

DEVELOPMENT AND ANALYSIS OF AN EMBEDDED
SOFTWARE FOR CILI-PADI PICKING ROBOT FRAMEWORK

USING MATLAB

DANIAL ‘AFIF BIN MOHD ZAKI

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEVELOPMENT AND ANALYSIS OF AN EMBEDDED

SOFTWARE FOR CILI-PADI PICKING ROBOT

FRAMEWORK USING MATLAB WHICH HAS BEEN

APPROVED BY FACULTY OF ELECTRONIC AND

COMPUTER ENGINEERING (FKEKK)

DANIAL ‘AFIF BIN MOHD ZAKI

This report is submitted in partial fulfilment of the requirements

for the degree of Bachelor of Electronic Engineering with Honours

Faculty of Electronic and Computer Engineering

Universiti Teknikal Malaysia Melaka

2023

DECLARATION

I declare that this report entitled “DEVELOPMENT AND ANALYSIS OF AN

EMBEDDED SOFTWARE FOR CILI-PADI PICKING ROBOT

FRAMEWORK USING MATLAB” is the result of my own work except for

quotes as cited in the references.

Signature : …………………………………

Author : …………………………………

Date : …………………………………

DANIAL ‘AFIF BIN MOHD ZAKI

13/1/2023

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient

in terms of scope and quality for the award of Bachelor of Electronic Engineering

with Honours.

Signature : …………………………………

Supervisor Name : …………………………………

Date : …………………………………

Zarina Mohd Noh

23rd January 2023

DEDICATION

 I would want to thank everyone who helped make this project a reality, whether

they were directly or indirectly involved. It's possible that I wouldn't have been able

to finish all of this work without their help and encouragement. To express my

gratitude for Dr. Zarina binti Mohd Noh's trust in me to complete my assigned thesis,

I am happy to do so on this occasion. In addition, I would want to express my

gratitude to Dr. Wira Hidayat bin Mohd Saad and all of the lecturers that helped me

complete this PSM. I'd also like to thank everyone who helped make this assignment

possible, especially my lecturer, Dr. Zarina binti Mohd Noh, for the guidance she

provided over the course of this assignment and also other lecture who helped me

with the PSM and this dissertation are also mentioned. I can't forget to thank my

fellow soldiers, who have been a tremendous source of support and collaboration

during the course of our mission. Finally, I'd want to thank all of my friends who

helped me complete this project. Thanks a lot.

i

ABSTRACT

The primary focuses of this research are the development, implementation, and

verification of embedded software for robotic systems. The Cili-Padi Picking Robot

places a significant amount of attention on being able to function all actuators and

sensors by making use of MATLAB and having the ability to communicate with a

GUI. However, in order to reach its full potential, the robot needs to be equipped

with AI in its visual system so that it can recognise mature chilies. However, the

focus of this project is on embedded systems for sensors and actuators in robots. This

is accomplished by connecting MATLAB and Arduino so that they are capable of

communicating with each other thanks to the utilisation of serial communication,

which enables both programmes to send and receive data. Prior to that, it needs to be

done for the purpose of robot analysis, which includes determining what actuators

and sensors are utilised as well as what data will be used regardless of whether or not

the parameters are modified. Additionally, this results in the formation of many

subdivisions for the system that is integrated into the robot. Systems comparable to

these include a manual navigation system, a Robot Arm system, a visual robot

system to detect Chile, as well as other systems of a similar nature.

ii

ABSTRAK

Fokus utama penyelidikan ini ialah pembangunan, pelaksanaan dan pengesahan

perisian terbenam untuk sistem robotik. Robot Pemetik Cili Padi memberi perhatian

yang besar kepada keupayaan untuk berfungsi semua penggerak dan penderia

dengan menggunakan MATLAB dan mempunyai keupayaan untuk berkomunikasi

dengan GUI. Bagaimanapun, untuk mencapai potensi sepenuhnya, robot itu perlu

dilengkapi dengan AI dalam sistem visualnya supaya ia dapat mengenali cili

matang. Walau bagaimanapun, tumpuan projek ini adalah pada sistem terbenam

untuk penderia dan penggerak dalam robot. Ini dicapai dengan menyambungkan

MATLAB dan Arduino supaya mereka mampu berkomunikasi antara satu sama lain

berkat penggunaan komunikasi bersiri, yang membolehkan kedua-dua program

menghantar dan menerima data. Sebelum itu, ia perlu dilakukan untuk tujuan

analisis robot, termasuk menentukan apakah penggerak dan penderia yang

digunakan serta apakah data yang akan digunakan tanpa mengira sama ada

parameter diubah suai atau tidak. Selain itu, ini mengakibatkan pembentukan

banyak subbahagian untuk sistem yang disepadukan ke dalam robot. Sistem yang

setanding dengan ini termasuk sistem navigasi manual, sistem Lengan Robot, sistem

robot visual untuk mengesan Chile, serta sistem lain yang serupa.

iii

ACKNOWLEDGEMENTS

 I would like to thank everyone who contributed directly or indirectly to the

accomplishment of this work. Without their assistance and support, it may not have

been feasible to complete all of these responsibilities. With this occasion, I am

pleased to convey my gratitude to Dr. Zarina binti Mohd Noh, the principal

Supervisor of PSM, for placing her confidence in me to complete the assigned thesis.

I would also like to thank everyone who worked tirelessly to assist in the completion

of this assignment, especially my professor, Dr. Zarina binti Mohd Noh, for the

direction she provided during the period of this assignment and also other professors

who assisted me in completing the PSM and this dissertation are also acknowledged.

Not forgetting my comrades-in-arms, as they have provided a great deal of assistance

and cooperation in completing this mission effectively. Many thanks.

iv

TABLE OF CONTENTS

Declaration i

Approval i

Dedication i

Abstract i

Abstrak ii

Acknowledgements iii

Table of Contents iv

List of Figures viii

List of Tables x

List of Symbols and Abbreviations xi

List of Appendices xii

CHAPTER 1 INTRODUCTION 1

1.1 Project Background 2

1.2 Problem Statement 2

v

1.3 Objectives 3

1.4 Scope of Project 4

1.5 Report Outline 4

CHAPTER 2 BACKGROUND STUDY 6

2.1 Robotic Framework and Its Application 7

2.2 Basic Embedded Software for Robot 11

2.2.1 Embedded System Hardware & Software 12

2.2.2 Real-Time Embedded Systems 12

2.2.3 Model Based Design in MATLAB 13

2.3 Basic Structure of Robot 18

2.4 Functionality of Robot 19

2.4.1 Mechanical Structure Function 21

2.4.2 Sensory Structure Function 21

2.4.3 Control Structure (Robot Control Organs) 21

2.4.4 Governance Structure (Memorization and Calculation Organs)

Function 22

2.5 Software Architecture and Programming of a Robot 24

CHAPTER 3 METHODOLOGY 26

3.1 Analyzing of Robot Framework for Cili-Padi Picking Robot 28

3.2 Development an Embedded Software for Requirement Cili-Padi Picking

Robot 30

vi

3.2.1 Navigation System Requirement 30

3.2.2 Delta Robot Arm Requirement 31

3.2.3 Robot Gripper Requirement 32

3.2.4 Robot Vision Requirement 32

3.3 Real-time robot operating system using FreeRTOS 33

3.4 Arduino coding for each part sensor for Cili-Padi Picking Robot 37

3.4.1 Part of Navigation system Arduino coding 37

3.4.2 Part of Delta Robot Arm and gripper system Arduino coding 39

3.5 Development Functionality Robot using MATLAB software 40

3.5.1 Serial Communication MATLAB (Simulink) connect in Arduino 41

3.5.2 Simulink to App Design for GUI 45

3.6 Demonstration Hardware and Software for Functoriality 47

CHAPTER 4 RESULTS AND DISCUSSION 48

4.1 Analysis of Cili-Padi Picking Robot Framework 49

4.2 Develop Embedded Software Interfaced with Graphical User Interface (GUI).

 50

4.2.1 Arduino and MATLAB communicate for Cili-Padi Picking Robot 51

4.2.2 App Design and Simulink communicate for GUI Cili-Padi Picking

Robot 54

4.3 Functionality of the Embedded Software in Real Time 59

CHAPTER 5 CONCLUSION AND FUTURE WORKS 61

vii

5.1 Conclusion 61

5.2 Future Works 62

REFERENCES 63

APPENDICES 68

viii

LIST OF FIGURES

Figure 2.1 Fundamental Robotic Operations and Actions ... 20

Figure 3.1 Flowchart of Project ... 27

Figure 3.2 Architecture of Cill-Padi Picking Robot .. 28

Figure 3.3 Cili-Padi Picking Robot Architecture and Components. 30

Figure 3.4 Navigation System Requirement .. 31

Figure 3.5 Delta Robot Arm Requirement ... 31

Figure 3.6 Robot Gripper Requirement ... 32

Figure 3.7 Robot Vision Requirement ... 33

Figure 3.8 Library FreeRTOS .. 35

Figure 3.9 FreeRTOS Task .. 35

Figure 3.10 void Task Coding and Loop ... 36

Figure 3.11 Codes Require Delay .. 36

Figure 3.12 API Delays .. 37

Figure 3.13 Circuit Flex Sensor and Motor ... 38

Figure 3.14 Coding Flex Sensor to Apply at Motor .. 38

Figure 3.15 Output from Coding Flex ... 39

https://utemedu-my.sharepoint.com/personal/b021910151_student_utem_edu_my/Documents/PSM2/NewThesisRobot19Dec2022.docx#_Toc124707726
https://utemedu-my.sharepoint.com/personal/b021910151_student_utem_edu_my/Documents/PSM2/NewThesisRobot19Dec2022.docx#_Toc124707730
https://utemedu-my.sharepoint.com/personal/b021910151_student_utem_edu_my/Documents/PSM2/NewThesisRobot19Dec2022.docx#_Toc124707731
https://utemedu-my.sharepoint.com/personal/b021910151_student_utem_edu_my/Documents/PSM2/NewThesisRobot19Dec2022.docx#_Toc124707732
https://utemedu-my.sharepoint.com/personal/b021910151_student_utem_edu_my/Documents/PSM2/NewThesisRobot19Dec2022.docx#_Toc124707733
https://utemedu-my.sharepoint.com/personal/b021910151_student_utem_edu_my/Documents/PSM2/NewThesisRobot19Dec2022.docx#_Toc124707734
https://utemedu-my.sharepoint.com/personal/b021910151_student_utem_edu_my/Documents/PSM2/NewThesisRobot19Dec2022.docx#_Toc124707735
https://utemedu-my.sharepoint.com/personal/b021910151_student_utem_edu_my/Documents/PSM2/NewThesisRobot19Dec2022.docx#_Toc124707736
https://utemedu-my.sharepoint.com/personal/b021910151_student_utem_edu_my/Documents/PSM2/NewThesisRobot19Dec2022.docx#_Toc124707737
https://utemedu-my.sharepoint.com/personal/b021910151_student_utem_edu_my/Documents/PSM2/NewThesisRobot19Dec2022.docx#_Toc124707738
https://utemedu-my.sharepoint.com/personal/b021910151_student_utem_edu_my/Documents/PSM2/NewThesisRobot19Dec2022.docx#_Toc124707739
https://utemedu-my.sharepoint.com/personal/b021910151_student_utem_edu_my/Documents/PSM2/NewThesisRobot19Dec2022.docx#_Toc124707740
https://utemedu-my.sharepoint.com/personal/b021910151_student_utem_edu_my/Documents/PSM2/NewThesisRobot19Dec2022.docx#_Toc124707741

ix

Figure 3.16 Output IMU Sensor .. 39

Figure 3.17 Block in Simulink for Single Data For Send Data And Receive Data ... 42

Figure 3.18 Coding Single Data ... 42

Figure 3.19 Coding for Multiple Data ... 43

Figure 3.20 Simulink Multiple Data .. 44

Figure 3.21 App Design Coding .. 46

Figure 3.22 GUI with Simulink ... 46

Figure 3.23 Circuit Prototype Cili Padi Picking Robot ... 47

Figure 4.1 Arduino Communicate with MATLAB ... 51

Figure 4.2 Send data from MATLAB to Arduino ... 52

Figure 4.3 Block Send And Receive Data In ... 52

Figure 4.4 Receive Data from Arduino .. 53

Figure 4.5 App Design Read Output Simulink .. 58

Figure 4.6 App Design Changed Value in Simulink Input. 58

Figure 4.7 Reading Accelerometer in Simulink .. 59

Figure 4.8 Reading Gyro in Simulink .. 59

Figure 4.9 Graph Flex Sensor and IMU Sensor ... 60

Figure 4.10 Hardware for Testing .. 60

https://utemedu-my.sharepoint.com/personal/b021910151_student_utem_edu_my/Documents/PSM2/NewThesisRobot19Dec2022.docx#_Toc124707742
https://utemedu-my.sharepoint.com/personal/b021910151_student_utem_edu_my/Documents/PSM2/NewThesisRobot19Dec2022.docx#_Toc124707743
https://utemedu-my.sharepoint.com/personal/b021910151_student_utem_edu_my/Documents/PSM2/NewThesisRobot19Dec2022.docx#_Toc124707744
https://utemedu-my.sharepoint.com/personal/b021910151_student_utem_edu_my/Documents/PSM2/NewThesisRobot19Dec2022.docx#_Toc124707745
https://utemedu-my.sharepoint.com/personal/b021910151_student_utem_edu_my/Documents/PSM2/NewThesisRobot19Dec2022.docx#_Toc124707746
https://utemedu-my.sharepoint.com/personal/b021910151_student_utem_edu_my/Documents/PSM2/NewThesisRobot19Dec2022.docx#_Toc124707747
https://utemedu-my.sharepoint.com/personal/b021910151_student_utem_edu_my/Documents/PSM2/NewThesisRobot19Dec2022.docx#_Toc124707748
https://utemedu-my.sharepoint.com/personal/b021910151_student_utem_edu_my/Documents/PSM2/NewThesisRobot19Dec2022.docx#_Toc124707749
https://utemedu-my.sharepoint.com/personal/b021910151_student_utem_edu_my/Documents/PSM2/NewThesisRobot19Dec2022.docx#_Toc124707750
https://utemedu-my.sharepoint.com/personal/b021910151_student_utem_edu_my/Documents/PSM2/NewThesisRobot19Dec2022.docx#_Toc124707751
https://utemedu-my.sharepoint.com/personal/b021910151_student_utem_edu_my/Documents/PSM2/NewThesisRobot19Dec2022.docx#_Toc124707752
https://utemedu-my.sharepoint.com/personal/b021910151_student_utem_edu_my/Documents/PSM2/NewThesisRobot19Dec2022.docx#_Toc124707753
https://utemedu-my.sharepoint.com/personal/b021910151_student_utem_edu_my/Documents/PSM2/NewThesisRobot19Dec2022.docx#_Toc124707754
https://utemedu-my.sharepoint.com/personal/b021910151_student_utem_edu_my/Documents/PSM2/NewThesisRobot19Dec2022.docx#_Toc124707755
https://utemedu-my.sharepoint.com/personal/b021910151_student_utem_edu_my/Documents/PSM2/NewThesisRobot19Dec2022.docx#_Toc124707756
https://utemedu-my.sharepoint.com/personal/b021910151_student_utem_edu_my/Documents/PSM2/NewThesisRobot19Dec2022.docx#_Toc124707757
https://utemedu-my.sharepoint.com/personal/b021910151_student_utem_edu_my/Documents/PSM2/NewThesisRobot19Dec2022.docx#_Toc124707758
https://utemedu-my.sharepoint.com/personal/b021910151_student_utem_edu_my/Documents/PSM2/NewThesisRobot19Dec2022.docx#_Toc124707759

x

LIST OF TABLES

Table 2.1 Research Robotic Framework ... 10

Table 2.2 Model Based Design in MATLAB .. 16

Table 2.3 Functionality of Robot ... 22

Table 3.1 Description Each Function in Coding FreeRTOS 35

Table 4.1 Sensor and Actuator Setup Check List .. 49

Table 4.2 Overall Design in GUI ... 55

https://utemedu-my.sharepoint.com/personal/b021910151_student_utem_edu_my/Documents/PSM2/NewThesisRobot19Dec2022.docx#_Toc124707763

xi

LIST OF SYMBOLS AND ABBREVIATIONS

ROS : Robot Operating System

GUI : Graphical User Interface

TICS : Task-Instruction-Contingency-Shaping

xii

LIST OF APPENDICES

Appendix A Coding in Arduino ... 68

Appendix B Coding of App Design(MATLAB) ... 75

Appendix C Gantt Chart of Project Planning... 86

https://utemedu-my.sharepoint.com/personal/b021910151_student_utem_edu_my/Documents/PSM2/NewThesisRobot19Dec2022.docx#_Toc124505849

1

CHAPTER 1

INTRODUCTION

This chapter describes the idea general idea for this project which includes the

background of the project, problem statement, objectives, scope of the project, and

the report outline.

2

1.1 Project Background

"Industry 4.0" refers to the transition to cyber-physical systems, which marks the

fourth major industrial revolution [1]. In the forth industrial revolution, the

application of robot had been widely accepted to ease the work in the industry such

as for agriculture propose. Because of this, the goal of this project is to find solutions

to the challenges faced in the agriculture by constructing a robot structure with the

capability of assisting farmer in tasks that can reducing their workload and reducing

the amount of time they spend on such tasks. Therefore, this project is about how to

build a robot framework through embedded software. By using the appropriate

software to integrate the software for agriculture purpose, specifically for Cili Padi

Picking Robot.

Selection of the right framework and middleware for software and hardware

integration is a difficult process that can have far-reaching consequences for any

robotics framework. In most cases, computational and memory resources are limited

in the robotics software. The goal of this project is to create a framework through

which embedded software like MATLAB can communicate to hardware like

Arduino and demonstrate its application for robot’s framework that can be used in

agriculture. This project is also to run simulations with software and hardware also

involve software simulation and hardware demonstration in real-world environment.

1.2 Problem Statement

Malaysia should encourage rice and chilli farming due to its struggling economy

[2]. An increasing population and worldwide market demand agricultural products.

Malaysia needs a more advanced and reliable food production system to address

food sustainability and minimize dependence on imported basic food supply.

3

Upgrade seeds, pesticides, insecticides, fertilizers, and farming procedures. After

locating the chili, the robot arm can pick up the plants one by one. The robot's

durability and endurance will outperform a human's speed. Preventing chilies from

bruising and lowering crop quality depends on the robot arm and fruit picking

process.

Robots are made up of numerous functional components and require a variety of

specific talents. These algorithms may be tested in either a simulated or real-world

environment. An experimental setup with real parts can be used to test a design, but

this approach is both costly and limiting in terms of exploratory study. In addiction it

is performed time-consuming to design a robot since each component has a distinct

function, such as developing architecture robots, creating visual images, and creating

arm robots. Hence, a simulation framework can cut down on the time, effort, and

money needed to demonstrate working prototype of robot software [3].

In this project, the simulate framework will be integrated hardware involved in an

embedded software to keep track of robot’s system. The robotic system

demonstrated of this prototype with utilized the Cili Padi Picking Robot, as an

example one of the systems that can be used in agriculture.

1.3 Objectives

The objectives of this project are to:

1. Analyze and broken down a Cili-Padi Picking robot framework large

systems into smaller and more manageable pieces.

4

2. Develop an embedded software part of the Cili-Padi Picking robot

function using MATLAB software (Simulink and App Designer) that

can be interfaced with Graphical User Interface (GUI).

3. Demonstrate the functionality of the embedded software in real time.

1.4 Scope of Project

The scope of this project to analyses a robotic framework of a Analysis part of

Robot Cili-Padi Picking Robot and develop its framework through the use of

MATLAB Simulink software communicate the Arduino using serial communication

and freeRTOS. The hardware prototype of the robot demonstration within the

Arduino board as its base platform.

1.5 Report Outline

 The information presented in this report on the project is broken up into five

chapters which are the introduction, the background study, the methodology

followed by the results and the discussion, and the conclusion. In chapter 1, the

description of the ideal and concept for robot agriculture and explanation step by

step to analysis and develop the robot framework. This is followed the project

background, problem statement, objective and scope of project.

In Chapter 2 focused on the literature review or background study on robotic

framework and embedded software using MATLAB software. In explanation for this

comparison of previous research papers concerning the framework and application.

In chapter 3 is a focus in methodology content to achieve the objective project.

This is followed by objective 1, the explanation on how analysis of Cili-Padi picking

robot framework. In objective 2 show the step to develop embedded software and

5

hardware interface using MATLAB. And objective 3 is the final step how

embedded software can run in real time in hardware.

Chapter 4, as where the result show achieves of the objective project. Result in

objective 1 with analysis of Cili-Padi picking robot framework and can defined

which actuators and sensor has been used and parameter has been used. Next, the

objective 2, result show the develop embedded software interfaced with hardware

and software communicate to produce GUI. Lastly objective 3 show the result

functionality of embedded software in real time.

 Finally, chapter 5. conclusion and future works towards the project. At

conclusion will explained the objective project has been successful. This also

explained the limitation that project face and can explained the solve at future work.

6

CHAPTER 2

BACKGROUND STUDY

This chapter focuses on research on the development and analysis of

embedded software for a robot. First, research about robotic frameworks and their

applications Second, the basic embedded software for robots and robot functionality.

Finally, a robot's software architecture and programming.

7

2.1 Robotic Framework and Its Application

The picking process has a significant impact on gripper designs for robotic

harvesting; therefore, this section summaries the primary strategies currently used

with the goal of identifying the gaps where soft robotics might make the largest

contributions.

An integration framework is an essential tool for managing data flow across

software programmed that interact with each other. An integration framework

provides an abstraction for how information flows across applications and

organizations. For example, research deep-learning-based object-detection

framework is used in the Human Support Robot (HSR) platform to recognize the

door handle. The framework proposed in this paper is built to essentially identify and

classify types of door handles. The base framework used in this paper is YOLO V3

built using Dark Flow in Python. [4]

It's imperative that efforts like the Surgeon–Robot paper research by

Prokhorenko and Klimov, based on specialist software or results of open-source

solution integration, address the issue of translating surgeon orders into automated

procedure execution processes. That translation is provided by a hardware and

software system that interfaces between the surgeon and the robot to construct this

type of application software, presents a generalized framework architecture Both

OP:Sense and ARAKNES have been examined as the best existing frameworks for

medical robotics. Two proprietary (and consequently non-modifiable) solutions are

currently in development in this group [5].

An architecture for a socially assistive robot system for cardiac rehabilitation

based on model-controller structure and finite-state machine and behaviour module

8

has been presented in prior work by Casas J, etc. al [15]. The platform's purpose is to

increase the quality of the service offered, as well as the patient's involvement and

performance, by providing social support and aid during the therapeutic process.

Both the Robot Controller and the Robot Model provide the basis for this paper's

work. Robots are able to interface with humans and other systems using this

framework, which is made up of two parts: an Application Layer and a SARI (Self-

Aware Robotics Interface). To access the robot's resources through TCP/IP, the

interface employs the NAOqi Framework. The interface has two modules, Camera &

Audio Manager, which manages camera, microphone, and speaker administration.

The rest of the robot's resources, including as sensors, actuators, and the board built

in, are managed by the Device Communication Manager (DCM) module [6].

An indoor robotic framework for human-robot interaction is presented by

Ranieri C. and Nardari G. in their article. This study focuses on a robot framework,

dubbed LARa, that was developed as part of the referred project. The LARa robot

and the LARa library make up this framework. A robot platform for doing

experiments indoors and competing in robot contests, it was created for this purpose.

Pioneer P3DX robot, additional sensors, and an embedded laptop make up the LARa

robot, which costs less than $1,000. The laptop is responsible for providing high-

performance computation and visual feedback, including a robotic face. The LARa

robot was designed to serve as a testing ground for research on human-robot

interaction, with a particular emphasis on service robots. Computer vision was made

easier because to the LARa library's beneficial behaviours for human-robot

interaction applications These modules were made available as ROS topics so that

they may be used in a variety of contexts [7].

9

Titled Teaching a Robot with Unlabeled Instructions: The TICS Architecture,

Najar A Sigaud O's study discusses how to teach robots without labelling their

instructions. Humans may teach robots new tasks by giving them unlabeled

instructions that they can follow in real time. Task Models, Contingency Models,

Instruction Models, and Shaping Components make up the four primary components

of the TICS architecture. Novel robotic task learning framework that combines the

advantages of autonomous and interactive learning systems. To teach a robot new

skills, this system uses unlabeled human instructions. Through the use of unlabeled

instruction signals, a task-learning process is simplified. To speed up the learning

process, these signals are analysed and utilised concurrently by the robot [8].

Cloud Robotics (CR) platform for data centre environmental monitoring is

presented in this work by Ben Amor A, with the title Robotics based Solution for

Data Center E-Monitoring. Because data centres use a lot of power, it's essential to

keep an eye on the temperature in each one. In a data centre room, a mobile robot

can autonomously navigate using an already-created map to accurately monitor

critical measurements, localise itself, and perform an array of measurements that the

user provides via a Graphical User Interface (GUI). This platform is based on the

Robot Operating System (ROS) . Robot Operating System (ROS) middleware is the

foundation of our system, which is built on cloud robotics and ROS middleware,

which includes mapping and navigation algorithms [9].

In the publication "Synchronous Robotic Framework," written by Balaji N

and Kilaru J Morales-Ponce O, the authors offer a synchronous robotic testbed

known as SyROF that enables the rapid development of robotic swarms. Describe

the design of the SyROF testbed, which comprises of many mobile robots of varying

10

types, such as omnidirectional robots, drones, and rovers, in this paper. Each robot

possesses a CPU, a flow sensor, a sensor that functions similarly to a GPS, a sensor

that detects gyroscopes and accelerometers, and a Bluetooth chip. Create and put

into action a real-time publish-and-subscribe system as the foundational platform

[10].

In conclusion, comparison of the framework and its application by all of the

mentioned research is provided in Table 2.1. In the Robotic Framework, the

implementation of robotic must depend on something. The specific use of the robot

will determine the kinds of inferences that can be drawn from the robot's

architecture.

Table 2.1 Research Robotic Framework

Robotic Framework Platform Application Year

ARAKNES , Op:sense

[5]

Multiplatform Medical Robotics 2019

NAOqi [6] Multiplatform Social Robotic 2018

LARa [7] Multiplatform Robotic Competitions ,

Robotic Framework

2018

TiCS , Novel [8] Multiplatform Education Robotic,

Teaching Robotic

2021

ROS [9] Ubuntu Cloud Robotic 2019

Testbed [10] Ubuntu Robotic Swarms 2020

11

2.2 Basic Embedded Software for Robot

An embedded system is a computer system in which software was developed

specifically for the hardware it runs on [11]. This system could be part of a bigger

system or it could be self-contained. ROM allows software to be permanently stored

within a memory module, eliminating the need for additional computer memory.

Some examples of where embedded systems are put to use are in

telecommunications, smart cards, missiles, computer networks, digital consumer

electronics, and satellites.

Through task allocation, algorithm computation, and data analysis, the robot

firmware implemented on PC or embedded microcontroller plays a significant role in

creating the required actuation signals. transmission. The software programmed into

the embedded microcontroller decides the control and action of each component of

the robotic system so that the system can carry out the duties that have been

previously stated [11].

Applications of embedded systems include Robotics, digital cameras, multi-

tasking toys, cooking and washing systems, biomedical systems, key-board

controllers, mobile & smart phones, computing systems, electronic smart weight

display system, and entertainment systems including videos, games, music systems,

and video games, etc. The embedded system design process might begin with

simulation, which is used to test the circuit because it is difficult to replace hardware

if the circuit malfunctions. If the findings match the desired ones, sequential wafer

procedures will be used to design the process permanently.

12

2.2.1 Embedded System Hardware & Software

A hardware platform is necessary for an embedded system in order for it to

interface with a variety of real-time inputs and outputs or variables. The term

"controller" can refer to a microcontroller or a microprocessor. Other components of

the hardware include memory modules, I/O interfaces, display systems,

communication modules, and so on. In paper by M. Dasygenis et al [12]. The

primary hardware components of our autonomous vehicle implementation are a

LIDAR sensor and an embedded system, with the project's overarching goal being

collision avoidance. A Raspberry Pi and an RPLidar A2 Light Detection and

Ranging (LIDAR) is a surveying technique that constantly emits pulsed light in all

directions (360 degrees) and measures the reflected pulses at all angles using a

sensor. Received pulses are analysed for their timing and wavelength in order to

determine how far away an obstruction is. A thorough analysis of these readings is

required for detection of obstacles and navigation. A Raspberry Pi 3 is utilised for

the processing. Thanks to its 40 GPIO (General Purpose Input Output) pins, the

Raspberry Pi 3 is a highly configurable, lightweight, capable, and inexpensive Single

Board Computer (SBC) [13].

Embedded System Software makes it possible to programme in any way that is

wanted, allowing it to control a variety of different processes. Following its

compilation into code and subsequent dumping into hardware controllers, it is

written in a high-level format.

2.2.2 Real-Time Embedded Systems

Computer systems that operate in real time are known as real-time embedded

systems, and they are responsible for tasks including monitoring, reacting, and

13

controlling external motion. Sensors, actuators, and input/output (I/O) interfaces

allow the external environment to communicate with the computer system. Real-time

embedded system refers to a computer system that is physically integrated with

another computer system. Embedded real-time systems are employed in many

different industries, including the medical, government, and military sectors [14].

Numerous autos, robotics, industries, etc., can benefit from Robotic Real Time

Projects in Embedded Systems. Some current initiatives that make use of robotics

technology are listed below.

2.2.3 Model Based Design in MATLAB

Testing for Model In the Loop (MIL), Software In the Loop (SIL), Processor In

the Loop (PIL), and Hardware In the Loop (HIL) occurs during the verification

phase of the Model-Based Design process. This phase occurs after the requirement

of the component or system that is being developed has been recognized, and after

the component or system has been modelled at the simulation level. There are a few

verification procedures that take place before the model is delivered to the hardware

for production. These verification steps are given below. Using the design of a

controller for a DC motor as an example, we will now place the code that was

created from the model of the Controller in a System-on-Chip that is supported [16].

A technique called Model-in-the-Loop (MIL) simulation, also known as Model-

Based Testing, is used to abstract the behavior of a system or sub-system in such a

way that this model can be used to test, simulate, and validate that model. This

technique is sometimes referred to as "MIL simulation." Testing and simulation

according to MIL standards is the starting point for software verification and

validation. It involves testing individual model modules or combined model modules

14

in a development environment such as MATLAB Simulink from MathWorks or

ASCET from ETAS. For instance, once a plant model has been established, MIL can

be used to validate whether or not the controller module is able to control the plant in

the correct manner. It ensures that the controller logic is responsible for producing

the necessary functionality [17].

Software in the Loop, also known as SIL, is a process that creates code from the

controller model and then uses that code instead of the controller block. Verifying

the functionality of embedded software, algorithms, control loops, and other system

parts on a personal computer or another platform apart from the actual control

hardware is what SIL testing entails. It involves modelling the physical plant as a

software simulation and the software itself as C code. Imagine that there are some

strange outcomes from the SIL. In this scenario, it may be essential to return to the

MIL stage, make adjustments as indicated by the SIL results, reaffirm that the

alterations continue to give acceptable results from the MIL testing, and then repeat

the process of SIL verification. When dealing with more complicated systems, it is

often required to go through this circular procedure multiple times. Following the

successful completion of the MIL and SIL verification processes, the following step

is the PIL verification [18].

Putting the Processor in the Loop PIL testing might alternatively be called FIL

testing, which stands for "FPGA-in-the-loop testing," depending on the architecture

of the system. At this stage, the embedded software, algorithms, control loops, and

other components of the system are executed as a closed-loop simulation directly on

the physical hardware of the processor (or FPGA), as opposed to being run on a

personal computer or some other platform. This guarantees that the controller

15

software will work smoothly on the hardware, and that the outputs will be accurate

and as anticipated. If there are problems at this level, it may be possible to determine

that the required tasks cannot be performed by the processor, or it may be possible to

determine that the programme has to be modified. In the event that software changes

are required, it is possible that it will be essential to return to the SIL or even the

MIL testing phase before returning to the PIL phase. In the same time that the

control software is being developed and verified through the use of MIL, SIL, and

PIL testing, the various hardware systems and subsystems are being modelled and

validated through the utilisation of MBSE tools and methodologies. HIL testing is

often the final validation and verification stage that takes place just before starting

the system integration process [19].

Before attaching the embedded processor to the actual hardware, HIL testing is

performed by running a simulated plant model on a real-time system such as

Typhoon, OPAL-RT, dSPACE, Speedgoat, and NI. This is done before the

embedded processor is connected to the hardware. The majority of these tools are

compatible with simulation models that were developed on platforms such as

MATLAB Simulink or ASCET. Deterministic simulations and real physical

connections to the embedded processor are both components of HIL. These

connections can take the form of analogue inputs and outputs, communications

interfaces, and other similar elements. It does this by recording the interaction that

takes place in real time between the control software and the actual hardware

environment. This allows it to discover glitches and other issues that could otherwise

go undetected by simulations. It is possible, for instance, to add delays and

attenuations to an analogue channel, both of which might generate instabilities in the

control loop. HIL testing is necessary in the aerospace and automotive industries,

16

particularly for operations that are considered to be safety-critical. In the event that

an issue arises during the process of integrating the different subsystems, it is

possible that HIL testing will need to be repeated. In the most severe circumstances,

it may be required to revert back to an even earlier stage in the process of MIL, SIL,

or PIL[20].

Table 2.2 show the different of model design in MATLAB. For each Model has

prototype limitation and according to the suitability of the prototype to be built.

Table 2.2 Model Based Design in MATLAB

Model Based

Design

Description Example Prototype

Limitation

Model In the Loop

(MIL)

MIL testing uses a

software

environment like

MATLAB to

perform the

simulation model

and interface the

physical system or

component.

Utilize an interface,

such as an Arduino

board, to link the

physical system or

component to the

software

environment.

Utilize the

simulation model to

transmit inputs to

and receive outputs

from the physical

system.

MIL testing

necessitates a

sophisticated

relationship between

the simulation model

and the physical

system or component

being evaluated.

Software In the Loop

(SIL)

SIL simulation

model is executed in

Using an interface,

such as a function

SIL testing needs a

sophisticated link

17

a software

environment, such as

MATLAB, and the

software or

algorithms being

tested are connected

to the simulation

model via an

interface.

call, connect the

under test software

or algorithm to the

simulation model.

Send inputs to the

software or

algorithms and

receive their outputs

using the simulation

model.

between the

simulation model

and the software or

algorithms being

evaluated.

Processor In the

Loop (PIL)

PIL testing involves

running the

simulation model in

a software

environment, such as

MATLAB, and

connecting the

control system or

process to the

software

environment via an

interface.

Using an interface,

such as an Arduino

board, link the

control system or

process to the

software

environment.

Utilize the

simulation model to

transmit inputs to

and receive outputs

from the control

system.

PIL testing needs a

connection between

the simulation model

and the being tested

control system or

process, which can

be difficult to

establish and

maintain.

Hardware In the

Loop (HIL)

HIL testing, the

simulation model is

executed in a

Using an interface,

such as an

ADC/DAC (analog-

HIL testing

necessitates a

sophisticated

18

software

environment, such as

MATLAB, and the

hardware or physical

system being tested

is interfaced with the

simulation model.

to-digital/digital-to-

analog converter),

connect the hardware

or physical system

under test to the

simulation model.

Send inputs to the

hardware or physical

system and obtain

outputs from it using

the simulation

model.

relationship between

the simulation model

and the hardware or

physical system

being tested.

2.3 Basic Structure of Robot

Fruits can be detached in one of two ways mechanically, wherein pieces of

fruit are removed from the tree branch using a machine or mechanical mechanism, or

(ii) manually, wherein pieces of fruit are extracted from the tree branch using the

human hand. The methods of mechanical fruit harvesting are categorized as follows

in : Both I those who utilise air blasting, canopy shaking, limb shaking, or trunk

shaking to take the fruits from the entire plant and (ii) those that use automatic

robotic picking robots that require minimal or no human intervention to harvest the

ripe fruits [21].

19

A robot is an autonomous mechanical system that can carry out tasks and

interact with its surroundings using preprogrammed instructions. The study and

practice of robotics includes all aspects of the robot life cycle from conception to

operation. A robot consists of a frame or body, a control system, manipulators, and a

drivetrain. No restrictions on size or shape are placed on the body or frame. To put it

simply, the robot's body or frame is what holds everything together. In popular

culture, robots typically resemble humans in size and shape, yet most actual robots

look nothing like humans. Most robots prioritise functionality above aesthetics.

Many robots rely on interacting with their surroundings and the outside world

to carry out their tasks. Robots can be used in situations where humans can't because

they need to move or rearrange objects without touching them. As opposed to the

Body/frame and the Control System, which are required for the robot to function, the

Manipulator is not required for the robot to function. In particular, Unit 6 of this

programme emphasises the use of manipulatives.

While some robots can accomplish their goals without ever leaving a single

spot, mobility is typically essential for robots. They need a drivetrain in order to

complete this task. A powered means of transport is what drivetrains are all about.

Legs are used by humanoid robots, while wheels are used by the vast majority of

other robots [13].

2.4 Functionality of Robot

It is not sufficient to classify robots based on their generation (first, second, or

third) or the distinction between autonomous and non-autonomous robots. Robotics

is a very complex system.

20

To comprehend the typology and models of robots currently available, it is

necessary to comprehend the robots' underlying structure and primary functions.

Essentially, they consist of four "functional units" and must be viewed as complex

systems with various "functional organs" (mechanical organs, sensory organs,

control organs, governing, and calculation organs).

Before viewing each of these organs, it is important to recall the Robotic Institute

of America's definition of robotics (RIA). "A robot is a programmable,

multifunctional manipulator capable of performing a variety of tasks. A robot also

gathers data from its surroundings and moves intelligently in response."

Fundamentally, robots perform three functions — "sense," "think," and "act" —

which form the basis of their autonomy. They "sense" environmental stimuli, "think"

in terms of predetermined planning algorithms, and "act" based on these algorithms,

which define their reactions and overall behavior.

This three-function process drives actions such as increasing pneumatic power to

orient a picking limb in order to pick and place a component on a circuit board or

lowering a tray onto a patient's side table. As depicted in Figure 2.1, these three

functions define the primary technologies used in robotics [22].

Figure 2.1 Fundamental Robotic Operations and

Actions

21

2.4.1 Mechanical Structure Function

The functional organs of a robot will be explained independently in the follow

sub-section. The controller, robot body, robotic arm, sensors, and end-effector are

the primary parts of an industrial robot. Each of these parts plays a crucial part in an

industrial robot's functioning as a whole. Mechanical components may not be as

visible as the rest of the robot, but they are essential to its operation. Industrial robots

are able to move and do their intended tasks because of the mechanical parts that

make them work.

For example, in paper “Lower Limb Rehabilitation Exoskeleton Robots”

Rehabilitating the Lower Limbs For exoskeleton robots to be able to transmit force

and energy through the wearable link, they need a mechanical construction similar to

human lower limbs. These results are attainable through the development of a

suitable robot mechanism and actuation [23].

2.4.2 Sensory Structure Function

The robotic systems have the ability to "perceive" their surroundings and

react accordingly. Of course, it's not about how the robot feels, but rather how the

robot is equipped with sensors that allow it to gather information about its internal

mechanical status. variables (such as coordinates and velocity) and external factors

(such as weather and terrain)

2.4.3 Control Structure (Robot Control Organs)

The systems that ensure the robot can carry out the tasks for which it was

designed are located in the control organs, which serve as bridges between

perception and action. Actuators (electric motors, hydraulic or pneumatic systems,

etc.) and control algorithms for driving the actuators provide the control framework.

22

2.4.4 Governance Structure (Memorization and Calculation Organs)

Function

In this context, "systems" refers to the means through which robotic machines

may be programmed, calculated, and monitored. Hardware (microprocessors,

memory, etc.) and software (controllers, algorithms, etc.) typically make up the

governance and calculation structure (application programs, calculation algorithms

coded in programming languages, standard or dedicated). Table 2.3 show the short

explanation for each function of robot and include the example.

Table 2.3 Functionality of Robot

Function Description Example

Mechanical Structure It gives the robot a physical

form as well as the capacity

to move and interact with its

surroundings.

Bridges sustain vehicles and

people and transfer their

weight to the ground or other

supporting structure. A

bridge must be strong and

stiff enough to withstand the

loads it will face and made

of materials that can

withstand these stresses.

Sensory Structure In a robot, a sensory

structure is a device or

component that is used to

detect and respond to stimuli

from the environment, and

Robots utilise cameras to get

visual data. Robot cameras

detect light and convert

visual data into electronic

impulses. These signals are

23

its function is to collect

information about the

environment and transmit it

to the robot's processing

unit, so that the robot can

perceive and respond to its

surroundings.

relayed to the robot's

processing unit, which

interprets and displays the

environment.

Control Structure A robot's control structure is

a system or component that

regulates the robot's

behaviour in response to

input from sensory structures

and other sources. A control

structure processes the input

and generates commands or

signals that direct the robot's

motions, activities, and

functions.

The control system is

responsible for processing

data from sensors and other

sources and creating

commands or signals that

direct the movements,

activities, and functions of

the robot.

Governance Structure A system or collection of

processes used inside an

organisation or group for

making and implementing

decisions. A governance

structure for a robot would

be a system or set of

processes used to make and

implement decisions

A firm that develops and

manufactures industrial

robots may create a

governance structure to

ensure that the robots are

safe, ethical, and in line with

the company's beliefs and

aims. Processes like:

24

regarding the development,

deployment, and use of the

robot.

Reviewing and approving

robots in production,

considering their potential

effects on people and the

workplace.

Establishing robot

maintenance and operation

rules, including worker

safety and training.

2.5 Software Architecture and Programming of a Robot

The robot system's operations are managed by the governance unit using a

combination of sensor data and an internal model of the automaton's mechanical

structure. Algorithms that decide the actuator signals should be placed at the highest

level of the control architecture's hierarchy. Within such a hierarchical framework,

the output of one level's computation is transmitted to the level below it, where it is,

however, affected by the previous level's output in a backwards fashion.

Looking at robotic system code can be done in one of three ways:

1. Teaching by showing: the robot is led along a path, and it learns the positions

achieved thanks to the sensors; afterwards, it merely copies that sequence of

locations.

2. A high-level programming language with intricate data structures, variables,

and routines is available for use with robots.

25

3. Object-oriented: the same as the first, but the language is object-oriented.

In summary a robot is an intricate mechanical device with moving parts. But may

move and perform its functions suitably in order to fulfil the roles for which it has

been designed. It needs to be modelled mathematically, with the interrelationships

between its parts accounted for (mechanical organs, sensory organs, control organs).

26

CHAPTER 3

METHODOLOGY

This chapter explains how the project was finished. First, analyses the

framework of the robot. Next, describe how Embedded Software for Requirements is

developed. Cili-Padi Picking Robot that adheres to embedded sub-part development

software. Lastly, explain the demonstration hardware and software's functionality.

27

Figure 3.1 Flowchart of Project

Figure 3.1 show the flowchart of the project execution. The first step in the

project execution is Research on available robotic framework. Then analyzing robot

structure to identify sensor and actuators for robot. After that identify the robot

requirement enough or not. If not enough requirement robot, analyzing robot

structure again and if requirement enough the objective one in this project is

accomplished. Next, to achieve objective two create coding for robot sensor and

actuators and apply the FreeRTOS coding for real-time robot demonstration. After

that research the robotic framework in Simulink to connect Simulink and Arduino. If

Arduino and Simulink communicate the objective to is achieve. If not communicate

research again about Simulink and Arduino to communicate. Lastly, for achieve

objective three , first step creates the Graphical User Interface(GUI) in App Design

at MATLAB. After the demonstrate the functionality in Real Time is successfully or

not. If not function , research again Robotic framework in Simulink. If demonstrate

functionality in real time the objective three is accomplished.

28

3.1 Analyzing of Robot Framework for Cili-Padi Picking Robot

Figure 3.2 Architecture of Cill-Padi Picking Robot

In order for the input and output systems to communicate well with one another

one, must first comprehend the purpose of the robot and be familiar with its internal

components. This requirement analyzes each individual component of the robot's

interior, one at a time, in order to build a framework node for the robot.

In this project, framework of a Cili-Padi Picking Robot has chosen as one of the

examples of robot that can be applied in agriculture robot. The Cili-Padi Picking

Robot is a machine that can be used to harvest mature chilli peppers. The agricultural

sector is the one that will be most benefit from this technology, in some cases will ne

more benifit there is insufficient labour available in the agriculture sector. Therefore,

research has been done in order to find a solution to the challenge of developing

robots that can assist farmer in the agricultural industry. The robot architecture for

harvesting ripe rice chillies is depicted in the picture labelled Figure 3.2. In the cili-

padi picking robot system, the robot framework was analyzed based on this cili-padi

picking robot figure. Two different kinds of cameras have been utilised in this

29

automated system in order to monitor the maturation of the chilies. Which are

tracking cameras and lidar cameras. The lidar camera will identify the mature chilies

that are ready to be picked up at this point. The gripper delta arm robot will then

automatically go to the position where the ripe chilli is located after being guided

there by the tracking camera after it has detected its location. Gripper delta arm

utilises three motors in order to move the delta arm in an easy and convenient

manner to the box. Regarding the mobility, will be using six Flex sensors. The flex

sensor function allows the robot to move in response to the tension and force that is

applied by our hand grip. In addition, there is both a left-hand and a right-hand

condition for the command.

In order for the input and output system to communicate well with one another of

each individual component of the robot’s interior, one at a time, in order to build a

framework node for the robot. The sensor and actuator after analysis of the cili-padi

picking robot its show in framework consist of several sensor and actuators such as

IMU sensor, flex sensor, stepper motor and servo motor. The architecture and

component used analysis of in the robot is show in Figure 3.3.

30

Figure 3.3 Cili-Padi Picking Robot Architecture and Components.

3.2 Development an Embedded Software for Requirement Cili-Padi Picking

Robot

To perform as intended, a robotic system requires integration of specialised

hardware and software. In this section, the system's requirements, which include a

description of the desired behaviour and limitations of the cili-padi picking robot

will be detailed respectively.

3.2.1 Navigation System Requirement

In this cili-padi picking robot, two differential drive kinematic. Stepper motor

required as the navigation system. The two-stepper motor are required on the left and

right of the motor for navigation system requirement is show in Figure 3.4 waymove

the robot which are by :

31

1. Using gui – Example Joystick, or button navigation

2. Using handler have 4 sensors around the handler – like using simple fuzzy

logic for predict direction

3.2.2 Delta Robot Arm Requirement

The cili-padi picking robot in this project consists of a delta robot arm. The robot

delta arms are robotic arms that operate in a forward or reverse kinematic motion

using three motor servos. As they can move rapidly and precisely, they are

frequently employed for pick-and-place applications. An IMU (Inertial Measurement

Unit) sensor controls the arm's motion by measuring the arm's angle along the x, y,

and z axes. The IMU sensor is utilized to determine the arm's position and change its

motion accordingly. The delta robot requirement as a shown Figure 3.5.

Figure 3.4 Navigation System Requirement

Figure 3.5 Delta Robot Arm Requirement

32

3.2.3 Robot Gripper Requirement

To control a robot gripper with one servo that rotates the entire gripper 360

degrees with an accuracy of 1 degree, has need a servo that is capable of rotating to a

specific angle with high precision.

For the second servo that is used to open and close the claw gripper, will again

need a servo that has high precision and can move to a specific angle with accuracy.

Also need to consider the torque of the servo, as it will need to be able to generate

enough force to open and close the gripper. The control system for this servo will

need to be able to send precise control signals to the servo in order to achieve the

desired angle of rotation. Robot Gripper requirement shown Figure 3.6. In app

design had knob rotate control and can edit manually data using edit text. For open

closed claw using the toggle button.

For gripper have 2 actuators :

1.Analog servo 1 is to rotate the entire gripper 360 deg Accuracy 1 deg.

2.Analog servo 2 is to open and closed the gripper.

3.2.4 Robot Vision Requirement

To detect ripe chilies using a camera and an algorithm it shows in Figure 3.7, a

camera able to capture high-resolution photos or video of the chilies is required.

Figure 3.6 Robot Gripper Requirement

33

Additionally, the camera should have a broad field of vision in order to capture a

bigger portion of the chiles. The algorithm used to detect ripe chiles will depend on

the particular features being sought. The size, shape, colour, or texture of chilies

could be used to determine whether they are ripe.

Once the camera and algorithm are in place, they must be integrated into a

graphical user interface (GUI) that displays the camera feed and the algorithm's

results. The user interface should allow the user to alter camera settings and

manipulate the algorithm as necessary. Possible additions to the GUI include the

possibility to save photos or movies, as well as the display of statistical data

regarding the detected chilies.

1. Camera – GUI display image

3.3 Real-time robot operating system using FreeRTOS

FreeRTOS is a real-time, open-source operating system for microcontrollers that

simplifies the development of multitasking applications [24]. FreeRTOS supports

numerous threads or tasks, mutexes, semaphores, and software timers. For low-

power applications, a mode without ticks is offered. Priorities on threads are

supported. Multiple processes or threads can apparently run concurrently on the

majority of operating systems. The term for this is multitasking. Each CPU core can

Figure 3.7 Robot Vision Requirement

34

only run one application at any given time. A component of the operating system

known as the scheduler is responsible for determining which application will execute

when and creates the illusion of simultaneous execution by frequently switching

between programmes. The scheduler of a Real Time Operating System (RTOS) is

intended to offer a predictable (often termed deterministic) execution pattern. This is

especially relevant for embedded systems, such as the Arduino devices, because

embedded systems frequently have real-time requirements. Traditional real time

schedulers, such as FreeRTOS's scheduler, accomplish determinism by permitting

the user to specify a priority to each thread of execution. The scheduler use the

priority to determine which thread of execution to execute next. Task is the term for

an execution thread in FreeRTOS [24].

In this project that implementation that have been apply are FreeRTOS to get

real-time robot operating. According to all data running the most important data

selected will be put at higher priority. In Cili-Padi Picking Robot project, it will

priorities the Inertial Measurement Unit (IMU) sensor. This is due to the fact that the

coordinate Cili-Padi Picking Robot and position arm delta robot must always

transmit data for the navigation system, Robot Gripper system, and Robot vision

system to operate effectively.

35

This is 5 step to create FreeRTOS:

1. Include the Arduino library FreeRTOS header file follow in Figure 3.8.

2. Provide the function prototype of all functions are developing for execution,

which is represented as Figure 3.9.

3. Create tasks and launch the task scheduler in the void setup() function. In the

setup method, the xTaskCreate() API is invoked with particular

parameters/arguments to create a task. The explanation detail in Table 3.1.

#include <Arduino_FreeRTOS.h>

void Task1(void *pvParameters);

……..

…….

void Task2(void *pvParameters);

Figure 3.8 Library FreeRTOS

Figure 3.9 FreeRTOS Task

Table 3.1 Description Each Function in Coding FreeRTOS

36

4. Start the scheduler in a void setup using the “ vTaskStartScheduler(); “ After

creating the task.

5. The loop() method will be left empty so that no task will be run manually and

indefinitely. Due to the fact that task execution is now handled by Scheduler.

6. The next step show the Figure 3.10 is to construct task functions and write the

desired logic within them. The function name must match the first argument

of the xTaskCreate() API call.

7. The Figure 3.11 show majority of codes require the delay function to halt a

running job, but it is not recommended to use the Delay() method in RTOS

because it stops the CPU and, in turn, RTOS. Therefore, FreeRTOS provides

a kernel API to pause a job for a predetermined amount of time.

This API can be used for delay-related functions. In Figure 3.12 show API delays

a job by a specified number of ticks. The actual amount of time the task is blocked is

dependent on the tick rate. The portTICK PERIOD MS constant can be used to

derive real-time from the tick rate. This means that if want a 200ms delay, simply

type this line:

void task1(void *pvParameters)

{

while(1) {

..

..//your logic

}

}

vTaskDelay(const TickType_t xTicksToDelay);

Figure 3.10 void Task Coding and Loop

Figure 3.11 Codes Require Delay

37

This example to use these FreeRTOS APIs to implement three tasks:

1. xTaskCreate();

2. vTaskStartScheduler();

3. vTaskDelay();

3.4 Arduino coding for each part sensor for Cili-Padi Picking Robot

This section describes the Chili-Padi Picking Robot's operational sensors. Each

sensor has a unique function. Some sensors collect data that is unnecessary for this

project. Consequently, this research investigates which data should be collected and

which should not be collected. As an illustration, the IMU sensor - GY85 has nine

Data, including three accelerometer data, compass data, and gyro data. Therefore,

each data has x, y, and z data of varying forms. for Chili-Padi Picking Robot the

suitable data used is Accelerometer data and Gyro data. Therefore, it is essential to

identify the sensors utilised to choose relevant data for this robot.

3.4.1 Part of Navigation system Arduino coding

Using an Arduino, a Flex Sensor, and a Motor, this is the component that makes

up our part of the Cili-Padi Picking Robot. This component is needed while

manually navigating the Cili-Padi Picking Robot in order to move it. Using of the

FreeRTOS library that implement a real-time operating system kernel for embedded

devices in the Cili-Padi Picking Robot. Figure 3.13 show the connection with arduno

and Figure 3.14 is Coding. Output will show condition flex sensor in degree and

value voltage is produce at Figure 3.15.

vTaskDelay(200 / portTICK_PERIOD_MS);

Figure 3.12 API Delays

38

Figure 3.13 Circuit Flex Sensor and Motor

Figure 3.14 Coding Flex Sensor to Apply at Motor

39

3.4.2 Part of Delta Robot Arm and gripper system Arduino coding

A member of the sensor family known as an inertial measurement unit (IMU) is a

piece of electrical equipment. In order to measure the acceleration, angular velocity,

and orientation of the sensor, it utilises a combination of a gyroscope, an

accelerometer, and a magnetometer. An accelerometer and a gyroscope are the two

components that make up a type I inertial measurement unit. A magnetometer is

included as part of a type II IMU as well.

All three types of sensors—accelerometers, gyroscopes, and magnetometers—

collect information along a single axis (X: pitch, Y: roll, Z: yaw). For a type II

inertial measurement unit (IMU), need to integrate three components for each axis

(an accelerometer, gyro, and magnetometer) in order to acquire data for all three

axes. The conventional inertial measurement unit (IMU) sensor comprises nine

degrees of freedom (DoF), which are comprised of three accelerometers, three

Figure 3.15 Output from Coding Flex

40

gyroscopes, and three magnetometers. There are only two types of sensors that can

be used for the robotic arm on the Chili Padi Picking robot: there are three

accelerometers and three gyroscopes.

3.5 Development Functionality Robot using MATLAB software

This section describes how Arduino and MATLAB interact with external

hardware via serial communication. Numerous external hardware devices are

intended to connect to a PC via its Serial Port. This project will connect Arduino to

MATLAB through serial communication using Simulink block.

To create a Graphical User Interface (GUI) utilising the SIMULINK platform as a

function to adjust Arduino input and receive output. Using App Design, to create a

graphical user interface with input and output buttons. App Design has alter and

show the value from the Simulink block that was developed as a communication

medium between MATLAB and Arduino.

Before connect the embedded processor to the actual hardware, and can run the

simulated plant model on a real-time system such as Speedgoat. This is what is

known as a Hardware-in-the-Loop, or HIL, Simulation. The real-time system is

capable of carrying out deterministic simulations and has real-world, physical

connections to the embedded processor. These connections can take the form of

analogue inputs and outputs as well as communication interfaces such as CAN and

UDP. This will assist in determining problems that are associated with the

communication channels and the I/O interface. One such problem is attenuation and

delay, both of which are brought about by an analogue channel and can cause the

controller to become unstable. These behaviours are not amenable to being modelled

or simulated. HIL testing is frequently carried out for safety-critical applications, and

41

the validation requirements for the automobile industry and the aerospace industry

necessitate it.

3.5.1 Serial Communication MATLAB (Simulink) connect in Arduino

At this point in the process, the hardware and software will both communicate

with Simulink over the serial port. To make use of the SEND block in order to

transfer data from Simulink to Arduino, and have to make use of the RECEIVE

block in order to transfer data from Arduino to Simulink. In Figure 3.17 this is block

from Simulink to Arduino with single data send and receive for communicate using

serial communication.

This section will begin transmitting and receiving single data using serial

communication between Arduino and Simulink as part of an effort to send and

receive data from Arduino. The coding and simulink block has been configured as

depicted in Figure 3.18 and Figure 3.19. Set the Arduino's coding to

"writeToMatlab(myVal*2);" to display the data received and transmitted. myVal is

derived from simulink block data and arduino contains data for times 2.

Referring to Figure 3.13, the data 4 is located to the input block, and when the

block is transferred, the output data is 8. In this case, the receiving block has

received data from the Arduino that is multiplied by two and added to the input data,

which is four. Consequently, 4x2 equals 8 is evidence that arduino and simulink

successfully send and receive data.

42

 It is possible to send and receive by sending and receiving many data sets.

This is because this project exclusively utilises serial data transfer through cable.

Therefore, it is necessary to utilise block multiplexer to transmit data from simulink

to Arduino and demux to receive data from Arduino to Simulink.

Figure 3.17 Block in Simulink for Single Data For Send Data And Receive Data

Figure 3.18 Coding Single Data

43

As shown in Figure 3.19, the code to receive and transmit numerous data

from Simulink to Arduino is provided. The Simulink in Figure 3.20 show which

sends and receives a single piece of data. Multiple data must contain both mux and

demux blocks. This segment in Figure 3.20 has three inputs and three outputs.

myValue1, myValue2 and myValue3 are data from simulink. send1, send2, and

send3 are used to transmit data from Arduino to Simulink. In order to see the

difference between output and input in simulink, the Arduino output code is

input1+input2. While output1 is for input2 - input 1, output2 is for input2 times

input1. Consequently, this demonstrates that numerous receive and send operations

can be performed utilising mux and demux. To be successful with the mux and

demux block functions, however must persist in coding using the check sum method.

Figure 3.19 Coding for Multiple Data

44

Data is transmitted and received in sequences of bytes (1 byte = 8 bits or 0 - 255)

through a single pin of this wire, hence the name "serial message.". Similar to how a

period at the conclusion of a phrase in English denotes the end of the thought, a

"terminator" at the end of a string of bytes signifies the end of a message. As long as

all parties agree, a carriage return (r) is usually used as the message termination. The

concept of a buffer is fundamental to comprehending serial data transmission. Let's

pretend a sensor is constantly feeding data back to app, probably more often than

app can process it. The computer's buffer is where the information is kept until it is

read. One way to understand a buffer is as a list:

• As new data values are received, they are appended to the end of the list

(most recent data)

Figure 3.20 Simulink Multiple Data

45

• When a programme reads a value from the buffer, it begins from the

beginning of the list (oldest data). Once a byte of data has been read, it is

removed from the buffer and the data at the second position on the list moves

to the top of the list, etc.

• The buffer's length is finite. This signifies there is a maximum length for the

list. What happens when the sensor tries to send new data to the buffer once

it is completely full? To make room for new data at the bottom of the list, the

oldest data (at the top of the list) is destroyed forever and all other items are

moved upward.

3.5.2 Simulink to App Design for GUI

Understanding the types of parameters is crucial for designing buttons and

displays that function properly in an app. This project uses simulink to send and

receive data to generate a graphical user interface in App Designer. When utilising

the GUI in App Designer by altering the value and continuing to alter the value in

simulink, the result is identical to Figure 3.22. There, can also see simulink output in

App Designer. To update the data value in a Simulink function in the button

designer, the code must be written as shown in Figure 3.21, using "set param" to

alter the input block's value. To display output from simulink, "get param" must be

used.

46

Figure 3.21 App Design Coding

Figure 3.22 GUI with Simulink

47

3.6 Demonstration Hardware and Software for Functoriality

For this project's results and simulations, only existing sensors and actuators

will be used. This is because there are insufficient components, and it is just a test to

ensure that the hardware and software are functioning properly. Referring to Figure

3.23, a circuit has been constructed based on the analysis of the robot. This project

uses only 5 actuators and 2 sensors simulations and results are sufficient proof that

the hardware and software are functioning properly.

Figure 3.23 Circuit Prototype Cili Padi Picking Robot

48

CHAPTER 4

RESULTS AND DISCUSSION

This chapter presents the results and discussion of the analysis and development

of the Cili-Padi Picking Robot Framework. Focuses on the implementation of an

embedded software interfaced with a graphical user interface (GUI) utilizing both

Arduino and MATLAB for communication. Further, it discusses the design and

simulation of the GUI using Simulink and the functionality of the embedded

software in real-time.

49

4.1 Analysis of Cili-Padi Picking Robot Framework

A framework for the Cili-Padi Picking Robot, it is necessary to analyse the robot's

structure and the parameters used by the Cili-Padi Picking Robot. Below are the

parameters utilised by the Cili-Padi Picking Robot. List table 4.1 is a list sensor and

actual with data parameter type.

Table 4.1 Sensor and Actuator Setup Check List

There are three components that make up the Cili-Padi Picking Robot's

overall system. The very first navigation system, which allowed the user to control

the movement of the robot by manual navigation. In the navigation system, the

sensors are comprised of 8 Flex Sensor/FSR, the actuators are comprised of 1

stepper motor, and the data parameter transmission is PWM. The Delta Root Arm

system makes up the second component of the systems. In the Delta robot arm, there

is one IMU sensor and three digital servos that operate as actuators. In order to solve

the Direct Kinematics Problem of Parallel Mechanisms, the data from the

Accelerator and the Gyroscope in the IMU sensor will be employed. A servo motor

50

will be used as an actuator for the mechanism's ability to rotate and grip. In the final

step of the Vision system, a camera and an algorithm are used to identify Cili-Padi.

4.2 Develop Embedded Software Interfaced with Graphical User Interface

(GUI).

To demonstrate the outcome in embedded software, there will be two

sections shown. First portion, the outcome was that MATLAB and Arduino were

able to connect with each other and send and receive data. In the second section, App

Design and Simulink collaborate to design graphical user interfaces by

communicating with one another (GUI). To demonstrate that the result is correct,

both App Design and Simulink will display the same data receive, and users will be

able to switch the data displayed in the GUI between App Design and Simulink.

51

4.2.1 Arduino and MATLAB communicate for Cili-Padi Picking Robot

Figure 4.1 provides an overview of the results obtained by having Simulink and

Arduino communicate with one another using serial communication. The data that

has to be sent from Simulink to Arduino can be found in the left block.

Figure 4.2 shows a multiplexer being used in the zoomed-in photo on the block's

left. This allows for the transmission of several data streams. This is due to the fact

that the robot Cili Padi Picking Robot has a large number of inputs to control and an

interface with GUI. Block for transmitting and receiving data from Arduino can be

found in the middle of Figure 4.3.

Using the same COM Port with Arduino requires setting up the appropriate

configuration and checking in the device manager to see what number COM port is

connected. In this case, COM Port 4 serves as an interface, and will need to

configure Simulink accordingly. A block that may receive data from Arduino can be

seen in Figure 4.4. Naturally, Simulink will get multiple data at the same time. A

demultiplexer is needed to receive the several data received by the COM integration.

 Figure 4.1 Arduino Communicate with MATLAB

52

Figure 4.2 Send data from MATLAB to Arduino

Figure 4.3 Block Send And Receive Data In

53

Figure 4.4 Receive Data from Arduino

54

4.2.2 App Design and Simulink communicate for GUI Cili-Padi Picking

Robot

Table 4.2 illustrates the GUI's overall design. In left side bar have a menu. In

menu have 4. Navigation, Delta Robot Arm, Gripper arm, and finally Robot Vision

are accessible via four menus.

There are two as an input and two as an output in navigation. In Forward-

backward, and left-right inputs operate the robot similarly to a joystick. And for

output, display the Flex condition value and the Voltage produced by the Flex

sensor.

In the Delta arm area, there is simply output, but a three-group Display. group 1

and group 2 for reading from sensor IMU, Sensor IMU displays Accelerometer and

Gyroscope readings, however each reading has three output axes: X, Y, and Z.

In Gripper Arm, there are only 3 inputs. 3 inputs are knob rotation and edit field.

Rotate the grip and then press the button to open and close the claw gripper. Robot

Vision has two First have a recognition button and one display camera.

55

Table 4.2 Overall Design in GUI

Menu in GUI Part of Menu Interface

Navigation

Delta Robot

Arm

56

Gripper Arm

Robot Vision

57

Figure 4.5 demonstrates that App Design as a GUI may access the Simulink

output value. This is an example showing simultaneous Accelerometer and

Gyroscope readings with Simulink. And as illustrated in Figure 4.6, both the button

and input can be modified simultaneously in Simulink.

58

Figure 4.5 App Design Read Output Simulink

Figure 4.6 App Design Changed Value in Simulink Input.

59

4.3 Functionality of the Embedded Software in Real Time

According to the graphs in Figures 4.7 and 4.8, Arduino and IMU sensor readings

are depicted. This demonstrates Simulink ability to manipulate and receive data in

real time and without delay. Here can see that the Gyro and Accelerometer data

changes are received simultaneously and without any data latency, as depicted by the

graph. Using only serial transmission, the received data is not lost even if it is

delivered concurrently.

Figure 4.7 Reading Accelerometer in Simulink

Figure 4.8 Reading Gyro in Simulink

60

Two sensors send data from Arduino to Simulink in Figure 4.9. From left

side and middle side is a gyro sensor. In right side is flex sensor. When the IMU

sensor is moved, both the Gyroscope and accelerometer graphs will change

concurrently. And when the Flex sensor is bend, the graph will immediately and

responsively shift. Figure 4.10 show the hardware for embedded software and GUI

testing.

Flex Sensor

Motor Servo

IMU Sensor

Figure 4.9 Graph Flex Sensor and IMU Sensor

Figure 4.10 Hardware for Testing

61

CHAPTER 5

CONCLUSION AND FUTURE WORKS

5.1 Conclusion

 As a conclusion, the main achievement of this project was to Development and

Analysis of An Embedded Software for Cili-Padi Picking Robot Framework Using

MATLAB. The project successfully defined the system requirements and developed

software that was able to communicate with the hardware and control the actuators.

However, there was a limitation in the data transmission between MATLAB and

Arduino, which resulted in occasional data crashes due to the delay in the coding.

Despite this limitation, the hardware robot was able to function in real-time with a

fast response from the software. Overall, the project successfully achieved its

62

objectives and demonstrated the functionality of the embedded software in a real-

time setting.

5.2 Future Works

It is recommended that in future work, a sufficient number of sensors and

actuators be used, and that real vision be used for the Cili Padi picking function of

this robot, so that the robot algorithm can think like a human. This will allow the Cili

Padi picking function of this robot to be more accurate.

Fixing these and other flaws can inspire future GUI development that is more

effective and suitable. Therefore, for future development on this project, it is

suggested that an IOT graphical user interface (GUI) with several customizable

buttons and an adaptable display be used. For instance, suggested advocate IoT via a

web-based application. This is because "App Design" in MATLAB is limited in its

ability to edit relevant buttons and provides a limited number of buttons and

displays.

63

REFERENCES

[1] X. Xu, Y. Lu, B. Vogel-Heuser, and L. Wang, “Industry 4.0 and Industry

5.0—Inception, conception and perception,” J Manuf Syst, vol. 61, 2021, doi:

10.1016/j.jmsy.2021.10.006.

[2] Z. Saidah, Harianto, S. Hartoyo, and R. W. Asmarantaka, “Change on

Production and Income of Red Chili Farmers,” in IOP Conference Series:

Earth and Environmental Science, 2020, vol. 466, no. 1. doi: 10.1088/1755-

1315/466/1/012003.

[3] M. L. Rajaram, E. Kougianos, S. P. Mohanty, and U. Choppali, “Wireless

Sensor Network Simulation Frameworks: A Tutorial Review:

MATLAB/Simulink bests the rest,” IEEE Consumer Electronics Magazine,

vol. 5, no. 2, 2016, doi: 10.1109/MCE.2016.2519051.

[4] B. Ramalingam et al., “A human support robot for the cleaning and

maintenance of door handles using a deep-learning framework,” Sensors

(Switzerland), vol. 20, no. 12, 2020, doi: 10.3390/s20123543.

64

[5] L. Prokhorenko, D. Klimov, D. Mishchenkov, and Y. Poduraev, “Surgeon–

robot interface development framework,” Comput Biol Med, vol. 120, 2020,

doi: 10.1016/j.compbiomed.2020.103717.

[6] J. Casas et al., “Architecture for a Social Assistive Robot in Cardiac

Rehabilitation,” in 2018 IEEE 2nd Colombian Conference on Robotics and

Automation, CCRA 2018, 2018. doi: 10.1109/CCRA.2018.8588133.

[7] C. M. Ranieri, G. Nardari, A. H. M. Pinto, D. C. Tozadore, and R. A. F.

Romero, “LARa: A robotic framework for human-robot interaction on indoor

environments,” in Proceedings - 15th Latin American Robotics Symposium,

6th Brazilian Robotics Symposium and 9th Workshop on Robotics in

Education, LARS/SBR/WRE 2018, 2018. doi:

10.1109/LARS/SBR/WRE.2018.00074.

[8] A. Najar, O. Sigaud, and M. Chetouani, “Teaching a robot with unlabeled

instructions: The TICS architecture,” in Proceedings of the International Joint

Conference on Autonomous Agents and Multiagent Systems, AAMAS, 2021,

vol. 3.

[9] “Proceedings of International Conference on Advanced Systems and

Emergent Technologies, IC_ASET 2019,” Proceedings of International

Conference on Advanced Systems and Emergent Technologies, IC_ASET

2019. 2019.

[10] “Proceedings - 16th Annual International Conference on Distributed

Computing in Sensor Systems, DCOSS 2020,” Proceedings - 16th Annual

65

International Conference on Distributed Computing in Sensor Systems,

DCOSS 2020. 2020.

[11] W. Liu, H. Wu, Z. Jiang, Y. Gong, and J. Jin, “A robotic communication

middleware combining high performance and high reliability,” in Proceedings

- Symposium on Computer Architecture and High Performance Computing,

2020, vol. 2020-September. doi: 10.1109/SBAC-PAD49847.2020.00038.

[12] J. Nowell, J. Connor, B. Champion, and M. Joordens, “Coaxial magnetic

drivetrain for robotic stingrays,” in World Automation Congress Proceedings,

2021, vol. 2021-August. doi: 10.23919/WAC50355.2021.9559500.

[13] J. Nowell, J. Connor, B. Champion, and M. Joordens, “Coaxial magnetic

drivetrain for robotic stingrays,” in World Automation Congress Proceedings,

2021, vol. 2021-August. doi: 10.23919/WAC50355.2021.9559500.

[14] C. Aakash and V. Manoj Kumar, “Path Planning of an UAV with the Help of

Lidar for Slam Application,” in IOP Conference Series: Materials Science

and Engineering, 2020, vol. 912, no. 6. doi: 10.1088/1757-

899X/912/6/062013.

[15] N. Baras, G. Nantzios, D. Ziouzios, and M. Dasygenis, “Autonomous

Obstacle Avoidance Vehicle Using LIDAR and an Embedded System,” in

2019 8th International Conference on Modern Circuits and Systems

Technologies, MOCAST 2019, 2019. doi: 10.1109/MOCAST.2019.8742065.

[16] “2021 Index IEEE Transactions on Industrial Informatics Vol. 17,” IEEE

Trans Industr Inform, vol. 17, no. 12, 2022, doi: 10.1109/tii.2021.3138206.

66

[17] A. Vidanapathirana, S. D. Dewasurendra, and S. G. Abeyaratne, “Model in

the loop testing of complex reactive systems,” in 2013 IEEE 8th International

Conference on Industrial and Information Systems, ICIIS 2013 - Conference

Proceedings, 2013. doi: 10.1109/ICIInfS.2013.6731950.

[18] D. Mustafa, “A Survey of Performance Tuning Techniques and Tools for

Parallel Applications,” IEEE Access, vol. 10, 2022, doi:

10.1109/ACCESS.2022.3147846.

[19] Y. Tang, “Research on medical device software development and design

based on CMMI model,” International Journal Bioautomation, vol. 23, no. 4,

2019, doi: 10.7546/ijba.2019.23.4.000625.

[20] I. Nastjuk, B. Herrenkind, M. Marrone, A. B. Brendel, and L. M. Kolbe,

“What drives the acceptance of autonomous driving? An investigation of

acceptance factors from an end-user’s perspective,” Technol Forecast Soc

Change, vol. 161, 2020, doi: 10.1016/j.techfore.2020.120319.

[21] E. Navas, R. Fernández, D. Sepúlveda, M. Armada, and P. Gonzalez-De-

santos, “Soft grippers for automatic crop harvesting: A review,” Sensors, vol.

21, no. 8. 2021. doi: 10.3390/s21082689.

[22] T. Schneider et al., “Maplab: An Open Framework for Research in Visual-

Inertial Mapping and Localization,” IEEE Robot Autom Lett, vol. 3, no. 3,

2018, doi: 10.1109/LRA.2018.2800113.

[23] D. Shi, W. Zhang, W. Zhang, and X. Ding, “A Review on Lower Limb

Rehabilitation Exoskeleton Robots,” Chinese Journal of Mechanical

67

Engineering (English Edition), vol. 32, no. 1. 2019. doi: 10.1186/s10033-019-

0389-8.

[24] P. Hambarde, R. Varma, and S. Jha, “The survey of real time operating

system: RTOS,” in Proceedings - International Conference on Electronic

Systems, Signal Processing, and Computing Technologies, ICESC 2014, 2014.

doi: 10.1109/ICESC.2014.15.

68

APPENDICES

Appendix A Coding in Arduino

69

70

71

72

73

74

75

Appendix B Coding of App Design(MATLAB)

76

77

78

79

80

81

82

83

84

85

86

Appendix C Gantt Chart of Project Planning

