THE OBSTACLE AVOIDANCE MOBILE ROBOT

NUR AINN HANIS BINTI ABD. HALIM

This report is submitted in partial fulfillment of the requirements for the award of the Bachelor of Electronic Engineering (Industrial Electronics) with honors

Faculty of Electronic and Computer Engineering
Universiti Teknikal Malaysia Melaka

30 April 2009

UNIVERSTI TEKNIKAL MALAYSIA MELAKA

FAKULTI KEJURUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II

Tajuk Projek : THE OBSTACLE AVOIDANCE MOBILE ROBOT

Sesi Pengajian : 2008/2009

Sila tandakan (√):

Saya **NUR AINN HANIS BT ABD HALIM**

mengaku membenarkan Laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.
- 2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi.

	SULIT*		at yang berdarjah keselamatan atau eperti yang termaktub di dalam AKTA)
	TERHAD*		at terhad yang telah ditentukan oleh a penyelidikan dijalankan)
	TIDAK TERHAD		
			Disahkan oleh:
	(TANDATANGAN PEN	ULIS) (COP DAN TANDATANGAN PENYELIA)
lam	at Tetap :		

Tarikh: 30 APRIL 2009 Tarikh: 30 APRIL 2009

"I hereby declare that this	-	It of my own work except for q	uotes as cited in
Sign Auth		 R AINN HANIS BINTI ABD. 1	HALIM

Date

: 30 APRIL 2009.....

"I hereby declare that I have read this report and in my opinion this report and in my opinion this report is sufficient in terms of scope and quality for the award of Bachelor of Electronic Engineering (Computer Engineering) with honors."

Signature:	• • • • • • •		
Supervisor's Name	: EN.	MAZRAN	BIN ESRO

For my mother (Zurriah Binti Yassid) and my father (Abd. Halim Bin Abdul) that provide the big support all the while

My sisters ... Amira Sara, Asilaa Aizzat and Anith Raidha that provide some advice throughout my study life. My kind hearted supervisor

En. Mazran Bin Esro and En. Zamre Bin Abd. Ghani that guided me in the right direction and offering encouragement. All my dearest friends that able to discuss together and share their resources for the thesis.

ACKNOWLEDGEMENT

First and foremost, I would like to take this opportunity to express my greatest gratitude to my supervisor, Mr. Mazran Bin Esro and also Mr.. Zamre Bin Abd. Ghani for his guidance, encouragement, support and advices throughout the project. The valuable and inspirational ideas have very much contributed to the success of this undergraduate project.

During the course of development of this project, several problems have been encountered and from the help of a few friends, these problems had been resolved. I would like to take this opportunity to express my thanks to friends for their help, ideas and information that they have provided.

A special thanks to my family who have give me encouragement, support and the strength to keep moving on no matter what the odds and obstacles is ahead

ABSTRACT

The need for autonomous capability is growing as mobile robots find an increasingly large number of in term of many applications. The ability of mobile robot to move around autonomously in their environment determines the best possible applications by having design this mobile robot initiated with the aim of promoting research in autonomous wheeled mobile robot technology. This system consists of infrared sensor, motor DC and a microcontroller. For the obstacle detection it used three infrared sensor are used for left, front and right. In this robot system, the input signal is received form the receiver sensor's signal. The infrared sensor reading is taken and processed to avoid obstacle. The 5V power supply is used to operate PIC board and sensor circuit board. The obstacle avoidance algorithm is simply evaluated on PIC 16F876A microcontroller based mobile robot. The final outcome of the mobile robot is that, the above functions by the system have three collision obstacle avoidance functions. Design of new sensory, control, power subsystem or programming new software. There are five basic command functions which are:-Forward, backward, stop, left, right turn. The obstacle avoidance mobile robot is targeted to be operated in simple maze solution

ABSTRAK

Keperluan untuk keupayaan menyeluruh semakin meningkat dengan penggunaan robot di dalam pelbagai aplikasi. Keupayaan robot ini untuk bergerak dengan sendiri di dalam persekitaran disekeliling robot itu akan menentukan aplikasi yang terbaik untuk robot itu. Dengan tercipta nya robot ini ia dapat mempromosikan pelbagai penyelidikan berkaitan penggunaan robot yang mampu bergerak dengan sendiri, sistem ini terdiri daripada sensor infrared ,DC motor dan mikropengawal. Dalam sistem ini robot ini, isyarat masukan di terima dari litar sensor dan mikropengawal ,ia beroperasi mengikut kepada isyarat isyarat penerima sensor .Bacaan infrared sensor di ambil dan di proses untuk mengelak halangan .Bagi bekalan elektrik 5V ia digunakan untuk beroperasi papan PIC (Programmable Interface Controller) dan litar papan sensor. Hasil akhir daripada penggunaan robot ini ialah sistem yang digunakan terbahagi kepada 3 fungsi iaitu fungsi untuk mengelak dari sebarang halangan dan rekaan ini mempunyai alat pengesan yang baru, kawalan, sistem kuasa sampingan. Terdapat juga lima fungsi arahan iaitu kehadapan, kebelakang, berhenti, ke kiri dan ke kanan. Sistem ini diuji dengan meletakkan robot ini didalam satu laluan pergerakkan yang mudah

TABLE OF CONTENTS

CHAPTER	TOPICS		PAGE
	TITLE		i
	REPORT	STATUS VERIFICATION FORM	ii
	STUDEN	Γ'S DECLARATION	iii
	SUPERVI	ISOR'S DECLARATION	iv
	DEDICA	ΓΙΟΝ	V
	ACKNOV	VLEDGEMENT	vi
	ABSTRA	CT	vii
	ABSTRA	K	viii
	TABLE C	OF CONTENTS	ix
	LIST OF	TABLES	xiii
	LIST OF	FIGURES	xiv
	LIST OF	SYMBOLS AND ABBREVIATIONS	xvi
	LIST OF	APPENDICES	xvii
[.	INTROD	UCTION	
	1.1 BACKO	GROUND PROJECT	2
	1.1.1	What is Mobile robot	2
	1.1.2	Application of Mobile Robots	2
	1.1.3	History of Mobile Robotics	3
	1.2 OBJEC	CTIVE	5
	1.3 PROB	LEM STATEMENT	6

	1.4 SCOPE OF WORK	6
	1.5 METHODOLOGY BRIEFING	7
	1.6 STRUCTURE OF THESIS	8
II	LITERATURE REVIEW	
	2.1 INTRODUCTION	10
	2.1.1 Obstacle avoidance	10
	2.1.2 Definition of Obstacle avoidance	10
	2.1.3 The comparison to other researcher's project	11
	2.2 DESIGN OF THE PROJECT	12
	2.3 THE METHOD TO DRIVE THE ROBOT	13
	2.3.1 DC Motor	13
	2.3.2 Driver DC motor L293D	15
	2.3.2.1 Features of L293B	16
	2.3.2.2 Pin Output	16
	2.4 THE METHOD TO SENSE THE OBSTACLE	17
	2.4.1 Infrared Sensor	17
	2.5 THE METHOD TO MAKE THE CONTROLLER SYSTEM	20
	2.5.1 Programmable Interrupted Controller (PIC)	20
	2.5.2 Microcontroller	22
	2.5.2.1 Why Use Microcontroller	22
	2.5.2.2 Where are Microcontrollers used	22
	2.5.2.3 Parts of a Microcontroller	23
	2.5.3 PIC16F876A Microcontroller	25
	2.5.3.1 Parameter PIC 16F876A	26
	2.5.3.2 Features of PIC16F876 Microcontroller	27

	2.5.3.3 Applications of PIC16F876A	28
	2.5.3.4 The comparison between PIC and PC	29
	2.6 THE METHOD TO MAKE THE PROGRAMMING	
	CONTROL	30
	2.61 BASIC Language	30
	2.62 The Advantages of BASIC language	31
Ш	MEDHOTOLOGY	
	3.1 BLOCK DIAGRAM	33
	3.1.1 Explanation of the block diagram	33
	3.1.2 Block Description	34
	3.2 MECHANISM	34
	3.3 FLOW CHART	35
	3.3.1 Flow chart of the infrared Tx-Rx System	37
	3.4 HARDWARE DEVELOPEMENT	39
	3.4.1 Construction of IR Tx Circuit	39
	3.4.2 Construction of microcontroller circuit	41
	3.5 HARDWARE PROTOTYPE	44
	3.5.1 Printed Circuit Board (PCB)	44
	3.5.2 Rules of PCB Design	45
	3.5.3 PCB Design Flow	47
	3.5.4 PCB Verification	48
	3.5.5 PCB Fabrication	49
	3.6 SOFTWARE PROGRAMMING	55

IV	RESULTS AND DISCUSSIONS	
	4.1 ACHIEVEMENT AND RESULT	57
	4.1.1 The schematic for the project	57
	4.1.2 The PCB layout for the project board	58
	4.2 ROBOT MOVEMENT	59
	4.3 ROBOT POSITION	60
	4.4 DISCUSSION	60
	4.5 LEARNING EXPERIENCE	62
V	CONCLUSION & RECOMMENDATION	
	5.1 CONCLUSION	63
	5.2 SUGGESTION	64
	5.2.1 Future Work	64
	5.2.2 Contribution	65
	5.3 RECOMMENDATION	65
	REFERENCE	66

LIST OF TABLES

NO	TITLE	PAGE
1.1	History of Mobile Robotics	3
2.1	The comparison to other researcher's project	11
2.2	The comparison of motor types	14
2.3	Parameter PIC 16F876A	26
2.4	The comparison between PIC and PC.	29
3.1	The truth table of the circuit input and output	36
3.2	The component in the project	38
3.3	Standard Design Rules of PCB Layout Design	45

LIST OF FIGURE

NO	TITLE	PAGE
1.1	Methodology Flowchart	7
2.1	Electric motor	13
2.2	Driver DC motor L293D	15
2.3	Pin output of IC L293D	17
2.4	Process detection of IR LED	19
2.5	Voltage forward graph	20
2.6	PIC Program Burner	21
2.7	PIC16F876A Microcontroller	25
2.8	Diagram of PIC16F876A Microcontroller	26
2.9	The process of downloading program into PIC 16F876A	31
3.1	Block Diagram	33
3.2	Layout of side view of the mobile robot	34
3.3	Layout of side view of the mobile robot	35
3.4	The flow chart of the project.	35
3.5	Flow chart of the infrared Tx-Rx System	37
3.6	IR Tx schematic circuit.	40
3.7	IR Tx circuit constructed on breadboard.	40
3.8	Controller circuit using 16F876A PIC.	41
3.9	PIC circuit with oscillator on the breadboard	42
3.10	MicroCode Studio Software	42
3.11	The PICkit2 Software	43
3.12	PCB Design Flow	47

3.13	Printed PCB Layout to Transparent paper	50
3.14	Photo Etching Process Step 1	50
3.15	Photo Etching Process Step 2	51
3.16	Photo Etching Process Step 3	51
3.17	Photo Etching Process Step 4	52
3.18	Photo Etching Process Step 5	53
3.19	Drilling Process Step 1	53
3.2	Soldering Process Step 1	54
3.21	Soldering Process Step 2	54
4.1	Schematic of microcontroller circuit	57
4.2	Schematic of IR Tx circuit	58
4.3	PCB Layout Design	58
4.4	Kinematics of obstacle avoidance mobile robot	59
4.5	simple maze solution	60
46	The movement of the robot when detect the obstacle	61

LIST OF SYMBOLS AND ABBREVIATIONS

ADC - Analog to Digital Converter

DC - Direct Current

EEPROM - Electrical Erasable Programmable Read Only Memory

MOSFET - Metal Oxide Semiconductor Field Effect Transistor

RAM - Random Access Memory

Rx - Receiver

Tx - Transmitter

PIC - Programmable Interrupted Controller

DC - Direct Current

PCB - Printed Circuit Board CG

I/O - Input/ Output

CPU - Central Processing Unit

ADC - Analog to Digital Conversion

UV - Ultra Violet

LED - Light Emitting Diode

IR - Infrared

PCB - Print Circuit Board

LIST OF APPENDICES

NO	TITLE	PAGE
A	The Obstacle Avoidance Mobile Robot PIC Program	67
В.	PIC16F876A Datasheet	72

CHAPTER 1

INTRODUCTION

This thesis is about Autonomous mobile robot and can be divided into three functional elements: a sensing system, a planning system, and an execution system. This includes path planning and obstacle avoidance, which have been research topics since the beginning of robotics and in particular mobile robotics since the late sixties to early seventies. Why it is still an interesting thing to work in making these machines move? Because real world applications lead to this objectives that are not necessarily met by existing approaches. Mobile robot applications are slowly growing in number and complexity, at least in these technologically advanced countries. This mobile robot has two power supplies producing 5V. This mobile robot consists of three wheels, one is in front and two at the left and right side the robot is equipped with three sensors for the sensing capabilities to ensure the robot will be able to move around without hitting any obstacle. Beside this, a program is also made to make it go forward, backward, left and right turn for the movement. The purpose of this project is to integrate current technology in electronics and control system into this mobile robot. For control, this project implements the BASIC Language, which is very popular nowadays.

1.1 BACKGROUND PROJECT

1.1.1 What is Mobile robot

Mobile robots become very popular on universities and even in public. The need for autonomous capability is growing as mobile robots find an increasingly large number of applications in the areas of manufacturing, hazardous materials handling, fire fighting, military use, surveillance, and many others. The basic task in any such application is the perception of the environment through the uses of one or more sensors. Processing of the sensor input results in a particular representation of the environment, which can then be used for planning actions and controlling the robot. Building and programming a robot is a combination of mechanics, electronics, programming and also problem solving skills.

1.1.2 Application of Mobile Robots

The ability of mobile robot to move around autonomously in their environment determines the best possible applications of such robot tasks that involve transportation, exploration, surveillance, guidance, inspection. In particular, mobile robot are used for application in environments that are inaccessible or hostile to humans.

There is second broad area of applications of mobile robotics, in the fields of artificial intelligence, cognitive sciences and psychology. Autonomous mobile robots offer an excellent means of testing hypotheses about intelligent behaviors perception and cognition.

1.1.3 History of Mobile Robotics:

Table 1.1 Table below shows history of Mobile Robotics

Date	Developments
1948- 1949	W. Grey Walter builds Elmer and Elsie, two autonomous robots that looked like turtles. Officially they were called Machina Speculatrix because these robots liked to explore their environment. Elmer and Elsie were equipped with a light sensor, if they found a light source they would move towards it, avoiding or moving obstacles on their way. These robots demonstrated that complex behavior could arise from a simple design, Elmer and Elsie only had the equivalent of two nerve cells. [1]
1969	Mowbot was the very first robot that would automatically mow the lawn. [2]
1970	The Stanford Cart line follower was a mobile robot that was able to follow a white line, using a camera to see. It was radio linked to a large mainframe that made the calculations. [3] At about the same time (1966-1972) the Stanford Research Institute is building and doing research on Shakey, a robot named after its jerky motion. Shakey had a camera, a rangefinder, bump sensors and a radio link. Shakey was the first robot that could reason about its actions. This means that Shakey could be given very general commands, and that the robot would figure out the necessary steps to accomplish the given task. The Soviet Union explores the surface of the Moon with Lunokhod 1, a lunar rover.

1980	The interest of the public in robots rises, resulting in robots that could be purchased for home use. These robots served entertainment or educational purposes. Examples include the RB5X [4], which still exists today and the HERO series.
	The Stanford Cart is now able to navigate its way through obstacle courses and make maps of its environment.
1987	Hughes Research Laboratories demonstrates the first cross-country map and sensor-based autonomous operation of a robotic vehicle. [2]
1993- 1994	Dante I [5] and Dante II [6] were developed by Carnegie Mellon University. Both were walking robots used to explore live volcanoes.
2001	Start of the Swarm-bots project. Swarm bots resemble insect colonies. Typically they consist of a large number of individual simple robots, that can interact with each other and together perform complex tasks. [7]
2004	Robosapien, a biomorphic toy robot designed by Mark Tilden is commercially available. In 'The Centibots Project' 100 autonomous robots work together to make a map of an unknown environment and search for objects within the environment. [8] In the first DARPA Grand Challenge competition, fully autonomous vehicles compete against each other on a desert course.
2006	Sony stops making Aibo and HelpMate halts production, but a lower-cost PatrolBot customizable autonomous service robot system becomes available as mobile robots continue the struggle to become commercially viable. The US Department of Defense drops the MDARS-I project, but funds MDARS-E, an

autonomous field robot. TALON-Sword, the first commercially available robot with grenade launcher and other integrated weapons options, is released. [9]. Honda's Asimo learns to run and climb stairs.

History is made with the DARPA Urban Grand Challenge, with six vehicles autonomously completing a complex course involving manned vehicles and obstacles. [3] Kiva Systems clever robots proliferate in distribution operations; these smart shelving units sort themselves according to the popularity of their contents. The Tug becomes a popular means for hospitals to move large cabinets of stock from place to place, while the Speci-Minder [10] with MOBILEROBOTS inside begins carrying blood and other patient samples from nurses' stations to various labs. Seekur, the first widely available, non-military outdoor service robot, pulls a 3-ton vehicle across a parking lot [11], drives autonomously indoors and begins learning how to navigate itself outside. Meanwhile, PatrolBot learns to follow people and detect doors that are ajar.

1.2 **OBJECTIVE**

2007

The objective of project is to make sure that the project following on the right plan and what the project really want to achieves within the required period. Besides than it also to ensure the positive progress of the development system and also to ensure that the main objective will be realized. Below are the objectives of the project:-

- 1. The aim of the designing and constructing the circuit is to fulfilled several objectives that need to be achieved. The mobile robot had to be able to:
 - i. Move around the maze
 - ii. Sense its location and movements
 - iii. Power source to power components

- 2. To develop the autonomous vehicle utilizing sensors and motors for guided movement.
- 3. To be operated in maze solution will successfully move forward and backward, left and right turn. Initially, the aim of this project was to design and fabricate a robot capable of small three wheel robot that avoids obstacles which it senses with its active infrared sensors

1.3 PROBLEM STATEMENT

Statement below is the problem that might occur during developing the mobile robot problem will delay and slow the development progress of the project.

Mobile robot applications are slowly growing in number and complexity, at least in technologically advanced countries because nowadays humans want to do an easier thing in their life. This mobile robot has a various application in human life such as housecleaning appliances and other types of robots, to adjust their trajectory according to their surroundings. This mobile robot will help and replacing human energy in our daily life

1.4 SCOPE OF WORK

This involves both hardware and software and requires integration of three elements. The scope of this project is:

1. Design and construction of the hardware part of this robot that fits all motors, controlling and interfacing circuitry, mechanical, electrical and electronics parts

and also sensing devices. The robot structure, locomotion and mechanism are designed and implemented in real hardware.

- 2. This project also involves the design and construction of a microcontroller board in bootstrap mode using the PIC 16F876A embedded microcontroller and construction of the interfacing circuitry.
- 3. Software writing for the PIC 16F876A embedded controllers used in this project is also included. The software will be written in BASIC language programming

1.5 METHODOLOGY BRIEFING

Figure 1.1 below illustrates the project methodology:-



Figure 1.1 Methodology Flowchart

There are few steps used in the project. That include:

1. literature and review

Study on existing microcontroller programmer is done to design the obstacle avoidance mobile robot. Those materials are searched from journal, articles, application notes and books. The main topic is about the procedure on