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ABSTRACT

People who suffer from hearing difficulties use sign language as a way of
communication and sign language translators quickly become inadequate to serve the
entire deaf community, especially in Malaysia. To address the problem, this project
aims to develop a Malaysian Sign Language recognition algorithm and translate it into
text form. To achieve the objective, a dataset of Malaysian Sign Language and
alphabets are constructed. Furthermore, image processing techniques to extract
specific landmarks were used. The developed algorithm is trained using CNN
architecture and PyCharm software is used to perform real-time gesture translation
into text form. The algorithm shows a promising result with an accuracy of 96.16%.
In addition, the result of precision, recall, and F1-Score for every predicted class is as

high as 100%.



i

ABSTRAK

Orang yang mengalami masalah pendengaran menggunakan bahasa isyarat
sebagai cara komunikasi dan penterjemah bahasa isyarat dengan cepat menjadi tidak
mencukupi untuk berkhidmat kepada seluruh masyarakat pekak, terutamanya di
Malaysia. Untuk menangani masalah tersebut, projek ini bertujuan untuk
membangunkan  algoritma  pengecaman  Bahasa Isyarat Malaysia dan
menterjemahkannya ke dalam bentuk teks. Untuk mencapai objektif tersebut, set data
Bahasa Isyarat Malaysia dan abjad dibina. Tambahan pula, teknik pemprosesan imej
untuk mengekstrak tanda tempat tertentu telah digunakan. Algoritma yang
dibangunkan dilatih menggunakan seni bina CNN dan perisian PyCharm digunakan
untuk melakukan terjemahan gerak isyarat masa nyata ke dalam bentuk teks.
Algoritma menunjukkan hasil yang menjanjikan dengan ketepatan 96.16%. Di
samping itu, hasil ketepatan, ingat semula dan FI-Score untuk setiap kelas yang

diramalkan adalah setinggi 100%.
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CHAPTER 1

INTRODUCTION

1.1 Overview

The deaf community cannot communicate with others through verbal
communication. Since they do not possess the ability to hear, they lose the sense to
control their voice. Hence, they have been using sign language to convey their
intention, statement, feeling, and others. In Malaysia, the deaf community uses
Malaysian Sign Language as the official sign language. However, sign language itself
is typically learned by the deaf community only. The lack of awareness and effort from
other communities to learn sign language causes the number of individuals who are
not deaf that understand sign language still low. Communications between the deaf
and others are inevitable since the deaf community still needs to attend court, counsel,
or handle official matters. Hence, this complication raises the demand for sign

language translators.



The sign language translator in Malaysia is trained to translate the Malaysian Sign
Language into Bahasa Melayu. They provide the service of translation when the deaf
community needed them. However, in Malaysia, the number of sign language
translators is too low compared to the number of deaf people. Hence the process of
acquiring a sign language translator becomes difficult. The service is typically needed
to be booked and sometimes consumes a lot of time. Therefore the efficiency of the
service is low since it cannot fulfill the service on demand. As a result, researchers
have comes up with a better solution to automate the translation of sign language using

artificial intelligence (A.I.) to reduce the need for a human sign language translator.

1.2 Problem Statement

The deaf community cannot communicate with people who do not understand
Malaysian Sign Language. Typically, the Malaysian deaf community will learn
Malaysian Sign Language from school. It enables them to communicate with each
other and anyone who understands the language. However, the number of non-deaf
people who understand this language is really low. This creates a communication gap
between the deaf community and the non-deaf community. Since there are a lot of
people who are reluctant to learn Malaysian Sign Language, there is a need to develop

a device that can quickly translate Malaysian Sign Language without learning it.

Sign Language Recognition (SLR) system using a sensor-based system provide
inconvenience restraint to the user and is expensive. There have been numerous efforts
to develop a device that can translate sign language. Among them is the use of a
sensor-based system. These sensors are attached to the signer to extract information
during the signing process. However, the study shows that the implementation of the

system makes the signer feel inconvenienced and restrains their movement. This



discourages the deaf community from fully committing to using the system. In
addition, the number of sensors used can increase significantly when a higher accuracy
of information from the signers is needed. Hence, it will increase the cost of the
system. Therefore, an alternative to the sensor-based system, such as a vision-based

system can be a solution to the problem.

There is a lack of research and system development focused on Malaysian Sign
Language recognition. As for 2021, the number of research focused on Malaysian Sign
Language Recognition made up less than 1% of the accumulated research for sign
language recognition across the world [1]. The highest number of research is held by
the American Sign Language Recognition system which is 32% as in Figure 1.1. This
indirectly shows that the number of collected data to be used in Malaysian Sign
Language Recognition is significantly lower compared to the rest of the world.
Therefore, there is a need to support the lack of advancement in the area of the
Malaysian Sign Language Recognition System. One of the solutions is to construct

the Malaysian Sign Language dataset.
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Figure 1.1: Number of publications based on sign language recognition by
language [1].

1.3 Objectives and Scopes of Project
1.3.1 Project Objectives

The objectives of the project are as follows:

1. To construct Malaysian Sign Language datasets with the label.
ii. To develop a Malaysian Sign Language Recognition and alphabets
algorithm using deep learning models and image processing techniques.
iii.  To convert the Malaysian Sign Language and alphabets into text form.
iv.  To analyze the performance of the Malaysian Sign Language Recognition

algorithm.

1.3.2 Scopes of Project
To develop an artificial intelligence that can recognize Malaysian Sign Language

and the alphabet, a set of data is collected. The data is a static image of people that



perform a specific Malaysian Sign Language and alphabet gesture. Hence, the device
to capture the image is determined. To improve the effectiveness of the algorithm to
be applied on a personal computer (PC), the camera of the PC itself is used to capture
all of the images. Although the built-in PC camera has a lower quality compared to
other types of cameras, this approach is used to ensure that the neural network is

trained for the worst-case scenario.

Even though the initial data is accumulated in image format, the image then is
processed to extract the hands and face landmarks. These landmarks then are used as
the input data for the neural network. Instead of training the neural network based on
the original image, the neural network is trained based on specific finger joints and
facial features that are traced on an empty canvas. This approach is taken because the
focus of this project is to classify a gesture according to Malaysian Sign Language and
alphabet, hence the finger position and the facial features extraction are cleared before

feeding to the neural network.

The neural network was trained based on a deep learning model. The deep learning
model eliminates some of the pre-processing problems. Furthermore, the deep
learning model can recognize features from its dataset without human interference.
This project has used the Convolutional Neural Network (CNN) architecture in the
neural network. This is because CNN architecture is excellent at finding strong

features in image recognition.

Another scope of the project is that the algorithm can recognize 24 alphabets and 5
words in Malaysian Sign Language. Malaysian Sign Language can be divided into two
categories which are the static sign and the dynamic sign. The static sign does not

involve a moving gesture while the dynamic sign does. The static sign can be captured
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