4G LTE DIRECTIONAL ANTENNA DESIGN AND ANALYSIS FOR WIRELESS BACKHAUL

MUSTAQIM HAKIMI BIN SHAMSUDIN

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

4G LTE DIRECTIONAL ANTENNA DESIGN AND ANALYSIS FOR WIRELESS BACKHAUL

MUSTAQIM HAKIMI BIN SHAMSUDIN

This report is submitted in partial fulfilment of the requirements for the degree of Bachelor of Electronic Engineering with Honours 13.0 Faculty of Electronic and Computer Engineering UNIVERS Universiti Teknikal Malaysia Melaka

2023

UNIVERSITI TEKNIKAL MALAYSIA MELAKA FAKULTI KEJUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II

Tajuk Projek

4G LTE DIRECTIONAL ANTENNA DESIGN AND ANALYSIS FOR WIRELESS BACKHAUL 2022/2023

Sesi Pengajian

:

Saya <u>MUSTAQIM HAKIMI BIN SHAMSUDIN</u> mengaku membenarkan laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.
- 2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (✓):

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)

(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.

TIDAK TERHAD

Tarikh :

Haturi

(TANDATANGAN PENULIS)

Alamat Tetap: 50 E, TMN DESA

KERINCHI, KG.

SUNGAI LUI,

43100 HULU

<u>LANGAT,</u> SELANGOR

29 Januari 2023

SULIT*

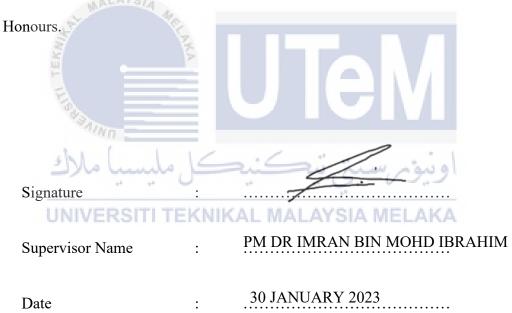
Disahkan oleh:

(COP DAN TANDATANGAN PENYELIA)

DR. IMRAN BIN MOHD IBRAHIM Associate Professor Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka (UTeM) Hang Tuah Jaya 76100 Durian Tunggal, Melaka

Tarikh : <u>30 Januari 2023</u>

DECLARATION


I declare that this report entitled "4G LTE DIRECTIONAL DESIGN AND ANALYSIS FOR WIRELESS BACKHAUL" is the result of my own work except for quotes as cited in the references.

Date : 29 JANUARY 2023

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Bachelor of Electronic Engineering with

DEDICATION

I dedicate this work to my creator, my strong pillar, my source of inspiration, knowledge, and understanding. He was the source of all things during this task. To my beloved father and mother, Mr Shamsudin bin Kaling and Mrs Asmah binti Muslim and siblings, Muhammad Maizal Hairi bin Shamsudin and Nurina Najwa binti Shamsudin. This is dedicated to each and every one of you. May Allah continue

to bless you all. ونيوم سيتي تيڪنيڪل مليسيا ملاك

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ABSTRACT

The existing antenna in 4G LTE router are suffering with low gain antenna that connect to the base station (BS). To overcome this problem, a directional antenna was introduced and integrate as an external antenna to boost up the quality of connectivity thus improve the overall of internet speed. This project presents the design and analysis of Yagi Disc Antenna with different number of director's elements appropriate for band 3 in 4G LTE mobile communication system which operating at frequency of 1.8 GHz. The design of this antenna was first simulated by using CST software. After the result obtained, then it was fabricated and measured it performace. The antenna comprises of two elements which are driven and parasitic that consists of reflector and directors. The purpose of this project is to investigate and analyze the effect of antenna performance with changes in the number of director's elements. The material of these elements is made of aluminium because it has a good reflector. The performance of the antenna was measured in several ways which are using Vector Network Analyzer (VNA), Anechoic Chambers and perform a field test to show how well it truly worked.

ABSTRAK

Antena sedia ada dalam penghala 4G LTE mengalami masalah dengan antena gandaan rendah yang bersambung ke stesen pangkalan (BS). Untuk mengatasi masalah ini, antena berkearah telah diperkenalkan dan diintegrasikan sebagai antena luaran untuk meningkatkan kualiti sambungan sekali gus meningkatkan keseluruhan kelajuan internet. Projek ini membentangkan reka bentuk dan analisa Antena Cakera Yagi dengan bilangan elemen pengarah yang berbeza yang sesuai untuk jalur 3 dalam sistem komunikasi mudah alih 4G LTE yang beroperasi pada frekuensi 1.8 GHz. Reka bentuk antena ini dimulai dengan menggunakan perisian CST. Selepas keputusan diperolehi, barulah ia disimulasi dan diuji prestasinya. Antena terdiri daripada dua elemen iaitu pemacu dan parasit yang terdiri daripada pemantul dan pengarah. Tujuan projek ini adalah untuk mengkaji dan menganalisis kesan prestasi antena dengan perubahan dalam bilangan elemen pengarah. Bahan elemen ini diperbuat daripada aluminium kerana ia mempunyai pantulan yang baik. Prestasi antena diukur dalam beberapa cara yang menggunakan Penganalisis Rangkaian Vektor (VNA), Bilik Kepuk Tidak Bergema dan ujian lapangan untuk menunjukkan sejauh mana ia benar-benar berfungsi.

ACKNOWLEDGEMENTS

Foremost, to my supervisor, Assoc. Prof. Dr. Imran bin Mohd Ibrahim of the Faculty of Electronics and Computer Engineering (FKEKK) Universiti Teknikal Malaysia Melaka (UTeM), I would like to convey my heartfelt appreciation for his patience, encouragement, passion and vast expertise. His advice was invaluable to me during the preparation of my thesis. I couldn't have wish for a better adviser and mentor for my degree program.

Special thanks to my colleagues, Angkhana A/P Tong, as well as my loving father, UNIVERSITI TEKNIKAL MALAYSIA MELAKA mother, siblings, and friends, who provided moral support while I was finishing my degree. Last but not least, thank you to everyone who helped make this project a success.

TABLE OF CONTENTS

Dec	laration	
Арр	oroval	
Ded	ication	
Abs	tract WALAYSIA 40	i
Abs		ii
Ack	nowledgements	iii
Tab	le of Contents	iv
List	of Figures UNIVERSITI TEKNIKAL MALAYSIA MELAKA	viii
List	of Tables	xii
List	of Symbols and Abbreviations	xiii
List	of Appendices	XV
CHA	APTER 1 INTRODUCTION	1
1.1	Introduction	1
1.2	Project Background	1
1.3	Problem Statements	4
1.4	Objectives	4

1.5	Scope of Project	4
1.6	Project Planning	5
1.7	Chapter Outline	6
СНА	PTER 2 BACKGROUND STUDY	8
2.1	Introduction	8
2.2	Previous Related Work	8
	2.2.1 A 2x2 Inset Feed Circular Patch Antenna Array for 1.8 GHz LTE Application	9
	2.2.2 Yagi Biquad Antenna Design for 4G LTE in 2100 – 2400 MHz Frequency Band	11
	2.2.3 Textile Yagi Antenna at 1.8 GHZ2.2.4 Minkowski Fractal Yagi Antenna	14 17
	2.2.5 Design and Analysis of Microstrip Yagi Antenna for Wi-Fi Application	20
2.3	Summary of Literature Review	22
СНА	PTER 3 METHODOLOGY	24
3.1	Introduction	24
3.2	Project Flowchart	25
	3.2.1 Designing Process	26
	3.2.1.1 Design Structure and Material	26
	3.2.1.2 Design Parameters	27

v

	3.2.1.3 Design Process	28
	3.2.2 Antenna Simulation	30
	3.2.2.1 Impedance	30
	3.2.2.2 Bandwidth	30
	3.2.2.3 Directivity and Gain	31
	3.2.2.4 Radiation Pattern	32
	3.2.2.5 Return Loss	33
	3.2.2.6 VSWR	34
	3.2.3 Antenna Fabrication Process	35
3.2.3.1 Steps of Fabrication Process		36
3.2.4 Antenna Measurement		
	اونيومرسيتي تيڪنيڪل مايت Field Test	38
	3.2.6 Record and Analyse Data MALAYSIA MELAKA	40
3.3	Preliminary Result	41
3.4	Summary of Methodology	45
СНА	PTER 4 RESULTS AND DISCUSSION	46
4.1	Introduction	46
4.2	Yagi Disc Antenna with 1 Director Element	47
4.3	Yagi Disc Antenna with 3 Director Elements	51
4.4	Yagi Disc Antenna with 5 Director Elements	55

vi

4.5	Analysis on Simulation and Measurement Antenna	59
4.6	Field Test Validation	67
	4.6.1 4G LTE Router with Existing Omnidirectional Antenna	69
	4.6.2 4G LTE Router with 1 Director Element	71
	4.6.3 4G LTE Router with 3 Director Elements	73
	4.6.4 4G LTE Router with 5 Director Elements	75
4.7	Analysis of Field Test Validation	77
4.8	Conclusion of Result and Discussion	79
	WALATSIA	0.0
СНА 5.1	PTER 5 CONCLUSION AND FUTURE WORKS Conclusion	80 80
5.2	Future Works	81
Refe	اونيۇم,سىتى تيكنىكل مليسيا ما دە	83
LIST	OF PUBLICATIONS AND PAPERS PRESENTED	89
APP	ENDICES	90

vii

LIST OF FIGURES

Figure 1.1: 4G LTE Network Architecture	2
Figure 1.2: LTE Channel Widths	3
Figure 2.1: Design of 2×2 Inset Feed Circular Patch Antenna Array	10
Figure 2.2: 2×2 Inset Feed Circular Patch Antenna Array: (a) Return Loss and Result	(b) Gain 11
Figure 2.3: Design of Yagi Biquad Antenna	12
Figure 2.4: Comparison of Return Loss Simulation with Different Elements and Spacing	s Length 14
Figure 2.5: Geometry (dimensions in mm) of the Proposed Textile Yagi Ant Top layer and (b) Bottom layer.	enna: (a) 15
Figure 2.6: Simulated and Measured Return Loss of Textile Yagi Antenna	16
Figure 2.7 : Simulated of Realized Gain and Radiation Efficiency of Text Antenna	tile Yagi 16
Figure 2.8: Minkowski Curve: (a) Initiator, (b) First Iteration, (c) Second Itera (d) Third Iteration	ation and 17
Figure 2.9: Proposed of Minkowski Yagi Fractal Antenna Design	18
Figure 2.10: Return Loss of Yagi Fractal Antenna	19
Figure 2.11: Realized Gain of Yagi Fractal Antenna	19
Figure 2.12: Front-to-Back Ratio of Yagi Fractal Antenna	20
Figure 2.13: Proposed Design of Microstrip Yagi Antenna Array	21

Figure 3.1: Project Flow Chart Research Progress	25
Figure 3.2: Four Views Proposed Antenna Structure	27
Figure 3.3: Equations of Conventional Yagi Antenna	28
Figure 3.4: Proposed Antenna Dimensions	29
Figure 3.5: Measure Antenna's Parameter	36
Figure 3.6: Cutting Process	36
Figure 3.7: (a) Drilling Process and (b) Joining Process	37
Figure 3.8: Antenna Fed by RG58 Coaxial Cable	37
Figure 3.9: Measurement Equipment: (a) Vector Network Analyzer (VNA) and Anechoic Chamber	(b) 38
Figure 3.10: Flowchart of Field Test Measurement Process	40
Figure 3.11: 3-D Views of Proposed Yagi Disc Antenna Structure	41
Figure 3.12: S-11 Parameter of Return Loss Simulated of Proposed Yagi Disc Ante	
Figure 3.13: VSWR Simulated of Proposed Yagi Disc Antenna	42 42
Figure 3.14: 3-D View of the Radiation Pattern of Proposed Yagi Disc Antenna	43
Figure 3.15: Polar View of the Radiation Pattern at Phi=0	44
Figure 3.16: Polar View of the Radiation Pattern at Phi=90	44
Figure 3.17: Surface Current Simulation of Yagi Disc Antenna	45
Figure 4.1: Yagi Disc Antenna with 1 Director Design	47
Figure 4.2: S11 Parameter for Yagi Disc Antenna with 1 Director at 1.8 GHz	48
Figure 4.3: S11 Parameter for Yagi Disc Antenna with 1 Director at 1.7959 GHz	49
Figure 4.4: Polar view of the radiation pattern at $phi = 90^{\circ}$ for Yagi Disc Antenna v 1 Director	vith 50

ix

Figure 4.5: Polar view of the radiation pattern at phi = 0° for Yagi Disc Antenna with 1 Director 50
Figure 4.6: Far field 3-D of Yagi Disc Antenna with 1 Director51
Figure 4.7: Yagi Disc Antenna with 3 Directors Design52
Figure 4.8: S11 Parameter for Yagi Disc Antenna with 3 Directors at 1.8 GHz 53
Figure 4.9: Polar view of the radiation pattern at $phi = 90^{\circ}$ for Yagi Disc Antenna with 3 Directors 54
Figure 4.10: Polar view of the radiation pattern at $phi = 0^{\circ}$ for Yagi Disc Antenna with 3 Directors 54
Figure 4.11: Far field 3-D of Yagi Disc Antenna with 3 Directors55
Figure 4.12: Yagi Disc Antenna with 5 Directors Design56
Figure 4.13: S11 Parameter for Yagi Disc Antenna with 5 Directors at 1.8 GHz 57
Figure 4.14: Polar view of the radiation pattern at phi = 90° for Yagi Disc Antenna with 5 Directors 58
Figure 4.15: Polar view of the radiation pattern at phi = 0° for Yagi Disc Antenna with 5 Directors 58
Figure 4.16: Far field 3-D of Yagi Disc Antenna with 5 Directors 59
Figure 4.17: Antenna Measurement: (a) Return Loss, (b) Gain, and (c) Radiation Pattern 60
Figure 4.18: Analysis of S11 Parameter between Simulation and Measurement on Various Design Antenna61
Figure 4.19: Analysis of Radiation Pattern (H-Field) between Simulation and Measurement: (a) 1 Director Element, (b) 3 Director Elements and (c) 5 Director Elements 62
Figure 4.20: Analysis of Radiation Pattern (E-Field) between Simulation and Measurement: (a) 1 Director Element, (b) 3 Director Elements and (c) 5 Director

Figure 4.21: The Distance Between Mobile Station and Base Station on Google Earth 67

Elements

64

Figure 4.22: Base Station Info on Cellmapper.net		
Figure 4.23: Hardware & Software Setup	69	
Figure 4.24: Results of Speed Test with using Existing Antenna	70	
Figure 4.25: Results of Received Signal Strength with using Existing Antenna	71	
Figure 4.26: Results of Speed Test with using 1 Director Element	72	
Figure 4.27: Results of Received Signal Strength with using 1 Director Element	73	
Figure 4.28: Results of Speed Test with using 3 Director Elements	74	
Figure 4.29: Results of Received Signal Strength with using 3 Director Elements	75	
Figure 4.30: Results of Speed Test with using 3 Director Elements	76	
Figure 4.31: Results of Received Signal Strength with using 5 Director Elements	77	
Figure 4.32: Analysis of Result of Speed Test for Download and Upload with Differ Types of Antennas	ent 78	
Figure 4.33: Analysis of Result of Received Signal Strength with Different Types Antennas	s of 79	

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF TABLES

Table 2.1: Each Elements Dimension of Yagi Biquad antenna	13
Table 2.2: Yagi Biquad Antenna with Different Elements Length and Spacing	g 13
Table 2.3: Yagi Fractal Antenna Dimension for 1800 MHz	18
Table 2.4: Proposed Dimensions of Microstrip Yagi Antenna Array	21
Table 2.5: Tabulated Result of Simulated Return Loss, VSWR, and Bar	ndwidth
Microstrip Yagi Antenna.	22
Table 3.1 : Proposed Yagi Disc Antenna Dimension	29
Table 3.2: List of Hardware Components	35
اونبوس سيني نيڪ Table 3.3: List of Hardware Application	39
Table 4.1: Parameters setup for Yagi Disc Antenna with 1 Director	48
Table 4.2: Parameters setup for Yagi Disc Antenna with 3 Directors	52
Table 4.3: Parameters setup for Yagi Disc Antenna with 5 Directors	56
Table 4.4: Performance Analysis between Simulation and Measurement onDesign Antenna	Various 64

Table 4.5: Analysis of Result of Speed Test for Download and Upload with DifferentTypes of Antennas77

Table 4.6: Analysis of Results of Received Signal Strength with Different Types ofAntennas78

LIST OF SYMBOLS AND ABBREVIATIONS

4G	:	4 th Generation
LTE	:	Long Term Evolution
WCDMA	:	Wideband Code Division Multiple Access
HSPA	W.A.	High Speed Packet Data
3GPP	:	3 rd Generation Partnership Project
GSM	:	Global System for Mobile communication
UE	; ;	User Equipment
DL	i.	Downlink
LTE-A	1,0	Long Term Evolution Advance
MS UNI	VE	Mobile Station IKAL MALAYSIA MELAKA
BS	:	Base Station
CST	:	Computer Simulation Technology
RF	:	Radio Frequency
HPBW	:	Half Power Beam Width
SWR	:	Standing Wave Ratio
VSWR	:	Voltage Standing Wave Ratio
eNB	:	Evolved Node B
LoS	:	Line of Sight

- VNA : Vector Network Analyzer
- F/B : Front to Back
- RSRP : Reference Signal Received Power
- RSRQ : Reference Signal Received Quality
- SINR : Signal to Interference Noise Ratio
- RSSI : Received Signal Strength Indicator
- ϵr : Relative Permittivity
- Ω : Ohm
- λ : Lambda
- Γ : Reflection Coefficient μ : Micro
- $\tan \delta$: Loss Tangent
- Mbps 😓 : Mega bit per second
 - ps . Wega on per second
 - the later is a start of the sta

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF APPENDICES

Appendix A: Tabular Form Calibration Report	90
	20
Appendix B: The Signal Strength Values and Quality	91
	71
UTEN	
اونيومرسيتي تيكنيكل مليسيا ملاك	
UNIVERSITI TEKNIKAL MALAYSIA MELAKA	

CHAPTER 1

INTRODUCTION

This chapter provides an overall overview of the project, which includes project background, problem statement, objectives, scope of the project, project planning and chapter outline.

1.2 Project Background

In this era of pandemic, there are lot of society who are being affected by the Covid-19 virus especially among the students. They have been impressed with the new norm of learning that is through online which requires good internet access to smooth their learning process. From the Sun Daily News, students have complained that their internet access is limited especially those who living in rural areas because the base station is located far from their homes [1]. The development of communication technology has grown up remarkably and driven the orientation of wireless communication systems. Nowadays, certain wireless communication systems including Long Term Evolution (LTE) as well as its service applications are recently becoming increasingly popular and high demand. This is owing to the multiple advantages such as providable communication services with inexpensive cost at anytime and anyplace for the users [2]. LTE system can solve this problem by supporting higher data rates, higher capacity, and lower latency [3]. Figure 1.1 shows the network architecture of 4G LTE in which co-exist with the WCDMA and HSPA networks that will also continue to evolve within 3GPP [4].

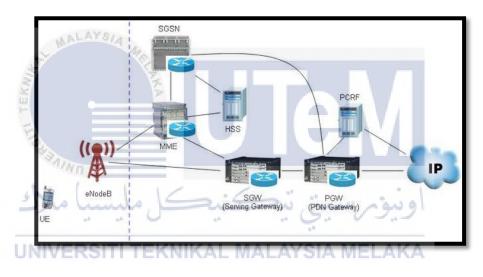
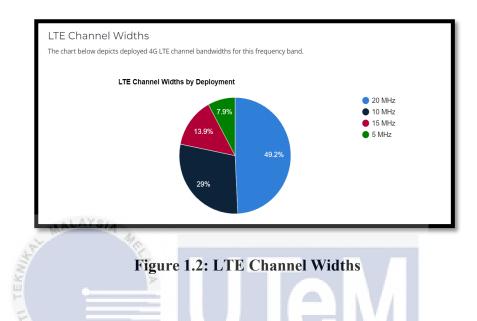



Figure 1.1: 4G LTE Network Architecture

The majority of network operators around the world have launched commercial LTE systems in the 1.8 GHz spectrum. Band 3 (1800 MHz) deployments represent greater than 48% of all LTE networks globally. LTE 1800 technology band 3 has gained a lot of interests among wireless broadband operators. This is primarily due to the 1.8 GHz bandwidth it is already being used for GSM [5]. Operators have several motivations for deploying band 3 LTE 1800. In term of coverage area, LTE1800 technology provide twice as large compared to deployments in LTE 2600 technology.

Besides, the spectrum reframing from GSM1800 to LTE 1800 is very cost effective [6]. With the clear majority of band 3 4G networks using a 20 MHz channel width as shown in Figure 1.2 [7], most stand-alone networks provide up to 150 Mbps UE DL data rate with clean channel conditions, and up to 400 Mbps in LTE-A Pro.

However, the application of such wireless communication technology is generally constrained by the distance between the mobile station (MS) of user and the site coverage to base station (BS). So, the received power was becoming low caused by several losses on the broadcasting signals between base station and mobile station [8].

In case of using a 4G Wi-Fi router, there are often encountered by low signal throughputs due to the weak receiving signal and the distance between mobile station and base station [9]. Therefore, the users generally requires an antenna with high gain to improve the power of receiving signal from base station. A Yagi antenna is one sort of antennas for boosting the gain of recipient signal and has reduced return loss value [10]. In this project, a yagi disc antenna is suitable to be used due to this antenna provides balanced traveling-wave structure, which has high directivity, front-to-back