


DEVELOPMENT OF HYDROQS DETACHABLE MINI PORTABLE CONVEYOR – STRUCTURE AND LIFTING

BACHELOR OF MECHANICAL ENGINEERING TECHNOLOGY WITH HONOURS

Faculty of Mechanical and Manufacturing Engineering Technology



Davian Ivan Anak Adrin

Bachelor of Mechanical Engineering Technology with Honours

Development of HYDROQS Detachable Mini Portable Conveyor – Structure and Lifting Mechanism

DAVIAN IVAN ANAK ADRIN

Faculty of Mechanical and Manufacturing Engineering Technology

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA

TAJUK: **DEVELOPMENT OF HYDROQS DETACHABLE MINI PORTABLE CONVEYOR – STRUCTURE AND LIFTING MECHANISM**

SESI PENGAJIAN: 2022/23 Semester 1

Saya DAVIAN IVAN ANAK ADRIN

4. **Sila tandakan (✓)

mengaku membenarkan tesis ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Tesis adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.

atau keper dalam AK ⁻ TERHAD (Mengand	ungi maklumat yang berdarjah keselamatan ntingan Malaysia sebagaimana yang termaktub TA RAHSIA RASMI 1972) ungi maklumat TERHAD yang telah ditentukan nisasi/badan di mana penyelidikan dijalankan)
√ TIDAK TERHAD	~ _
- Dup	Dis a nkan ol e n:
Alamat Tetap:	Cop Rasmi: Julyters Pengajar
Lot 5409, SL. 16, Lorong 3, Taman	atiatan feknologi kezuruteraan Mekanikal muh Teknologi Kejun meraan Mekanikal dan Pembulat
Stakan Perdana, Phase 2, Jalan	an teknolor struevas Maiska
Stakan, 93250, Kuching, Sarawak	
Tarikh:	Tarikh:

^{**} Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I declare that this "Development of HYDROQS Detachable Mini Portable Conveyor – Structure and Lifting Mechanism" is the result of my own research except as cited in the references. The result has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature

Name

DAVIAN IVAN ANAK ADRIN

Date

12 January 2023

APPROVAL

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the Bachelor of Mechanical Engineering Technology with Honours.

DEDICATION

This final year project is dedicated my supervisor, Ts. Mohd Idain Fahmy Bin Rosley, and my co-supervisor, for their endless hours of reflection, reading, encouraging, and, most importantly, patience throughout the project. This project is also dedicated to my parents, who are the motivating and supporting my efforts to complete the project successfully.

ABSTRACT

River polluted water has gotten a lot of attention in recent years, and it continues to be a major source of concern around the world. The deterioration of water quality is primarily linked to the issue of population development and city expansion. This is a threat to human and ecological health, as well as the supply of drinking water and economic development. Human activities that provide a financial benefit to society have harmed the river's water quality indirectly. Water pollution in Malacca River is caused by a variety of sources, including waste pollutants and excrement waste. It will contaminate the river's water and degrade its quality. Local inhabitants in Alor Gajah and Melaka Sentral, as well as the state government, have backed the problem that the river's water quality has deteriorated substantially due to waste pollution. A cleaning boat is currently being used to remove the debris in Malacca River. Only one watercraft driver and another collector are required for this technique. To avoid a clog, the collector collects the large waste into the receptacle. The waste will be collected once a day, and the entire process should take no more than 3 hours. In this project, the conveyor will be developed to overcome the waste problem on Malacca River. The field test also will be tested at Malacca River to make the HYDROQS Detachable Mini Portable Conveyor functional well. The improvements that want to be made is expected to have a lightweight, high strength, and fulfill all Perbadanan Pembangunan Sungai Dan Pantai Melaka PPSPM concerns and requirements.

اونيوسسيتي تيكنيكل مليسيا ملاك UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ABSTRAK

Air sungai yang tercemar telah mendapat banyak perhatian sejak beberapa tahun kebelakangan ini, dan ia terus menjadi punca kebimbangan utama di seluruh dunia. Kemerosotan kualiti air dikatakan berkaitan dengan isu pembangunan penduduk dan perluasan bandar. Ia merupakan satu ancaman kepada kesihatan manusia dan ekologi, serta bekalan air minuman dan pembangunan ekonomi. Aktiviti manusia yang mendatangakan manfaat kewangan kepada masyarakat telah menjejaskan kualiti air sungai secara tidak langsung. Pencemaran air di Sungai Melaka berpunca daripada pelbagai sumber antaranya pencemaran sisa dan sisa najis. Ia akan mencemarkan air sungai dan merendahkan kualitinya. Penduduk tempatan di Alor Gajah dan Melaka Sentral, serta kerajaan negeri, menegaskan bahawa masalah kualiti air sungai itu merosot dengan ketara akibat pencemaran sisa. Sebuah bot pembersihan sedang digunakan untuk mengalihkan sisa pepejal di Sungai Melaka. Hanya seorang pemandu bot dan seorang lagi pengumpul sisa pepejal diperlukan untuk teknik ini. Untuk mengelakkan tersumbat, pemungut mengumpul sisa pepejal yang besar ke dalam bekas. Sisa pepejal akan dikumpulkan sekali sehari, dan keseluruhan proses harus mengambil masa tidak lebih daripada 3 jam. Dalam projek ini,sebuah konveyor akan dibangunkan untuk mengatasi masalah sisa pepejal di Sungai Melaka. Ujian lapangan juga akan dijalankan di Sungai Melaka untuk menjadikan "HYDROQS Detachable Mini Portable Conveyor" berfungsi dengan baik. Penambahbaikan yang ingin dilakukan diharap mempunyai kekuatan yang tinggi, ringan, dan memenuhi semua kritiria dan keperluan PPSPM.

> اويوس سيني بيكسيك مالاك UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ACKNOWLEDGEMENTS

In the Name of Allah, the Most Gracious, the Most Merciful

First and foremost, I would like to thank and praise Allah the Almighty, my Creator, my Sustainer, for everything I received since the beginning of my life. I would like to extend my appreciation to the Universiti Teknikal Malaysia Melaka (UTeM) for providing the research platform. Thank you also to the Malaysian Ministry of Higher Education (MOHE) for the financial assistance.

My utmost appreciation goes to my main supervisor, Ts. Mohd Idain Fahmy Bin Rosley, Universiti Teknikal Malaysia Melaka (UTeM) for all his support, advice and inspiration. His constant patience for guiding and providing priceless insights will forever be remembered.

Last but not least, from the bottom of my heart a gratitude to my beloved parent, Adrin Anak Guntor and Yon Anak Gubik, for their endless support, love and prayers. Finally, thank you to all the individual(s) and friends who had provided me the assistance, support and inspiration to embark on my study.

TABLE OF CONTENTS

	PAGE
DECLARATION	
APPROVAL	
DEDICATION	
ABSTRACT	i
ABSTRAK	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vii
LIST OF FIGURES	viii
	\
LIST OF SYMBOLS AND ABBREVIATIONS	xi
LIST OF APPENDICES	xii
CHAPTER 1 INTRODUCTION 1.1 Background 1.2 Problem Statement 1.3 Research Objective TEKNIKAL MALAYSIA N 1.4 Scope of Research	اونیوس 1 1 2 IELAKA 5 5
CHAPTER 2 LITERATURE REVIEW	6
2.1 Introduction	6
2.2 Water Pollution	6
2.3 Water Pollution in Malacca River2.4 Functionality and Mechanism of HYDROOS Detachable	Mini Dantahla Canvavan
2.4 Functionality and Mechanism of HYDROQS Detachable2.5 SOLIDWORKS CAD Software	12
2.5.1 Introduction to SOLIDWORKS	12
2.5.2 SOLIDWORKS Assembly	13
2.5.3 SOLIDWORKS Drawing View	14
2.5.4 SOLIDWORKS Simulation and Analysis	16
2.6 Altair solidThinking	17
2.6.1 Introduction to solidThinking Altair	17
2.6.2 INSPIRE solidThinking Optimization and Analysi	
2.7 SLS Machine Farsoon SS402P	19
2.8 MIG Welding	21
2.9 Grinding 2.10 Fabrication	23 25
/ III Hantication	75

	2.10.1 Aluminium Profile	25
CHAI	PTER 3 METHODOLOGY	28
3.1	Introduction	28
3.2	Project Planning	28
	3.2.1 Research Method	28
	3.2.2 Research Area	28
	3.2.3 Flow Chart	29
3.3	HYDROQS Detachable Mini Portable Conveyor	30
3.4	SOLIDWORKS Software	30
	3.4.1 SOLIDWORKS Drawing	30
	3.4.2 SOLIDWORKS Part	31
a =	3.4.3 SOLIDWORKS Assemble	31
3.5	INSPIRE solidThinking Optimize and Analysis	33
3.6	SLS Machine Farsoon SS402P	37
2.7	3.6.1 Sintering Process	38
3.7	Milling NALAYSIA	40
2.0	3.7.1 Drilling Process	41
3.8	Turning	42
2.0	3.8.1 Turning Process	42
3.9	Laser Cut	43
	PTER 4 RESULTS AND DISCUSSION	48
4.1	Introduction	48
4.2	Failure of HYDROQS Detachable Mini Portable Conveyor	48
	4.2.1 Hollow Shaft Broken	48
	4.2.2 Broken of SLS 3D Printing Part (Shaft Connector)	49
4.0	4.2.3 Tension Problem on Chain	50
4.3	Development of HYDROQS Detachable Mini Portable Conveyor - Stru	
	Lifting Mechanism	52
	4.3.1 Design Main Body Frame on SolidWork	52
4 4	4.3.2 Mechanism to Lifting Mini Portable Conveyor	53
4.4	Data and Analysis 4.4.1 Model Information	54 54
		54 56
	4.4.2 Study Properties 4.4.3 Units	56 57
		57 58
	4.4.4 Material Properties4.4.5 Loads and Fixture	59
	4.4.6 Contact Information	59
	4.4.7 Mesh Information	60
	4.4.8 Mesh Information Detail	60
	4.4.9 Resultant Forces	60
	4.4.10 Study Result	62
4.5	Expected Result	65
	•	
	PTER 5 CONCLUSION AND RECOMMENDATION	66
5.1	Introduction	66
5.2	Conclusion	66

5.3	Recommendation	67
REF	TERENCES	68
APP	ENDICES	70

LIST OF TABLES

TABLE	TITLE	PAGE
Table 1 List for Different Model an	nd Type of Disc in Grinding Process	24
Table 2 Solid Bodies		56
Table 3 Study Properties		57
Table 4 Units		57
Table 5 Material Properties		58
Table 6 Fixture		59
Table 7 Load		59
Table 8 Contact Information		59
Table 9 Mesh Information		60
Table 10 Mesh Information Details		60
Table 11 Reaction Forces	اويورسيي ييسي	60
Table 12 Reaction Moments	KNIKAL MALAYSIA MELAKA	61
Table 13 Free Body Forces		61
Table 14 Free Body Moments		61
Table 15 Study Result Stress 1		62
Table 16 Study Result Displacemen	t 1	63
Table 17 Study Result Strain 1		64
Table 18 Study Result Factor of Saf	ety 1	65

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 1 Malacca River Cruise		3
Figure 2 Death fish due to the contaminated	l water	4
Figure 3 River Cleaning Boat		9
Figure 4 the Manpower from PPSPM Used	in Cleaning Malacca River	10
Figure 5 Design HYDROQS Detachable M	ini Portable Conveyor in SOLIDWORKS	10
Figure 6 The Glider at HYDROQS Detacha	able Mini Portable Conveyor Top Frame	12
Figure 7 Coincident Mate in SOLIDWORK	S Assembly	14
Figure 8 SOLIDWORKS Drawing Templar	te 🕒	14
Figure 9 Sheet Formats		15
Figure 10 3 Standard Views in SOLIDWOI	RKS	16
Figure 11 Exploded View in SOLIDWORK	اويورسيي سي	16
Figure 12 Analysis SOLIDWORKS	AL MALAYSIA MELAKA	17
Figure 13 Analysis using Altair solidThink	ing	19
Figure 14 Farsoon SS402P Selective Laser	Sintering (SLS) machine (Farsoon	20
Figure 15 Sintering process flow using Fars	soon SS403P machine	21
Figure 16 MIG Process		23
Figure 17 Angle Between Disc and Surface	for Grinding	24
Figure 18 Arrangement for Different Type	of Disc in Grinding Process	24
Figure 19 Type of Aluminium Profile for S	ystem 40	25
Figure 20 Bracket 40mm x 40mm		26
Figure 21 Bracket 40mm x 40mm		26

Figure 22 Model of Heavy Duty Joint	26
Figure 23 T-Nuts, ball type	27
Figure 24 Flow Chart	29
Figure 25 Different Type of Sketch	31
Figure 26 Type of Features in SOLIDWORKS	31
Figure 27 Type of Mates in SOLIDWORKS	32
Figure 28 Drawing of HYDROQS Detachable Mini Portable Conveyor Top Frame in	
SOLIDWORKS	32
Figure 29 Support Feature in Altair solidThinking	33
Figure 30 Example of Face Selected in Altair solidThinking	33
Figure 31 Load Feature in Altair solidThinking	34
Figure 32 Example of Face Selected in Altair solidThinking	34
Figure 33 Optimize Feature in Altair solidThinking	34
Figure 34 Optimize Setting in Altair solidThinking	35
Figure 35 Status of Optimize in Altair solidThinking	35
Figure 36 Resulting Dialog in Altair solidThinking	36
Figure 37 Analyze Feature in Altair solidThinking	36
Figure 38 Result of Analysis in Altair solidThinking	37
Figure 39 Farsoon SS402P Selective Laser Sintering (SLS) Machine	38
Figure 40 Pre-Processing, SLS 3D Printing and Post Processing in Sintering Process	39
Figure 41 Sintering Process	40
Figure 42 Conventional Milling Machine	41
Figure 43 Drill Chuck	41
Figure 44 Drilling Process	42

Figure 45 Turning tool bit	42
Figure 46 Turning Process	43
Figure 47 Laser cut major varieties	44
Figure 48 Choosing image to cut	45
Figure 49 Set the dimension	45
Figure 50 Material in the center of the laser cutting mat	46
Figure 51 Clean the lens	46
Figure 52 Adjust the height of the lens	47
Figure 53 Material Selection	47
Figure 54 Broken Shaft	49
Figure 55 Mild Steel Round Bar	49
Figure 56 Broken SLS Part	50
Figure 57 New Housing For Sprocket Drive Shaft	50
Figure 58 Tension Problem	51
Figure 59 Without Middle Shaft and Add Tensioner	51
Figure 60 Original Idea Main Body Frame	52
Figure 61 New Body Frame	52
Figure 62 Actual Look of the Frame	53

LIST OF SYMBOLS AND ABBREVIATIONS

UNESCO - United Nations Educational, Scientific and Cultural Organization

DOE - Department of Environment

PPSPM - Perbadanan Pembangunan Sungai dan Pantai Melaka

MIG - Metal Inert Gas

CAD - Computer-aided design
 FEA - Finite element analysis
 SLS - Selective laser sintering

MAG - Metal Active Gas

GMAW - Gas metal arc welding

3D 3 Dimension

GdZn - Gadolinium--zinc

mm - Milimeter

" - Inches

o Degree

EDM - Electrical Discharge Machine

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix 1 Gantt Chart PSM 1		70
Appendix 2 Gantt Chart PSM 2		70

CHAPTER 1

INTRODUCTION

1.1 Background

Malacca is a historical tourism attraction that was designated as a UNESCO World Heritage Site on July 7, 2008 (UNESCO Official Portal, 2015). (Bernama Official Portal, 2008). Malacca is interestingly regarded as one of the states that gives the most economic value to the country through tourism (Tourism Malaysia Official Corporate Website, 2015). Malacca state is located at N2°19'35.3" and E102°20'44.5", according to the World Geodetic System 1984 or WGS84 (Department of Survey and Mapping Malaysia, 2009). Negeri Sembilan to the north, Pahang to the east, Johor to the south, and the sea of the Strait of Malacca to the west surround the state (Melaka State Government Official Portal, 2015). Alor Gajah, Jasin, Melaka Tengah, or Malacca Central, are the three districts that make up Malacca's 1,650 square kilometres (Melaka State Government Official Portal, 2015). To put it another way, Malacca is reachable by air or land. In 2010, there were 821,110 people in the city, which climbed to 830,900 in 2011. (Melaka State Government Official Portal, 2015). To put it another way, the population of Malacca has exploded, particularly in the Central District, where the majority of the city's citizens are looking for work. The majority of fascinating locations to visit, for example, are in the city or Malacca Central, which has resulted in greater career opportunities for locals as well as residents from neighbouring states. As a result, Malacca is a thriving city. As a result, Malacca is crammed with individuals who come to work and stay for an extended amount of time.

Malacca state has seen rapid growth, which has benefited the local population much. However, the growth has unintentionally resulted in a number of environmental challenges and problems, such as river pollution (Nasbah, 2010). River pollution impacts local communities not just when they go fishing, swimming, or washing their clothes, but also when they smell awful, see unpleasant scenery, or have illness spread (Nasbah, 2010) (Jabar, 2010). (Hua, 2014). According to a 2012 assessment from Malaysia's Department of Environment (DOE), 195 of 473 rivers are contaminated, including the Malacca River. The Malacca River, on the other hand, is significantly contaminated but not yet classified as very polluted. As a result, if this issue is not treated seriously, Malacca may face a wider range of challenges, including in the tourism business. According to Hua and Kusin (2015), diverse human activities are carried out along the Malacca River, commencing with agricultural and livestock operations upstream, factories and settlement activities in the middle stream, and commercial and settlement activities downstream. As a result, the focus of this project will be on minimizing floating waste and debris on the Malacca River's surface.

1.2 Problem Statement

The significance of rivers to human life and development cannot be emphasised. Rivers are significant for the human race because they are not just major biodiversity hotspots and habitats for endangered species. The river is most important for drinking water, human economy, agriculture, transportation, and energy supply. However, most rivers are now polluted by floating debris, oils and hydrocarbons, industrial waste, and other pollutants.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

This is not a new occurrence in Malacca, which has had major water pollution issues that have resulted in the extinction of aquatic species along the Malacca River (Sinar Harian Online, 2016; Hua, 2015; Metro Online, 2015; Daneshmend et al., 2011). In 2008,

UNESCO designated Malacca State as a World Heritage Site (UNESCO, 2016), and it has since become a world historical tourism destination for the country.

Melaka government must take care of water pollution in the Malacca River since one of the tourist attractions is the Melaka River Cruise because Melaka is reliant on the tourism industry. The cruise will take visitors on a tour of Melaka. Unfortunately, due to tainted water from plastic, food and beverage containers, and human clothing, the stench of the Malacca River is particularly unpleasant. The scent is also caused by industrial waste such as oil, chemicals, and radioactive waste, which has caused the death of the fish.

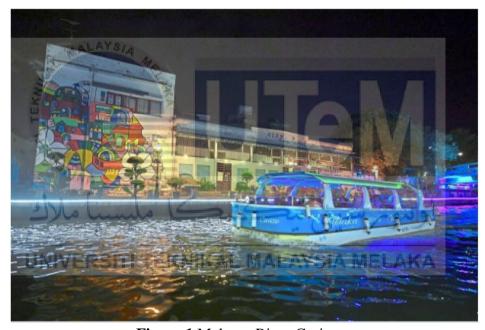


Figure 1 Malacca River Cruise

Figure 2 Dead fish due to the contaminated water

The HYDROQS Detachable Mini Portable Conveyor was created with the goal of reducing pollution in the area. HYDROQS Detachable Mini Portable Conveyor has the main function in removing the floating trash, debris and dead fishes from the surface of the river. Size for the HYDROQS Detachable Mini Portable Conveyor can be customized based on the customer's requirements and demands. The HYDROQS Detachable Mini Portable Conveyor Top Frame or The Skeleton has been equipped with the glider which is the low drag pontoon to be able floating the HYDROQS Detachable Mini Portable Conveyor Top Frame along the Malacca River. The HYDROQS Detachable Mini Portable Conveyor Holder has been assemble to the HYDROQS Detachable Mini Portable Conveyor Top Frame which the mechanism is the actuator will push or pull the holder to sink or lift the HYDROQS Detachable Mini Portable Conveyor Main Body Frame. The HYDROQS Detachable Mini Portable Conveyor Top Frame has been equipped with the deck and the deck have two doors that function to easy the operator when discharging the trash that has been trap in the HYDROQS Detachable Mini Portable Conveyor Main Body Frame.

1.3 Research Objective

The primary aim of this project is to reduce water pollution by develop and fabricate the HYDROQS Detachable Mini Portable Conveyor on how to develop a lightweight, high strength material. Specifically, the objectives are as follows:

- To develop HYDROQS Detachable Mini Portable Conveyor-Structure and Lifting Mechanism as to reduce weight.
- To optimize the HYDROQS Detachable Mini Portable Conveyor Structure and Lifting Mechanism as to increase strength.
- iii. To fabricate HYDROQS Detachable Mini Portable Conveyor Structure and Lifting

 Mechanism

1.4 Scope of Research

The scope of this research are as follows:

- To develop the HYDROQS Detachable Mini Portable Conveyor Structure and Lifting Mechanism as to reduce weight using SOLIDWORKS
- To analyze the HYDROQS Detachable Mini Portable Conveyor Structure and Lifting Mechanism as to increase strength using Inspire solidThinking
- iii. To fabricate HYDROQS Detachable Mini Portable Conveyor Structure and Lifting Mechanism using conventional and advance manufacturing method