

Faculty of Electrical and Electronic Engineering Technology

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

HASIF BIN MOHAMAD

Bachelor of Electrical Engineering Technology (Industrial Power) with Honours

2022

INVESTIGATION OF NEM SOLAR PV POWER INTERGRATION ONTO CENTRAL GRID IN MALAYSIA

HASIF BIN MOHAMAD

A project report submitted in partial fulfillment of the requirements for the degree of Bachelor of Electrical Engineering Technology (Industrial Power) with Honours

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2022

UNIVERSITI TEKNIKAL MALAYSIA MELAKA FAKULTI TEKNOLOGI KEJUTERAAN ELEKTRIK DAN ELEKTRONIK

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II

Tajuk Projek : INVESTIGATION OF NEM SOLAR PV POWER INTERGRATION ONTO CENTRAL GRID IN MALAYSIA

Sesi Pengajian: 2022/2023-1

Saya Hasif Bin Mohamad mengaku membenarkan laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.
- 2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (✓):

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia SULIT* seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972) (Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan) TIDAK TERHAD oleh: (COP DAN TANDATANGAN PENYELIA) (TANDATANGAN PENULIS) Alamat Tetap: **CHE WAN MOHD FAIZAL BIN CHE WAN MOHD ZALANI** No. 51, Jalan KI 1, Jurutera Pengajar Jabatan Teknologi Kejuruteraan Elektrik Fakulti Teknologi Kejuruteraan Elektrik Dan Elektronik Universiti Teknikal Malaysia Melaka Taman Krubong Indah. 75260 Melaka. Tarikh: 16/2/2023 Tarikh: 25/1/2023

*CATATAN: Jika laporan ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh laporan ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I declare that this project report entitled "Investigation Of Nem Solar Pv Power Intergration Onto Central Grid In Malaysia" is the result of my own research except as cited in the references. The project report has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

LAYSIA Signature BIN MOHAMAD Student Name HASIF 25 JANUARI 2023 Date • UNIVERSITI TEKNIKAL MALAYSIA MELAKA

APPROVAL

I hereby declare that I have checked this project report and in my opinion, this project report is adequate in terms of scope and quality for the award of the degree of Bachelor of Electrical Engineering Technology (Industrial Power) with Honours

Signature :
Supervisor Name :
Che wan Mono Faizar bin Che wan Mond Zalani
Late : 16/2/2023
a salar
اونيوم سيتي تيڪنيڪل مليسيا ملاك
Co-Supervisor NIVERSITI TEKNIKAL MALAYSIA MELAKA
Name (if any)
Date :

DEDICATION

Dedicated to

My parents: Mohamad bin Kandar (Deceased). May Allah forgive his soul. Marldia binti Hassan. May all your remaining years bless with health and happiness.

> *My wife : Rozita Mohd. Shahri. May Allah bless our little family.*

My kids : Daie, Dini, Daud and Dira, May all the success in the world and the after be with you.

ABSTRACT

Installation of solar PV system in Malaysia is at all-time high due to exponential cost reduction and government backing of solar PV generation through scheme as FiT, NEM, and SELCO which drive solar PV growth in generation mix. This research was aimed to investigate and analyze the effects of grid connected solar PV generation on frequency fluctuations, voltage fluctuation, THD_V and voltage flickers, in parallels with studying protections applied in ensuring negatives impacts from grid connected solar PV is negated. Mix methods methodology which encompass site visits, field interviews, parameters measurement on sites using PQA, data analysis using statistical methods consisting Pearson correlation analysis, process capability analysis and descriptive analysis, simulations of solar PV systems using PVSYT, and comparing results through standards of ESAH, MGC and NEM Guidelines was done in order to accomplish the objective of the research. The results found out that solar PV system installed was in compliance with protections standards outline by authorities and utilities providers such as ST, SEDA and TNB. The impact of grid connected solar PV to the grid power quality and stability was minimal. From the analysis, the correlation between power generated by solar PV to PQ could be determine. However, loads dynamics had more directs impacts to the grid stability compared to solar PV systems In conclusion, a solar PV system with all the protection and mitigation requirement was in placed in accordance to the standards outlined, the solar PV output PQ was controlled in precise, accurate and within specification manner. Hence, providing minimum impact to the system frequency fluctuations, voltage fluctuation, THD_V and voltage flickers compared to loads demand dynamics.

ABSTRAK

Pemasangan sistem PV solar di Malaysia mencatatkan pertumbuhan tertinggi disebabkan pengurangan kos dan sokongan kerajaan bagi penjanaan solar PV melalui skim FiT, NEM dan SELCO yang memacu pertumbuhan PV solar. Penyelidikan ini bertujuan untuk menyiasat dan menganalisis kesan penjanaan PV solar yang bersambung ke grid kepada perubahan frekuensi, perubahan voltan, THD_V dan kelipan voltan, selari dengan mengkaji sistem perlindungan yang digunakan dalam memastikan tiada kesan negatif daripada penjanaan PV solar kepada grid. Kaedah metodologi campuran yang merangkumi lawatan tapak, temu bual lapangan, pengukuran parameter menggunakan POA, analisis data menggunakan kaedah statistik yang terdiri daripada analisis korelasi Pearson, analisis keupayaan proses dan analisis deskriptif, simulasi sistem PV solar menggunakan PVSYT, dan membandingkan keputusan melalui piawaian ESAH, MGC dan Garis Panduan NEM telah dilakukan bagi mencapai objektif penyelidikan. Didapati sistem PV solar yang dipasang di ANM adalah mematuhi piawaian perlindungan yang digariskan oleh pihak berkuasa dan pembekal utiliti seperti ST, SEDA dan TNB. Kesan PV solar kepada kualiti dan kestabilan kuasa grid adalah minimum. Daripada analisis yang dilakukan, korelasi antara kuasa yang dijana oleh PV solar dengan PQ dapat ditentukan. Kesimpulannya, sistem PV solar yang dilengkapi perlindungan dan mitigasi mengikut piawaian yang digariskan, dapat mengawal PQ keluaran PV solar dengan tepat dan mengikut spesifikasi. Serta, memberikan impak minimum kepada turun naik frekuensi sistem, turun naik voltan, THDV dan kelipan voltan berbanding dengan kesan akibat dinamik bekalan dan permintaan kepada beban.

ACKNOWLEDGEMENTS

First and foremost, thank you Allah, all praise to Allah the Almighty, the Most Gracious, and the Most Merciful for His blessing given to me during my study and in completing this thesis. May Allah's blessing goes to His final Prophet Muhammad (peace be up on him), his family and his companions.

I would like to express my gratitude to Universiti Teknikal Malaysia Melaka (UTeM) and Agensi Nuklear Malaysia (ANM) for the opportunity to conduct this research. Abundances thank you to my supervisor, Mr. Che Wan Mohd. Faizal bin Che Wan Mohd Zalani, FTKEE, UTeM and industrial-supervisor, Mr. Mohd. Hanafiah bin Chik, BKJ, ANM for their precious guidance, words of wisdom and patient throughout this project.

My highest appreciation goes to my wife Rozita Mohd Shahri, to my kids Daie, Dini, Daud and Dira, to my parents Mohamad bin Kandar (deceased) and Marldia binti Hassan, parent's in-law, and family members for their love, support and prayer during the period of my study.

Finally, I would like to thank all the staffs at the ANM Chargeman Mr. Zulkifli, Senior Technical Assistant Mr. Ruzaini, fellow colleagues and classmates, the Faculty members, as well as other individuals who are not listed here for being co-operative and helpful.

TABLE OF CONTENTS

	PAGE
DECLARATION	
APPROVAL	
DEDICATIONS	
ABSTRACT	i
ABSTRAK	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vii
LIST OF FIGURES	ix
LIST OF SYMBOLS	XV
LIST OF ABBREVIATIONS	xvi
LIST OF APPENDICES	xvii
اونيوم سيني تيڪ INTRODUCTION اونيوم سيني آيا 1.1 Background	1 1
 1.2 Problem Statement TI TEKNIKAL MALAYSIA MELAKA 1.3 Project Objectives 	7 8
1.4 Scopes of Project	9
1.4.1 Paramaters of Power Quality 1.4.2 Connection Configuration To The Grid	9 10
1.4.3 Methodology Selection	10
CHAPTER 2 LITERATURE REVIEW	12
2.2 Background	12
2.3 Frequency Stability Literature Review	14
 2.4 Total Harmonic Distortion (THD) Literature Review 2.5 Mitigation for Frequency Stability and Total Harmonics Distortion 	21
2.6 Voltage Fluctuation Literature Review	24
2.7 Voltage Flickers Literature Review	31
2.8 Mitigation of Voltage Fluctuation and Voltage Flicker	34
2.9 Comparison Table Between Literature 2.10 Research Gap and Suggestion	37 70
2.10 1 Overview of Research Gap and Suggestion	40
2.10.2 Research Gap by Literature	41

	2.10.3	Summary of Research Gap in Table Form	44	
CHAF	PTER 3	METHODOLOGY	46	
3.1	Introdu	uction	46	
3.2	Metho	dology	46	
3.3	Locati	on of Study	47	
3.4	Power	Quality Parameters Measurement and Analysis	48	
	3.4.1	Frequency Fluctuation Measurement and Analysis Process Flow	51	
	3.4.2	Voltage Total Harmonics Distortion (THD _V) Measurement ar	nd	
		Analysis Process.	53	
	3.4.3	Voltage Fluctuation Measurement and Analysis Process	55	
	3.4.4	Voltage Flickers Measurement and Analysis Proscess	57	
3.5	Equip	ment, Tools and Application Suggestion	59	
	3.5.1	Power Quality Analyzer (PQA).	59	
	3.5.2	Interfacing and Analytical Application.	61	
	3.5.3	Analysis Method and Application	65	
	3.5.4	Meteorological Data	74	
0.4	3.5.5	Simulation Application	76	
3.6	Limita	tion of proposed methodology	77	
СНАЕ	PTER 4	RESULTS, ANALYSIS AND DISCUSSIONS	78	
4 1	Introdu	inction	78	
4.2	Result		79	
1.2	4.2.1	Distribution System and Solar PV System Configuration ar	nd	
	1.2.1	Specification	79	
	4.2.2	Solar Radiation Instensity and Power Generated Result	85	
	4.2.3	Frequency Fluctuation Result	87	
	4.2.4	Voltage Fluctuation Result	88	
	4.2.5	Voltage Total Harmonic Distortion (THDy) Result	90	
	4.2.6	Voltage Flickers Fluctuation Results AYSIA MELAKA	92	
4.3	Analys	sis Result	96	
	4.3.1	Power Quality Discriptive Analysis	96	
		4.3.1.1 TMSB 1	96	
		4.3.1.2 TMSB 2	98	
		4.3.1.3 TMSB 3	100	
	4.3.2	Power Quality Process Capability Analysis	102	
		4.3.2.1 Frequency Process Capability Analysis	102	
		4.3.2.2 Voltage Fluctuation Process Capability Analysis	104	
		4.3.2.3 THD _v Process Capability Analysis	108	
		4.3.2.4 Voltage Flickers Process Capability Analysis	111	
	4.3.3	Power Quality Pearson Correlation Analysis	117	
		4.3.3.1 TMSB 1	117	
		4.3.3.2 TMSB 2	118	
		4.3.3.3 TMSB 3	120	
4.4	Discus	ssion	122	
	4.4.1	Frequency Fluctuation	122	
	4.4.2	Voltage Fluctuation	123	
	4.4.3	THD _V	126	
	4.4.4	Pst and Plt	128	

	4.4.5 An	alysis and Judgement Summary Tables	129
СНА	PTER 5	CONCLUSION AND RECOMMENDATIONS	131
5.1	Conclusion	n	131
5.2	Recommen	ndation and Future Works.	133
REFI	ERENCES		134
APPI	ENDICES		141

LIST OF TABLES

TABLE	TITLE	PAGE
Table 1.1	MGC Voltage Flickers Specification	10
Table 1.2	Summary Table for Power Quality Parameters Specification Under Investigation.	11
Table 2.1	Harmonic Specification According To ESAH	17
Table 2.2	THD Voltage and Current Measured at PCC by R. Sinvula	18
Table 2.3	Current Harmonic Spectrum At PCC by M. Farhoodnea et al	21
Table 2.4	Maximum Allowed Capacity For NEM Customer	23
Table 2.5	Parameters for Synchronisation for NEM Licensee	23
Table 2.6	Minimum Re-Synchronisation Waiting Time for NEM Licensee	23
Table 2.7	Individual Harmonics Limit for NEM Customer	24
Table 2.8	LV Operating Voltage At PCC For NEM Customer	26
Table 2.9	MV Operating Voltage At PCC For NEM Customer	26
Table 2.10	Bus System Model Simulation Result by R. Khan et al	29
Table 2.11	NEM Guideline voltage flickers specification	32
Table 2.12	Comparison Table Between Literature.	37
Table 2.13	Summary of Research Gaps	44
Table 3.1	Capability Indice Definition and Calculation Formula	69
Table 3.2	Pearson Correlation Coefficient Interpretation Guideline	72
Table 3.3	Data Offered by Solcat API Toolkit	75
Table 4.1	Selected Location and Measurement Schedule	78
Table 4.2	Specification of Jinko Solar PV Array	82
Table 4.3	Specification of Huawei Sun-2000-100KTL Smart Inverter	82
Table 4.4	Protections and Grid Compatability for Huawei Sun-2000-100KTL Smart Inventer	83

Table 4.5	Summary of Standards Requirement and Smart Inverter Compliance	84
Table 4.6	Statistical Descriptive Analysis of TMSB 1.	98
Table 4.7	Statistical Descriptive Analysis of TMSB 2.	100
Table 4.8	Statistical Descriptive Analysis of TMSB 3.	101
Table 4.9	Pearson Correlation Between Parameters at TMSB 1.	117
Table 4.10	Pearson Correlation Between Parameters at TMSB 2.	118
Table 4.11	Pearson Correlation Between Parameters at TMSB 3.	120
Table 4.12	Analysis Result Summary.	129
Table 4.13	Decision and Judgement Summary.	130

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 1.1	Simple Grid Connected Solar PV System Diagram	2
Figure 1.2	Malaysia Solar Radiation Map And PV Potential	2
Figure 1.3	Cost Trend For Solar PV Installation From 2010 to 2018.	3
Figure 1.4	Malaysia's Commitment Toward 0% GHG Emmission And Sustainability	4
Figure 1.5	Malaysia RE Policy, Objective, Strategies And Action Plan	4
Figure 1.6	Graph On Malaysia Solar PV Generation Growth 2011 – 2017	5
Figure 1.7	Simple NEM Connection Diagram	6
Figure 1.8	NEM 3.0 Capacity As Of 2022	6
Figure 2.1	Bus 2 And Bus 10 Frequency At Irradiance Of 550 W/m ²	15
Figure 2.2	Bus 2 And Bus 10 Frequency At Irradiance Of 650 W/m ²	15
Figure 2.3	Bus 2 And Bus 10 Frequency At Irradiance Of 1000 W/m ²	15
Figure 2.4	Bus 2 And Bus 10 Frequency At Irradiance Of 850 W/m ²	15
Figure 2.5	UNIVERSITI TEKNIKAL MALAYSIA MELAKA Simulation Circuit By M. Zainudin <i>et al</i>	16
Figure 2.6	Simulation Circuit by A. Al-Shetwi et al	16
Figure 2.7	Frequency Fluctuation at PCC by A. Al-Shetwi et al	16
Figure 2.8	Power Factor Dynamic Response at PCC by A. Al-Shetwi et al	17
Figure 2.9	Simulation of Multiple Grid Connected Solar PV System	19
Figure 2.10	Base Harmonics Measured at PCC by R. Sinvula et al	19
Figure 2.11	Voltage Harmonics Measured at PCC by A. Al-Shetwi et al	20
Figure 2.12	Current Harmonics Measured at PCC by A. Al-Shetwi et al	20
Figure 2.13	11 Bus System Design and Simulate by M. Farhoodnea et al	21
Figure 2.14	Voltage Harmonics After Mitigation By A. Al-Shetwi et al	22

Figure 2.15	Current Harmonics After Mitigation by A. Al-Shetwi et al	22
Figure 2.16	MATLAB Solar PV Network Model by S. Kumary et al	26
Figure 2.17	Bus Voltage Before PV Penetrations by S. Kumary et al	27
Figure 2.18	Bus Voltage After PV Penetrations by S. Kumary et al	27
Figure 2.19	Voltage At Solar Irradiance of 550 W/m^2	27
Figure 2.20	Voltage At Solar Irradiance of 650 W/m^2	28
Figure 2.21	Voltage At Solar Irradiance of 850 W/m^2	28
Figure 2.22	Voltage At Solar Irradiance of 1000 W/m ²	28
Figure 2.23	9 Bus System Model by R. Khan et al	29
Figure 2.24	Variable Power Injected To 11 Bus System Model by M. Farhoodnea <i>et al</i>	30
Figure 2.25	Voltage At Bus 6 by M. Farhoodnea et al	30
Figure 2.26	3 Bus System Model by H. Heidari et al	31
Figure 2.27	Voltage at Bus 7 by H. Heidari <i>et al</i>	31
Figure 2.28	Voltage Flicker At Bus 6 by M. Farhoodnea et al	33
Figure 2.29	Single Source of Solar PV by K. Łowczowski et al	33
Figure 2.30	2 Source of Solar PV by K. Łowczowski <i>et al</i>	34
Figure 2.31	3 Source of Solar PV Penetration by K. Łowczowski et al	34
Figure 2.32	Solar PV With DVR by A. Al-Shetwi et al	35
Figure 2.33	Solar PV With DVR Equivalent Circuit by A. Al-Shetwi et al	35
Figure 2.34	Circuit of Solar PV with STATCOM by M. Malik et al	36
Figure 2.35	Injection of Reactive Power by H. Heidari et al	36
Figure 3.1	Power Quality Analysis Model by C. J. Melhon	47
Figure 3.2	Process Flow Chart For Power Quality Measurement.	49
Figure 3.3	Process Flow Chart for Power Quality Analysis.	50
Figure 3.4	Process Flow Chart for Frequency Fluctuation Measurement and Analysis	52

Figure 3.5	Process Flow Chart for THD _V Measurement and Analysis	54
Figure 3.6	Process Flow Chart for Voltage Fluctuation Measurement and Analysis	56
Figure 3.7	Process Flow Chart for Voltage Flickers Measurement and Analysis.	58
Figure 3.8	Block Diagram for PQA	59
Figure 3.9	Fluke 435 PQA	59
Figure 3.10	Specification of Fluke 435 PQA	60
Figure 3.11	Measurement Modes Available In Fluke 435 PQA	60
Figure 3.12	Block Diagram of PQA Interfacing and Analytical Application	61
Figure 3.13	Main Screen of Power Log 5.9	61
Figure 3.14	Data Spreadsheet Of PowerLog 5.9	62
Figure 3.15	Captured Data In Waveform Menu Example [62
Figure 3.16	Harmonics Waveform In Time Progression Mode Example	63
Figure 3.17	Harmonics Waveform In Histogram Mode Example	63
Figure 3.18	Frequency Unbalance Waveform example	64
Figure 3.19	Voltage Flickers Waveform Example	64
Figure 3.20	Minitab Software Websites	65
Figure 3.21	Opening Data File in Minitab Software.	66
Figure 3.22	Selecting Data File in Minitab Software.	66
Figure 3.23	Importing Data File in Minitab Software.	67
Figure 3.24	Selecting Descriptive Analysis in Minitab Software.	67
Figure 3.25	Selecting Data and Parameters for Descriptive Analysis in Minitab Software.	68
Figure 3.26	Results for Descriptive Analysis in Minitab Software.	68
Figure 3.27	Selecting Capability Analysis in Minitab Software.	70
Figure 3.28	Selecting Data and Parameters for Capability Analysis in Minitab Software	70

Figure 3.29	Results for Capabilty Analysis in Minitab Software.	71
Figure 3.30	Pearson Correlation Scatter Plot	72
Figure 3.31	Selecting Pearson Correlation Analysis in Minitab Software.	73
Figure 3.32	Selecting Data and Parameters for Pearson Correlation Analysis in Minitab Software	73
Figure 3.33	Results for Pearson Correlation Analysis in Minitab Software.	74
Figure 3.34	Solcast API Toolkit Website	75
Figure 3.35	PVSYST Website.	76
Figure 4.1	Distribution and Interconnection of Sampling Locations.	80
Figure 4.2	Installed Solar PV System Block Diagram.	81
Figure 4.3	Daily Solar Radiation (Clear Sky) VS Daily Solar Radiation (Effective) on Daily Power Generation (Effective) for 22.11.2022 until 25.11.2022.	85
Figure 4.4	Daily Solar Radiation (Clear Sky) VS Daily Solar Radiation (Effective) on Daily Power Generation (Effective) for 25.11.2022 until 29.11.2022.	86
Figure 4.5	Daily Solar Radiation (Clear Sky) VS Daily Solar Radiation (Effective) on Daily Power Generation (Effective) for 29.11.2022 until 2.12.2022.	86
Figure 4.6	Frequency Fluctuation Recorded at TMSB 1.	87
Figure 4.7	Frequency Fluctuation Recorded at TMSB 2.	88
Figure 4.8	Frequency Fluctuation Recorded at TMSB 3.	88
Figure 4.9	Voltage Fluctuation Trend Recorded at TMSB 1.	89
Figure 4.10	Voltage Fluctuation Trend Recorded at TMSB 2.	90
Figure 4.11	Voltage Fluctuation Trend Recorded at TMSB 3.	90
Figure 4.12	THD _v Trend Recorded at TMBS 1	91
Figure 4.13	THD _v Trend Recorded at TMSB 2	91
Figure 4.14	THD _v Trend Recorded at TMSB 3	92
Figure 4.15	Short Term Flickers (Pst) Fluctuation Trend Recorded at TMSB 1	93

Figure 4.16	Short Term Flickers (Pst) Fluctuation Trend Recorded at TMSB 2	93
Figure 4.17	Short Term Flickers (Pst) Fluctuation Trend Recorded at TMSB 3	94
Figure 4.18	Long Term Flickers (Plt) Fluctuation Trend Recorded TMSB 1.	95
Figure 4.19	Long Term Flickers (Plt) Fluctuation Trend Recorded TMSB 2.	95
Figure 4.20	Long Term Flickers (Plt) Fluctuation Trend Recorded TMSB 3.	96
Figure 4.21	Frequency Fluctuation Process Capability at TMSB 1	103
Figure 4.22	Frequency Fluctuation Process Capability at TMSB 2	103
Figure 4.23	Frequency Fluctuation Process Capability at TMSB 3	104
Figure 4.24	Voltage Fluctuation Process Capability at TMSB 1.	105
Figure 4.25	Voltage Fluctuation Process Capability at TMSB 2.	106
Figure 4.26	Voltage Fluctuation Process Capability at TMSB 3.	107
Figure 4.27	THDv Level Process Capability at TMSB 1	108
Figure 4.28	THD _v Level Process Capability at TMSB 2	109
Figure 4.29	THD _v Level Process Capability at TMSB 3	110
Figure 4.30	Short Term Voltage Flickers (Pst) Process Capability at TMSB 1.	111
Figure 4.31	Short Term Voltage Flickers (Pst) Process Capability at TMSB 2.	112
Figure 4.32	Short Term Voltage Flickers (Pst) Process Capability at TMSB 3.	113
Figure 4.33	Long Term Voltage Flickers (Plt) Process Capability at TMSB 1.	114
Figure 4.34	Long Term Voltage Flickers (Plt) Process Capability at TMSB 2.	115
Figure 4.35	Long Term Voltage Flickers (Plt) Process Capability at TMSB 3.	116
Figure 4.36	Correlation Between Power Injected Onto Grid to Line Voltage	119
Figure 4.37	Correlation Between Power Injected Onto Grid to Line THD_V	119
Figure 4.38	Correlation Between Power Injected Onto Grid and Line Voltage at TMSB 3	121
Figure 4.39	Correlation Between Power Injected Onto Grid and Line THD at TMSB 3	121

Figure 4.40	Correlation Between Power Injected Onto Grid to Line Plt at TMSB 3	122
Figure 4.41	Correlation Between Power Consumption vs Voltage at TMSB 2.	125
Figure 4.42	Correlation Between Power Consumption vs Voltage at TMSB 3.	125
Figure 4.43	Correlation Between Power Consumption vs THD _v at TMSB 2.	127
Figure 4.44	Correlation Between Power Consumption vs THD _v at TMSB 3.	128

LIST OF SYMBOLS

H1	- Individual harmonics
f	- Frequency
Hz	- Hertz
P_{lt}	- Absolute long term flicker
P_{st}	- Absolute short term flicker
kV	- kilovolt
W	- Watt
Р	- Number of poles
Ν	- Rotor speed
Т	- Transformer
Ζ	- Impedence
S	- Reactive power
PF	- Power factor
V	- Voltage
A	Ampere UTEM
	UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF ABBREVIATIONS

NEM	- Net energy metering
SELCO	- Self-consumption
PV	- Photovoltaic
LSS	- Large scale solar
AC	- Alternating current
DC	- Direct current
THD	- Total harmonic distortion
РСС	- Point of common coupling
MSB	- Main switch board
SEDA	- Sustainable Energy Development Authority
RE	- Renewable energy
ST	- Suruhanjaya Tenaga
TNB	- Tenaga Nasional Berhad
MGC	- Malaysian Grid Code
LV	- Low voltage
MV	🗧 - Medium voltage
HV	- High voltage
FACTs	- Flexible AC transmission system
PQ	- Power quality
PQA	Power Quality Analyzer
GHG	- Green house gasses
ESAH	Electricity Supply Application Handbook
LFRT	- Low Frequency Ride Through
HFRT	- HighFrequency Ride Through
LVRT	- Low Voltage Ride Through
HVRT	- High Voltage Ride Through

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix A	Full Data Table TMSB 1	141
Appendix B	Full Data Table TMSB 2	148
Appendix C	Full Data Table TMSB 3	153
Appendix D	Full Project Flow Chart	158

CHAPTER 1

INTRODUCTION

1.1 Background

Solar photovoltaic (PV) system is a method in which green energy could be harvest from the sun. Through solar PV system, sunlight will excite PV panel in which the excitation will produce direct current (DC) voltage. A single cell of solar PV has the ability to generate about 1 Watt (W) to 2 W electricity. Hence, an array of solar PV panel needed to generate adequate electricity for generation class. Produced DC voltages from solar PV panel then converted to alternate current (AC) voltages through inverters. As the amount of voltages generated are typically low, step up transformer needed to increase the AC voltages to match it with grid requirement. However, in recent years smart inverters with transformerless technologies utilizing the advancement of power electronics had been very popular and adopted by many.

Solar PV systems comprise of a number of components that are integral to its function. In grid connected operation, PV panels produced electricity will be directed to an inverter, which then convert the DC voltage to AC voltage. Next, the output will be increased further by step up transformer before feeding the voltages to the grid through the point of common coupling (PCC). Solar PV systems are made up of a number of arrays that produce reasonably high amounts of power during day time periods. Figure 1.1 shows the basic architechture of solar PV[17].