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ABSTRACT 

Hydropower is a low-cost, well-developed renewable energy source. Instead of replacing 

pressure-reducing valves, the in-pipe turbine might be employed to generate power.  By 

adjusting the number of blades, blade design, aspect ratio, and angle of deflector, the flow 

can be analysed to maintain the performance of an in-pipe turbine. To examine the flow in a 

water distribution pipe, a basic system of computational fluid dynamic simulation is used, 

and a 3D simplified pipe model was used in this study. The purpose of this project is to 

perform the optimize computational fluid dynamic simulation on output velocity and 

pressure and to understand the effect of each parameter on output characteristics. New 

appropriate parameters for model enlargement were established using ANSYS Workbench 

2022 R1 software, as validated by prior study papers. To run simulations, six distinct 

configuration sets based on fixed turbine design and pipe diameter were used.  
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ABSTRAK 

Tenaga hidro ialah sumber tenaga boleh diperbaharui yang kos rendah dan dibangunkan 

dengan baik. Daripada menggantikan injap pengurangan tekanan, turbin dalam paip 

mungkin digunakan untuk menjana kuasa. Dengan melaraskan bilangan bilah, reka bentuk 

bilah, nisbah bidang dan sudut pemesong, aliran boleh dianalisis untuk mengekalkan prestasi 

turbin dalam paip. Untuk mengkaji aliran dalam paip pengagihan air, sistem asas simulasi 

dinamik bendalir pengiraan digunakan, dan model paip mudah 3D digunakan dalam kajian 

ini. Tujuan projek ini adalah untuk melaksanakan simulasi dinamik bendalir pengiraan 

terbaik pada halaju dan tekanan keluaran dan untuk memahami kesan setiap parameter pada 

ciri keluaran. Parameter baharu yang sesuai untuk pembesaran model telah diwujudkan 

menggunakan perisian ANSYS Workbench 2022 R1, seperti yang disahkan oleh kertas 

kajian terdahulu. Untuk menjalankan simulasi, enam set konfigurasi berbeza berdasarkan 

reka bentuk turbin tetap dan diameter paip telah digunakan. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background 

     In-pipe turbine power has been considered a potential alternative energy source for 

decades. It is not only a cheap way to generate electricity, but it is also a renewable source 

of energy. The in-pipe turbines may operate in a variety of flow patterns, volumes, and 

velocities. It generates energy by eliminating excessive head pressure from huge diameter 

pipes (24" - 96"). (Calderone, 2016). Energy created within the pipeline, on the other hand, 

can be used to develop in-pipe turbines. (Muhsen et al., 2019). Designers in the renewable 

energy industry must recognise the relevance of shape in all aspects in order to grow or 

change their existing designs, particularly when in-pipe turbines are involved. The key 

problem with in-pipe turbines is determining the appropriate design to maximise efficiency. 

     The best type of water turbine design for a particular situation is frequently 

influenced by the amount of head and flow rate available at a certain area, as well as whether 

the location is on the bank of the river or stream, or whether the water will have to be 

channelled or transported directly to the spot. 

     Other factors to consider are whether the planned electrical generator is an insulated 

"reaction turbine design" like the Francis turbine or an uncovered "impulse turbine design" 

like the Pelton turbine, and also the proposed electrical generator's speed of rotation. 
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     Each hydroelectric power plant's beating heart is the water turbine. It consists of 

many metal or plastic blades connected to the main rotating shaft or plate. Due to the velocity 

and pressure of the water, water flowing through the enclosed turbine casing contacts the 

turbine's blade, generating torque and forcing the shaft to rotate. Water's velocity and 

pressure diminish as it pressures against the turbine blades (energy is lost), forcing the 

turbine shaft to spin. (Prem Baboo, 2016). 

1.2 Problem Statement 

     Hydropower is a mature and cost-effective renewable energy source in which energy 

and water are inextricably linked. (Muhsen et al., 2019). The design features of the turbine 

can be studied in order to maintain the performance of an in-pipe turbine. According to 

research on turbine design for fluid flow, the number of blades, deflector system, aspect 

ratio, and blade shape all influence the pressure and velocity reaching the in-pipe turbine. 

This is because a bad design will result in low output velocity and pressure. As a result, the 

water distribution channel will be slower and less efficient to utilise. A fundamental system 

of computational fluid dynamic simulation is utilised to analyse the flow in a water pipe, and 

a 3D simplified pipe model was used in this research. The output velocity and pressure can 

be generated using the optimal number of blades, angle of deflector, and aspect ratio of the 

turbine. The information can also be used to calculate the turbine's efficiency. The goal of 

this research is to simulate the output velocity and pressure for the best design of an in-pipe 

drag-type turbine. 
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1.3 Objective 

The objectives of this project are: 

a) To construct a turbine design using 3D modelling software based on 

parameters that have been considered. 

b) To perform a computational fluid dynamic simulation on output velocity and 

pressure of an in-pipe drag-type turbine. 

c) To compare the output velocity and pressure between the turbine final design 

and the existing turbine design. 

1.4 Scope of Research 

The scopes of study of this project narrowed down to: 

a) this study is carried out to prove that changing input velocity will affect the 

output pressure and velocity using ANSYS software. 

b) Focus on the turbine design for in-pipe drag-type turbine piping system using 

ANSYS software. 

c) Produce 3D drawing and simulate with well-set parameters given. 
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CHAPTER 2  

 

 

LITERATURE REVIEW 

2.1 Introduction 

     In this chapter, the relevant literature and research on topics relevant to this project, 

such as general concepts of turbine, drag-type turbine, in-pipe turbine, drag-type turbine 

parameter, common angle employed, formulas and general information on how to validate 

the data, are presented. 

2.2 Definition of Water Turbine 

     A water turbine with a rotor that may be rotated around an axis is revealed. Water 

flows over the at least three blades that generate rotational motion for the rotor. At least one 

of the blades is contained within one of the rotor's triangulated elements. 

     A water turbine uses the potential energy that arises from the height difference 

between an upstream water supply and the generator level of water (the tailrace). Basic 

watermills have been in operation for roughly 2,000 years, and water turbines are their 

modern descendants. Nowadays, water turbines are the most common method of generating 

electricity. 

     In contrast, the majority electricity is generated by steam turbines connected to 

electric generators. A fossil fuel or nuclear-powered generator generates steam, which 

powers the turbines. The change in enthalpy across the turbine is a simple way to express 

the amount of energy extracted from steam. As the sum of internal heat energy and flow 
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system pressure times volume, enthalpy represents all mechanical and thermal forms of 

energy. Increases in steam generator temperature and pressure, as well as turbine-exit 

pressure, enhance the potential enthalpy shift. 

     Water turbines are often classified as either impulse (for use with big water heads 

and lower flow velocity) or reaction (for usage with higher flow velocity) (used for low water 

heads and moderate to high flow rates). The Pelton impulse generator and the Francis, 

propellers, Kaplan, and Deriaz reaction generators fall into these two categories. A 

horizontal or a vertical shaft can be used to construct a turbine. Individual hydraulic 

conditions can be accommodated by wide-ranging design changes within each type. 

Hydroelectric turbines are now the primary use for most hydraulic turbines. As of this 

writing, (Fred Landis, 2017) 

2.2.1 Impulse Turbines 

     A well constructed nozzle releases water to transform potential energy (or even the 

flow heads) into kinetic energy before being used in an impulse turbine. In order to turn the 

water energy into productive labour, the jet is directed to curved buckets affixed to the 

runner's edge. 

 

Figure 2.1 Impulse turbine 
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