

OPTIMIZATION OF MACHINING PARAMETER IN DRILLIING CARBON FIBER REINFORCED PLASTIC (CFRP)

This report is submitted in accordance with requirement of the University Teknikal Malaysia Melaka (UTeM) for Bachelor Degree of Manufacturing Engineering (Hons.)

اونيۈم سيتي تيڪنيڪل مليسيا ملاك by UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LINGGES A/L KUMARAN B051810055 970313-10-6461

FACULTY OF MANUFACTURING ENGINEERING 2021

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: OPTIMIZATION OF MACHINING PARAMETER IN DRILLING CARBON FIBER REINFORCED PLASTIC (CFRP)

Sesi Pengajian: 2021/2022 Semester 1

Saya LINGGES A/L KUMARAN (970313-10-6461)

mengaku membenarkan Laporan Projek Sarjana Muda (PSM) ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. *Sila tandakan ($\sqrt{}$)

SULIT

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysiasebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972)

TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/ badan di mana penyelidikan dijalankan)

Disahkan oleh:

DR. MOHD SANUSI BIN ABDUL AZIZ Peneyarah Kanan Fakulti Kejuruteraan Pembuatan Universiti Teknikal Malaysia Melaka

Alamat Tetap: <u>No 3B Lot 88 Taman</u> Karuppaiyah Padang Jawa Klang Selangor.

Scialigo

Tarikh:

Cop Rasmi: Tarikh: <u>26-07-2022</u>

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitled "Optimization of machining parameter in drilling Carbon Fiber Reinforced Plastic (CFRP)" is the result of my own research except as cited in references.

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of Universiti Teknikal Malaysia Melaka as a partial fulfilment of the requirement for Degree of Manufacturing Engineering (Hons). The member of the supervisory committee is as follow:

DR. MO JL AZIZ Fakulti Kejuruteraan Pembuatan Universiti Teknikal Malaysia Melak **TEKNIKAL MALAYSIA MELAKA** UNIVERSITI

ABSTRAK

Oleh kerana beratnya yang ringan, bahan komposit boleh menggantikan komponen logam dalam fiuslaj dan struktur pesawat, membantu mengurangkan penggunaan bahan api pesawat. Plastik bertetulang gentian karbon (CFRP) terdiri daripada berbilang komposit bahan yang disusun dalam pemasangan lamina bertetulang dengan kualiti bahan yang berbeza-beza di seluruh struktur. CFRP mempamerkan mekanisme kerosakan penggerudian yang meluas disebabkan oleh struktur berlapis dan anisotropi semasa pemprosesan, delaminasi secara berterusan dikaitkan dengan tujahan. Ia boleh membawa kepada kawasan delaminasi yang besar di pintu masuk dan keluar lubang gerudi. Kurangkan kawasan delaminasi dan tujahan dengan menentukan parameter optimum untuk operasi penggerudian, termasuk kelajuan pemotongan mesin, kadar suapan dan kedalaman mematuk. Dengan menggunakan kelajuan gelendong berubah-ubah, kadar suapan dan kedalaman mematuk dari 1,500 hingga 3,000 rpm, 0.02 hingga 0.06 mm/rev, dan 2 hingga 4 mm, daya tujah dan kawasan delaminasi di lubang masuk dan keluar lubang telah disiasat semasa pemesinan. Eksperimen telah dilakukan secara sistematik menggunakan reka bentuk faktorial penuh. Pada peringkat ini, model matematik tujahan, kawasan stratifikasi masuk dan kawasan stratifikasi alur keluar dibangunkan. Selain itu, analisis varians (ANOVA) telah dilakukan untuk menentukan kepentingan model. % ralat kawasan tujahan dan delaminasi di pintu masuk dan keluar lubang ditentukan oleh tiga eksperimen pengesahan. Mengikut keputusan, ralat kawasan berlapis dan tujahan adalah kurang daripada 10%. Keadaan optimum untuk kawasan tujahan dan delaminasi minimum didapati pada kadar suapan 0.02 mm/rev, kelajuan pemotongan 1,500 rpm, dan kedalaman mematuk 2.787 mm.

ABSTRACT

Composites are a substitute for metal components in airliner bodies and structures due to their light weight, which helps to reduce aircraft fuel consumption. One of them is, Carbon Fibre Reinforced Plastic (CFRP) which consists of several composite of material stacked in reinforced laminates component form, with varying material qualities throughout its structure. CFRP shows a wide range of drilling damage mechanisms because of its layered structure and anisotropy. During machining process, delamination is constantly linked to the thrust force that's leads to a larger area of delamination at the entry and exit of the drill hole. This research aims to decrease the delamination area and thrust force by determining the optimal parameters for the drilling operation, including machine cutting speed, feed rate, and pecking depth. The thrust force during machining and delamination area at hole entry and exit are investigated by using variable spindle speed, feed rate and pecking depth from 1,500 to 3,000 rpm, 0.02 to 0.06 mm/rev and 2 to 4mm, respectively. The experiments were conducted systematically using a Full Factorial design. During this phase, the mathematical models for thrust force, entry delamination area, and exit delamination area were developed. Additionally, analysis of variance (ANOVA) was performed to determine the significance of the models. The error % of thrust force and delamination area at hole entry and exit is determined by three validation experiments. Based on the results, the error for delamination area and thrust force was less than 10%. At a feed rate of 0.02 mm/rev, a cutting speed of 1,500 rpm and pecking depth of 2.787 mm, the optimal conditions for minimal thrust force and delamination area were discovered.

DEDICATION

Only

my beloved father, Kumaran Kalrayan my appreciated mother, Vasantha Subramaniam my adored sister and brother, Sharmendran and Komala Devi for giving me moral support, money, cooperation, encouragement and also understandings Thank You So Much & Love You All Forever

ACKNOWLEDGEMENT

GOD, the most gracious and merciful, deserves all the praise and thanks I can muster for enabling me to complete my final year project on time and on schedule.

To Dr. Mohd Sanusi Bin Abdul Aziz, my supervisor, I'd want to convey my gratitude for all his help and guidance throughout this study.

AALAYS/A

I owe a debt of appreciation to my parents for their unwavering love and support throughout my whole childhood and adulthood. Thank you for instilling in me the confidence to shoot for the heavens and chase my dreams. I appreciate everything you've done for me. I'd also like to convey my appreciation to my pals for their constructive comments and suggestions throughout my research. They've been a huge help. Thank you very much for your prayers and blessings, as well as for your genuine love and assistance, without which I would have been unable to complete this project.

Finally, I would want to thank everyone who contributed to this FYP report, and I apologise for not being able to thank every one of you directly. I appreciate your understanding. Thank you very much for your assistance.

TABLE OF CONTENT

DECLARATION	i
APPROVAL	ii
ABSTRAK	iii
ABSTRACT	iv
DEDICATION	v
ACKNOWLEDGEMENT	vi
TABLE OF CONTENT	vii
LIST OF TABLES	x
LIST OF FIGURES	xii
LIST OF ABBREVIATIONS CHAPTER 1	xv 1
INTRODUCTION	1
1.1 Background of Study 1.2 Problem Statement	1 3
1.3 Objectives ERSITI TEKNIKAL MALAYSIA MELAKA	4
1.4 Scope	4
1.5 Significant of Study	5
1.6 Organization of Report	5
1.7 Summary	6
CHAPTER 2	7
LITERATURE REVIEW	7
2.1 CFRP Composite	7
2.2 CFRP Composite for Aircraft	10
2.3 Disadvantage in Drilling CFRP Composite.	11
2.3.1 Delamination	11
2.3.3 Thrust force	13

2.4	Factor Ef	ffecting Drill Performance	14
	2.4.1	Effect of Machining Parameter on Delamination.	15
2.5	Cutting H	Parameter Applied by Previous Studies	18
2.6	Design o	f Experiment (DOE)	19
	2.6.1	Full Factorial	19
	2.6.2	ANOVA	20
_2.7	Summary	y	21
СН	APTER 3	3	22
ME	THODO	LOGY	22
3.1	Project P	lanning	22
3.2	Flow Cha	art	23
3.3	Propertie	s of CFRP Material	24
3.4	Cutting 7	Fool	25
3.5	Drilling l	Parameter Setup	26
3.6	Delamina	ation Area	27
3.7	Thrust Fo	prce	31
3.8	Design o	f Experiment (DOE)	33
	3.8.1	Full Factorial Design	33
3.9	Summary	VERSITI TEKNIKAL MALAYSIA MELAKA	34
	OIII		
CH	APTER 4	4	35
RE	SULT &	DISCUSSION	35
4.0	Introduc	tion	35
4.1	Analysis	s of Low Cutting Speed (1500 rpm – 3000 rpm)	36
	4.1.1	Analysis of Delamination Area	36
	4.1.2	Entry Delamination Area	36
	4.1.3	Exit Delamination Area	38
	4.1.4	Experimental Result of Thrust Force.	39
4.2	Analysis	s of High Cutting Speed (3000 rpm – 7000 rpm)	40
	4.2.1	Analysis of Delamination Area	40
	4.2.2	Entry Delamination Area	40

	4.2.3	Exit Delamination Area	42		
	4.2.4 Experimental Result of Thrust force		43		
4.3	3 Optimization of Thrust Force and Delamination Area by Full Factorial Method for Low Cutting Speed (1500 to 3000 rpm)				
	4.3.1 Analysis of Process Parameters on Thrust Force				
	4.3.2	Analysis of Process Parameters on Entry Delamination Area.	48		
	4.3.3	Analysis of Process Parameters on Exit Delamination Area.	51		
4.4	4.4 Optimization Parameters of Thrust Force and Delamination Area of CFRP Drilling Process.				
4.5	Validation	n Test of Optimum Parameter.	54		
4.6	Optimizat for High (tion of Thrust Force and Delamination Area by Full Factorial Metho Cutting Speed (3000 to 7000 rpm).	d 55		
	4.6.1	Analysis of Process Parameters on Thrust Force	57		
	4.6.2	4.6.2 Analysis of Process Parameters on Entry Delamination Area			
	4.6.3 Analysis of Process Parameters on Exit Delamination Area.				
4.7	Optimizat Drilling P	tion Parameters of Thrust Force and Delamination Area of CFRP Process	65		
4.8	3 Validation Test of Optimum Parameter. 6				
4.9	Peck Dril	ling Effect	67		
	4.9.1	Effect of Peck Drilling on Low Cutting Speed (1500 – 3000 rpm)	67		
	4.9.2 UNIV	Effect of Peck Drilling on High Cutting Speed (3000 – 7000 rpm) /ERSITI TEKNIKAL MALAYSIA MELAKA	68		
СН	APTER 5		69		
со	NCLUSIC	DN	69		
5.1	Conclusio	on	69		
5.2	5.2 Recommendation for Future Work 70				
5.3	5.3 Sustainable Design and Development 70				
5.4	.4 Complexity 7				
5.5	Lifelong	Learning	71		
RE	FERENCI	ES	72		

LIST OF TABLES

Table 2.1: Optimization of drilling parameter of previous researcher	18
Table 3.1: Matrix Planning for the machining parameter	27
Table 3.2: Result of force exported to excel file from Dyno Ware	32
Table 3.3: The ranges and levels of drilling parameters for Full Factorial Design	33
Table 3.4: Design of experiment using Full Factorial for drilling process	34
ST HALAYSIA MEL	25
Table 4.1: Result of entry delamination area	37
Table 4.2: The result of exit hole delamination area	38
Table 4.3: The result of entry delamination area	41
Table 4.4: The result of exit hole delamination area	42
Table 4.5: Design of experiment and result of drilling CFRP	44
Table 4.6: Fit statistic summary of all response variables	45
Table 4.7: ANOVA on thrust force for CFRP drilling process	46
Table 4.8: Coefficient of coded factors of thrust force	48
Table 4.9: ANOVA on entry delamination area for CFRP drilling process	49
Table 4.10: Coefficient of coded factors of entry delamination area	50
Table 4.11: ANOVA on exit delamination area for CFRP drilling process	51
Table 4.12: Coefficient of coded factors of exit delamination area	53
Table 4.13: The goals for factors and responses to find the optimum setting of CFRP	
drilling parameters in 2-Level Factorial method	54

Table 4.14: Optimization parameters suggested by 2-Level Factorial method	54
Table 4.15: Result of validation test	55
Table 4.16: Design of experiment and result of drilling CFRP	56
Table 4.17: Fit statistic summary of all response variables	56
Table 4.18: ANOVA on thrust force for CFRP drilling process	58
Table 4.19: Coefficient of coded factors of thrust force	59
Table 4.20: ANOVA on entry hole accuracy for CFRP drilling process	60
Table 4.21: Coefficient of coded factors of entry delamination area	61
Table 4.22: ANOVA on exit delamination area for CFRP drilling process	63
Table 4.23: Coefficient of coded factors of exit delamination area	64
Table 4.24: The goals for factors and responses to find the optimum setting of CFRP	
drilling parameters in Full Factorial method	65
Table 4.25: Optimization parameters suggested by Full Factorial method	65
Table 4.26: Result of validation test اونيوسيني تيڪنيڪل مليسيا ملاك	66
UNIVERSITI TEKNIKAL MALAYSIA MELAKA	

xi

LIST OF FIGURES

Figure 1.1: Usage of CFRP in Aircraft (Bachmann et al., 2017)		
Figure 1.2: Defect after drilling CFRP composite (Xu et al., 2018		
Figure 2.1: Influence of fiber cutting angle (θ)	8	
Figure 2.2: Increase in the use of carbon fibre composite materials in aircraft	11	
Figure 2.3: Schematic illustration of delamination damage during the drilling process	13	
Figure 2.4: Example of thrust force and torque data for (a) raw and (b) filtered and drift	t	
corrected (Merino-Pérez et al., 2016)	14	
Figure 2.5: Mechanisms of delamination (a) peel-up at entrance and (b) push-out exit	15	
Figure 2.6: Image of peck drilling technique	17	
Figure 2.7: Range comparison between cutting speed and feet rate from previous studies 19		
اونيوم سيتي تيكنيكل مليسيا ملاك		
Figure 3.1: Flow CharRSITI TEKNIKAL MALAYSIA MELAKA	23	
Figure 3.2: CFRP composite laminate panel	24	
Figure 3.3: Cross-sectional view of CFRP composite laminated panel	25	
Figure 3.4: Straight flute drill bit2		
Figure 3.5: Setup for drilling in HAAS CNC milling machine26		
Figure 3.6: Image of hole under the Meiji Stereo Microscope27		
Figure 3.7: The Meiji Stereo Microscope setup28		
Figure 3.8: Menu bar for Image J application	29	
Figure 3.9: Setup for the binary option29		
Figure 3.10: Setting the actual scale for the hole		

Figure 3.11: Setting the actual value for the hole	30
Figure 3.12: Setting for the Wand (tracing) tool	30
Figure 3.13: Setting for the Measure option	31
Figure 3.14: Reading of the drilled hole	31
Figure 3.15: Graphical result of force for Fz, Fy and Fx	32

Figure 4.1: The image of entry hole under microscope for the run (a) 1 and (b) 8 3	37
Figure 4.2: The image of entry hole under microscope for the run (a) 7 and (b) 5 3	39
Figure 4.3: Experimental result of thrust force3	39
Figure 4.4: The image of entry hole under microscope for the run (a) 4 and (b) 6 4	11
Figure 4.5: The image of exit hole under microscope for the run (a) 5 and (b) 6 4	13
Figure 4.6: Experimental result of thrust force 4	13
Figure 4.7: Thrust force result at (a) normal plot of residuals and (b) Residual vs. Predicte	ed
4 Min - 4	16
Figure 4.8: The response surface on the thrust force between spindle speed and feed rate	

UNIVERSITI TEKNIKAL MALAYSIA MELAKA 47

Figure 4.9: Thrust force result at (a) normal plot of residuals and (b) Residual vs. Predicted 49

Figure 4.10: The response surface on the entry delamination area between spindle speed
and pecking depth50Figure 4.11: The response surface on the exit delamination area between spindle speed and
pecking depth51Figure 4.12: The response surface on the exit delamination area between spindle speed and
feed rate52

Figure 4.13: Thrust force result at (a) normal plot of residuals and (b) Residual vs.	
Predicted	57
Figure 4.14: The response surface on the thrust force between spindle speed and feed rat	e
	58
Figure 4.15: Entry hole accuracy result at (a) normal plot of residuals and (b) Residual v	S
Predicted	60
Figure 4.16: The response surface on the entry delamination area between spindle speed	
and feed rate	61
Figure 4.17: Exit delamination area result at (a) normal plot of residuals and (b) Residua	1
vs. Predicted	62
Figure 4.18: The response surface on the exit delamination area between spindle speed	
and feed rate	64
Figure 4.19: The effect of peck drilling (a) pecking depth 2mm (b) pecking depth 4mm	67
Figure 4.20: The effect of peck drilling (a) pecking depth 2mm (b) pecking depth 4mm	68
اونيومرسيتي تيكنيكل مليسيا ملاك	

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF ABBREVIATIONS

CFRP	-	Carbon Fiber Reinforced Plastic.
ACARE	-	Advisory Council for Aeronautics Research Europe
EMZ	-	Zoom Stereo Microscope.
BRT	-	Bus Rapid Transit.
FEM	-	Finite Element analysis.
ECT	-	Electroconvulsive therapy.
Fd	-	Delamination Factor
Wmax	-	Maximum damage width
W		The cut width.
HRA	AT WALKING ME	Rockwell Hardness measured on A scale
HAAS	- 24	Milling Machine Type.
CNC	Ê	Computer numerically controlled
KISTLER	F	Dynamometer.
OFAT	Sanno -	One Factor at a Time
	ىل مليسىيا ملاك	اونيۈمرسىيتى تيكنيك

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

CHAPTER 1 INTRODUCTION

1.1 Background of Study

A composite is defined as two or more different components that are physically connected. Thus, a composite substance has two or more unique constituent elements or phases. Carbon Fibre Reinforced Plastic (CFRP) is one example of a composite. Nowadays, composite materials such as Carbon Fibre Reinforced Plastic (CFRP) are in high demand in industries such as aerospace, aviation, automobile, and sports. This phenomenon is caused by the mechanical features of high specific strength and stiffness and the fact that it is generated in a near-net shape. Because of these qualities, CFRP has effectively been used as a replacement for traditional materials. (Xu & El Mansori, 2016)

Carbon fibre reinforced polymer or carbon fibre reinforced plastic is a fibre reinforced polymer that comprises carbon fibres. It is powerful and lightweight. Although CFRPs are costly to manufacture, they are frequently utilised in applications requiring a high strength-to-weight ratio and stiffness, such as aerospace, automotive and civil engineering, sporting goods, and an expanding variety of other consumer and technical applications.

Many of CFRP's characteristics have contributed to the material's popularity and widespread usage in recent years. In the aircraft sector, CFRP are being employed more and more as major structural materials. Reduced density, high strength, high stiffness, and excellent toughness are all advantages that CFRPs have over other composite materials. They also have minimal friction and good dimensional stability.

As shown in fig 1.1, composite materials account for more than 50% of the structural weight of the Boeing 787. Although composites are manufactured to a near-net shape, assembly requires many holes to be drilled. However, Drilling CFRP laminates is connected with delamination issues, splintering, temperature changes, and geometrical irregularities.(Xu, 2016)

Numerous aspects, including the delamination factors, surface roughness, and thrust force, can substantially impact the dimensional accuracy and precision of composite mechanical parts. An evaluation of the drilling operation could be based on the damage that appears at the hole entry or exit and surface roughness on the hole wall. This is partly due to the delamination phenomena, which causes composite drilling to behave significantly differently from normal metal drilling. During the drilling of laminated composites, delamination is considered significant harm that must be addressed. When there is delamination in the hole, it has a significant impact on the quality of the hole, resulting in unsatisfactory tolerances in the assembly. Aside from increasing surface roughness, delamination also has the additional effect of decreasing fatigue characteristics and decreasing the life of composites. When drilling composites, the effect of push-down delamination at the drill exit can be considered more substantial than the effect of peel-up delamination at the drill entry, which can be considered less significant.

In aerospace applications, the demand for high-grade carbon fibre reinforced plastic (CFRP) components has increased significantly in recent years. Current aviation programmes, such as the European Commission's Clean Sky programme or ACARE's Flightpath 2050, aim to enhance aircraft efficiency to meet future commercial aviation difficulties. Apart from other objectives, this entails a reduction in airplane emissions. By utilizing lightweight materials such as CFRPs, structural mass can be significantly reduced. As a result, less gasoline is spent, and fewer emissions are produced during travel.

ودرة

ملال

aun

Figure 1.1: Usage of CFRP in Aircraft (Bachmann et al., 2017)

1.2 Problem Statement

Aircraft structures can be built in a fraction of the time by drilling and riveting CFRP and metals together in one operation. As a result of their smaller and lighter weight, composite materials such as CFRP's are used increasingly frequently. CFRP, on the other hand, show a range of damage processes during drilling because of their layered structure and anisotropy. Damage includes delamination, shrinkage of holes, burrs, and thrust force. Composite material's material removal mechanisms are also heavily influenced by angles formed by the cutting speed and the fibre orientation. Moreover, this damage can lead to a negative impact on the production. Other than that, it also can damage the quality and strength of the CFRP.

Figure 1.2: Defect after drilling CFRP composite. (Xu et al., 2018)

1.3 Objectives ALAYS

Based on the problem and difficulties on drilling CFRP composite, the objectives of this project are: -

- 1. To investigate the influence of machining parameter on entry hole delamination, exit hole delamination and thrust force in drilling CFRP plate.
- 2. To optimize the drilling parameter for high quality drilled hole.

1.4 Scope

The scope of this project is:

- 1. This experiment was conducted in low cutting range of (1500 rpm to 3000 rpm) and high cutting range of (3000 rpm to 7000 rpm).
- 2. Conduct this experiment in dry drilling environment.
- 3. Diameter and the point angle for the carbide tipped drill is constant.

1.5 Significant of Study

CFRP is often bonded and connected by fusing parts together to form a composite portion. To accomplish this, multiple holes must be drilled, which presents several obstacles due to the material's inhomogeneous composition of fibre and matrix. Drilling CFRP can result in hole damage due to delamination, fibre pull-out, rough surface, edge chipping, uncut fibre, and quick tool wear due to the drill geometrical features. According to the literature, a perfect drill and penetration angle will suit the most for drilling CFRP. Thus, this study seeks to investigate the mechanics of material removal towards the surface quality on the deviation in penetration angle gradually. Moreover, the key important factor such as delamination ratio, surface roughness, force, and tool wear will be evaluated in these studies.

1.6 Organization of Report

Chapter 1

Background information, location of the study, and types of material analysis are all covered in this chapter. Then there are the research objectives and the scope of the study, which is centred on the subject matter of the investigation itself. Also included in this chapter is a discussion of the study's conclusions, which were derived from the analysis.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Chapter 2

This section of the chapter discusses the fundamental theories and the portion of the study devoted to knowledge of the theories. It is based on legal sources and prior studies from online publications, journals, and books. The current equipment is detailed. This section also covers information on the tools used in the manufacturing business. Finally, the proposed alternative is described.

Chapter 3

This chapter discusses the recipe used in this study. It details the procedure followed in this study to collect data from the area under examination. This section will define primary and secondary sources. The process flow chart and the project structure for each of the identified objectives will be detailed.

Chapter 4

Elaborates and discusses the findings obtained from this research. The findings were discussed comprehensively, starting with analysis of variance (ANOVA). After the range of parameter is optimized, Full Factorial method is used to optimize the thrust force and delamination area. Next, the condition for optimization is shown to get the optimum parameter. Finally, the optimum parameter is confirmed by validation test.

Chapter 5

Explained the summary of the outcome from the overall research. The possible recommendations for future work, novelty and the contribution of the knowledge is elaborated in the final section of this chapter.

1.7 Summary

This chapter establishes the foundation for understanding the entire subject of this investigation. This chapter summarises the research and aids the reader in comprehending the idea. The most critical components of this study are the objectives that must be met and the project scopes that must be followed for the study to be effective.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

CHAPTER 2

LITERATURE REVIEW

2.1 CFRP Composite

Composites CFRP are a frequently utilized material due to their flexibility to a variety of conditions and the relative ease with which they can be combined with other materials to fulfil specific purposes and display desirable features.

Plastic resins have enabled the development of non-metallic materials that are frequently superior to metals in terms of strength or weight ratio, corrosion resistance, fabrication ease, and cost. Composite structural materials are comprised of a range of different materials and come in a variety of shapes and sizes.

According to (Geier & Pereszlai, 2020), an inhomogeneous and anisotropic material, CFRP is difficult to cut because of its abrasive wear effect, and carbon fibre reinforcements have to be removed from the cutting zone due of their abrasive impact (usually by a vacuum device). CFRP anisotropy may be measured by measuring the fibre cutting angle (θ), a 90-degree angle between the cutting speed vector and the fibre reinforcement vector., as shown in Fig. 2.1.