviti dan rutin harian mereka kerana kesuntukan masa. Akibat daripada kejadian ini, satu konsep telah dirangka untuk melindungi pakaian yang telah dijemur di luar daripada terkena hujan dan menjadi basah. Mekanisme kawalan utama untuk peranti ini ialah mikropengawal, yang membolehkannya beroperasi secara autonomi. Matlamat utama adalah untuk mencipta petak dan sistem elektrik yang akan mengambil pakaian secara automatik pada hari yang cerah dan mengambil pakaian pada hari basah. Motor tingkap kuasa dan gear pengawal selia sebagai mekanisme mekanikal, penderia Cahaya LDR, modul penderia hujan dan ESP32 sebagai modul IoT semuanya diperlukan untuk menjadikan sistem ini berfungsi dengan betul. Semua pengaturcaraan sensor akan dipasang menggunakan ESP32, yang akan membekalkan sistem dengan arahan tentang cara untuk berfungsi dengan berkesan. Peranti ini mempunyai kelebihan iaitu cekap tenaga dan masa, serta memudahkan individu yang bekerja untuk menjalankan tugas di rumah secara tidak langsung.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ACKNOWLEDGEMENTS

In the name of Allah, the Most Compassionate, the Most Benevolent

To begin, I would want to express my gratitude to Allah (SWT) for the favour he has bestowed upon me by allowing me to finally and completely pass PSM 1 and also PSM 2. I want to take this opportunity to extend my most sincere appreciation to everyone who assisted me in achieving resounding success with the Bachelor project I and II was working on.

I would like to take this opportunity to thank my advisor, Associate Professor Mohd Ariff Bin Mat Hanafiah, for providing me with invaluable direction and suggestions, as well as words of advice and patience while I worked on this project, as well as for providing me with moral support all the way through the process. It is my opinion that I will not be able to finish my job to a satisfactory level without his expertise and aid.

My deepest gratitude goes out to my mother and father, as well as my other relatives and friends, for all of the support and prayers they offered to me while I was pursuing my education. In addition, I would want to thank my siblings and my friends for all of the effort, collaboration, and memories that they provided throughout our time together in UTeM. They deserve this honourable mention.

ېتى ٽيڪنيڪل مليسيا ملا

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

TABLE OF CONTENTS

APP	ROVAL		
ABS'	ГRACT		i
ABS'	ГRAK		ii
ACK	NOWLE	EDGEMENTS	iii
ТАВ	LE OF C	CONTENTS	i
LIST	OF TAI	BLES	v
LIST	OF FIG	URES	v
LIST	OF SYN	MBOLS	ix
	2	PENDICES	x xi
	PTER 1 Backgr Probler	INTRODUCTION round m Statement Objective	1 1 3 4
1.4	Scope	of Project	4
CHA 2.1 2.2	PTER 2 Introdu Past St		5 5 5
2.3 2.4	Effect of Benefit	of usage of dryer in environmental aspects. t of sun drying clothes	8 9
2.5 2.6 2.7	High n	d of self-service laundry in Malaysia lead to spread of diseases. umber of Rainfall in Malaysia se IoT?	10 11 12
2.8 2.9		opment of component using 3D printer in society nowadays atic Retractable clothesline Comparison of Components	14 14 14
	2.9.2	2.9.1.1 MicrocontrollersType of Solar Panel2.9.2.1 Monocrystalline2.9.2.2 Polyerystalline	14 16 16
	202	2.9.2.2 Polycrystalline2.9.2.3 Thin Film2.9.2.4 Heterojunction (HIT)	17 17 18
	2.9.3	Type of Mechanism2.9.3.1Belt and Pulley2.9.3.2Rack and Pinion	18 18 19

		2.9.3.3 Lifting Mechanism	20
		2.9.3.4 Belt conveyor mechanism	20
		2.9.3.5 Linear Actuator	21
	2.9.4	Solar as a Power Supply	21
	2.9.5		22
		2.9.5.1 On-grid	22
		2.9.5.2 Off-grid	22
		2.9.5.3 Hybrid	23
	2.9.6	Solar, Battery and Motor Calculations	24
		2.9.6.1 Load Power Use	24
		2.9.6.2 Suitable Battery (Based on Load)	24
		2.9.6.3 Solar Energy	25
		2.9.6.4 Motor calculation	25
	2.9.7	Battery Storage	26
	2.9.8		26
		2.9.8.1 Sealed Lead Acid	26
		2.9.8.2 NiMH (Nickel-Metal Hydride)	27
		2.9.8.3 Ni- Zn (Nickel-Zinc)	29
		2.9.8.4 Li-Ion (Lithium-Ion)	29
		2.9.8.5 Ni- Cd (Nickel Cadmium)	30
2.10	Best (Component to use	31
		L298N Motor Driver Module	31
		LDR Rain Sensor	31
		3 Microcontroller	32
		Battery (Energy Storage)	32
		5 Solar Panel	33
		Mechanism to use	33
2.11		nary Of Literature Review	35
			•
		3 NIVERMETHODOLOGY MALAYSIA MELAKA	38
3.1		luction	38
3.2		odology	38
3.3		ct characteristics	41
3.4	•	m of the project	43
3.5	Param		44
		Rain sensor	44
		Light Sensor	45
		Linear Actuator	46
		Microcontroller and Driver	47
3.6		are and Component	48
	3.6.1		48
		3.6.1.1 Proteus	48
		3.6.1.2 Arduino IDE	49
		3.6.1.3 Blynk Application	50
	3.6.2	Component Use	51
		3.6.2.1 ESP32 microcontroller	51
		3.6.2.2 L298N Motor Driver Module	52
		3.6.2.3 Rain Sensor	53

ii

	3.6.2.4 Light Sensor	54
	3.6.2.5 Solar Panel	55
	3.6.2.6 Battery Storage (Sealed Lead Acid)	56
	3.6.2.7 Solar Charge Controller	57
3.7	Initial design of the project.	58
3.8	Gantt Chart	59
CHAI	PTER 4 RESULTS AND DISCUSSIONS	61
4.1	Introduction	61
4.2	Result and analysis	61
	4.2.1 Hardware circuit	64
	4.2.2 Parameter analysis	66
	4.2.2.1 Rain sensor	66
	4.2.2.2 LDR light sensor	66
	4.2.3 Parameter Result	67
	4.2.3.1 Rain Sensor	67
	4.2.3.2 LDR light sensor	69
	4.2.3.3 Linear actuator	70
	4.2.4 Blynk Application(Notify Alert)	72
	4.2.4.1 Mobile Dashboard	72
	4.2.4.2 Web Dashboard	75
	4.2.5 Solar Panel as Power Supply	77
4.3	Project Planning – Cost	78
4.4	Summary	78
CILAI	TED 5	70
	PTER 5 CONCLUSION AND RECOMMENDATIONS	79
5.1	او بيوم سيتر بنڪنيڪ مليسيا مرا	79
5.2	Objective Achievement	80
5.3	Future Works	81
REFE	UNIVERSITI TEKNIKAL MALAYSIA MELAKA	82
APPE	ENDICES	85

LIST OF TABLES

LIST OF FIGURES

FIGURE TITLE	PAGE
Figure 1.1 Internet of Things(IoT) Technology	2
Figure 1.2 The revolution of industry	2
Figure 1.3 4th Industrial Revolution usage	3
Figure 2.1 The statistic of rainfall in Malaysia	12
Figure 2.2 Three Dimension of Internet of Things(IoT)	13
Figure 2.3 Uses of 3D printing technology	14
Figure 2.4 Arduino Uno	15
Figure 2.5 Raspberry Pi 4 Model B	16
Figure 2.6 ESP32 Microcontroller	16
اويوم سيني تيڪنيڪ Figure 2.7 Monocrystalline solar panel	17
Figure 2.8 Polycrystalline Solar Panel IKAL MALAYSIA MELAKA	17
Figure 2.9 Thin Film solar panel	18
Figure 2.10 HIT Solar Panel	18
Figure 2.11 Belt and Pulley Mechanism	19
Figure 2.12 Rack and Pinion	19
Figure 2.13 Lifting Mechanism	20
Figure 2.14 Belt Conveyor Mechanism	20
Figure 2.15 Linear Actuator	21
Figure 2.16 Solar Power System	22
Figure 2.17 The on-grid solar system	22
Figure 2.18 The Off-Grid Solar System	23

Figure 2.19 Hybrid Solar System	23
Figure 2.20 Thumb Rule of Battery	24
Figure 2.21 Linear Actuator Motor Dimension	25
Figure 2.22 Sealed lead acid	27
Figure 2.23 Nickel-Metal Hydride(NiMH)	27
Figure 2.24 Ni- Zn (Nickel-Zinc)	29
Figure 2.25 Lithium-Ion(Li-Ion)	29
Figure 2.26 Nickel-Cadmium(Ni-Cd)	30
Figure 2.27 L298N Motor Driver Module	31
Figure 2.28 LDR Rain Sensor	32
Figure 2.29 ESP32 module	32
Figure 2.30 Sealed Lead Acid (SLA)	33
Figure 2.31 Monocrystalline solar panel	33
Figure 2.32 Linear Actuator Mechanism	34
اويور سيتي تيڪنيڪل ۲۰ Figure 3.1 Flowchart of BDP	39
Figure 3.2 Flowchart of BDP II EKNIKAL MALAYSIA MELAKA	40
Figure 3.3 Overall Project Concept	42
Figure 3.4 Flowchart of system project	43
Figure 3.5 The block diagram of the project	44
Figure 3.6 Flowchart of Rain sensor system	45
Figure 3.7 Flowchart of Light sensor	46
Figure 3.8 Flowchart of power windows motor	47
Figure 3.9 Blynk Cloud flow	48
Figure 3.10 Logo of Proteus Software	48
Figure 3.11 Interface of Proteus software	49
Figure 3.12 Arduino IDE software	49

Figure 3.13 Blynk Application	50
Figure 3.14 Interface of Blynk Application	50
Figure 3.15 ESP32 Microcontroller	51
Figure 3.16 ESP32 pin diagram	51
Figure 3.17 L298N Motor Driver Module	52
Figure 3.18 L298N Motor Driver Module Pin diagram	52
Figure 3.19 LDR Rain Sensor	53
Figure 3.20 Rain Sensor Pin Diagram	53
Figure 3.21 LDR Light Sensor	54
Figure 3.22 Pin diagram of light sensor	54
Figure 3.23 Solar Panel	55
Figure 3.24 Sealed Lead Acid(SLA) Battery	56
Figure 3.25 Solar Charge Controller(SSC)	57
Figure 3.26 Initial design of product	58
Figure 3.27 Drawing based on real environment	58
Figure 4.1 Simulation circuit TEKNIKAL MALAYSIA MELAKA	62
Figure 4.2 Coding for LDR light sensor	62
Figure 4.3 Coding for Rain sensor	63
Figure 4.4 Coding for Servo motor	63
Figure 4.5 Complete hardware project	64
Figure 4.6 Side View of hardware project	64
Figure 4.7 Circuit Casing	65
Figure 4.8 Upper casing view	65
Figure 4.9 Not Raining Value(>3000)	67
Figure 4.10 Raining Value(<3000)	68
Figure 4.11 Rain Sensor above 3000(Blynk Apps)	68

Figure 4.12 Rain Sensor below 3000(Blynk Apps)	68
Figure 4.13 Raining alert(Blynk Apps)	69
Figure 4.14 Value when no sunlight detected(>3000)	69
Figure 4.15 Light sensor above 3000(Blynk Apps)	70
Figure 4.16 Light sensor below 3000(Blynk Apps)	70
Figure 4.17 No presence of sunlight alert(Blynk Apps)	70
Figure 4.18 Retract-out	71
Figure 4.19 Retract-in	71
Figure 4.20 Blynk Apps notification	72
Figure 4.21 Raining(Notify Alert)	73
Figure 4.22 Nighttime(Notify alert)	73
Figure 4.23 Notification timeline	74
Figure 4.24 Web dashboard	75
Figure 4.25 Notification Timeline	75
اويوم سيني تيڪنيڪ Figure 4.26 Mark after resolved	76
Figure 4.27 Resolved list ITI TEKNIKAL MALAYSIA MELAKA	76
Figure 4.28 SCC status when there is presence of sunlight to solar panel	77
Figure 4.29 SCC status when there is no presence of sunlight to solar panel	77

LIST OF SYMBOLS

°C - Temperature

LIST OF ABBREVIATIONS

V Voltage _ PSH Peak Sun Hours _ Internet of Things IoT -Solar Charge Controller SCC _ Industrial Internet of Things IioT -W _ Watt

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix A	ESP32 specification	85
Appendix B	Rain Sensor specification	86
Appendix C	LDR Light Sensor specification	87
Appendix D	L298 Motor Driver specification	88
Appendix E	Linear Actuator specification	89
Appendix F	Programming Code	90

CHAPTER 1

INTRODUCTION

1.1 Background

Every day, the world has been compelled to conduct more innovation. Every day, there is a new innovation that has been made. As a result, many problems, including personal issues, have been handled by technology. The use of tools or machinery is essential, particularly when precision or speed are required. Everything was done manually back then, such as monitoring the garden, going to the library to locate a reference, purchasing goods at the supermarket, and asking people on the street for directions to places we wanted to go. Everything is now available at your fingertips. Surveillance cameras may be used to monitor the garden from afar. Aside from that, we don't need to travel to the library to get a book or source; we can just google anything and discover anything utilising the internet. In today's world, the Internet of Things (IoT) or simply the internet has grown into a large platform that can be utilised not only for research but also for enjoyment. This trend benefits not only ordinary users, but also business owners and the manufacturing sector. Manufacturing processes, according to IDC (International Data Corporation), are the most common use of IoT in manufacturing. In 2016, this accounted for \$102.5 billion of the total \$178 billion spent on IoT use. Aside from that, companies have been paying close attention to IoT as a key technology for the future. Figure 1.1 below shows how widely the technology of Internet of Things(IoT) had been used.

1

Figure 1.1 Internet of Things(IoT) Technology

The fourth Industrial Revolution is now underway on our globe (4IR). The fourth industrial revolution includes artificial intelligence (AI), robotics, the Internet of Things (IoT), 3D printing, genetic engineering, quantum computing, and other technologies. According to Klaus Schwab, during the First Industrial Revolution, water and steam power were used to mechanise industries. During the Second Industrial Revolution, electric power was used to mass-produce things. During the Third Industrial Revolution, electronic and computer technologies were used to automate production. This exemplifies how swiftly the industrial revolution is moving forward. Figure 1.2 show revolution of industry.

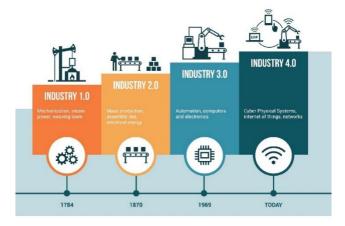


Figure 1.2 The revolution of industry

This fourth industrial revolution leads to a smarter approach, often known as the Industrial Internet of Things (IIoT). To put it another way, today's industry wants to maximise the use of technology in their production processes as shown in figure 1.3.



Figure 1.3 4th Industrial Revolution usage

1.2 Problem Statement

Weather is a natural phenomenon that is unpredictable and impossible to control. For those who depends on the sun light to dry up their cloth will face the problem of their hanged cloth getting wet and soak in rainwater.

Malaysia also suffers rain and damp throughout the year due to its proximity to the equator. When washed clothing are not dry and have a foul odour, it may cause issues with the workforce. It will be much more challenging for the family if they do not have assistance or a maid to help with chores. Most middle-class households, on the other hand, cannot afford a maid. Year after year, the maid's pay has increased.

To overcome the problem that been faced by many people, An Automatic retractable cloth hanger will be developed. It's basically operates like a regular retractable cloth hanger but it is equipped with few extra beneficial feature such as rain sensor detector, Internet of Things(IoT) and also automatic mechanism that can pull out and pull in the cloth hanger. This invention can be controlled using phone application and it will help human to at least being in control of their things although they are not in the house. A regular dryer cost a lot and it cause more harm than good to environment. So, this invention aim to promote greener way to dry up your clothes.

Other than that, using a dryer can cost a lot of money because it use electricity as source power . This Development of Solar Powered Automatic Retractable Cloth Hanger with Raining Sensor and IoT is fully operate by solar energy. Thus it will save the electric bills.

1.3 Project Objective

- a) To develop a design plan of a prototype of a Solar Powered Automatic
 Retractable Cloth Hanger.
- b) To evaluate a prototype of a Solar Powered Automatic Retractable Cloth Hanger in terms of:
 i. design features.
- c) To implement Internet of Things (IoT) for Automatic Retractable Cloth Hanger. اونيونرسيني تيڪنيڪل مليسيا ملاك UNIVERSITI TEKNIKAL MALAYSIA MELAKA

1.4 Scope of Project

The scope of project(Expected output) is to develop an automatic retractable clothesline with a basic machine system and sensory system that can detect rain and retract the clothing, as well as detect sunshine and return the clothes to their original position. When the clothes are retracted, the customer will receive a notice through IoT, and a timer may be set to retrieve the laundry at the desired moment. The user will be able to alter the timer by looking at the humidity and temperature. A solar panel will be used as a power source to supply the motor with power and make the system functional as intended.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

People today have a difficult time picking up their garments when it rains. Malaysia, on the other hand, has some of the most unpredictable weather. It might rain in the morning and be sunny in the afternoon, or vice versa. The purpose of this project is to keep their fabric from getting wet in the rain. It's also about energy conservation, like as not using the dryer. The human work will be made simpler by constructing a rack that is reliant on light intensity and water or moisture by delivering this idea, an automatic drying rack. This drying rack allows people to hang their clothes without worrying about them becoming wet, and they will remain dry.

2.2 Past Studies

Froilan N. Jimeno II, Briely Jay A. Briz and Marvin Roy P. Artiaga have presented a design that is solar-powered with a 12V battery for backup power. Aside from that, the ESP32 Module was utilised as a Wi-Fi module to connect to a Wi-Fi network and as a notification sender to transmit information to the phone. Aside from that, the suggested design employed two sensors: a rain sensor and a LDR light sensor. To move the retractable clothline, this device also uses a linear actuator and a forward and backward mechanism movement.

Ooi Wei Lynn proposed a design that work like an umbrellas clothline but with an improvise version. The design use lego EV3 brick to enable communication between the sensors. The design also use both electricity and sunlight to dry up the clothes. So it is energy saving. Other than that, the design use water sensor to detect raindrop, color sensor to separate