HEALTH AND SAFETY MONITORING FOR LIVE-ALONE ELDERLY PEOPLE

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

HEALTH AND SAFETY MONITORING FOR LIVE-ALONE ELDERLY PEOPLE

NUR AZIERA BINTI RADZUAN

This report is submitted in partial fulfilment of the requirements for the degree of Bachelor of Electronic Engineering with Honours

اونيوم سيتي تيڪنيڪل مليسيا ملاك UNIVERSITI TEKNIKAL MALAYSIA MELAKA

> Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka

UNIVERSITI TEKNIKAL MALAYSIA MELAKA FAKULTI KEJUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II

Tajuk Projek

HEALTH AND SAFETY MONITORING FOR LIVE-ALONE ELDERLY PEOPLE 2022/2023

Sesi Pengajian

:

Saya <u>NUR AZIERA BINTI RADZUAN</u> mengaku membenarkan laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.
- 2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (✓):

SULIT*

TIDAK TERHAD

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)

(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.

	Disahkan oleh:
Charles	DR. KHOD CHIN FOON Pensyarah Kanan Fakulti Kejuruteraan Elektronik & Kejuruteraan Komputer Universiti Teknikal Malaysia Melaka (UTeM) Hang Tuah Jaya
(TANDATANGAN PENULIS)	(COP DAN TANDATANGAN PENYELIA)
Alamat Tetap: <u>No. 686, Lorong</u> <u>16/2, Bandar Seri</u> <u>Mahkota 09000</u> <u>Kulim Kedah</u>	
Tarikh : <u>11 Januari 2023</u>	Tarikh : <u>11 Januari 2023</u>
	\sim

*CATATAN: Jika laporan ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh laporan ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

Date : 11 JANUARI 2023

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Bachelor of Electronic Engineering with

DEDICATION

First and foremost, I am very grateful to all of the family members for their valuable guidance and support on completion of this project in its entirety. I would like to express my deepest appreciation to all those who provided the possibility to this project. A special gratitude is given to my supervisor, Dr Khoo Chin Foon whose contributes in stimulating suggestions and encouragement that helped a lot in this project. Besides, not to forget the lecturer who's involved in both PSM1 and PSM2 which provide reminders for me about the important things that must be done before the due date and always give moral support to complete the project. Next, I also appreciate the guidance given by panels that has improved my project and my knowledge. Finally, gratitude goes to all my friends who directly or indirectly helped me to complete this project.

ABSTRACT

In Malaysia, some parents are living alone. Usually, these group of people may have health and forgetfulness problems. Thus, safe care and assistance should be taken into account to keep their lives healthy and safe. Their level of health and safety is neglected when children live away from them on the work factor. Furthermore, in some cases the needs of people living alone are not met and are not identified until an emergency occurs. Therefore, to reduce such problems, health and safety monitoring for the elderly living alone was created. First, their blood pressure can be recorded by a microcontroller. The data will then be sent to the IoT service, which can be viewed via a smartphone. Additionally, GPS trackers can be used to inform other family members about the whereabouts of their parents. If their parents often go out alone, they can contact someone to let them know of their concerns if they forget or get lost. With the creation of this project, children who are away from their parents can monitor directly via mobile phones only.

ABSTRAK

Di Malaysia, ada ibu bapa yang tinggal bersendirian. Biasanya, kumpulan orang ini mungkin mempunyai masalah kesihatan dan pelupa. Oleh itu, penjagaan dan bantuan yang selamat harus diambil kira untuk memastikan kehidupan mereka sihat dan selamat. Tahap kesihatan dan keselamatan mereka diabaikan apabila kanak-kanak tinggal jauh daripada mereka atas faktor kerja. Tambahan pula, dalam beberapa kes keperluan orang yang tinggal bersendirian tidak dipenuhi dan tidak dikenal pasti sehingga kecemasan berlaku. Justeru, bagi mengurangkan masalah tersebut, pemantauan kesihatan dan keselamatan warga emas yang tinggal bersendirian diwujudkan. Pertama, tekanan darah mereka boleh direkodkan oleh mikropengawal. Data kemudiannya akan dihantar ke perkhidmatan IoT, yang boleh dilihat melalui telefon pintar. Selain itu, penjejak GPS boleh digunakan untuk memaklumkan ahli keluarga lain tentang keberadaan ibu bapa mereka. Jika ibu bapa mereka sering keluar bersendirian, mereka boleh menghubungi seseorang untuk memberitahu mereka tentang kebimbangan mereka jika mereka terlupa atau tersesat. Dengan terciptanya projek ini, anakanak yang berjauhan dengan ibu bapa mereka boleh memantau terus melalui telefon bimbit sahaja.

ACKNOWLEDGEMENTS

This appreciation is given to my parents for having provided support and encouragement both mentally and physically. Not to be forgotten is my supervisor, Dr. Khoo Chin Foon, the highest appreciation is given to her for giving a lot of guidance and non-stop support until this project is fully completed. A special gratitude gives to her whose contribution in stimulating suggestions and encouragement and help a lot in this project. She also, gives a lot of knowledge to further facilitate my understanding of the selected assignment titles. Also, a big thanks to panels of this project, Prof. Madya Dr. Maisarah Bt Abu, Dr Mawarni Bt Mohamed Yunus and Dr Noor Shahida Bt Mohd Kasim for giving their support, guidance, and comments of my project. To end with, I would like to express my infinite gratitude to anyone who has been involved in producing this project directly or indirectly. Your cooperation is appreciated.

TABLE OF CONTENTS

Declaration Approval Dedication i Abstract Abstrak ii Acknowledgements iii Table of Contents iv TEKNIKAL MALAYSIA MELAKA List of Figure RSITI viii **List of Tables** xi List of Symbols and Abbreviations xii **List of Appendices** xiii **CHAPTER 1 INTRODUCTION** 1 Project Background 1.1 1 1.2 **Problem Statement** 2 Objectives 3 1.3

1.4	Project Scope	3
1.5	Overview of Chapters	4
СНА	APTER 2 BACKGROUND STUDY	5
2.1	Introduction	6
	2.1.1 GPS Tracking System	8
	2.1.2 Blood Pressure Monitoring System	12
СНА	APTER 3 METHODOLOGY	17
3.1	Overview of Project Implementation	18
3.2	Flowchart of the project	19
3.3	Methodology for Location Tracking System	21
	3.3.1 Components used in Location Tracking System	21
	3.3.2 Circuit for NEO 6M GPS Module	24
	UNIVERSITI TEKNIKAL MALAYSIA MELAKA 3.3.3 Code Development	25
	3.3.4 Integrating to Arduino IoT Cloud	28
3.4	Methodology for Health Monitoring System	33
	3.4.1 Components used in Blood Pressure Sensor	33
	3.4.2 Circuit for Blood Pressure	33
	3.4.3 Integrating to Arduino IoT Cloud	35
	3.4.4 Circuit for Location Tracking and Blood Pressure	38
СНА	APTER 4 RESULTS AND DISCUSSION	39

4.1	Preliminary results for testing NEO 6M GPS Module	40
4.2	Results for testing NEO 6M GPS Module	41
	4.2.1 Location at Bandar Seri Mahkota	41
	4.2.2 Location at Taman Tasik Kulim	42
	4.2.3 Location at Taman Tasik Utama	44
	4.2.4 Location at Mc Donalds, Kulim	45
4.3	Results for Blood Pressure	47
	4.3.1 Blood Pressure Readings for Week 1	47
	4.3.2 Blood Pressure Readings for Week 2	48
	4.3.3 Blood Pressure Readings for Week 3	52
	4.3.4 Blood Pressure Readings for Week 4	54
	4.3.5 Combination graph for Measured and Clinic readings	55
4.4	UNIVERSITI TEKNIKAL MALAYSIA MELAKA Discussion	58
CHA	PTER 5 CONCLUSION AND FUTURE WORKS	60
5.1	Conclusion	61
5.2	Future Works	61
REFI	ERENCES	63
APPI	ENDICES	67
Apper	ndix A: Main coding	67
Appe	ndix B: Security Parameters	72

73

LIST OF FIGURE

Figure 2.1 Tracker Application	7
Figure 2.2 Blood Pressure Guidelines	7
Figure 2.3 The Block Diagram	8
Figure 2.4 Block diagram for monitor health condition of human	14
Figure 2.5 Block diagram for project IoT based emergency health mon	itoring system 15
Figure 3.1 Flowchart of the project	19
Figure 3.2 ESP32	21
Figure 3.3 Neo 6M GPS Module	21
UNIVERSITI TEKNIKAL MALAYSIA MELAKA Figure 3.4 Jumper Wire	22
Figure 3.5 Switch	22
Figure 3.6 Buzzer	23
Figure 3.7 Battery	23
Figure 3.8 Circuit Diagram for NEO 6M GPS Module	24
Figure 3.9 Schematic Diagram for NEO 6M GPS Module	24
Figure 3.10 Arduino IDE Preferences	25
Figure 3.11 Additional Boards Manager URLs	25
Figure 3.12 Tools Board Manager	26

Figure 3.13 Board Manager ESP32	26
Figure 3.14 Library View	27
Figure 3.15 Install ESP32 at Library Manager	27
Figure 3.16 Arduino IoT Cloud Platform	28
Figure 3.17 Thing view	28
Figure 3.18 Variables of input and output	29
Figure 3.19 Serial devices	29
Figure 3.20 3 rd party device as controller	30
Figure 3.21 ESP32 as a controller	30
Figure 3.22 Serial configure	31
Figure 3.23 Wi-Fi connection detail	31
Figure 3.24 Dashboard section	32
Figure 3.25 Widget's view	32
Figure 3.26 Upload full coding UNIVERSITI TEKNIKAL MALAYSIA MELAKA	32
Figure 3.27 Pulse Express MAX 32644	33
Figure 3.28 Circuit Diagram for Blood Pressure Sensor	33
Figure 3.29 Schematic Diagram for Blood Pressure Sensor	34
Figure 3.30 Arduino IoT Cloud login page	35
Figure 3.31Added variables	35
Figure 3.32 Click dashboard on top of the website	35
Figure 3.33 Choose widget	36
Figure 3.34 Configure widget	36
Figure 3.35: All of the required library for both sensors.	37

Figure 3.36 Upload coding	37
Figure 3.37 Circuit Diagram for Location Tracking and Blood Pressure Sensor	38
Figure 4.1 Results for testing NEO 6M GPS Module	40
Figure 4.2 Google Maps view	40
Figure 4.3 Reading for week 1 and reference reading at clinic	47
Figure 4.4 Calibrated value in coding	48
Figure 4.5 Reading for week 2 and reference reading at clinic	50
Figure 4.6 Reading for week 3 and reference reading at clinic	52
Figure 4.7 Reading for week 4 and reference reading at clinic	54
Figure 4.8 Combination graph for both readings	55

LIST OF TABLES

Table 3.1 Detail of activity for methodology	20
Table 4.1 IoT dashboard and Google Maps view at Bandar Seri Mahkota	41
Table 4.2 Comparison of data	42
Table 4.3 IoT dashboard and Google Maps view at Taman Tasik Kulim	42
Table 4.4 Comparison of data	43
Table 4.5 IoT dashboard and Google Maps view at Taman Tasik Kulim	44
Table 4.6 Comparison of data	44
Table 4.7 IoT dashboard and Google Maps view at Mc Donalds, Kulim	45
Table 4.8 Comparison of data NIKAL MALAYSIA MELAKA	46
Table 4.9 Comparison of data	48
Table 4.10 Comparison of data	50
Table 4.11 Comparison of data	52
Table 4.12 Comparison of data	54

LIST OF SYMBOLS AND ABBREVIATIONS

GPS	:	Global Positioning Systems
IDE	:	Integrated Development Environment
IoT	:	Internet of Things
GSM	5	Global System for Mobile
SMS	:	Short Message Service
BP	2	Blood Pressure
HR	44	Heart Rate
BPM	h	اونيوس سيتي تيڪنيڪbeat per Minute
mmHg	viv	Millimeters of mercury MALAYSIA MELAKA
Sys	:	Systolic
Li-ion	:	Lithium Ion
NiMH	:	Nickel-metal hydride
Nicad	:	Nickel Cadmium

LIST OF APPENDICES

Appendix A: Main coding	61
Appendix B: Security Parameters	66
Appendix C: IoT Cloud Parameters	67
MALAYSIA	

CHAPTER 1

INTRODUCTION

This chapter briefly outlines the project's introduction and problem statements, as well as why the project is being offered. Aside from that, this chapter clarifies the project's objectives and scopes, as well as the expected outcome.

1.1 Project Background

Due to the increasing aging population of people, most of the old people choose to stay alone instead of staying with their children. This is because these old people want to be comfortable and safe within their own house. There are many pros and cons while staying alone at their house. The health and safety of these elderly should be considered while they are staying alone. To overcome these challenges, Health and Safety Monitoring for Live-Alone Elderly People can be used to protect and track them when they are inside or out of their house. This project will remotely access old people's location information and the latest blood pressure sensor will read the elderly's blood pressure to observe any variation of their blood pressure throughout the day. The microcontroller can record their blood pressure and remind them to use it every six hours. Then, the microcontroller will send the data to the Iot service which can be accessed using Smartphone. So that they can get healthcare more quickly before anything happens in urgent cases. Other than that, GPS tracker can be used to inform other family members about their parent's whereabouts. In case their parents are always going out alone, when they forget or get lost, they can contact someone to inform them regarding their problems.

1.2 Problem Statement

ALAYSIA

Neglection by the relatives of elderly people who live alone and do not receive good quality of social, healthcare and psychiatric assistance is an important public problem [1].

The healthiness of the elderly people probably will be neglected especially when their already adult children are needed to work every day. With their old age, staying alone may prove difficult especially when they fall sick. Therefore, by letting their children know about their blood pressure level, the children can get some foresight regarding when their parents will fall sick. On the other hand, they can always get the latest location information about their parents, especially when they go out from home.

Thus, in this project health monitoring and location tracking systems will be established in order to solve the stated problems above. This project will provide health monitoring system by specifically monitor the blood pressure level of elderly. In the same time, this project also will act as a location tracker especially when they are away from home.

1.3 Objectives

- 1. To design a Location Tracking System that will provide real time location information including latitude, longitude and location on the maps.
- To design the Blood Pressure Monitoring System that will monitor the elderly who live alone at their homes.
- 3. To analyses the accuracy of GPS location and Blood Pressure level measurement.

1.4 Project Scope

This project will use Fritzing in drawing and simulation. The software for ESP32 that will be used is Arduino Software (IDE) which uses C++ language. Next, components those are included in this project are Neo6m GPS Module, Blood pressure monitoring tool, jumper wire and ESP32 as the controller. Other than that, data analysis will be conducted to analyses the frequent GPS that will update the data to the latest location and what level is good and bad for blood pressure. This project will be targeted at family who has elderly as their parents. Finally, the accuracy of blood pressure readings and GPS readings will be compared with the clinic blood pressure reading and Google Maps.

1.5 Overview of Chapters

Health and Safety Monitoring for Alone Elderly is actually used to facilitate the monitoring of people living alone in their homes. This project will produce a Location Tracking System and a Blood Pressure Monitoring System. This report has 5 chapters to describe the development of this project which is Introduction, Background Study, Methodology, Results and Discussions and lastly Conclusion and Recommendation.

Chapter 1: This chapter is the beginning of introduction where it will describe about this project that includes introduction of the project, objectives, problem statement, scope, sustainability and summary of the project.

Chapter 2: This chapter will give a background research or literature review that could be used as a reference for improvement for the project.

Chapter 3: The methodology that will be applied to conduct this project is explained that includes technical design of electronic component and coding that use in this project.

Chapter 4: This chapter will present all of the results and discussion on outcomes of the project. It will also include sustainability and environment aspects for this project.

Chapter 5: This chapter will summarize everything as conclusion and suggestion on how to improve and make this project better in future.

CHAPTER 2

BACKGROUND STUDY

This chapter will discuss multiple references on the required components whether same or different from previous study have been collected to accomplish the objective. Aside from that, this chapter will provide the result and how the observation methodology that have been used by previous researchers