VERIFICATION

"I hereby declare that I have read through this thesis and found that it has complied the partial fulfillment in awarding the Bachelor Degree of Mechanical Engineering (Automotive)"

Signature	:	
Supervisor's Name	:	EN. MOCHAMAD SAFARUDIN
Date	:	9 th April 2009

DEVELOPMENT OF DATA ACQUISITION SYSTEM FOR TYRE FORCE MEASURING DEVICE

LEE TZE JIAN

This Report is Submitted in Partial Fulfillment of Requirements for the Bachelor Degree of Mechanical Engineering (Automotive)

> Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka

> > APRIL 2009

C Universiti Teknikal Malaysia Melaka

DECLARATION

"I hereby declare that this project report entitled DEVELOPMENT OF DATA ACQUISITION SYSTEM FOR TYRE FORCE MEASURING DEVICE

is written solely by me and with great effort and that none of the parts have been plagiarized without citations."

Signature	:	
Author's Name	:	LEE TZE JIAN
Date	:	9 th April 2009

DEDICATION

Dedicated to my beloved Family, Father (Mr. Lee Kwong Leong), Mother (Ms. Chai Siew May), Siblings (Mr. Lee Tze San & Ms. Lee Joe Ee), and not forgetting my dearest and closest fellow friends who have given me endless support and the greatest will to complete this project.

C Universiti Teknikal Malaysia Melaka

ACKNOWLEDGEMENT

From deep within my heart, I would like to portray my unbounded thanks for all the support, encouragements and inspirations I have received throughout the duration of this project.

My greatest gratitude to my supervising lecturer, Mr. Mochamad Safarudin, whom I had a pleasurable and yet conducive cooperating relationship. He has given me tremendous guidance and advice whenever I fell short. He gave me a pat in the back and harsh encouragements for me to go through the hard times. And he is truly a remarkable person.

I would also like to convey my thanks and appreciation to the FKM staff and personnel who have given me much help despite the trouble caused. The technicians who assisted me in the lab without hoping for rewards and the co-curricular department officer who has gone through a lot of trouble in aiding my project.

Deepest heartfelt for my family who has been supporting me from hundreds of miles away. They had always cared and worried about my well being.

The list goes on and to keep it short, lastly, I would like to thank everyone who has facilitated and helped me even the slightest in completing this project. To those whom I did not specifically mention, you have my gratitude for moving me closer to my goal.

Thank You.

ABSTRAK

Kajian ini menjelaskan tentang pembinaan sistem perolehan data untuk alat pengukuran daya tayar. Alat pengukuran daya tayar ini memerlukan dua belas tolok ketegangan di mana kesemua tolok-tolok ini adalah tolok aktif yang membolehkan penghasilan data daya dan daya tuas yang tertentu. 'Wheatstone Half Bridge' diaplikasikan pada setiap tolok ketegangank. Setiap daya dan daya tuas ditugaskan kepada dua tolok ketegangan di mana satu tolok akan mengalami keregangan manakala yang satu lagi akan mengalami tekanan. Penguat isyarat dan penapis isyarat tidak ditambah kedalam litar kerana sistem perolehan data mampu mengesan data daripada alat pengukuran daya tayar dan juga alat ini digunakan dalam aplikasi automotif di mana daya-daya yang dijangkakan adalah besar. Sebarang gangguan yang kecil boleh diabaikan Sebuah sistem perantaraan pengguna bergrafik dibina menggunakan MATLAB untuk membolehkan perhubungan antara pengguna dengan alat pengukuran daya tayar. Alat pengukuran daya tayar ini ditentu ukurkan melaui eksperimen. Sistem perantaraan pengguna bergrafik menghasilkan keputusan visual dari segi graf.

ABSTRACT

In this study, a data acquisition system for the tire force measuring device is developed. The tire force measuring device requires twelve strain gauges which all of them act as active gauges that produces output for a specific force or moment component. Wheatstone Half Bridge is applied in determining the changes in the resistance of the strain gauges which is then converted into voltage changes. Each force or moment is assigned to two strain gauges which one of the strain gauge is assigned to compression while the other strain gauge is assigned to tension. Amplifier and filter are not needed as the data acquisition system managed to detect outputs from the device and the device is applied solely in automotive applications where forces and moments are expected to be large, rendering small noises negligible. A graphical user interface is programmed using MATLAB to bridge the link between the user and the tire force measuring device. The tire force measuring device is calibrated through experimental means. The graphical user interface provides the means of graphical output in terms of graphs.

TABLE OF CONTENT

CHAPTER	CONT	TENT	PAGE
	VERI	FICATION	
	TITL	E	i
	DECL	ARATION	ii
	DEDI	CATION	iii
	ACKN	NOWLEDGEMENTS	iv
	ABST	RAK	V
	ABST	RACT	vi
	TABL	LE OF CONTENT	vii
	LIST	OF TABLES	xi
	LIST	OF FIGURES	xii
	LIST	OF SYMBOLS	xvi
	LIST	OF APPENDICES	xviii
CHAPTER 1	INTR	ODUCTION	1
	1.1	The Wheel Dynamic Test Rig	1
	1.2	Design of the Six-Component Force	
		Sensor	2
	1.3	User Interface	3
	1.4	Problem Statement	4
	1.5	Objectives of Study	5
	1.6	Scope of Study	5
	1.7	Significance of Study	6
	1.8	Summary	6

CHAPTER 2	LITERA	ATURE RE	VIEW	7
	2.1	Data Acqu	usition and Data Acquisition	
		System		7
	2.2	Strain, Str	ess and Poisson's Ratio	11
	2.3	Resistance	e-Type Strain Gauge	13
		2.3.1	Principle of Strain Gauges	14
		2.3.2	Types of Strain Gauges	14
		2.3.3	Structure of Foil Strain	
			Gauge	15
	2.4	Wheatstor	ne Bridge	15
		2.4.1	Quarter Bridge	17
		2.4.2	Half Bridge and Full Bridge	18
		2.4.3	Wheatstone Bridge Signal	
			Conditioning	19
		2.4.4	Strain Gauge Signal	
			Conditioners	26
	2.5	Effects of	Lead Wires	27
	2.6	Beam-Typ	be Load Cell	32
	2.7	Principle of	of Six-Axis Tire Force Measurement	35
	2.8	Analytical	and Experimental Method of	
		Calibratio	n	38
	2.9	Summary		39
CHAPTER 3	METHO	DOLOGY		40
	3.1	Flow Char	rt of Methodology	41
	3.2	Details of	Methodology of the Study	42
		3.2.1	Preliminary Stage	42
		3.2.2	Research Stage	42
		3.2.3	Instrumentation System Design	43
		3.2.4	Theoretical Assessment	45

PAGE

CHAPTER 4

	3.2.5	Data Acquis	sition Coding in	
		MATLAB and GUI Design		
	3.2.6	Circuit Cons	struction and Wiring	49
	3.2.7	Test Run		53
	3.2.8	Calibration		53
		3.2.8.1	Calibration Theories	53
		3.2.8.2	MATLAB Coding for	
			Calibration	57
3.3	Summary			59
RESULT	S AND DIS	SCUSSION		61
4.1	The GUI of	f Tire Force N	Measuring Device	61
4.2	Calibration	Results of T	ire Force Measuring	
	Device			71
	4.2.1	Calibration	for longitudinal force,	
		F_{x}		71
	4.2.2	Calibration	for lateral force, F_y	74
	4.2.3	Calibration	for vertical force, F_z	77
	4.2.4	Calibration	for rolling moment, M_x	80
	4.2.5	Calibration	for overturning	
		moment, M_y	1	83
	4.2.6	Calibration	for self aligning	
		moment, M_z	3	86
4.3	Finding the	Strain in the	Strain Gauges	88
4.4	Applying R	Results of Cal	ibration	94
4.5	Limitations	and Errors in	n Calibration	95
4.6	Data Analy	vsis		97

ix

CHAPTER CONTENT

CHAPTER 5	CONCL	USION	100
	5.1	Conclusion	100
	5.2	Recommendations	104
	5.3	Future Research	105
	REFER	ENCES	106
	BIBLIO	GRAPHY	107

APPENDICES	109
------------	-----

LIST OF TABLES

NO.	TITLE	PAGE
2.1	Recommended Power Densities	21
2.2	Resistance (Ω per 100 ft or 30.5 m) of Solid Conductor Copper Wire and Signal Loss Factor, L, for Gauges with $R_g = 120\Omega$	30
4.1	Table calibration of longitudinal force, F_x .	70
4.2	Table calibration of lateral force, F_y .	73
4.3	Table calibration of vertical force, F_z .	76
4.4	Table calibration of rolling moment, M_x .	79
4.5	Table calibration of overturning moment, M_y .	82
4.6	Table calibration of self aligning moment, M_z .	85
4.7	Simulation and experimental values of strain, ε , due to 5000 N load	93
5.1	Equations of forces and moments from calibration.	101
5.2	Comparison between experimental and simulation results.	103

C Universiti Teknikal Malaysia Melaka

LIST OF FIGURES

NO.	TITLE	PAGE
1.1	Six-Component Force Sensor	2
2.1	USB Data Acquisition System, National Instruments, NI USB-6216, 16 inputs, 16 bit, 400kS/s, isolated multifunction I/O	10
2.2	Elongation and Contraction of Material When Subjected to Tension and Compression	11
2.3	Structure of a Foil Strain Gauge	15
2.4	Configuration of Wheatstone Bridge Circuit	16
2.5	Configuration of Wheatstone Quarter Bridge Circuit	17
2.6	Configuration of Wheatstone Half Bridge Circuit	18
2.7	Configuration of Wheatstone Full Bridge Circuit	18
2.8	Four Common Strain Gauge Arrangements in a Wheatstone Bridge	19
	Allowable Bridge Voltage as a Function of Grid Area	
2.9	for Different Power Densities. (Courtesy of Micro- Measurements Division, Measurement Group, Inc., USA.)	23
2.10	Gauge Connections to Wheatstone Bridge. (a) Two Lead Wire System (b) Three Lead Wire System	28

NO. TITLE

xiii

2.11	Loss Factor, L, as a Function of Resistance Ratio R_L/R_q for Two and Three Lead Wire Systems	29
2.12	(a) Beam-Type Load Cells Incorporate an ElasticElement with Strain Gauges. (b) Gauge Position inthe Wheatstone Bridge	33
2.13	Deformation due force in x-axis and z-axis	35
2.14	Deformation due to force in y-axis	35
2.15	Deformation due to moment in x-axis and z-axis	35
2.16	Deformation due to moment in y-axis	35
2.17	Forces and moments acting on the tire and tire measuring device	36
3.1	Methodology flow chart	41
3.2	Configuration of strain gauges in a Wheatstone half bridge	46
3.3	Placement of strain gauges and their numberings	50
3.4	Strain gauge attached to tire force measuring device	51
3.5	Wiring of tire force measuring device	51
3.6	Wheatstone half bridge circuits connected to the data acquisition card via analog input with power supply	52
3.7	Assembly of the tire force measuring test rig	52

NO.	TITLE	PAGE
3.8	Calibration for F_x , F_z , M_x and M_z	54
3.9	Calibration for F _y	55
3.10	Calibration for M _y	55
4.1	GUI menu for the tire force measuring device	60
4.2	The waiting bar of the graphical user interface menu indicating experiment in progress	61
4.3	Generated graphs from the graphical user interface program	61
4.4	Graph of voltage against load for F _x	70
4.5	Graph of load against voltage for F _x	71
4.6	Graph of voltage against load for Fy	73
4.7	Graph of load against voltage for F _y	74
4.8	Graph of voltage against load for F _z	76
4.9	Graph of load against voltage for F _z	77
4.10	Graph of voltage against load for M _x	79
4.11	Graph of load against voltage for M _x	80
4.12	Graph of voltage against load for My	82
4.13	Graph of load against voltage for My	83
4.14	Graph of voltage against load for M _z	85

NO.	TITLE	PAGE

4.15 Graph of load against voltage for M_z

86

LIST OF SYMBOLS

SYMBOL

TITLE

А	Area of grid of strain gauge
b	Width of the cross section of the beam
Е	Elastic modulus
F_{x}	Longitudinal Force
$F_{\mathcal{Y}}$	Lateral Force
F_{z}	Vertical Force
h	Height of the cross section of the beam
I_g	Electrical current in strain gauge
L	Original length
L	Signal loss factor
ΔL	Elongation
Μ	Bending moment
M_{χ}	Rolling Moment
M_y	Pitching Moment
M_z	Yawing Moment
Р	Load
P_D	Power density of strain gauge
P_g	Power that can be dissipated by the strain gauge
R	Original resistance
ΔR	Change in resistance
R_g	Resistance in strain gauge
R_L	Resistance of a single lead wire
S _c	Sensitivity of the Wheatstone bridge circuit

xvi

SYMBOL

TITLE

Fatigue strength of material used in beam fabrication
Strain gauge factor
Sensitivity of the strain gauge-Wheatstone bridge system
Distance of gauge from effective load
Ohm
Poisson's ratio
Input/Source voltage
Output voltage
Stress
Strain
Transverse strain
Longitudinal strain
Longitudinal force at device
Lateral force at device
Vertical force at device
Rolling moment at device
Overturning moment at device
Self aligning moment at device
Radius of tire
Length from the tire to the device
Tire camber angle
Value of a point at the y-axis
Value of a point at the x-axis
Gradient of the graph line
A constant
Gravitational acceleration

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	A novel six-axis force sensor for measuring the loading of the racing tyre on track.	110
В	A novel six-component force sensor of good measurement isotropy and sensitivities.	117
С	GUI menu concepts	125
D	Data from calibration of the tire force measuring device	128
E	Strain gauge installation manual	148

CHAPTER 1

INTRODUCTION

1.1 The Wheel Dynamic Test Rig

The wheel dynamic test rig is designed by Goh C. K., a degree undergraduate of *Universiti Teknikal Malaysia Melaka* (UTeM), in favor of his final year project or also known as '*Projek Sarjana Muda*' (PSM). The purpose of the wheel dynamic test rig is to investigate the handling dynamics of a tire. The test rig is built based on a quarter car model which includes a supporting frame, wheel, shaft and a conveyor belt that simulates the road input on a spinning wheel. The belt on the conveyer is given roughness as to simulate a real tar road condition. The conveyor will be powered by an electric motor and will run at a desired linear speed of 60km/h.

The core of the test rig is a six-component force sensor. According to Sheng A. Liu and Hung L. Tzo (2002), a six-component force sensor is a unit which functions to simultaneously measure six forces of which are three orthogonal forces and three orthogonal moments and is used for wind-tunnel balances, thrust stand testing of rocket engines, automobiles, shipbuilding, and particularly quite common for adaptive real-time control purpose of machines such as robotic systems. The three orthogonal forces are longitudinal force (F_x) , lateral force (F_y) and vertical force (F_z) while the three orthogonal moments are divided into the rolling moment (M_x) , pitching moment (M_y) and yawing moment (M_z) .

The six-component force sensor is a small structure that is placed on the wheel shaft of the test rig. Strain gauges are installed on the six-component force sensor to detect strains and stresses experience by the structure of the six-component force sensor. The loads experienced by the tire will be transferred to the shaft itself and hence being interpreted by the six-component force sensor. Steering angle of the tire can be manipulated with adjustable settings in the test rig itself to investigate the handling dynamics and effects of the tire in various wheel settings.

The wiring of the strain gauges will imply the use of Wheatstone bridge. A data acquisition card is used to collect data from the force sensor and feed it to a personal computer for data conversion. The data are obtained and recorded in the personal computer. The computer program used to interpret these data is MATLAB with its sub program of Simulink, Data Acquisition Toolbox and GUIDE.

1.2 Design of the six-component force sensor.

Figure 1: Six-component force sensor

The design of Goh C. K.'s six-component force sensor is improvised from Sheng A. Liu and Hung L. Tzo's original design. Strain gauges are placed on the positions indicated by numbers in Figure 1. There are a total of 12 strain gauges placed on the device.

1.3 User Interface

The author is responsible for the digital parts of the project. An interface is needed to bridge between the user and the six-component force sensor. The interface functions by translating the data and information acquired from the device into a more comprehendible output. The interface also provides user friendly features as the user would only key in the inputs and automatically, outputs will be generated with ease. Other important outputs such as graphs or other visual outputs can be generated automatically with a touch of a button. In this context, the forces and moments that are acting towards the tire cannot be measured using the naked eye. These parameters can only be detected using measuring devices and the user interface forms a visible bridge between these parameters and the user.

The User Interface (UI) or also known as Human Computer Interface is the aggregate of means that enables human to interact with the system. The system can be a particular machine, device, computer program or other complex tools. The user interface provides means of input which allows the users to manipulate the system and output which allows the system to produce the effects of the users' manipulation. Graphical User Interface (GUI) accepts input via devices such as computer keyboard and mouse and provides articulated graphical output on the computer monitor or digital display. Software is the shift from computation-intensive design to presentation-intensive design. As computers and machines have become more powerful throughout the decades, the steadily increasing fraction of that power is used to improve presentation-intensive design, such as GUI. The pattern progressions can be concluded into three eras: batch (1945-1968), command-line (1969-1983) and graphical (1984 - current). Other explanation on user interface is

that a user interface is a linkage between a human and a device or system that allows the human to interact or exchange information with that device or system. An interface is a shared boundary or connection between two dissimilar objects, devices or systems through which information is passed and the connection can be either physical or logical.

The MATLAB programming language will be used to build the user interface. Raw data will be obtained and recorded via a sub program of MATLAB which is the Data Acquisition Toolbox. The data from the strain gauges, which are in terms of change of electrical resistances, ohm (Ω), will be converted into the three orthogonal forces and three orthogonal moments using the Wheatstone bridge and MATLAB program. The data from the strain gauge will be fed into the data acquisition card which is connected to a personal computer. The graphical user interface will be done using GUIDE which permits the user to input the duration of the force measurement process and obtain results in forms of tables and graphs.

1.4 Problem Statement

Building a user interface requires not only the comprehension of the MATLAB program, but also the logical equations in converting the data acquired from the strain gauges on the tire force measuring device. A user interface provides the data conversions function and graphical results. The possibilities of errors in the strain gauges used and the built-structure of the six-component force sensor need to be considered. The possible problems that might occur during the study are as follow:

i) The strain and stress experienced by each strain gauge for detecting the same force or moment might not be equal to each other due to errors in atomic level structure of the material used, the accuracy in the dimension of the device and strain gauge installation process. This can cause inaccuracy in data conversion.

- ii) The value of the data acquired from the six-component axis might be very small and negligible.
- iii) The strain gauges may pick up unnecessary noise

1.5 **Objectives of Study**

It is crucial to overcome the problem statements mentioned or at least to minimize them in order to achieve the most accurate results possible.

- i) To acquire data from the tire force measuring device through an instrumentation system.
- ii) To convert the acquired data into respective forces and moments.
- iii) To design a user interface program.

1.6 Scope of Study

The scopes in this study include:

- i) To design a graphical user interface for the tire force measuring device using GUIDE.
- ii) To determine the most suitable method of data acquisition of the strain gauge.
- iii) To convert raw data into a readable or required form of data.