

Faculty of Electrical and Electronic Engineering Technology

NURUL ATHIRAH BINTI MAZLAN

Bachelor of Electronics Engineering Technology with Honours

2022

ASSESSMENT OF WIND ENERGY RELIABILITY FOR SMALL LIGHTING PURPOSES

NURUL ATHIRAH BINTI MAZLAN

A project report submitted in partial fulfillment of the requirements for the degree of Bachelor of Electrical Engineering Technology (Industrial Power) with Honours

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2022

UNIVERSITI TEKNIKAL MALAYSIA MELAKA FAKULTI TEKNOLOGI KEJUTERAAN ELEKTRIK DAN ELEKTRONIK

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II

 Tajuk Projek
 : Assessment Of Wind Energy Reliability For Small Lighting Purpose

Sesi Pengajian : 2022 / 2023

Saya Nurul Athirah Binti Mazlan mengaku membenarkan laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.
- 2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
 - 3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi.

4. Sila tandakan (\checkmark):

*CATATAN: Jika laporan ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh laporan ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I declare that this project report entitled "Assessment Of Wind Energy Reliability For Small Lighting Purposes" is the result of my own research except as cited in the references. The project report has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	MALAYSIA
Student Na	me : Nurul Athirah Binti Mazlan
Date	22 January 2023
	اونيۇىرسىتى تيكنىكل مليسيا ملاك
	UNIVERSITI TEKNIKAL MALAYSIA MELAKA

APPROVAL

I hereby declare that I have checked this project report and in my opinion, this project report is adequate in terms of scope and quality for the award of the degree of Bachelor of Electrical Engineering Technology with Honours

Signature :	And .
Supervisor Name :	Che Wan Mohd Faizal Bin Che Wan Mohd Zalani
Date :	17/2/2023
Signature	اونيۇىرسىتى كەركى
Co-Supervisor	SITI TEKNIKAL MALAYSIA MELAKA
Name (if any)	Ts. Ramlan Bin Latip
Date :	17.02.2023

DEDICATION

To my beloved mother, Puan Foziah Binti Ali, and my beloved father, Mazlan Bin Abdul Rashid.

ABSTRACT

The amount of electricity generated by a turbine is mostly determined by wind speed. Because greater winds allow the blades to rotate faster, higher wind speeds provide more power. More mechanical and electrical power from the generator comes from faster rotation. This project is about wind turbines that generate electricity from a direct current (DC) motor generator, then flow and be provided to a light-emitting diode (LED) to simulate the output of a lighting system. LED lighting as an indicator of the strength of power generation by the wind turbine. The data was collected for wind speed at various locations in Kemaman, Terengganu, by using a pitot tube anemometer because there are a few locations that have the potential to get higher wind speeds, and it can be said that small wind turbines could be used to provide power during the monsoon season, such as at Pantai Penunjuk Kijal, the tower at Pantai Teluk Kalong, Pantai Teluk Kalong, Pantai Marina (Telaga Simpul), Jetty Starcruise Awana Kijal, Pantai Kemasek. Pantai Kuala Kerteh and Kampung Pantai Kemasek. Then, from the actual wind speed that was collected and simulated using an industrial stand fan. In this project, vertical axis wind turbines (VAWT) are suitable where wind speeds in Malaysia are lower and the wind direction is not constant. All data, including voltage, current, and power, have been compared between three and five blades. The data has been monitored and stored inside the Arduino, and the recorded data may subsequently be displayed on a liquid crystal display (LCD). Five blades provide more power than three blades, according to the project's results, because more mechanical and electrical power from the generator comes from faster rotation. Thus, an average wind speed below 2 m/s can still be useful for small lighting purposes. Furthermore, the analysis demonstrates that the number of blades and wind speed have an effect on wind turbine performance.

ABSTRAK

Jumlah tenaga elektrik yang dihasilkan oleh turbin kebanyakannya ditentukan oleh kelajuan angin. Kerana angin yang lebih besar membolehkan bilah berputar lebih cepat, kelajuan angin yang lebih tinggi memberikan lebih kuasa. Lebih banyak kuasa mekanikal dan elektrik daripada penjana datang daripada putaran yang lebih pantas. Projek ini adalah mengenai turbin angin yang menjana elektrik daripada penjana motor arus terus (DC), kemudian mengalir dan dibekalkan kepada diod pemancar cahaya (LED) untuk mensimulasikan keluaran sistem pencahayaan. Pencahayaan LED sebagai penunjuk kekuatan penjanaan kuasa oleh turbin angin. Data tersebut dikumpul untuk kelajuan angin di pelbagai lokasi di Kemaman, Terengganu, dengan menggunakan alat pengukur tiub pitot kerana terdapat beberapa lokasi yang berpotensi untuk mendapatkan kelajuan angin yang lebih tinggi, dan boleh dikatakan turbin angin kecil boleh digunakan untuk memberi tenaga pada musim tengkujuh seperti di Pantai Penunjuk Kijal, menara di Pantai Teluk Kalong, Pantai Teluk Kalong, Pantai Marina (Telaga Simpul), Jeti Starcruise Awana Kijal, Pantai Kemasek. Pantai Kuala Kerteh dan Kampung Pantai Kemasek. Kemudian, daripada kelajuan angin sebenar yang dikumpul dan disimulasikan menggunakan kipas berdiri industri. Dalam projek ini, turbin angin paksi menegak (VAWT) sesuai di mana kelajuan angin di Malaysia lebih rendah dan arah angin tidak tetap. Semua data, termasuk voltan, arus dan kuasa, telah dibandingkan antara tiga dan lima bilah. Data telah dipantau dan disimpan di dalam Arduino, dan data yang direkodkan kemudiannya boleh dipaparkan pada paparan kristal cecair (LCD). Lima bilah memberikan lebih kuasa daripada tiga bilah, mengikut keputusan projek, kerana lebih banyak kuasa mekanikal dan elektrik daripada penjana datang daripada putaran yang lebih pantas. Oleh itu, kelajuan angin purata di bawah 2 m/s masih boleh digunakan untuk tujuan pencahayaan kecil. Tambahan pula, analisis menunjukkan bahawa bilangan bilah dan kelajuan angin mempunyai kesan ke atas prestasi turbin angin.

ACKNOWLEDGEMENTS

First and foremost, I would like to express my gratitude to my supervisor, Encik Che Wan Mohd Faizal Bin Che Wan Mohd Zalani and co-supervisor, Ts. Ramlan Bin Latip for their precious guidance, words of wisdom and patient throughout this project.

I am also indebted to Universiti Teknikal Malaysia Melaka (UTeM) for the financial support which enables me to accomplish the project. Not forgetting my fellow colleague, Nur Iesha for the willingness of sharing her thoughts and ideas regarding the project.

My highest appreciation goes to my parents, and family members for their love and prayer during the period of my study. An honourable mention also goes to siblings for all the motivation and understanding. And to Encik Adlan thanks for helping setup for hardware.

Finally, I would like to thank all the staffs at the UTeM, fellow colleagues and classmates, the faculty members, as well as other individuals who are not listed here for being co-operative and helpful.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

TABLE OF CONTENTS

			PAGE
DEC	LARA	ſION	
APP	ROVAI		
DED	ICATIO	ONS	
ABS'	TRACT	1	i
ABS'	TRAK		ii
ACK	NOWL	EDGEMENTS	iii
ТАВ	LE OF	CONTENTS	i
LIST	C OF TA	BLES	iv
LIST	OF FI	GURES	vi
LIST	C OF SY	MBOLS	ix
LIST	C OF AE	BREVIATIONS	Х
LIST	C OF AF	PPENDICES	xi
СНА	PTER	INTRODUCTION MULTION	1
1.1	Backg	ground	1
1.2	Probl	em Statement TI TEKNIKAL MALAYSIA MELAKA	2
1.3	Projec	ct Objective	3
1.4	Scope	s of Project	3
CHA	PTER 2	2 LITERATURE REVIEW	5
2.1	Introc	luction	5
2.2 2 3	Wind	energy	5 7
2.5	2.3.1	Average wind speed in Malaysia	7
2.4	Devel	lopment of wind energy in Malaysia	9
2.5	Wind	turbine classification	11
	2.5.1	Horizontal axis wind turbines (HAWT)	11
		2.5.1.1 Number of blades	12
		2.5.1.2 Five-blades wind turbines	13
		2.5.1.3 Three-blades wind turbines	14
		2.5.1.4 Two-blades wind turbines	15
		2.5.1.5 Une-blades wind turbines	16
	252	2.3.1.0 Blade geometry	1 / 1 0
	2.3.2	2521 Vertical axis wind turbines designs	10
		2.3.2.1 Vertical axis wind furolites designs	19

2.6	Comparison between horizontal axis wind turbines and vertical axis wind	d turbines
27	Overview of Airfoils	21
2.7	2.7.1 Lift	22
	2.7.2 Drag	24
2.8	Simulation from previous literature	25
	2.8.1 Development of wind energy for lighting purposes	25
	2.8.2 Modelling of small wind energy system	26
	2.8.3 Small wind turbines for sustainable livelihoods	27
	2.8.4 A wind turbine MPPT regulator using an Arduino Uno	28
	2.8.5 Summary of research gap in table form	30
2.9	Summary	31
СНАР	PTER 3 METHODOLOGY	32
3.1	Introduction	32
3.2	Project methodology	32
	3.2.1 Flowchart of Project Methodology	32
	3.2.2 Gantt chart	33
	3.3 Location of study	35
3.4	Wind turbines characteristics	40
3.5	Experimental setup	42
	3.5.1 Arduino compatible DCCduino UNO R3	42
	3.5.2 DC motor 12V	43
	3.5.3 Light-emitting diode (LED)	44
	3.5.4 Arduino 12C serial LCD 16x2 (Blue blacklight)	45
	3.5.5 Voltage sensor DC $0 - 25V$	45
	3.5.6 Current sensor module ACS/12 (5A)	46
2.6	3.5.7 SPST rocker switch (Black) KCD1-101	47
3.6	Software development	48
	3.0.1 Ardumo me	48
	3.6.2 Fritzing software	49
37	5.0.5 CATTA Experimental device	49 50
5.7	3.7.1 Pitot tube anemometer HD350	50
	3.7.2 Industrial stand fan	51
	3.7.2 Industrial stand ran 3.7.2.1 Procedure measure wind speed	52
38	Project design	53
5.0	3.8.1 Hardware design	54
	3.8.2 Electronic schematic diagram	54
	3.8.3 3D printing design	55
	3.8.4 Hardware setup	57
3.9	Process of project	59
3.10	Project cost	61
3.11	Calculation for electrical	61
3.12	Summary	62
СНАР	PTER 4 RESULTS AND DISCUSSIONS	63
4.1	Introduction	63
4.2	Results and Analysis	63

4.3	Sample data	63
	4.3.1 Location A: Pantai Penunjuk Kijal	64
	4.3.2 Location B: Tower Pantai Teluk Kalong	66
	4.3.3 Location C: Pantai Teluk Kalong	68
	4.3.4 Location D: Pantai Marina (Telaga Simpul)	71
	4.3.5 Location E: Jetty Starcruise Awana Kijal	73
	4.3.6 Location F: Pantai Kuala Kerteh	76
	4.3.7 Location G: Kampung Pantai Kemasek	78
	4.3.8 Location H: Pantai Kemasek	81
4.4	Discussion	84
4.5	Summary	84
CHA 5.1 5.2	PTER 5CONCLUSION AND RECOMMENDATIONSConclusionFuture Works	85 85 85
REF	ERENCES	87
APPI	ENDICES WALAYSIA UTEN	89
	alinn	
	اونيوم سيتي تيكنيكل مليسيا ملاك	

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1	Wind speed description	7
Table 2.2	The following is a list of wind farms that have been installed in Malaysia:	10
Table 2.3	Different between the horizontal axis wind turbines and vertical axis wind turbine design	21
Table 2.4	Summary of research gap	30
Table 3.1	The Gantt chart for BDP 1	34
Table 3.2	The Gantt chart for BDP 2	35
Table 3.3	Collecting data for actual wind speed at Pantai Penunjuk Kijal	37
Table 3.4	Collecting data for actual wind speed at tower Pantai Teluk Kalong	37
Table 3.5	Collecting data for actual wind speed at Pantai Teluk Kalong	38
Table 3.6	Collecting data for actual wind speed at Pantai Marina (Telaga Simpul)	38
Table 3.7	Collecting data for actual wind speed at Jetty Starcruise Awana UKijal ERSITI TEKNIKAL MALAYSIA MELAKA	39
Table 3.8	Collecting data for actual wind speed at Pantai Kuala Kerteh	39
Table 3.9	Collecting data for actual wind speed at Kmapung Pantai Kemasek	40
Table 3.10	Collecting data for actual wind speed at Pantai Kemasek	40
Table 3.11	The table material and characteristics of wind turbines	41
Table 3.12	The hardware for wind turbine project	57
Table 3.13	Price list for project	61
Table 4.1	The collecting of data for three-blade wind turbines at location A	64
Table 4.2	The collecting of data for five-blade wind turbines location A	64
Table 4.3	The collecting of data for three-blade wind turbines at tower location B	66

Table 4.4	The collecting of data for five-blade wind turbines at location B	66
Table 4.5	The collecting of data for three-blade wind turbines at location C	68
Table 4.6	The collecting of data for five-blade wind turbines at location C	69
Table 4.7	The collecting of data for three-blade wind turbines at location D	71
Table 4.8	The collecting of data for five-blade wind turbines at location D	71
Table 4.9	The collecting of data for three-blade wind turbines at location E	73
Table 4.10	The collecting of data for five-blade wind turbines at location E	74
Table 4.11	The collecting of data for three-blade wind turbines at location F	76
Table 4.12	The collecting of data for five-blade wind turbines at location F	76
Table 4.13	The collecting of data for three-blade wind turbines at location G	78
Table 4.14	The collecting of data for five-blade wind turbines at location G	79
Table 4.15	The collecting of data for three-blade wind turbines at location H	81
Table 4.16	The collecting of data for five-blade wind turbines at location H	81
	اونيۆمرسىتى تيكنىكل مليسيا ملاك	

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2.1	Mean wind speed (kph) in Malaysia on 30 December 2022	8
Figure 2.2	Mean wind speed on 30 December 2022 at Kerteh, Terengganu	9
Figure 2.3	A horizontal axis wind turbines (HAWT)	12
Figure 2.4	A five-blades wind turbines	14
Figure 2.5	Three-blades wind turbines	15
Figure 2.6	A typical two-blades wind turbines	16
Figure 2.7	Single-blades horizontal axis wind turbines	17
Figure 2.8	Types of Savonious turbine rotor design	20
Figure 2.9	Types of Darrieus turbine rotor design	21
Figure 2.10	Air moving past an airfoil, creating lift on the top of the blade	23
Figure 2.11	Drag force	24
Figure 2.12	Circuit diagram of Wind turbines	26
Figure 2.13	U Wind system model using MATLAB_AYSIA MELAKA	27
Figure 2.14	A simulation of the RPM counter in Proteus' circuit	28
Figure 2.15	Schematic diagram for Arduino Uno	29
Figure 2.16	The complete project for wind turbine MPPT regulator with an Arduino Uno	29
Figure 3.1	The flowchart for process	33
Figure 3.2	The location where the actual wind speed was measured	36
Figure 3.3	Arduino compatible DCCduino UNO R3	43
Figure 3.4	DC motor 12V	44
Figure 3.5	The 3mm light-emitting diode (LED)	44
Figure 3.6	Arduino 12C serial LCD 16x2	45

Figure 3.7	A voltage sensor 0-25V	46
Figure 3.8	A current sensor 5A	47
Figure 3.9	SPST rocker switch with dimension	48
Figure 3.10	Arduino IDE	49
Figure 3.11	Logo of Fritzing software	49
Figure 3.12	Logo of CATIA software	50
Figure 3.13	Extech HD350 Pitot Tube Anemometer	51
Figure 3.14	WSF-EN20 is the model number for an industrial stand fan.	51
Figure 3.15	The distance of wind turbine with industrail stand fan will adjusted and measure using measuring tape to record in table.	52
Figure 3.16	The speed can be controlled to get the desired wind speed.	52
Figure 3.17	The fan's angle must be adjusted, and direct access to the wind turbine	53
Figure 3.18	The wind speed will measure using anemometer	53
Figure 3.19	Complete hardware design	54
Figure 3.20	Project electronic design	55
Figure 3.21	The view of three blades design for vertical axis wind turbines	56
Figure 3.22	The view of five blades design for vertical axis wind turbines	56
Figure 3.23	The process flowchart for project	60
Figure 3.24	Block diagram for process	60
Figure 4.1	Voltage versus Wind speed for location A	65
Figure 4.2	Current versus Wind speed for location A	65
Figure 4.3	Power versus Wind speed for location A	65
Figure 4.4	Voltage versus Wind speed for location B	67
Figure 4.5	Current versus Wind speed for location B	67
Figure 4.6	Power versus Wind speed for location B	67
Figure 4.7	Voltage versus Wind speed for location C	69

Figure 4.8	Current versus Wind speed for location C	70
Figure 4.9	Power versus Wind speed for location C	70
Figure 4.10	Voltage versus Wind speed for location D	72
Figure 4.11	Current versus Wind speed for location D	72
Figure 4.12	Power versus Wind speed for location D	72
Figure 4.13	Voltage versus Wind speed for location E	74
Figure 4.14	Current versus Wind speed for location E	75
Figure 4.15	Power versus Wind speed for location E	75
Figure 4.16	Voltage versus Wind speed for location F	77
Figure 4.17	Current versus Wind speed for location F	77
Figure 4.18	Power versus Wind speed for location F	77
Figure 4.19	Voltage versus Wind speed for location G	79
Figure 4.20	Current versus Wind speed for location G	80
Figure 4.21	Power versus Wind speed for location G	80
Figure 4.22	Voltage versus Wind speed for location H	82
Figure 4.23	Current versus Wind speed for location H SIA MELAKA	82
Figure 4.24	Power versus Wind speed for location H	82

LIST OF SYMBOLS

Ω - Ohm

_

LIST OF ABBREVIATIONS

- V Voltage
- R Resistor
- A Ampere
- W Watt
- m/s Meter per second
- *DC* Direct current

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix A	Coding for simulation	89
Appendix B	The data collected for actual wind speed in eight location at Kemaman, Terengganu	92

CHAPTER 1

INTRODUCTION

1.1 Background

Majority of countries in the worlds are depending on power grid that generate by fossil fuel sum of coal, oil and gas. Years by years, giant country such as China, United States and Germany developing wind energy that can fully exploit the renewable energy. As a result, demand for power in renewable energy will continue to rise as a solution to overcome the earth's limited resources.

Wind energy is one of the branches of renewable energy. The concept of wind energy is to convert the kinetic energy of the wind into mechanical energy. The blades of the turbine are turned by the wind, which spins the shafts flowing down the tower, which are connected to a generator. The operating of the shafts and the friction of the turning shafts connect to the generator, which turns the energy produced by the wind turbine into usable electricity to be used for home and commercial purposes. Wind energy provides an efficient power alternative that is clean, abundant, and completely environmentally friendly. This means that natural resources are used to produce clean, environmentally friendly power.

The study has been carried out on the east coast in Kemaman, Terengganu. The data was collected for wind speed by using a pitot tube anemometer at eight locations that have the potential to get higher wind speeds, and it can be said that small wind turbines could be used to provide power during the monsoon season. The data were collected in the morning (8.00–11.00am), evening (16.00–19.00pm), and night (20.00–23.00pm) to observe different times and locations of wind speed. From the actual wind speed that was collected by using

a pitot tube anemometer, the data will simulate using an industrial stand fan to get a constant wind speed. The wind speed was adjusted based on distance, speed control, and the angle of the fan that must be directed at the wind turbine to get a similar wind speed to the actual wind speed. The data, including voltage, current, and power, was then compared between three and five blades to determine which one performs better in terms of wind energy reliability for small lighting purposes.

1.2 Problem Statement

Fossil fuel is the main power source that drives the world. The limited source of fossil fuel is the main problem to be overcome. In terms of transportation, petroleum and natural gas are used to generate power for vehicles that produce carbon dioxide (CO2), which is created by the burning of fossil fuels in internal combustion engines and can affect greenhouse gases.

By the time, fossil fuel will be run out. Wind energy is one of the solutions to decrease dependence on the limited source and reduce greenhouse gas emissions. However, the average annual wind speed in Malaysia is less than 2 m/s, and the wind does not blow at the same speed all around the Malaysia but it still worth for small lighting purpose [1]. In wind energy, small outputs of power can back up electronic devices such as radios and cameras. Wind energy can be used in many different ways and variables, as the different types of wind turbines and wind speeds will produce different power outputs. However, in this study, the type of wind turbine used is vertical axis wind turbines (VAWT). This type of wind turbine is the most efficient for generating electricity where wind speed are lower and the wind direction not constant. The amount of power is mostly determined by wind speed because stronger winds allow the blades to rotate faster and higher wind speeds

provide more power. More mechanical power and electrical power from the generator result from faster rotation.

1.3 Project Objective

The main aim of this project is to assess the wind energy reliability for small lighting purposes in Malaysia. The specific objectives are as follows:

- a) To study the wind energy potential of various locations.
- b) To identify the design needs based on criteria, materials, and constraints that affect the design.
- c) To develop an effective and reliable methodology for wind turbines that can be used for small lighting purpose.
- d) To assess the best performance of wind turbines to generate electricity for small lighting purposes.

1.4 Scope of Project UNIVERSITI TEKNIKAL MALAYSIA MELAKA

The scope of this project is to study the wind energy potential of various locations in Kemaman, Terengganu, such as Pantai Penunjuk Kijal, tower at Pantai Teluk Kalong, Pantai Teluk Kalong, Pantai Marina (Telaga Simpul), Jetty Starcruise Awana Kijal, Pantai Kemasek. Pantai Kuala Kerteh and Kampung Pantai Kemasek. This project only focuses on the testing that was executed to calculate voltage, current, and power output from the turbines at different wind speeds. This project chose the vertical axis wind energy (VAWT) category and compared three and five blades. The Savonius design, which consists of two halfcylinders, was chosen. Savonius turbines function by diverting wind into the inside of the convex side of the cylinder on one side and the rear of the concave side on the other. The wind is directed between the semi-cylinders, which causes it to move and rotate around the associated vertical shaft. The blades used in the turbines were made of polyvinyl chloride (PVC), and the connecting shaft was made of stainless steel. This project uses an Arduino Uno that acts as a regulator and controller for the processing of input and output data, DC motor, current sensor (5 A), voltage sensor DC (0–25 V), liquid-crystal display (LCD), and light-emitting diode (LED).

