
1

Faculty of Electrical and Electronic Engineering Technology

DEVELOPMENT OF IOT ENERGY METER WITH CURRENT,

VOLTAGE AND COST MONITERING SYSTEM

MUHAMMAD JAMALUDIN BIN NORAZMI

A project submitted

in partial fulfillment of the requirement for the degree of

Bachelor of Electrical Engineering Technology with Honours

2023

2

DEVELOPMENT OF IOT ENERGY METER WITH CURRENT, VOLTAGE AND

COST MONITERING SYSTEM

MUHAMMAD JAMALUDIN BIN NORAZMI

A project report submitted

in partial fulfillment of the requirements for the degree of

Bachelor of Electrical Engineering Technology with Honours

Faculty of Electrical and Electronic Engineering Technology

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2023

4

DECLARATION

I declare that this project report entitled “Development of IOT Energy Meter with Current,

Voltage and Cost Monitoring System” is the result of my own research except as cited in

the references. The project report has not been accepted for any degree and is not

concurrently submitted in candidature of any other degree.

Signature :

Student Name : MUHAMMAD JAMALUDIN BIN NORAZMI

Date : 27/1/2023

5

APPROVAL

I approve that this Bachelor Degree Project 1 (PSM1) report entitled “Project Title” is

sufficient for submission.

Signature :

Supervisor Name : TS DR AHMAD ZUBIR BIN JAMIL

Date : 27/1/2023

6

APPROVAL

I hereby declare that I have checked this project report and in my opinion, this project report

is adequate in terms of scope and quality for the award of the degree of Bachelor of Electrical

Engineering Technology with Honours.

Signature :

Supervisor Name : TS DR AHMAD ZUBIR BIN JAMIL

Date : 27/1/2023

Signature : -

Co-Supervisor

Name (if any)

:
-

Date : -

7

DEDICATION

To my beloved mother, Irma Niswati bin Amri, and father, Norazmi bin Abu Sha’ari,

and

To dearest wife, Saidatul Aishah and

My Super visor, TS DR Ahmad Zubir bin

jamil.

8

I approve that this Bachelor Degree Project 2 (PSM2) report entitled “Development of IOT

Energy Meter with Current, Voltage and Cost Monitoring System” is sufficient for

submission.

Signature :

Supervisor Name

:

TS DR AHMAD ZUBIR BIN JAMIL

Date : 27/1/2023

9

ABSTRACT

In this project, we will discuss the Energy Meter, also known as a Smart Meter with Cost

Monitoring System, which is a gadget that allows us to monitor the power consumption of

portable appliances and is a step toward domestic energy conservation strategies . Using

voltage and current sensors, as well as ESP-32 microprocessor, this paper suggests a

customisable power meter design. This meter is used to keep track of voltage, current, and

cost monitoring system in real time. A reference power meter is used to calibrate the voltage

and current. The microcontroller will be able to calculate projected electrical consumption

and cost based on detailed knowledge about each device's consumption. Similarly, our

equipment will assist in identifying whether one of them is malfunctioning. This project will

be a hardware-software co-design process in this prototype.

10

ABSTRAK

Dalam projek ini, kami akan membincangkan tentang Meter Tenaga, juga dikenali sebagai

Meter Pintar dengan Sistem Pemantauan Kos, yang merupakan alat yang membolehkan

untuk memantau penggunaan kuasa peralatan mudah alih dan merupakan langkah ke arah

strategi penjimatan tenaga domestik . Menggunakan penderia voltan dan arus, serta

mikropemproses ESP-32, kertas ini mencadangkan reka bentuk meter kuasa yang boleh

disesuaikan. Meter ini digunakan untuk menjejaki voltan, arus dan sistem pemantauan kos

dalam masa nyata. Meter kuasa rujukan digunakan untuk menentukur voltan dan arus.

Mikropengawal akan dapat mengira unjuran penggunaan elektrik dan kos berdasarkan

pengetahuan terperinci tentang penggunaan setiap peranti. Begitu juga, peralatan kami

akan membantu dalam mengenal pasti sama ada salah satu daripadanya tidak berfungsi.

Projek ini akan menjadi proses reka bentuk bersama perisian perkakasan dalam prototaip

ini.

11

ACKNOWLEDGEMENT

I would like to express our gratitude to Allah, the Most Gracious, the Most Merciful, for

providing us with vigour and good health throughout our final semester at the Universiti

Teknologi Malaysia Melaka campus. Thank you to God for providing us with a healthy

physical and mental state that enabled us to finish this Final Year Project. A good senior

project is not the result of a single person's efforts. I'd want to offer our deep gratitude to my

supervisor, TS. DR. Ahmad Zubir Bin Jamil, for all the support, guidance, criticism, and

friendship we've established together over the last year. We would not have been able to

achieve this feat without the love and support of our family. The money donated to us by our

relatives to help us brought us all together. Our family's contribution to our support provided

all of the materials needed to complete the final year project. In a nutshell, thank you to

everyone of our friends who have offered to assist us. The colleagues and lecturers who have

helped us in a variety of ways to meet the project's requirements. Finally, we want to express

our gratitude for having all of you here with us, and we sincerely appreciate it.

12

TABLE OF CONTENTS

PAGE

APPROVAL

ABSTRACT 9

ABSTRAK 10

TABLE OF CONTENTS 12

LIST OF TABLES 14

LIST OF FIGURES 15

LIST OF SYMBOLS 16

LIST OF ABBREVIATIONS 17

LIST OF APPENDICES 18

INTRODUCTION 21

1.1 Introduction 21

1.2 Background of Study 21

1.3 Problem Statement 22

1.4 Research Objectives 22

1.5 Scope of Study 23

LITERATURE REVIEW 24

2.1 Introduction 24

2.2 Overview 24

2.3 Smart meter 24

2.3.1 Energy meter reading based on GSM 25

2.4 Internet Of things (IoT) 25

2.4.1 Security of data 26

2.4.2 Arduino ATMEGA 26

2.5 Arduino system 27

2.6 Current and Voltage sensor 27

2.7 Theoretical Framework 28

METHODOLOGY 29

3.1 Introduction 29

3.2 Project Flow 29

3.3 Project development 30

3.3.1 Hardware 30

ESP-32 30

3.3.2 Software 36

3.3.3 Overall Process 37

3.4 Time Horizon 39

RESULT AND DISCUSSION 42

13

4.1 Introduction 42

4.2 Project Prototype 42

4.2.1 Hardware installation 42

4.2.2 Development of software 45

4.2.2.1 Coding setup for microcontroller 45

4.2.2.2 Design of mobile application 46
4.3 Experiment Test and Protocol 48

4.4 Calculation Cost monitoring system 49

4.5 Results 51

4.5.1 Energy Consumption and Load Current Usage Measurements 51

4.6 Summary 53

CONCLUSION 54

5.1 Overview 54

5.2 Conclusion 54

5.3 Recommendation 55

REFERENCES 56

14

LIST OF TABLES

TABLE TITLE PAGE

Table 1.1 Main Component Of The Project 23

Table 3.1 Example of ESP-32 31

Table 3.2 Project Planing 40

Table 4.2 Malaysia Electrical price rates 49

Table 4.3 State the calculations for the loads theoriticaly 51

15

LIST OF FIGURES

FIGURE TITLE PAGE

Figure 3.1 Project Flow Chart 29

Figure 3.2 ESP-32 PIN port 31

Figure 3.3 Voltage sensor circuit 32

Figure 3.4 ACS712 Current sensor 33

Figure 3.5 1.5mm Doublecore copper Wire 35

Figure 3.6 PCB Board 35

Figure 3.7 Arduino IDE interface. 36

Figure 3.8 Blynk Application interface in phone. 37

Figure 3.9 System Flow chart 38

Figure 3.10 Block Diagram of the project 39

Figure 4.1 Connection of the prototype 43

Figure 4.2 the board connection from sensors to ESP-32 microcontroller. 43

Figure 4.3 the prototype of this project with extansion that will be connect to load,

plugtop for power supply and usb cable for ESP-32 power supply. 44

Figure 4.4 The Connection of the prototype component. 44

Figure 4.5 The library and IP of the Blynk application so set the path destination. 45

Figure 4.6 Setting WIFI id and password to connect. 45

Figure 4.7 Declaration of pin at ESP 32 and declaration oh the input. 46

Figure 4.8 The interface of Blynk Application 47

Figure 4.9 The reading of testing that is conducted. 52

Figure 4.10 The graph of current consumption 53

16

LIST OF SYMBOLS

-

-

-

-

-

-

-
-

17

LIST OF ABBREVIATIONS

𝑉 - Voltage

𝐼 - Ampere

𝑃 - Watt
 -

 -

 -

 -

 -

18

LIST OF APPENDICES

APPENDIX TITLE PAGE

19

LIST OF APPENDICES

APPENDIX 1 Coding of ESP-32 75

20

21

INTRODUCTION

1.1 Introduction

. The discussion in this chapter began with an overview of the country's power meter

logger study, followed by explanations of the problem statements. This chapter will also

include the major objectives of the current investigation, the scope of the study, the

significance of the study, and the thesis outline.

1.2 Background of Study

The meter is used to keep track of the number of units consumed, the expected cost, the

Line Voltage, and the amount of current consumed. IoT Blynk is a simple web application

that displays the Live Output of various IoT readings. This allows users to monitor the

number of units consumed, the expected cost, the Line Voltage, and the current utilized in

real time from anywhere on the site. In this way the energy meter observing framework

enables client to adequately screen power meter readings and check the charging on the

22

Blynk app effortlessly. As a result, the energy meter monitoring system enables clients to

easily monitor power meter readings and check charges on applications in the phone.

1.3 Problem Statement

Nowadays, all machines have been innovated to ease our daily activities whether at home

or at work, but all these machines use electricity whether a direct current machine or a

portable that have to charge after using.

• People cannot maintain the monthly budget for electricity because of over

usage.

• People cannot determine which electrical equipment that use low or high

power usage to minimize the used for maintaining low electricity bills.

1.4 Research Objectives

The main aim of this project is to built a energy meter system that can be read current,

voltage and cost of the circuit via meter or in application on the phone. Specifically, the

objectives are as follows:

 To read current from all loads in a circuit by using sensor.(Install at MCB)

 To access the reading via meter or in- application at phone in realtime by

using blynk applincation

To culcalate the cost of the circuit but using ESP32 microcontroller.

23

1.5 Scope of Study

. To avoid any uncertainty of this project due to some limitations and constraints, the

scope of the project are defined as follows:

• Built for Comersial usage.

• Device have to be installed at Electrical Distribution Box.

• Internet

• Application installation in phone.

Table 1.1 Main Component Of The Project

Hardware Software: Method:

Arduino ATMEGA-328 -

microcontroller

Esp32 - Wifi Module

Current sensor ACS712-

measure current.

AC Voltage sensor (

ZMPT101B) - measure

voltage.

Blynk – to develope the and

transfer data from device to

applications via phone.

Arduino Uno – to set the

microcontroller command

and intructions.

IOT - system of interrelated

computing devices,

mechanical and digital

machines that have the

ability to transfer data over

a network without requiring

human-to-human or

human-to-computer

interaction.

24

LITERATURE REVIEW

2.1 Introduction

In this chapter, to study and identify the variables that can be made to select component,

data and cost which will aid in the development of this project. This chapter focus on

examine selected journal and research articles that connected to this project.

2.2 Overview

This project is to built the energy meter that can calculate the montly bills and also show

the current reading. Basicly user can access this readings via application on the phone that

will give the live price and live reading.

2.3 Smart meter

Since the early 2000s, smart meters have been installed in several nations throughout the

world. The smart meter, as a crucial component of the intelligent grid, is projected to

deliver economic, social, and environmental advantages to a variety of stakeholders. Smart

meter principles have been extensively discussed. One of the primary criteria evaluating

the success of smart meters is smart meter data evaluation, which deals with data

collection, delivery, processing, and analysis that benefits all stakeholders. As home power

usage continues to rise, consumers are becoming more cognizant of energy use and

efficiency from both an economic and environmental standpoint.

The Smart meter is a meter that is used to measure the amount of energy used by an

electric load. The entire power used and utilized by the load at a certain time interval is

25

referred to as energy. It is used to measure power usage in both home and industrial AC

circuits. The meter is less costly and more accurate.

2.3.1 Energy meter reading based on GSM

The GSM communications network is used to provide data about electricity consumption

to the utility administration and, if necessary, to the customer. The voltage and current

sensors take RMS voltage and current readings and pass them to the microcontroller,

which performs active and reactive power calculations[1]. The reading from the utility

administration SMS is received by the smart energy meter's programmable interface, and

the metre takes action based on the information provided[2].

When an energy provider needs information to calculate a bill, they send a communication

to AMR. The microcontroller unit receives a message and reads it, as well as reading the

user's mobile number, verifying authentication and sending data to the verified number.

GSM-based AMR delivers an SMS alert to the energy provider if the system access mobile

number is not verified[1]. It also allows customers with substantial outstanding dues to

have their electricity off by transmitting a code to the energy meter. If this code matches,

the meter's power will be disconnected. It also has the ability to re-connect electricity

owing to a deposit of the prior bill amount owed by sending a code to the energy meter[2].

2.4 Internet Of things (IoT)

The Internet of Things (IoT) is the next generation of communication. The Internet of

Things (IoT) can be used to create, receive, and exchange data for physical things in a

seamless manner. IoT apps are designed to automate various operations and allow

26

inanimate physical things to behave without the need for human intervention[3]. The

Internet of Things (IoT) is a network of intelligent sensors that can track and manage

objects remotely over the Internet. This intelligent technology can be utilized to increase

current farming production and quality, as well as provide an alarm system and detect heart

rate, among other things[4]. As a result, the goal of this study is to provide an intelligent

Internet of Things planning application. With Cisco Inc. predicting 50 billion connected

devices by 2020, the Internet of Things (IoT) has emerged as an area of enormous

influence, potential, and growth as intelligent homes, intelligent cities, and everything

smart[3].

2.4.1 Security of data

The fundamental goal of IoT Security is to secure user privacy, infrastructure, data, and

IoT devices, as well as to assure the availability of IoT ecosystem services[5]. IoT security

research has recently gained a lot of traction thanks to the utilization of available

simulation tools, models, and computational and analysis platforms[6]. Users can expect

convenience, productivity, and automation from present and new IoT devices. This

environment's ever-increasing implementation necessitates high levels of security,

anonymity, authentication, and attack recovery. It must make the necessary enhancements

to the design of IoT applications to establish end-to-end secure IoT environments[6].

2.4.2 Arduino ATMEGA

Using the MCU Node EsP8266 microscope, the intelligent capsule sent data to the Blynk

server over a Wi-Fi network. Arduino IDE was used to programme the microcontroller in

27

C++[7]. The Blynk Mobile App was used to track and view real-time data on the digital

dashboard. When the smart capsule lost contact with the Blynk server, a notice was sent to

the appropriate individuals immediately. The study's findings indicated the efficacy and

use of the smart capsules developed and the Blynk application in smart planning.

2.5 Arduino system

The Arduino ATMEGA-328 has been adapted for a variety of purposes. The power jack

cable is used to program the Arduino microcontroller, which allows the device to run. On

the market, there are a variety of Arduino boards to choose from. This article goes through

the Arduino UNO ATMEGA-328 microcontrollers in great detail[7]. Arduino is a

computer program that allows you to change and upload your program utilizing apps. The

Arduino software mostly supports the C and C++ programming languages. The Arduino

board has a range of inputs and outputs, and 8 input and output ports can be used for

different applications at the same time. Rotating general motors, stepper engines, open

valve control, and other applications employ Arduino boards.

2.6 Current and Voltage sensor

A voltage sensor is a device that measures and calculates the amount of voltage in an

object. Voltage sensors can determine whether the voltage is AC or DC. The voltage is the

sensor's input, while the switches, analogue voltage signal, current signal, or audible signal

are the sensor's output. A current sensor detects electric current in a wire and creates a

signal proportional to it. An analogue voltage or current, or a digital output, could be

generated. The generated signal can then be used to display the measured current in an

28

ammeter, or it can be saved in a data acquisition system for further analysis, or it can be

utilized for control.

2.7 Theoretical Framework

A theoretical framework has been established by combining all of the aspects and factors

mentioned above. The framework will serve as the foundation for inquiries and data

gathering in constructing a high-quality smart energy meter with cost monitoring system in

later chapters of the study.

29

METHODOLOGY

3.1 Introduction

In this chapter will be discuss about the method that will be used for building this project.

Firstly, the sensor will sense voltage and current that will be send to ESP32 that act as

microcontroller, then it will calculate the cost value. Next the ESP-32 transmit the data to

Blynk application on the phone via Wi-Fi.

3.2 Project Flow

Figure 3.1 Project Flow Chart

30

3.3 Project development

Firstly, the sensor will sense voltage and current that will be read for to ESP32 that act as

microcontroller, then it will calculate the cost value. Next the ESP32 will transmit the data

to the Blynk application on the phone via Wi-Fi. This is is roughly concept of this project

3.3.1 Hardware

ESP-32

ESP32 is a series of low-cost, low-power system on a chip (SoC) microcontrollers with

integrated Wi-Fi and dual-mode Bluetooth. The ESP32 series was released in 2016 and is a

successor to the ESP8266 series of microcontrollers. ESP32 microcontrollers are used in a

variety of devices, including standalone microcontroller systems, Wi-Fi and Bluetooth-

enabled devices, and Internet of Things (IoT) applications. Some features of the ESP32

include:

• Dual-core processor with two processor cores that can be individually controlled

• On-chip Wi-Fi and dual-mode Bluetooth

• On-board cryptographic hardware for secure communication

• A large number of input/output (I/O) pins for connecting to various sensors and

peripherals

• Support for multiple low-power modes for power-sensitive applications

• Support for Over-The-Air (OTA) updates

The ESP32 is a popular choice for building IoT applications, due to its low cost, wide

availability, and support for a range of programming languages and development

environments.

31

Table 3.1 Example of ESP-32

Figure 3.2 ESP-32 PIN port

ZMPT101B AC Voltage Sensor

The ZMPT101B is a voltage sensor that is used to measure the AC voltage of a power

line. It is a passive device, which means it does not require a power source to operate.

Instead, it relies on the voltage of the power line to generate a small current through its

32

internal transformer, which is then used to produce a voltage output that is proportional to

the AC voltage being measured.

The ZMPT101B has a voltage range of 45-65V, making it suitable for measuring the AC

voltage of standard household power lines. It has a high accuracy of ±2%, and is able to

measure both the RMS and peak values of the AC voltage. The sensor also has a built-in

voltage divider, which allows it to output a smaller voltage that is more suitable for use

with microcontrollers and other electronic devices.

The ZMPT101B is often used in applications such as energy monitoring, power factor

measurement, and voltage regulation, where accurate measurement of AC voltage is

required. It is a compact and easy-to-use sensor that can be easily integrated into a variety

of systems.

Figure 3.3 Voltage sensor circuit

ACS712 Current Sensor

The ACS712 is a current sensor that is used to measure AC or DC currents. It is a Hall

effect-based sensor that utilizes the magnetic field generated by the current flowing

through a conductor to produce a voltage output that is proportional to the current being

33

measured. The ACS712 is available in several different versions, each with a different

current range and sensitivity.

Some features of the ACS712 include:

• Wide current range: The ACS712 is available in versions that can measure currents

ranging from 5A to 30A.

• High accuracy: The sensor has a typical accuracy of ±1% over a wide temperature

range.

• Low offset voltage: The ACS712 has a low offset voltage, which means that it can

accurately measure small currents.

• Wide operating temperature range: The sensor can operate over a wide temperature

range of -40°C to 150°C.

The ACS712 is often used in applications such as motor control, power supply design,

and energy monitoring, where accurate measurement of current is required. It is a compact

and easy-to-use sensor that can be easily integrated into a variety of systems.

Figure 3.4 ACS712 Current sensor

34

Doublecore 1.5MM Copper Wire

1.5mm doublecore copper wire is a type of electrical wire that consists of two conductors

made of copper that are twisted together in a single cable. It is covered with a protective

insulation to prevent short circuits and protect against physical damage. The wire is often

used in applications where two separate conductors are required, such as for the electrical

wiring of buildings or for the connection of electrical appliances.

Doublecore wire is generally easier to install than two separate wires, as it requires fewer

connections and is more flexible. It is also more resistant to interference from external

sources, such as electromagnetic fields, as the two conductors are twisted together, which

helps to cancel out any interference.

1.5mm doublecore copper wire is often used in applications where a medium-duty wire is

required, such as for the electrical wiring of small appliances or for the connection of

lighting systems. It is available in a range of colors, including red, black, and white, which

can be used to identify the purpose of each conductor. Copper is a good choice for

electrical wire due to its high conductivity and low resistance, which allows it to carry

large currents with minimal voltage drop.

35

Figure 3.5 1.5mm Doublecore copper Wire

PCB Board

A printed circuit board (PCB) is a type of electronic circuit board that is used to

mechanically support and electrically connect electronic components using conductive

tracks, pads, and other features etched from copper sheets laminated onto a non-conductive

substrate. PCBs are used in a wide variety of electronic devices, including computers,

smartphones, and appliances, to provide a support structure for the components and to

facilitate the flow of electricity between them.

Figure 3.6 PCB Board

36

3.3.2 Software Developement

Arduino IDE

Arduino Integrated Development Environment (IDE) is a software program that is used

to write and upload computer code to an Arduino board. Arduino is an open-source

platform for building electronics projects, and the Arduino IDE is a cross-platform

application that runs on Windows, Mac, and Linux operating systems. It is designed to be

easy to use and user-friendly, with a simple interface that allows users to write and upload

code to their Arduino board quickly and easily.

Figure 3.7 Arduino IDE interface.

BLYNK Application

Blynk is an iOS and Android platform for controlling Arduino, Raspberry Pi, and

other Internet-connected devices. It's a digital dashboard where user may drag and

37

drop widgets to create a graphic interface for project. This is the application that will

be use to set up a receiver and display in the phone.

Figure 3.8 Blynk Application interface in phone.

3.3.3 Overall Process.

The important parameters for smart energy meter with logger system is the processing unit

and step counts for the data. Therefore, the node MCU ESP-8266 has been chose because

it has a powerful enough on-board processing and storage capability that allows it to be

integrated with the sensors and other application. The methods and techniques used in this

38

entire project will be explained briefly in detail with the assistance of figures and flow

chart.

Figure 3.9 System Flow chart

This system flowchart is a diagram for a ‘Smart Energy Meter’ operation. The system

processor keeps the data significantly which has been set by the Arduino IDE coding.

Voltage /

Current

sensor

39

Figure 3.10 Block Diagram of the project

Figure shows the simple block diagram explaining the plan that have been set up for the

project.

The entire process begins with the power supply being connected to the smart energy

metre. When the metre begins to run, the ESP-32 acts as the main processor, connecting to

the user's device over wifi before uploading all of the programmable code from the it. The

current/voltage sensor was then linked to the processor. It will be used to measure data

from the circuit that will be connect to the sensor. Finally, all of the results have been

presented on the app;ications on the phone. The phone will display the overalls Power used

, cost and then reading phone each MCB SSO circuit.

3.4 Time Horizon

The temporal span for this study would be cross-sectional. The goal of the study,

according to Levin (2006), is to determine the prevalence of the desired outcome in the

population or subgroups within the population at a certain time period.

LED Light

Blynk App

Node MCU

ESP-32

40

Table 3.2 Project Planing

PROJECT PLANNING

(List the main activities of the project. Indicate the length of time needed for each activity.)

2022

2023

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Project Title

Problem

Definition

Identify

project

objective

Procedure

preparation

Acceptance

project

proposal

Participant

selection

Material

preparation

Experiment

setup

Smart meter

cost

monitoring

system

production

Experiment

Data

Analysis

Discussion

and

Conclusion

41

42

RESULT AND DISCUSSION

4.1 Introduction

This chapter records and discusses the results obtained through the development of the

project entitled ‘Smart energy meter with cost monitaring system’. Several simulations

have start to test the connection from all of the hardware and software. In the first stage of

project planning, the preliminary result will be obtained mostly based on theories and

research. However, is still work in progress so several testing have to made so that any

counter measure or improvement can be made.

4.2 Project Prototype

With the research done in Chapter 2 and the calculations alongside simulations done

in Chapter 3, the prototype of the project is built with all the chosen equipment and tools.

The chosen hardware including ESP-32 , Current sensor, Voltage sensor, Wire Connecter,

etc. is assembled carefully according to the circuit simulation done in Chapter 3.

Besides, the design and coding for the software are also done through all the tools

and programs mentioned in Chapter 3. The software design is tested and modified multiple

times to match the requirement of the system. The design and set up for the project

prototype are recorded as follow.

4.2.1 Hardware installation

The prototype of the project is done by using a extension to replicate load. The prototype

have already been install to 3-pin plg top then connect to power supply. The output of the

prototype is connected to and the extension and then to load. So this allow the current past

43

through the prototype and sensor can read the data. The data then transmitted by ESP-32 to

blynk Application by Wifi. Figure 4.1 shows the drawing of the hardware installing plan

while Figure 4.3, and Figure 4.4 show the outside view, and inside view of the project

prototype respectively.

Figure 4.1 Connection of the prototype

Figure 4.2 the board connection from sensors to ESP-32 microcontroller.

44

Figure 4.3 the prototype of this project with extansion that will be connect to load,

plugtop for power supply and usb cable for ESP-32 power supply.

Figure 4.4 The Connection of the prototype component.

45

4.2.2 Development of software

4.2.2.1 Coding setup for microcontroller

In the development of the system, the coding for commanding the function of the system

is done and compile to ensure no error by using Arduino IDE and uploaded to the ESP-32

Microcontroller. Figure 4.5 shows the coding of the system done by using Arduino IDE

Figure 4.5 The library and IP of the Blynk application so set the path destination.

Firstly, figure 4.5 below show Blynk templete ID, device name and token that be taken

from the blynk application to match the direction of the data that will be transmitted.

Figure 4.6 Setting WIFI id and password to connect.

Next is the Wifi name and password sa that the ESP-32 can connect to it. This is crutial

because it use wifi to send the data.

46

Figure 4.7 Declaration of pin at ESP 32 and declaration oh the input.

After that, declare and define the parameter that needed to calculate and send to the

Blynk application. And then the calculations instructions according to the TNB rates.

4.2.2.2 Design of mobile application

For the development of mobile applications used for displaying output adn reading of this

system, Blynk Application is used for creating a mobile application that can communicate

with the ESP-32 through Wifi connection. Figure 4.6 shows the user interface of the

mobile application created using by using Blynk application.

47

Figure 4.8 The interface of Blynk Application

In Figure above first shows terminal display that update voltage reading and current

reading live reading, next its show the power that were used. After that its show the cost of

the reading in real time.

48

4.3 Experiment Test and Protocol

Experiment for testing the performance of the system has been carried out for several

place and several loads to ensure the precision of the results. Firstly, the performance of

the prototype is tested for just one load which is a hairdryer. Next, increase the load to

check the reading error. Next testing is connecting it with MCCB in distribution box in

laboratory at Faculty which have more load. After several testing the data have been

collected.

49

P = I*V

4.4 Calculation Cost monitoring system

Table 4.1 Malaysia Electrical price rates

Table 4.1 shows the price for domestic in Malaysia that later be coded to Arduino to

calculate from the data that had been receive from sensors. As time goes by the price will

change so the price of current rating is manually add in the Blynk applications by user.

The formula will be added to coding and later will be uploaded to the Arduino

microcontroller. The electric power has been measured by using the equation of:

Where:

𝑉 is representing the voltage in Volts (V),

𝐼 is the current in milli Amperes (mA), and

𝑃 is the power in milli Watts (mW).

50

Where:

𝐸 Electrical energy (kW/h),

𝑃 is the power in Kilo Watts (kW)

𝑡 is the time of electricity consumption (h).

Let’s say that the utility bill comes to the following:

1. power consumption: 1000 watt of electricity

2. energy price is 51.6 sen/kWh

3. usage time is 10 hour

If let say, then electric bill estimator will tell us that electric consumption is 10 kW/day,

and the annual cost will be RM 157.06 per Month. These calculations will be added in the

coding. So, in the applications, time of consumption and price rate will be added manually

by users.

51

4.5 Results

This section will discuss the results generated by the IoT Smart Energy Meter. The data is

collected and uploaded to clouds for analysis using the ESP-32. There had been

some debate over the outcome.

4.5.1 Energy Consumption and Load Current Usage Measurements

The Iot Smart Power meter had been installed and the system ran for 1 hour in my

house. The power consumption is obtained and recorded automatically by the system every

second. For load, a hair dryer, laptop, and a table fan were used in this project. Table 4.2

shows the type of loads, the quantity, the power rating, the duration of use per day, and the

total energy consumed per day. Figure 4.20 shows the pattern of power consumption of my

house using Blynk app.

Table 4.2 State the calculations for the loads theoriticaly

LOAD QUANTITY POWER

RATE(kW)

USAGE KW/ hour

HAIR DRYER 1 1.4 0.1 hour 0.14

TABLE FAN 1 0.039 0.5 hour 0.0195

LAPTOP 1 0.065 0.3 hour 0.0195

TOTAL KW/H 0.179

52

Figure 4.9 The reading of testing that is conducted.

By comparing the data from the graph in figure 4.10, it is proof that the calculated

measurement in table 4.1 and the reading from the measured graph is same. Figure 4.21

depicts the complete data for current consumption using Blynk app.

The reading of the current data will not be constant because different types of loads are

used in this project, so the reading will increase and decrease.

KWH

0.18

0.16

0.14

0.12

0.1

0.08 KWH

0.06

0.04

0.02

0

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

53

Figure 4.10 The graph of current consumption

4.6 Summary

Essentially, Smart Energy meter with cost monitoring system has a straightforward

procedure and system set up. A microcontroller will measure the voltage and current

entering the system to calculate the consumed power. The bill will then be calculated using

these measurements and the current electricity price. Meanwhile, the user will be kept up

to date on the current price and bill. So, this is how our hardware circuit will work. Our

first major component will be the measurement system, and it will then transfer the

recorded data to the microcontroller, which will calculate the required bill based on the

most recent tariff.

current

2.54

2.53

2.52

2.51

2.5

current

2.49

2.48

2.47

1

6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

54

CONCLUSION

5.1 Overview

This chapter provides an overall summary of all the topic that have been

done in the previous chapter. The future work also has been included. The future

work section describes about the recommendations that can be consider to improve

this project.

5.2 Conclusion

In conclusion, the smart energy meter with cost monitoring system using IoT is a useful

and innovative project that helps households and businesses monitor and control their

energy consumption in real-time. By using IoT technology, the system is able to gather

data from the energy meter and transmit it to a cloud server, where it can be accessed and

analyzed through a user-friendly interface. This allows users to see how much energy they

are using and how much it is costing them, enabling them to make informed decisions

about their energy consumption and potentially save money on their energy bills.

Additionally, the system can be configured to send alerts when energy usage exceeds

certain thresholds, allowing users to take immediate action to reduce their energy

55

consumption. Overall, the smart energy meter with cost monitoring system using IoT is a

valuable tool for improving energy efficiency and reducing energy costs.

5.3 Recommendation

Based on the experiment conducted in for this project, the following

recommendations are made to enhance the project in the future. Smartphones or

android is a device that is easily carried around and used by vast majority of the

global population. A development of android application can be introduced in this

system to further improve the accessibility and convenience of users in accessing

the power consumption data anytime and anywhere. This enable users to be able

to monitor or observe the data through their phones without having to reach the

cloud system using a computer device. Besides that, a database can be added that can

calculate the total amount of usage. This act as a preventive measure to protect data from

being lost from the cloud system or dependent to wireless connection. When internet

connection is disconnected, the data can be stored in the database first until internet

connection is available to continue the uploading of data collected into the cloud system.

Finally, an alternative to employing Blynk would be to use the developer's

own application instead of relying on a third party. This idea could improve the

monitoring and control system's user interface by making it more flexible and user-

friendly.

56

REFERENCES

[1] D. Kumar, A. Jain, and J. Kedia, “Design and Development of GSM based Energy

Meter Cite this paper Design and Development of GSM based Energy Meter,” 2012.

[2] Z. Iqbal Rana, M. Waseem, T. Mahmood, and H. M. Zahid Iqbal M Waseem Tahir

Mahmood, “Automatic Energy Meter Reading using Smart Energy Meter Energy

Management in Smart Homes View project Automatic Energy Meter Reading using

Smart Energy Meter”, doi: 10.13140/RG.2.1.1343.7928.

[3] “Survillance Of Environment using Node Mcu Based On Iot 786.”

[4] G. Mehta, R. Khanam, and V. K. Yadav, “A Novel IoT based Smart Energy Meter

for Residential Energy Management in Smart Grid Infrastructure,” in Proceedings

of the 8th International Conference on Signal Processing and Integrated Networks,

SPIN 2021, 2021, pp. 47–52. doi: 10.1109/SPIN52536.2021.9566032.

[5] M. Ashiquzzaman, N. Afroze, T. M. Abdullah, and M. Abdullah, “Global Journal of

researches in engineering Electrical and electronics engineering Design and

Implementation of Wireless Digital Energy Meter using Microcontroller Design and

Implementation of Wireless Digital Energy Meter using Microcontroller,” 2012.

[6] M. H. Piyal, M. Hossan, and Y. Arafat, “Remote ON-OFF control of energy meter

and energy consumption data monitoring and storage system,” Aug. 2021. doi:

10.1109/PowerAfrica52236.2021.9543165.

[7] W. A. Jabbar, S. Annathurai, T. A. Tajul, and M. F. Mohd Fauzi, “Smart energy

meter based on a long-range wide-area network for a stand-alone photovoltaic

system,” Expert Systems with Applications, vol. 197, Jul. 2022, doi:

10.1016/j.eswa.2022.116703.

57

#define BLYNK_TEMPLATE_ID

#define BLYNK_DEVICE_NAME

#define BLYNK_AUTH_TOKEN

"TMPLIOlNfd61"

"Quickstart Device"

"NXqZHOAM_sNDEpnNZMvZDTukxaQDAs_e"

// Comment this out to disable prints and save space

#define BLYNK_PRINT Serial

#include <WiFi.h>

#include <WiFiClient.h>

#include <BlynkSimpleEsp32.h>

#include <Filters.h>

char auth[] = BLYNK_AUTH_TOKEN;

// Your WiFi credentials.

// Set password to "" for open networks.

char ssid[] = "Keluarga Bahagia";

char pass[] = "zmalqp10";

int ZMPT101B1 = 35;

int ZMPT101B2 = 34;

float power1, power2, cost1, cost2, power3, power4;

float v1,v2,a1,a2;

float testFrequency1 = 50;

float windowLength1 = 100/testFrequency1;

float testFrequency2 = 50;

float windowLength2 = 100/testFrequency2;

int RawValue1 = 0;

float Volts_TRMS1;

int RawValue2 = 0;

float Volts_TRMS2;

float intercept1 = -3;

float slope1 = 0.28566351; //0.28566351 (241.1/844)

float intercept2 = -9;

float slope2 = 1.00878661; //0.28566351 (241.1/239)

APPENDICES

CODING OF ESP32

58

unsigned long printPeriod1 = 1;

unsigned long previousMillis1 = 0;

unsigned long printPeriod2 = 1;

unsigned long previousMillis2 = 0;

RunningStatistics inputStats1;

RunningStatistics inputStats2;

// Attach virtual serial terminal to Virtual Pin V1

WidgetTerminal terminal(V3);

// You can send commands from Terminal to your hardware. Just use

// the same Virtual Pin as your Terminal Widget

BLYNK_WRITE(V3)

{

// Ensure everything is sent

terminal.flush();

//terminal.print("You said:");

//terminal.write(param.getBuffer(), param.getLength());

//terminal.println();

}

void setup()

{

// Debug console

Serial.begin(115200);

pinMode(36, INPUT);

pinMode(39, INPUT);

pinMode(ZMPT101B1, INPUT);

pinMode(ZMPT101B2, INPUT);

inputStats1.setWindowSecs(windowLength1);

inputStats2.setWindowSecs(windowLength2);

volt();

delay(500);

Serial.print(v1);

Serial.print(" ");

Serial.println(v2);

Blynk.begin(auth, ssid, pass, "blynk.cloud", 80);

// You can also specify server:

//Blynk.begin(auth, ssid, pass, "blynk.cloud", 80);

//Blynk.begin(auth, ssid, pass, IPAddress(192,168,1,100), 8080);

// Clear the terminal content

terminal.clear();

59

// This will print Blynk Software version to the Terminal Widget when

// your hardware gets connected to Blynk Server

terminal.println(F("Blynk v" BLYNK_VERSION ": Device started"));

terminal.println(F(" ------------ "));

terminal.println(F("Type 'Marco' and get a reply, or type"));

terminal.println(F("anything else and get it printed back."));

terminal.flush();

}

void AMP20(){

float a11, ACSValue1 = 0.0, Samples1 = 0.0, AvgACS1 = 0.0, BaseVol1 = 2.193;

//Change BaseVol as per your reading in the first step.

for (int x = 0; x < 500; x++) { //This would take 500 Samples

ACSValue1 = analogRead(36);

Samples1 = Samples1 + ACSValue1;

delay (3);

}

AvgACS1 = Samples1/500;

a11 = (((AvgACS1) * (3.3 / 4095.0)) - BaseVol1) / 0.100 ; //0.066V = 66mVol. This

is sensitivity of your ACS module.

if(a11 < 0.1){

// Serial.print("Amp1: ");

// Serial.print(0.00);

// Serial.print("A (ref:20A) ");

a1 = 0.00;

}

if(a11 > 0.1){

// Serial.print("Amp1: ");

// Serial.print(a11);

// Serial.print("A (ref:20A) ");

a1 = a11;

}

// // delay(100);

//float ACSValue1 = 0.0, Samples = 0.0, AvgACS1 = 0.0, BaseVol1 = 2.193;

//AvgACS1 = analogRead(36);

//Serial.print("\t");

//Serial.print("Amp(ref:20A): ");

//Serial.print("\t");

//Serial.print((((AvgACS1) * (3.3 / 4095.0)) - BaseVol1) / 0.100);

//Serial.print(" A");

}

void AMP5(){

float a22, ACSValue = 0.0, Samples = 0.0, AvgACS = 0.0, BaseVol = 2.185; //Change

BaseVol as per your reading in the first step.

for (int x = 0; x < 500; x++) { //This would take 500 Samples

ACSValue = analogRead(39);

Samples = Samples + ACSValue;

delay (3);

}

60

AvgACS = Samples/500;

a22 = (((AvgACS) * (3.3 / 4095.0)) - BaseVol) / 0.185;

// Serial.print("Amp2: ");

// Serial.print(a22); //0.066V = 66mVol. This is sensitivity of your ACS module.

// Serial.print("A (ref:5A) ");

// a2 = a22;

if(a22 < 0.1){

// Serial.print("Amp2: ");

// Serial.print(0.00); //0.066V = 66mVol. This is sensitivity of your ACS module.

// Serial.print("A (ref:5A) ");

a2 = 0.00;

}

if(a22 > 0.1){

// Serial.print("Amp2: ");

// Serial.print(a22); //0.066V = 66mVol. This is sensitivity of your ACS module.

// Serial.print("A (ref:5A) ");

a2 = a22;

}

// //delay(100);

//float ACSValue2 = 0.0, Samples = 0.0, AvgACS2 = 0.0, BaseVol2 = 2.185;

//AvgACS2 = analogRead(39);

//Serial.print("\t");

//Serial.print("Amp(ref:5A): ");

//Serial.print("\t");

//Serial.print((((AvgACS2) * (3.3 / 4095.0)) - BaseVol2) / 0.185);

//Serial.println(" A");

}

void ReadVoltage1(){

RawValue1 = analogRead(ZMPT101B1); // read the analog in value:

inputStats1.input(RawValue1); // log to Stats function

// if((unsigned long)(millis() - previousMillis1) >= printPeriod1) { //We calculate and

display every 1s

// previousMillis1 = millis(); // update time

Volts_TRMS1 = inputStats1.sigma()* slope1 + intercept1;

// Volts_TRMS = Volts_TRMS*0.979; //Further calibration if needed

if (Volts_TRMS1 < 0){

Serial.print("V1: ");

Serial.print("\t");

Serial.print(0.00);

Serial.print(" V");

v1 = 0.00;

}

61

if(Volts_TRMS1 > 0){

Serial.print("V1: ");

Serial.print("\t");

Serial.print(Volts_TRMS1);

Serial.print(" V");

v1 = Volts_TRMS1;

}

// Serial.print("Non Calibrated: ");

// Serial.print("\t");

// Serial.print(inputStats1.sigma());

// Serial.print("\t");

//}

}

void ReadVoltage2(){

RawValue2 = analogRead(ZMPT101B2); // read the analog in value:

inputStats2.input(RawValue2); // log to Stats function

// if((unsigned long)(millis() - previousMillis2) >= printPeriod2) { //We calculate and

display every 1s

// previousMillis2 = millis(); // update time

Volts_TRMS2 = inputStats2.sigma()* slope2 + intercept2;

// Volts_TRMS = Volts_TRMS*0.979; //Further calibration if needed

if (Volts_TRMS2 < 0){

Serial.print("\t");

Serial.print("V2: ");

Serial.print("\t");

Serial.print(0.00);

Serial.println(" V");

v2 = 0.00;

}

if(Volts_TRMS2 > 0){

Serial.print("\t");

Serial.print("V2: ");

Serial.print("\t");

Serial.print(Volts_TRMS2);

Serial.println(" V");

v2 = Volts_TRMS2;

}

// Serial.print("Non Calibrated2: ");

// Serial.print("\t");

// Serial.print(inputStats2.sigma());

// Serial.print("\t");

// }

62

}

void volt(){

for (int x = 0; x < 5000; x++) { //This would take 500 Samples

ReadVoltage1();

ReadVoltage2();

}

}

void power(){

AMP20();

AMP5();

power1 = v1*a1;

power2 = v2*a2;

if(power1 <= 2000){ //For the first 200 kWh (1 - 200 kWh)

cost1 = (power1/1000) * 0.21180;

}

if(power1 >= 2010 && power1 <=3000){ //For the next 100 kWh (201 - 300 kWh)

cost1 = (power1/1000) * 0.31340;

}

if(power1 >= 3010 && power1 <=6000){ //For the next 300 kWh (301 - 600 kWh)

cost1 = (power1/1000) * 0.51160;

}

if(power1 >= 6010 && power1 <=9000){ //For the next 300 kWh (601 - 900 kWh)

cost1 = (power1/1000) * 0.51460;

}

if(power1 >= 9010){ //For the next kWh (901 kWh onwards)

cost1 = (power1/1000) * 0.51710;

}

if(power2 <= 2000){ //For the first 200 kWh (1 - 200 kWh)

cost2 = (power1/1000) * 0.21180;

}

if(power2 >= 2010 && power2 <=3000){ //For the next 100 kWh (201 - 300 kWh)

cost2 = (power1/1000) * 0.31340;

}

if(power2 >= 3010 && power2 <=6000){ //For the next 300 kWh (301 - 600 kWh)

cost2 = (power1/1000) * 0.51160;

}

if(power2 >= 6010 && power2 <=9000){ //For the next 300 kWh (601 - 900 kWh)

cost2 = (power1/1000) * 0.51460;

}

if(power2 >= 9010){ //For the next kWh (901 kWh onwards)

cost2 = (power1/1000) * 0.51710;

}

63

Serial.print("V1:");

Serial.print("\t");

Serial.print(v1);

Serial.print("\t");

Serial.print("V");

Serial.print("\t");

Serial.print("V2:");

Serial.print("\t");

Serial.print(v2);

Serial.print("\t");

Serial.println("V");

Serial.print("Amp1:");

Serial.print("\t");

Serial.print(a1);

Serial.print("\t");

Serial.print("A(20A)");

Serial.print("\t");

Serial.print("Amp2:");

Serial.print("\t");

Serial.print(a2);

Serial.print("\t");

Serial.println("A(5A)");

Serial.print("P1:");

Serial.print("\t");

Serial.print(power1);

Serial.print("\t");

Serial.print("W");

Serial.print("\t");

Serial.print("P2:");

Serial.print("\t");

Serial.print(power2);

Serial.print("\t");

Serial.println("W");

Serial.print("C1:");

Serial.print("\t");

Serial.print(cost1);

Serial.print("\t");

Serial.print("RM/h");

Serial.print("\t");

Serial.print("C2:");

Serial.print("\t");

Serial.print(cost2);

Serial.print("\t");

Serial.println("RM/h");

Serial.println(" ");

64

//terminal.print("You said:");

//terminal.write(param.getBuffer(), param.getLength());

//terminal.println();

terminal.print("V1:");

terminal.print("\t");

terminal.print(v1);

terminal.print("\t");

terminal.print("V");

terminal.print("\t");

terminal.print("V2:");

terminal.print("\t");

terminal.print(v2);

terminal.print("\t");

terminal.println("V");

terminal.print("Amp1:");

terminal.print("\t");

terminal.print(a1);

terminal.print("\t");

terminal.print("A(20A)");

terminal.print("\t");

terminal.print("Amp2:");

terminal.print("\t");

terminal.print(a2);

terminal.print("\t");

terminal.println("A(5A)");

terminal.print("P1:");

terminal.print("\t");

terminal.print(power1);

terminal.print("\t");

terminal.print("W");

terminal.print("\t");

terminal.print("P2:");

terminal.print("\t");

terminal.print(power2);

terminal.print("\t");

terminal.println("W");

terminal.print("C1:");

terminal.print("\t");

terminal.print(cost1);

terminal.print("\t");

terminal.print("RM/h");

terminal.print("\t");

terminal.print("C2:");

terminal.print("\t");

terminal.print(cost2);

65

terminal.print("\t");

terminal.println("RM/h");

terminal.println(" ");

terminal.flush();

Blynk.virtualWrite(V0, power1);

Blynk.virtualWrite(V1, cost1);

}

void loop()

{

power();

Blynk.run();

}

66

67

#define BLYNK_TEMPLATE_ID

#define BLYNK_DEVICE_NAME

#define BLYNK_AUTH_TOKEN

"TMPLIOlNfd61"

"Quickstart Device"

"NXqZHOAM_sNDEpnNZMvZDTukxaQDAs_e"

// Comment this out to disable prints and save space

#define BLYNK_PRINT Serial

#include <WiFi.h>

#include <WiFiClient.h>

#include <BlynkSimpleEsp32.h>

#include <Filters.h>

char auth[] = BLYNK_AUTH_TOKEN;

// Your WiFi credentials.

// Set password to "" for open networks.

char ssid[] = "Keluarga Bahagia";

char pass[] = "zmalqp10";

int ZMPT101B1 = 35;

int ZMPT101B2 = 34;

float power1, power2, cost1, cost2, power3, power4;

float v1,v2,a1,a2;

float testFrequency1 = 50;

float windowLength1 = 100/testFrequency1;

float testFrequency2 = 50;

float windowLength2 = 100/testFrequency2;

int RawValue1 = 0;

float Volts_TRMS1;

int RawValue2 = 0;

float Volts_TRMS2;

float intercept1 = -3;

float slope1 = 0.28566351; //0.28566351 (241.1/844)

float intercept2 = -9;

float slope2 = 1.00878661; //0.28566351 (241.1/239)

unsigned long printPeriod1 = 1;

APPENDICES

CODING OF ESP32

68

unsigned long previousMillis1 = 0;

unsigned long printPeriod2 = 1;

unsigned long previousMillis2 = 0;

RunningStatistics inputStats1;

RunningStatistics inputStats2;

// Attach virtual serial terminal to Virtual Pin V1

WidgetTerminal terminal(V3);

// You can send commands from Terminal to your hardware. Just use

// the same Virtual Pin as your Terminal Widget

BLYNK_WRITE(V3)

{

// Ensure everything is sent

terminal.flush();

//terminal.print("You said:");

//terminal.write(param.getBuffer(), param.getLength());

//terminal.println();

}

void setup()

{

// Debug console

Serial.begin(115200);

pinMode(36, INPUT);

pinMode(39, INPUT);

pinMode(ZMPT101B1, INPUT);

pinMode(ZMPT101B2, INPUT);

inputStats1.setWindowSecs(windowLength1);

inputStats2.setWindowSecs(windowLength2);

volt();

delay(500);

Serial.print(v1);

Serial.print(" ");

Serial.println(v2);

Blynk.begin(auth, ssid, pass, "blynk.cloud", 80);

// You can also specify server:

//Blynk.begin(auth, ssid, pass, "blynk.cloud", 80);

//Blynk.begin(auth, ssid, pass, IPAddress(192,168,1,100), 8080);

// Clear the terminal content

terminal.clear();

// This will print Blynk Software version to the Terminal Widget when

69

// your hardware gets connected to Blynk Server

terminal.println(F("Blynk v" BLYNK_VERSION ": Device started"));

terminal.println(F(" ------------ "));

terminal.println(F("Type 'Marco' and get a reply, or type"));

terminal.println(F("anything else and get it printed back."));

terminal.flush();

}

void AMP20(){

float a11, ACSValue1 = 0.0, Samples1 = 0.0, AvgACS1 = 0.0, BaseVol1 = 2.193;

//Change BaseVol as per your reading in the first step.

for (int x = 0; x < 500; x++) { //This would take 500 Samples

ACSValue1 = analogRead(36);

Samples1 = Samples1 + ACSValue1;

delay (3);

}

AvgACS1 = Samples1/500;

a11 = (((AvgACS1) * (3.3 / 4095.0)) - BaseVol1) / 0.100 ; //0.066V = 66mVol. This

is sensitivity of your ACS module.

if(a11 < 0.1){

// Serial.print("Amp1: ");

// Serial.print(0.00);

// Serial.print("A (ref:20A) ");

a1 = 0.00;

}

if(a11 > 0.1){

// Serial.print("Amp1: ");

// Serial.print(a11);

// Serial.print("A (ref:20A) ");

a1 = a11;

}

// // delay(100);

//float ACSValue1 = 0.0, Samples = 0.0, AvgACS1 = 0.0, BaseVol1 = 2.193;

//AvgACS1 = analogRead(36);

//Serial.print("\t");

//Serial.print("Amp(ref:20A): ");

//Serial.print("\t");

//Serial.print((((AvgACS1) * (3.3 / 4095.0)) - BaseVol1) / 0.100);

//Serial.print(" A");

}

void AMP5(){

float a22, ACSValue = 0.0, Samples = 0.0, AvgACS = 0.0, BaseVol = 2.185; //Change

BaseVol as per your reading in the first step.

for (int x = 0; x < 500; x++) { //This would take 500 Samples

ACSValue = analogRead(39);

Samples = Samples + ACSValue;

delay (3);

}

AvgACS = Samples/500;

70

a22 = (((AvgACS) * (3.3 / 4095.0)) - BaseVol) / 0.185;

// Serial.print("Amp2: ");

// Serial.print(a22); //0.066V = 66mVol. This is sensitivity of your ACS module.

// Serial.print("A (ref:5A) ");

// a2 = a22;

if(a22 < 0.1){

// Serial.print("Amp2: ");

// Serial.print(0.00); //0.066V = 66mVol. This is sensitivity of your ACS module.

// Serial.print("A (ref:5A) ");

a2 = 0.00;

}

if(a22 > 0.1){

// Serial.print("Amp2: ");

// Serial.print(a22); //0.066V = 66mVol. This is sensitivity of your ACS module.

// Serial.print("A (ref:5A) ");

a2 = a22;

}

// //delay(100);

//float ACSValue2 = 0.0, Samples = 0.0, AvgACS2 = 0.0, BaseVol2 = 2.185;

//AvgACS2 = analogRead(39);

//Serial.print("\t");

//Serial.print("Amp(ref:5A): ");

//Serial.print("\t");

//Serial.print((((AvgACS2) * (3.3 / 4095.0)) - BaseVol2) / 0.185);

//Serial.println(" A");

}

void ReadVoltage1(){

RawValue1 = analogRead(ZMPT101B1); // read the analog in value:

inputStats1.input(RawValue1); // log to Stats function

// if((unsigned long)(millis() - previousMillis1) >= printPeriod1) { //We calculate and

display every 1s

// previousMillis1 = millis(); // update time

Volts_TRMS1 = inputStats1.sigma()* slope1 + intercept1;

// Volts_TRMS = Volts_TRMS*0.979; //Further calibration if needed

if (Volts_TRMS1 < 0){

Serial.print("V1: ");

Serial.print("\t");

Serial.print(0.00);

Serial.print(" V");

v1 = 0.00;

}

if(Volts_TRMS1 > 0){

71

Serial.print("V1: ");

Serial.print("\t");

Serial.print(Volts_TRMS1);

Serial.print(" V");

v1 = Volts_TRMS1;

}

// Serial.print("Non Calibrated: ");

// Serial.print("\t");

// Serial.print(inputStats1.sigma());

// Serial.print("\t");

//}

}

void ReadVoltage2(){

RawValue2 = analogRead(ZMPT101B2); // read the analog in value:

inputStats2.input(RawValue2); // log to Stats function

// if((unsigned long)(millis() - previousMillis2) >= printPeriod2) { //We calculate and

display every 1s

// previousMillis2 = millis(); // update time

Volts_TRMS2 = inputStats2.sigma()* slope2 + intercept2;

// Volts_TRMS = Volts_TRMS*0.979; //Further calibration if needed

if (Volts_TRMS2 < 0){

Serial.print("\t");

Serial.print("V2: ");

Serial.print("\t");

Serial.print(0.00);

Serial.println(" V");

v2 = 0.00;

}

if(Volts_TRMS2 > 0){

Serial.print("\t");

Serial.print("V2: ");

Serial.print("\t");

Serial.print(Volts_TRMS2);

Serial.println(" V");

v2 = Volts_TRMS2;

}

// Serial.print("Non Calibrated2: ");

// Serial.print("\t");

// Serial.print(inputStats2.sigma());

// Serial.print("\t");

// }

72

}

void volt(){

for (int x = 0; x < 5000; x++) { //This would take 500 Samples

ReadVoltage1();

ReadVoltage2();

}

}

void power(){

AMP20();

AMP5();

power1 = v1*a1;

power2 = v2*a2;

if(power1 <= 2000){ //For the first 200 kWh (1 - 200 kWh)

cost1 = (power1/1000) * 0.21180;

}

if(power1 >= 2010 && power1 <=3000){ //For the next 100 kWh (201 - 300 kWh)

cost1 = (power1/1000) * 0.31340;

}

if(power1 >= 3010 && power1 <=6000){ //For the next 300 kWh (301 - 600 kWh)

cost1 = (power1/1000) * 0.51160;

}

if(power1 >= 6010 && power1 <=9000){ //For the next 300 kWh (601 - 900 kWh)

cost1 = (power1/1000) * 0.51460;

}

if(power1 >= 9010){ //For the next kWh (901 kWh onwards)

cost1 = (power1/1000) * 0.51710;

}

if(power2 <= 2000){ //For the first 200 kWh (1 - 200 kWh)

cost2 = (power1/1000) * 0.21180;

}

if(power2 >= 2010 && power2 <=3000){ //For the next 100 kWh (201 - 300 kWh)

cost2 = (power1/1000) * 0.31340;

}

if(power2 >= 3010 && power2 <=6000){ //For the next 300 kWh (301 - 600 kWh)

cost2 = (power1/1000) * 0.51160;

}

if(power2 >= 6010 && power2 <=9000){ //For the next 300 kWh (601 - 900 kWh)

cost2 = (power1/1000) * 0.51460;

}

if(power2 >= 9010){ //For the next kWh (901 kWh onwards)

cost2 = (power1/1000) * 0.51710;

}

73

Serial.print("V1:");

Serial.print("\t");

Serial.print(v1);

Serial.print("\t");

Serial.print("V");

Serial.print("\t");

Serial.print("V2:");

Serial.print("\t");

Serial.print(v2);

Serial.print("\t");

Serial.println("V");

Serial.print("Amp1:");

Serial.print("\t");

Serial.print(a1);

Serial.print("\t");

Serial.print("A(20A)");

Serial.print("\t");

Serial.print("Amp2:");

Serial.print("\t");

Serial.print(a2);

Serial.print("\t");

Serial.println("A(5A)");

Serial.print("P1:");

Serial.print("\t");

Serial.print(power1);

Serial.print("\t");

Serial.print("W");

Serial.print("\t");

Serial.print("P2:");

Serial.print("\t");

Serial.print(power2);

Serial.print("\t");

Serial.println("W");

Serial.print("C1:");

Serial.print("\t");

Serial.print(cost1);

Serial.print("\t");

Serial.print("RM/h");

Serial.print("\t");

Serial.print("C2:");

Serial.print("\t");

Serial.print(cost2);

Serial.print("\t");

Serial.println("RM/h");

Serial.println(" ");

74

//terminal.print("You said:");

//terminal.write(param.getBuffer(), param.getLength());

//terminal.println();

terminal.print("V1:");

terminal.print("\t");

terminal.print(v1);

terminal.print("\t");

terminal.print("V");

terminal.print("\t");

terminal.print("V2:");

terminal.print("\t");

terminal.print(v2);

terminal.print("\t");

terminal.println("V");

terminal.print("Amp1:");

terminal.print("\t");

terminal.print(a1);

terminal.print("\t");

terminal.print("A(20A)");

terminal.print("\t");

terminal.print("Amp2:");

terminal.print("\t");

terminal.print(a2);

terminal.print("\t");

terminal.println("A(5A)");

terminal.print("P1:");

terminal.print("\t");

terminal.print(power1);

terminal.print("\t");

terminal.print("W");

terminal.print("\t");

terminal.print("P2:");

terminal.print("\t");

terminal.print(power2);

terminal.print("\t");

terminal.println("W");

terminal.print("C1:");

terminal.print("\t");

terminal.print(cost1);

terminal.print("\t");

terminal.print("RM/h");

terminal.print("\t");

terminal.print("C2:");

terminal.print("\t");

terminal.print(cost2);

terminal.print("\t");

75

APPENDIX 1 Coding of ESP-32

terminal.println("RM/h");

terminal.println(" ");

terminal.flush();

Blynk.virtualWrite(V0, power1);

Blynk.virtualWrite(V1, cost1);

}

void loop()

{

power();

Blynk.run();

}

