

REAL-TIME WATER QUALITY MONITORING USING IOT NEAR BRACKISH WATER AREA IN SUNGAI MELAKA

BACHELOR OF MECHANICAL ENGINEERING TECHNOLOGY WITH HONOURS

Faculty of Mechanical and Manufacturing Engineering Technology

Nurul Syuhadah Binti Abdul Jafar

Bachelor of Mechanical Engineering Technology with Honours

REAL-TIME WATER QUALITY MONITORING USING IOT NEAR BRACKISH WATER AREA IN SUNGAI MELAKA

NURUL SYUHADAH BINTI ABDUL JAFAR

Faculty of Mechanical and Manufacturing Engineering Technology

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DECLARATION

I declare that this thesis entitled "REAL-TIME WATER QUALITY MONITORING USING IOT NEAR BRACKISH WATER AREA IN SUNGAI MELAKA" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

APPROVAL

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the Bachelor of Mechanical Engineering Technology with Honours.

DEDICATION

I dedicate this final year project to my parents because they are the reason why I strive to make this project successfully. I also dedicate this project to my supervisor, Sayed Kushairi Bin Sayed Nordin and my co-supervisor TS. Mohd Idain Fahmy bin Rosley for his countless hours of reflecting, reading, encouraging and most of all patience throughout the entire

process.

ABSTRACT

Water is a vital resource in human life and is necessary for the global life system to function. Humans use water in their daily lives for a variety of reasons, including agriculture, cattle, industry, and so on. However, due to the irresponsible behaviour of some parties, the water is getting increasingly polluted. Water pollution, according to the Environmental Quality Act of 1974, is defined as any direct or indirect change to the physical, thermal, biological, or radioactive properties of any part of the environment that releases, emits, or places these wastes in such a way that they affect the use and cause a situation that is dangerous and detrimental to the public's health, safety, and welfare, or other life such as birds, fish, aquatic life, and the like. Among the causes of water pollution in Malaysia is due to the dumping of garbage from residential areas along the river. For example, the uncontrolled dumping of waste materials such as oil, garbage and others and cause changes in the nature of water, will lead to pollution. In addition, the irresponsible attitude of some factory managers by dumping toxic waste into rivers or seas is also one of the causes of water pollution. This will affect life in the water. With the occurrence of water pollution, it will disrupt human health. Contaminated water contains chemicals such as mercury, sodium and so on that can be harmful to human health. In this study, HydroQS is a device that will be produced to monitor water conditions in the Melaka River. With this device, to some extent can help the state of Melaka reduce water pollution. This study will conduct a field test to prove that this project can help the country to some extent because this study is also a joint venture between UteM and Perbadanan Pembangunan Sungai dan Pantai (PPSPM). Due to water pollution that occurs in the Melaka River, can cause tourists do not want to go to Melaka and will bring down the economy of the state of Melaka.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

- - 0 - -

ABSTRAK

Air merupakan sumber penting dalam kehidupan manusia dan menyokong kepada sistem kehidupan global. Manusia memerlukan air dalam kehidupan seharian sebagai contoh Namun, air semakin hri semakin pertanian, penternakan, perindustrian dan sebagainya. tercemar angkara sikap tidak ertanggungjawab oleh sesetengah pihak. Menurut Akta Kualiti Alam Sekeliling 1974, pencemaran air didefinisikan sebagai apa-apa perubahan langsung atau tidak langsung kepada sifat-sifat fizikal, haba, biologi atau radioaktif iaitu mana-mana bahagian alam sekitar yang melepaskan, mengeluarkan, atau meletakkan buangan ini sehingga menjejaskan kegunaan dan menyebabkan sesuatu keadaan merbahaya dan memudaratkan kesihatan, keselamatan, dan kebajikan pihak awam, atau kehidupan lain seperti burung, ikan, hidupan akuatik dan sebaganya. Antara punca berlakunya pencemaran air di Malaysia adalah kerana pembuangan sampah dari kawasan perumahan di sepanjang sungai. Sebagai contoh, pembuangan bahan buangan seperti minyak, sampah dan lain-lain secara tidak terkawal dan menyebabkan perubahan sifat air, akan membawa kepada pencemaran. Selain itu, sikap sesetengah penguasaha kilang yang tidak bertanggungjawab dengan membuang sisa toksik ke dalam sungai ataupon laut juga merupakan salah satu punca berlakunya pencemaran air. Ini akan menyebabkan kehidupan di dalam air terjejas. Dengan berlakunya pencemaran air, ia akan meganggu gugat kesihatan manusia. Air yang tercemar mengandungi bahan kimia seperti merkuri, sodium dan sebagainya yaang boleh memudaratkan kesihatan manusia. Dalam kajian ini, HydroQS adalah peraanti yang akan dihasilkan untuk memantau keadaan air di Sungai Melaka. Dengan adanya peranti ini, sedikit sebanyak dapat membantu negeri Melaka mengurangi pencemaran air. Kajian ini akan menjalankan ujian lapangan untuk membuktikan bahawa projek ini sedikit sebanyak dapat membantu negara kerana kajian ini juga merupakan usaha sama UteM dan Perbadanan Pembangunan Sungai dan Pantai (PPSPM). Di sebabkan pencemaran air yang berlaku di Sungai Melaka, boleh menyebabkan pelancong tidak mahu untuk ke Melaka dan akan menjatuhkan ekonomi negeri Melaka.

ACKNOWLEDGEMENTS

In the Name of Allah, the Most Gracious, the Most Merciful

Alhamdulillah, I would like to take this opportunity to impress my deepest gratitude to Allah because of His willingness to give strength and will for me to finish and implement this project report which were implemented successfully. Besides that, I wish to present million thanks to my parents because have sacrificed and give fully support and impetus by education and implementation this project in University Technical Malaysia Melaka (UTeM)

MALAYSIA

As high as appreciation is given to my supervisor, Sayed Kushairi Bin Sayed Nordin and also my co supervisor TS. Mohd Idain Fahmy bin Rosley because of his constant help, support and guidance this has steered me to finish my report of project. His enthusiasm and professional works have motivated and inspired me whenever I feel down or lack of ideas while doing this project. Whenever I really need help, he always provides me with his help and giving words of encouragement to me to overcome the difficulties in doing this report.

One more time thanks a lot to my family and my fellow friends for their help to implement this project, sacrificing of time, give outburst idea until completed this project without knowing the meaning of despair. Indeed, each cooperation and assistance from certain parties whether directly or not is huge a blessing for me. Infinite thanks to all who are involved directly especially in Universiti Teknikal Malaysia Melaka (UTeM).

TABLE OF CONTENTS

		PAGE
DEC	LARATION	
APP	ROVAL	
DED	ICATION	
ABS	TRACT	i
ABS'	TRAK	ii
ACK	NOWLEDGEMENTS	iii
ТАВ	LE OF CONTENTS	iv
LIST	T OF TABLES	vi
LIST	T OF FIGURES	vii
LIST	T OF SYMBOLS AND ABBREVIATIONS	х
LIST	T OF APPENDICES	xii
СНА	PTER 14 Ja Landa Contention introd	UCTION
1 1		13
1.1	Background Droblem Statement TI TEKNIIKAL MALAVEIA MELAKA	15
1.2	Problem Statement III ERNIKAL MALAT SIA MELAKA Research Objective	15
1.3	Scope of Research	10
СНА	PTER 2 LITERATURE	REVIEW
CIIII		17
2.1	Introduction	17
2.2	Water	18
	2.2.1 Function water	18
	2.2.2 Water pollution	19
2.3	Internet of things (IoT)	20
2.4	Water monitoring technology based on IoT	21
2.5	Water quality index	21
2.0	ypes of water quality sensor 2.6.1 Temperature	23 23
	2.6.1 remperature 2.6.2 nH level	23 24
	2.6.3 Turbidity	25
	2.6.4 Total Dissolved Solid (TDS)	26

CHAPTER 3 METHODOLO		
	27	
3.1 Introduction	27	
3.2 Project planning	27	
3.3 HydroQS	29 20	
3.3.1 HydroQS casin	g component 30	
3.3.2 HydroQS sense	r equipment 32	
3.3.5 Electronic com	Jonent 38	
3.4 Software	41 42	
3.5 SLS Machine Faisoon	55402P 42	
3.5.1 Sintering Floce	ss 45	
3.5.2 Assemble of ca	and placement 45	
3.7 Costing For Sensor	in and placement. 45	
5.7 Costing For Sensor	+7	
CHAPTER 4	49	
4.1 Introduction ALAYSIA	49	
4.2 Sensoring system	49	
4.3 Pretesting device	49	
4.3.1 Floating test	50	
4.4 3D printing part	61	
4.5 Field test data		
4.5.1 Result and Disc	ussion 63	
4.6 Product Improvement	67	
4.6.1 Main body	67	
4.6.2 Buoy	68 اويوم سيخ بيڪنيڪ م	
4.6.3 Electronic cash	.g. 0	
CHAPTER 5 NIVERSITI	TEKN CONCLUSION AND RECOMMENDATIONS	
	71	
5.1 Conclusion	71	
5.2 Recommendations	72	
REFERENCES 73		
APPENDICES 75		

LIST OF TABLES

TABLETITLE	PAGE
Table 2.1 National Water Quality Standards for Malaysia (NWC	QS) 22
Table 2.2 ANNEX water classes and uses	22
Table 3.1 pH level sensor specification	34
Table 3.2 Turbidity specification	35
Table 3.3 Temperature sensor specification	36
Table 3.4 Analog Total Dissolved Solid (TDS) sensor specification	tion 37
Table 3.5 Arduino Uno specification	39
Table 3.6: Cost for sensor	47
Table 4.1 Data for 24 hours	63
Table 4.2 Summary of statistics	64
Table 4.3 Summary of statistics in morning	64
Table 4.4 Summary of statistics in evening	MELAKA 64
Table 4.5 Summary of statistics in night	64
Table 4.6 Difference data taken and NWQS	65

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2.1 Temperature sensor		23
Figure 2.2 pH level sensor		24
Figure 2.3 Turbidity		25
Figure 2.4 Total Dissolved Solid sensor		26
Figure 3.1 Flowchart		28
Figure 3.2 How HydroQS System Function	ing	29
Figure 3.3 The main body of HydroQS		30
Figure 3.4 The main body of HydroQS		31
Figure 3.5 The buoy for HydroQS		31
Figure 3.6 Aluminum carbon		32
Figure 3.7 H-101 pH level sensor that used.	اويوبرسيي بيكي	33
Figure 3.8 H-101 pH level sensor	L MALAYSIA MELAKA	33
Figure 3.9 Analog turbidity sensor		35
Figure 3.10 Temperature sensor		36
Figure 3.11 Analog Total Dissolved Solid (TDS) sensor	37
Figure 3.12 Arduino Uno		38
Figure 3.13 Powerbank		39
Figure 3.14 Solar Panel		40
Figure 3.15 Lamp		41
Figure 3.16 Home assistant		42
Figure 3.17 Farsoon SS402P Seective Laser	Sintering (SLS) machine	43

Figure 3.18 Sintering Process	44
Figure 3.19 Tools used	45
Figure 3.20 HydroQS in Solidworks	46
Figure 3.21 HydroQS	46
Figure 3.22 pH level sensor	47
Figure 3.23 Turbidity sensor	47
Figure 3.24 Total Dissolved Solid (TDS) sensor	47
Figure 3.25 Temperature sensor	48
Figure 4.1 Data will appear at home assistant.	49
Figure 4.2 Fully buoy in water	50
Figure 4.3 Polyurethane Liquid A and B	51
Figure 4.4 Water level in block	51
Figure 4.5 Main body and buoy	52
Figure 4.6 This is the inner part of the main body.	53
Figure 4.7 Protective coating	53
Figure 4.8 KK233 Enhanced Interface Emulsion	54
Figure 4.9 Acrylic latex sealant gap filler	55
Figure 4.10 Spray (Clear)	56
Figure 4.11 Rubber O rings	57
Figure 4.12 Sensor casing before apply rubber O ring	58
Figure 4.13 Sensor casing after apply rubber O ring	58
Figure 4.14 Turbidity in home assistant.	59
Figure 4.15 Total Dissolved Solid (TDS) in home assistant	59
Figure 4.16 pH level for acid in home assistant	60

Figure 4.17 pH level for natural in home assistant		
Figure 4.18 pH level for alkaline in home assistant	60	
Figure 4.19 Temperature surrounding in home assistant	60	
Figure 4.20 Bouy part.	61	
Figure 4.21 Connecter	61	
Figure 4.22 Bouy amd main body in right side.	61	
Figure 4.23 Main body	62	
Figure 4.24 Field test for take data	62	
Figure 4.25 Data TDS from Home Assistant.	65	
Figure 4.26 Data turbidity from Home Assistant.	66	
Figure 4.27 Data river temperature from Home Assistant		
Figure 4.28 Data pH from Home Assistant.	67	
Figure 4.29 Before improvement main body	67	
Figure 4.30 After improvement main body	68	
Figure 4.31 Before improvement buoy	68	
Figure 4.32 After improvement buoy	69	
Figure 4.33 Before improvement	69	
Figure 4.34 After improvement	70	
Figure 4.35 Electronic Casing with cover	70	
Figure 5.1 Electronic Casing	72	
Figure 5.2 Main Body	72	

LIST OF SYMBOLS AND ABBREVIATIONS

TDS	-	Total Dissolved Solid
HydroQS	-	Hydro Quality System
PPSPM	-	Perbadanan Pembangunan Sungai dan Pantai Melaka
PS	-	Point Sources
NPS	-	Non-point Sources
°C	-	Celcius
WHO	-	World Health Organization
IoT	-	Internet of Things
DOE	- 10	Department Of Environment
WQI	S.S.Y	Water Quality Index
NWQS	EK.	National Water Quality Standards
BOD	F	Biochemical Oxygen Demand
COD	E.	Chemical Oxygen Demand
NH4-N	- 1	Ammoniacal Nitrogen
SS	Sh	Suspended Solids
USPHS	-	United States Public Health Service
ICMR	UNIVI	Indian Council Of Medical Research
H ₂ O	-	Water
ppm	-	Parts per million
mg/L	-	Milligrammes per litre
SLS	-	Selective Laser Sintering
TSS	-	Total Suspended Solid
m	-	Meter
V	-	Volts
mm	-	Millimetre
MPa	-	Megapascal
g	-	Gram
mA	-	Milliampere
mAh	-	Milliampere hour

PC	-	Personal Computer
SMS	-	Short Message Service
FTKMP	-	Fakulti Teknologi Kejuruteraan Mekanikal dan Pembuatan
CO_2	-	Carbon Dioxide
UTeM	-	Universiti Teknikal Malaysia Melaka
CCTV	-	Closed Circuit Television
NTU	-	Nephelometric
a	-	Maximum not to be exceeded
*	-	Related parameters, only one recommended for use.
**	-	Geometric mean.
Ν	-	No visible floatable materials or debris, no objectional odour or no
	at H	objectional taste.
	A TEKNIR	

اونيوم سيتي تيكنيكل مليسيا ملاك

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

Appendix A

Gantt chart

CHAPTER 1

INTRODUCTION

1.1 Background

Water is one of the basic needs and requires for all life on earth. Water covering 71% of the total surface area in the earth. Water exists in all three of its states which is liquid, gas and solid. Many rivers have become polluted as a result of the numerous wastes poured into rivers from industrial areas. Malaysia is a tropical country with a similar seasonal climate, but the water level in the catchment varies during the monsoon. Both point sources (PS) and non-point sources (NPS) contribute to water pollution in Malaysia. Point sources have been identified as sewage treatment plants, manufacturing and agricultural industries, and animal farms. Diffuse non-point sources include things like agricultural activities and surface runoff.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

In the last year, water resources have been depleted. According to global water pollution statistics, developing countries create 70% of untreated industrial wastes thrown into water, and an average of 99 million pounds (45 million kilogrammes) of fertiliser and chemicals are utilised each year (National Geographic Portal, 2016). This is a common occurrence in the Malacca River. The river is currently poisoned, causing the demise of a variety of fish species. Law enforcement, water resource regulations, religious and moral education, and public awareness about the value of the environment, particularly riverine water resources, have all been implemented by the state government. However, the state government's adoption of such programmes to protect river water quality has not resulted in lower levels of water contamination.

The situation has grown more dangerous as it has progressed to a higher level. As a result, the key pollutants emitted by the major sources of pollution should be researched and quantified, particularly in terms of geographical variation in the Malacca River. Several systems for monitoring and analysing river water have been designed and marketed. The Sungai Melaka, on the other hand, has yet to be implemented due to a lack of information or technological know-how.

This study will be carried out in collaboration with Perbadanan Pembangunan Sungai dan Pantai Melaka (PPSPM), and will cover a 9-kilometer stretch of the Sungai Melaka from Batu Hampar in Peringgit to the river mouth in Bandar Hilir. The Hydro Quality System, or HydroQS, is a water quality monitoring equipment that can monitor and analyse water and send out alerts if the values are abnormal. Because HydroQS is integrated with IoT, all data can be viewed from anywhere using apps.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

The selection of Nylon 12 or PA-12 are because it has good material properties. It is has low water absoption and density 1.01g/mL. PA-12 also have ability to sintered in powder from using selective laser sentering machine. In this study, it will used the recycled aging polyamide PA-12 of Hydro Quality System (HydroQS).

1.2 Problem Statement

To ensure the earth's sustainability, it is critical to protect it from various sources of pollution. Water pollution has also become a significant issue as a result of an increase in water-related activities such as transportation, fishing, and entertainment. It endangers people's lives and human and natural prosperity, as well as water quality in the surrounding area as the countries' economies develop. As the population grows, many activities, both accidentally and intentionally, contribute to water pollution. Dumping is dangerous. The new hydro quality survey sensor (HydroQS) system was born out of this problem. Designed and developed a new development to monitor and analyses river water quality system for river monitoring This system keeps track of the river's water quality in terms of water level, pH level, and other factors. Total Dissolved Solids (TDS), dissolved oxygen (DO), turbidity, current flow speed in Sungai Melaka water temperature, wind speed on the surface, ambient temperature, and humidity These The sensors are Arduino-based and can be linked and monitored in the control room via apps or online. Previously, numerous studies on pollution in Sungai Melaka were conducted. However, all of these studies were conducted on a shortterm basis and did not reach PPSPM or other local organisations.authorities involved in the preservation, maintenance, and management of Sungai Melaka.

If the pollution persists, it will affect the economy of the state of Melaka due to the lack of tourists who come there. If the river water is polluted, it will affect the shops that facing the river because the river water will smelly. To some extent it will affect the shops that do business there.

1.3 Research Objective

There are many objectives that must be accomplished in this project, so they are as follows:

- a) To monitors the river water (brackish water) quality in Sungai Melaka by using HydroQS.
- b) To analyze the data collection result according to the measured parameter and compare with NWQS standard.
- c) To pre-test the HydroQS body and sensor calibration.

1.4 Scope of Research

•

The scope of this research are as follows:

• This study is to focus on monitoring water quality in brackish water area in Sungai Melaka on pH level, Total Dissolved Solids (TDS), turbidity, flow meter, humidity and water temperature.

This study cover brackish water area in the Malacca River.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Environmental pollution is a serious issue in this era of globalization, yet it remains the world's greatest concern and one of the top causes of disease and mortality. There are many other sorts of environmental contamination, but we'll concentrate on water pollution. The pervasive problem of water contamination is endangering our health.. Each year, unsafe water kills more people than all other forms of violence combined. It is not only humans who are killed, but also aquatic life.

Our country (Malaysia) faces a significant problem with water pollution, which has a detrimental influence on the sustainability of water resources. It reduces the total water supply since the expense of treating filthy water is too great and, in some situations, it cannot be treated for human use. (BAO 2010).

Nowadays, river and sea are used as disposal routes for liquid and solid waste. Wastewater from residential. Commercial and industrial area caused foul smell especially in the presence of plastic waste, garbage and deteriorates the quality of water and pollutes the existing rivers system. According to Harian Metro (2 April 2021) news, the problem of river pollution in Kampung Permatang Tepi Laut, here, which has been lingering for the past few years, has threatened the livelihood of about 200 coastal fishermen. This situation proved that water pollution will affect the source of income.

According to the WHO, 80 percent of diseases are waterborne. Major sources of water contamination include industrialization, home waste discharge, radioactive waste, population increase, excessive use of pesticides and fertilizers, and leaking water tanks.

These wastes are detrimental to human health. Depending on their location and composition, the effects of various chemicals vary. Through dirty water, bacterial, viral, and parasite diseases such as typhoid, cholera, encephalitis, poliomyelitis, hepatitis, skin infection, and gastrointestinal are spreading.

2.2 Water

At normal pressure and temperature, water is a chemical substance that exists as a liquid. 70% of the earth's surface is covered by water. Water is required for the survival of all species on this planet. Water can exist in three different states: solid, liquid, and gas. Water is the most common substance on the earth, particularly in liquid form. However, the atmosphere contains massive volumes of water in the form of gases (vapors) and solids (ice and snow).

Water is one of the most important natural resources that God has provided to humans. (Das & Jain, 2017)

After air, water is by far the most important life-sustaining substance. Water is essential for the survival of all living things and for the proper functioning of the body's metabolism. Water conservation and quality preservation are consequently critical for humans as well as existing ecosystems.(Kothari et al., 2021)

2.2.1 Function water

Water is an important natural resource that we utilize for drinking and other purposes. (Haseena et al., 2017)

Safe and easily available water is essential for public health, whether it is used for drinking, home use, food production, or recreational activities.(Chowdury et al., 2019)