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ABSTRAK 
 

 

PETG dan filamen TPU adalah higroskopik, menyebabkan buih dan kualiti cetakan 

yang lemah dalam bahagian cetakan 3D. Mengeringkan filamen sebelum mencetak boleh 

menghilangkan lembapan dan meningkatkan kualiti permukaan, memulihkan prestasi 

asalnya dan menghalang liang-liang. Kesan kelembapan terhadap kualiti cetakan 3D printing 

kurang di terokai. Kelembapan boleh mengubah kekuatan tegangan dan topografi 

permukaan dengan menyebabkan kekasaran dan keliangan bahagian bercetak 3D. Kajian ini 

menggunakan ANOVA untuk menganalisis kekasaran permukaan bahagian PETG dan TPU 

cetakan 3D. Sampel pra-kering mempunyai permukaan yang lebih licin daripada sampel 

yang belum kering. TPU lebih kasar daripada PETG kerana ia mempunyai kekasaran 

permukaan yang lebih tinggi. Kajian ini mengukur kekuatan tegangan bahagian PETG dan 

TPU cetakan 3D pra-kering menggunakan Mesin Pengujian Universal dan mendapati ia 

lebih kuat daripada sampel yang tidak kering. Kekuatan tegangan meningkat dengan 

pengeringan. Kajian ini menilai struktur mikro keratan rentas bahagian cetakan 3D yang 

patah menggunakan SEM. Sampel yang tidak kering mempunyai jurang antara lapisan yang 

lebih besar, liang manik, dan corak resapan yang tidak lengkap disebabkan oleh kelembapan. 

Sampel pra-kering mempunyai lebih sedikit liang manik dan jurang antara lapisan. PETG 

mempunyai jurang interlayer kurang daripada TPU. Kajian ini juga menggunakan Prinsip 

Archimedes untuk mengukur keliangan kepingan PETG dan TPU cetakan 3D. Sampel yang 

belum kering lebih berliang daripada sampel pra-kering kerana perbezaan ketumpatan antara 

PETG dan TPU. Sampel yang belum kering berliang dan kurang tumpat. TPU telap dan ia 

Kurang tumpat daripada PETG. Untuk berbuat demikian, tiga tetapan bersyarat telah 

diwujudkan; (i) gulungan PETG dan TPU baharu bertindak sebagai rujukan, (ii) gulungan 

PETG dan TPU terpakai disimpan dalam beg vakum dengan gel silika untuk 50 gram, dan 

(iii) gulungan PETG dan TPU terpakai disimpan dalam persekitaran terbuka, terdedah 

dengan pelembap selama 48 jam, 96 jam dan 150 jam. Kertas kerja ini membentangkan 

penyiasatan komprehensif pertama tentang penilaian kekasaran permukaan, kekuatan 

tegangan, struktur mikro, dan keliangan filamen PETG/TPU FDM lembap pra-pengeringan. 

Akibatnya, kaedah pengeringan meningkatkan kekuatan tegangan, kekasaran permukaan 

dan topografi permukaan, serta mengurangkan keliangan bahagian cetakan 3D. Kajian lanjut 

diperlukan mengenai analisis FTIR, yang boleh menganalisis komposisi kimia zarah mikro 

dan nano, dan ujian mampat, yang boleh mengenal pasti modulus keanjalan, had berkadar, 

titik hasil mampatan, kekuatan hasil mampatan, dan kekuatan mampatan. 

 



ii 

 

 

 

ABSTRACT 
 

 

 

PETG and TPU filament are hygroscopic, causing bubbles and poor printing quality 

in 3D printed parts. Drying the filament before printing may remove moisture and improve 

surface quality, restoring its original performance and preventing pores. The effect of 

humidity on the quality of 3D printing is less explored. Moisture can alter the tensile strength 

and surface topography by causing roughness and porosity of 3D printed parts.  This study 

used ANOVA to analyse the surface roughness of 3D printed PETG and TPU parts. Pre-

dried samples have a smoother surface than un-dried samples. TPU is rougher than PETG 

because has higher surface roughness. This study measured the tensile strength of pre-dried 

3D printed PETG and TPU parts using a Universal Testing Machine and found they are 

stronger than un-dried samples. Tensile strength increased with drying. This study evaluates 

the cross-sectional microstructure of fractured 3D printed parts using SEM. Un-dried 

samples have larger interlayer gaps, inter-bead pores, and an incomplete diffusion pattern 

due to dampness. Pre-dried sample had fewer inter-bead pores and interlayer gaps. PETG 

has less interlayer gaps than TPU. This study also used the Archimedes Principle to measure 

the porosity of 3D printed PETG and TPU pieces. Un-dried samples are more porous than 

pre-dried samples due to the density difference between PETG and TPU. Un-dried samples 

are porous and less dense. TPU is permeable and it is less dense than PETG. In order to do 

so, three conditional settings were established; (i) a new PETG and TPU roll acts as the 

reference, (ii) used PETG and TPU roll stored in the vacuum bag with silica gel for 50 grams, 

and (iii) used PETG and TPU roll stored in an open environment, exposed with the 

humidifier for 48 hours, 96 hours and 150 hours. This paper presents the first comprehensive 

investigation on evaluation of surface roughness, tensile strength, microstructure, and 

porosity of the pre-drying humidified PETG/TPU FDM filament. As a result, the drying 

method is improving the tensile strength, surface roughness and surface topography, as well 

as reduce the porosity of the 3D printed parts. Further research is needed on FTIR analysis, 

which can analyse the chemical composition of micro and nanoscale particles, and compress 

tests, which can identify the modulus of elasticity, proportional limit, compressive yield 

point, compressive yield strength, and compressive strength. 
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CHAPTER 1 

INTRODUCTION 
 

 

 

This chapter describes the introduction of this work, including the background, 

problem statement, objective, and scope of the study. An investigation of the effect of 

humidity on the surface roughness, tensile strength, microstructure and density of the pre-

dried 3D printed PETG and TPU filament is carried out in this report. 

 

 

1.1 Background 

 

3D printing, also known as Additive Manufacturing (AM) is a technique of creating 

three-dimensional (3D) solid items from a computer-aided design (CAD) file. Objects are 

built in the additive process by laying successive layers of material until the object is finished. 

When compared to traditional production methods, 3D printing allows the creation of 

complex shapes with less material. According to Kwon et al. (2020), Fused Deposition 

Modelling (FDM) is one of the most widely used AM techniques because of its versatility 

and inexpensive cost. The FDM process creates 3D structures by layering thermoplastic 

polymers materials using the heated nozzle of an FDM 3D printer at pre-determined process 

parameters. The filament is heated and deposited in layers to create a three-dimensional 

component based on a CAD file. 
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Figure 1.1: Cause and Effect Diagram of FDM Process Parameters 

 

Figure 1.1. shows the cause and effects diagram for FDM that influencing the part 

quality and its mechanical properties, including environmental factors, build orientation, 

working parameters, concept models, raw materials, and the machine. Humidity is one of 

the causes, categorized under environmental factors that could influence the final output of 

the 3D printed parts. However, a research work investigating on humidity is still lacking as 

their studies are focusing on other factors, especially process parameters. Thermoplastic 

filament is sensitive to humidity unless the procedures are standardized and the place where 

the filament is created has a significant impact on the results (Valerga et al. 2018). 

Thermoplastic filaments like Polylactic Acid (PLA), Acrylonitrile Butadiene Styrene (ABS), 

Polyethylene Terephthalate Glycol (PETG), and Thermoplastic Polyurethane (TPU) are 

hygroscopic and tend to absorb moisture when expose to a humid environment which 

simultaneously affects the quality of the printed parts. PETG is an amorphous plastic resin 

manufactured by injection moulding or sheet extrusion and is used as a filament material for 

specimen manufacturing. PETG offers excellent strength, low shrinkage, and strong 

chemical printing capabilities (R. Srinivasan, 2020).  

 

Drying the filament before printing has a tendency to reduce or eliminate the absorbed 

moisture, and improve the printing process. The popping or cracking sounds that might occur 

during extrusion can be avoided by drying the filament. Other than that, the drying process 

helps to improve the quality of the surface roughness, the tensile strength, and the 

microstructure of the fractured sample. It also helps to reduce the porosity, which is that will 

be discussed in more detail in this study. The term "pre-dried" refers to the filament after it 
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has been dried. For the purposes of this investigation, the dehydrator known as a SUNLU 

Dryer was utilised in order to achieve a pre-dried filament.  

 

In this study, the influence of humidity on the surface topography, which includes the 

surface roughness, porosity and microstructure of PETG and TPU printed parts initially 

exposed to various humidity conditions and subsequently un-dried using a dehydrator before 

printing, was investigated. A comparison between the un-drying and pre-drying filaments 

was also executed to study the effectiveness of drying. 

 

 

1.2 Problem Statement 

 

Humidity refers to the amount of water that permeates a body or vapour in the 

atmosphere. Humidity or moisture of 3D printed filaments was the main problem throughout 

this study, as it affected the quality of 3D printing. Kwon et al. (2020) highlighted that 

humidity changes the properties of the filament and lowers the quality of 3D-printed things. 

For this reason, it is important to keep the filament supply at the same humidity level. It also 

happens because the thermoplastic filament absorbs moisture quickly once the seal is broken. 

Furthermore, moisture is the biggest enemy when using a 3D printer. It can ruin the filament 

by causing a rough or grainy surface on finished prints and filament popping, cracking, or 

hissing sound while printing (Asesar, 2015). Because of the moisture in the environment, 

the surface roughness of pre-dried filaments differs. Likewise, drying the filament before 

printing can help prevent printing bubbles and nozzle blockage (Dwamena, 2020). 

According to Valerga et al. (2018) the appearance of bubbles will have an impact on the 

findings of both surface quality and tensile strength as a result of the increase in relative 

humidity. When performing 3D printing, the filament should be stored in a dry environment, 

such as a dry cabinet, or the used filament should be sealed in a vacuum bag. 
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Besides that, porosity is caused by water breaking the polymeric chemical chain, 

causing the polymer composition to be amorphous, with a more porous structure. Wet 

filaments have less strength than dry ones and break more easily as H2O molecules break 

polymer bonds and diminish resistance, causing their impact resistance to drop. 

Thermoplastic material with a double bond in the chemical structure tends to combine with 

water, as water molecules have one oxygen atom covalently bound to two hydrogen atoms. 

Polymers with hydrogen-bonding groups will soak up water. Moreover, the more water the 

filament is exposed to, the porous it becomes. Leite (2016) stated that the increase in porosity 

would decrease the material's mechanical properties. PETG is more hygroscopic than ABS 

and PLA, which means it collects more moisture from the environment and deteriorates 

faster if left out in the open environment. Besides, TPU is the least hygroscopic of the other 

polymers and is also the most sensitive to improper storage. To preserve filament in good 

condition, it is recommended to store the used filament in appropriate storage such as a 

dehydrator and drying cabinet. Humidity problems will reduce part printing quality; 

therefore, drying the filament may help to reduce moisture and hence enhance printing part 

quality. Thus, in this study, a hypothesis is that drying the filament before printing can 

eliminate water and increase the printed surface topography of parts. The assumption made 

will be proven and discussed as the findings of this work. 

 

 

1.3 Objective of Study 

 

The objectives of this study are as stated below: 

 

a) To analyze the surface roughness (Ra) of the pre-dried 3D printed PETG and TPU 

parts using ANOVA. 

 

b) To measure the tensile strength of the pre-dried 3D printed PETG and TPU parts 

using a Universal Testing Machine. 

 

c) To evaluate the cross-sectional microstructure of the fractured tensile specimen of 

the pre-dried 3D printed parts using the SEM machine. 

 

d) To examine the porosity of the pre-dried 3D printed PETG and TPU parts using the 

Archimedes Principle.  
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1.4 Scope of Study 

 

The scopes of this study are: 

 

a) In this study, a 1.75mm diameter of the PETG and TPU filament was used for all 

conditions. 

 

b) The humidity level was decided through three conditions as follows: 

 

i. New PETG and TPU filament roll, which acts as the reference. 

 

ii. Used PETG and TPU filament roll stored in an open environment, exposed 

to a humidifier for 48, 96, and 150 hours. 

 

iii. Used PETG and TPU filament roll stored in the vacuum bag, with the silica 

gels for 50 g. 

 

c) The PETG and TPU are exposed to the humidifier in an open environment for a few 

hours and then dry by using the SUNLU FilaDryer S1 dehydrator. 

 

d) The FDM machine, Ender 3 V2, was used to print the samples. 

 

e) Shimadzu Universal Testing Machine is used for the tensile test with a 20kN load 

and testing speed of 5 mm/min. 

 

f) Mitutoyo SJ-301 surface roughness tester is used in this study, and the variation of 

data is analysed using Analysis of Variance (ANOVA). 

 

g) The porosity of printed part 3D printing is examined using densimeter, which 

adopted the Archimedes principle due to the limitation of the porosity equipment at 

the laboratory. 

 


