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ABSTRAK 

Sebuah projek dicadangkan untuk menyiasat kegunaan Generative Adversarial 

Netowork (GAN) untuk menambah data imej demi mengatasi masalah kelas tidak seimbang 

dalam klasifikasi wafer silikon yang mempunyai kecacatan calar. Masalah kelas tidak 

seimbang ini disebabkan oleh bilangan sampel rosak yang kecil berbanding bilangan sampel 

yang elok dalam pembuatan. Mask GAN telah digunakan untuk menghasilkan imej label 

daripada input kotak sempadan. Seterusnya, imej label dimasukkan kepada Defect Image 

GAN untuk “melukis” kecacatan pada imej input yang elok. Kebolehlaksanaan system telah 

dikaji dengan mengukur ketepatan algoritma pembelajaran mesin yang dilatih dengan data 

janaan GAN. Di samping itu, rangkaian saraf yang dilatih dengan data janaan GAN dan data 

janaan kaedah konvensional telah dibanding. Sistem yang dicadangkan telah diuji dengan 

McNemar’s Test pada nilai keyakinan 95% dan menghasilkan peningkatan yang ketara 

berbanding kaedah konvensional.  
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ABSTRACT 

A project is proposed to investigate the use of Generative Adversarial Networks 

(GAN) to augment image data to overcome class imbalance problems in silicon wafer 

microcrack defect classification. This class imbalance problem is due to the small number 

of defective products compared to non-defective products in a production environment. A 

Mask GAN is used to generate images of defect mask label when bounding box information 

is supplied. The artificial defect masks are used by a Defect Image GAN to “paint” defects 

onto non-defect images. The system's feasibility is analyzed by evaluating the accuracy of 

the classifier trained on the augmented data, along with the number of misclassified images 

of defective products. Two identical classifier networks are trained on traditionally 

augmented data and GAN-augmented data and be compared. The system is shown with 

McNemar’s test with a confidence of 95%, to produce a significant improvement over 

conventional methods. 
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CHAPTER 1 

INTRODUCTION 

 

 

 

1.1  Project Background  

 

 This project is performed in collaboration with ViTrox Technologies Sdn. Bhd. 

ViTrox specializes in developing automated vision inspection system. Machine learning 

algorithms applied in their machine vision solutions aids their customers to ensure quality in 

their customer’s production.  

 

 The presence of microcracks is one of the defects in silicon wafers. Microcrack refers 

to cracks with a thickness that is on the scale of micrometers. This type of defect is hard to 

be seen through the naked eye. Hence, computer vision-based solutions are the go-to in 

detecting microcracks in silicon wafers.   

 

 Image-based defect detection is a challenging problem requiring high accuracy 

algorithms and is often tackled using machine learning techniques. Deep convolutional 

neural networks are ubiquitous in image classification problems as they can produce results 

with high accuracy. In addition, convolutional neural networks effectively extract image 

features while numerous layers in deep neural networks greatly improve network 

performance by efficiently leveraging large amounts of training data (Krizhevsky et al., 

2017).  

 

 Data augmentation is the process of manipulating training data to achieve better 

generalization. Common techniques in image data augmentation are "handcrafted", which 

include geometric transformations and noise filters (Shorten & Khoshgoftaar, 2019).  
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 GAN is a framework of training two or more neural networks in a contest against 

each other to generate data that follows the distribution of the training set (Goodfellow et al., 

2014). As seen in Figure 1.1, GAN consists of a generator network and a discriminator 

network. A generator network takes in random noise as input and produces images that 

mimic the training data. Meanwhile, a discriminator network is trained to distinguish 

between real and generated data. Iterations of training will result in both networks being 

more competent in their tasks, eventually producing generated data that closely resemble the 

training data. Hence, it is easy to see the implication of applying GAN in image data 

augmentation (Su, 2021). 

 

 

 

Figure 1.1: Architecture of a Typical GAN from (An Intuitive Introduction to Generative 

Adversarial Networks (GANs), 2018) 
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1.2  Problem Statement  

 

 In defect classification problems, non-defective samples are usually more abundant 

than defective samples. This phenomenon is also known as the class imbalance problem. As 

a result, the distribution of the minority class will be misrepresented, and the number of false 

negatives will increase (Buda et al., 2018). As seen in Figure 1.2, classifiers trained on 

imbalanced data tend to misclassify the minority class.  

 

 

Figure 1.2: Visualization of the Class Imbalance Problem in Classification (Kushwaha, 2019). 

 

 Furthermore, misclassification of defective products as being non-defective is 

critically detrimental in defect detection applications. Data augmentation can be used to 

balance the data distribution while increasing data size. While the traditional "handcrafted" 

data augmentation technique is viable, it is specific to the image source and has to be 

manually tuned for each different source of the image. Hence, GAN is proposed as a 

generalizable solution to augment the minority samples and balance the data distribution.  
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1.3  Objectives 

 

The project objectives are as follows:  

 

(a.) To produce a generalizable image data augmentation system for defect detection 

problems using GAN. 

 

(b.) To improve the accuracy of neural network-based defect detection algorithm by 

data augmentation using GAN. 

 

(c.) To analyze the impact of GAN-based data augmentation and traditional data 

augmentation on the performance of classification networks. 

 

 

1.4  Scope 

 

The project scopes are as follows: 

 

a. The proposed system will be evaluated on an image-based defect detection 

problem. 

 

b. Transfer learning will be used in training the classification network and GAN to 

avoid training the networks from scratch. 

 

c. Image under different conditions will be used to evaluate the generalizability of 

the proposed system.  

 

d. Traditional data augmentation techniques, including noise injection and 

geometric transformation, will be used as a benchmark for comparison in 

evaluating the performance of GAN-based data augmentation. 
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e. The number of misclassified defective images by the classifier trained with 

augmented data will be used as a metric for the performance of the GAN. 

 

 

1.5  Project Rationale 

 

The project rationale are as follows: 

 

a. Data with imbalance class problem tend to affect machine learning model 

performance. This project aims to use data augmentation to overcome class 

imbalance by artificially generating samples of the minority class.  

 

b. Conventional data augmentation methods are chosen based on the characteristics 

of the input samples. GAN is proposed to automate the data augmentation step 

by learning image characteristics and generating artificial samples that are similar 

to input data. 

 

1.6  Project Methodology 

 

 The project consists of using GAN as an alternate method of data augmentation. The 

role of GAN within the overall machine learning framework is shown in Figure 1.3.  

 

 

Figure 1.3: Overview of Project 

 

 Furthermore, the overall methodology of the project is summarized in the flowchart 

in Figure 1.4.  
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Figure 1.4: Flow Chart of the Proposed Project 

 

 After a preliminary background study is performed, an experiment will be conducted 

to evaluate the proposed system. First, image data collected and preprocessing such as 

resizing of the image will be done. The data will then be split into training and testing sets. 

Further, the training data will be be used to train the GAN-based data augmentation system. 

Afterwards, two classifiers will be trained, with traditionally augmented data and GAN-

augmented data. Finally, the rate of false negatives by these two classifiers will be compared 

to show the viability of GAN-based data augmentation. 
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1.7  Thesis Organization 

 

 This thesis is organized according to the 5 main chapters. Chapter 1 describes the 

project background, problem statement, objectives, scope, and rationale. Furthermore, 

literature on GAN and machine learning frameworks are reviewed in Chapter 2. In addition, 

project planning and experiment procedure is detailed in Chapter 3. Moreover, Chapter 4 

analyzes results obtained from the experiments. Finally, the project is concluded in Chapter 

5.  
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CHAPTER 2 

LITERATURE REVIEW 

 

 

 

2.1  Image Classification Problem 

 

 Image classification is a class of machine learning problem that involves taking in an 

image as input and determining the class that the image belongs to (Russakovsky et al., 2015). 

For example, insect image classification involves determining the type of insect in each 

image within the dataset, as shown in Figure 2.1. 

 

Figure 2.1: Samples from insect classification dataset (Wu et al., 2019). 
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2.1.1  Image Classification Pipeline 

 

Luo et al. (2020) stated that  image classification can be divided into the following steps: 

1. Image capture 

2. Image preprocessing 

3. Feature extraction 

4. Feature selection 

5. Feature classification 

 

Image capture : Image acquisition system including camera and lighting system. 

 

Image Preprocessing : Image enhancement such as denoising and segmentation. 

 

Feature Extraction : Features such as lines and edges are extracted from the image. 

 

Feature Selection : Analysis is performed to choose features that represent labels to 

be classified. 

 

Feature Classification : Chosen features are used to determine the label of input images. 
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2.1.2  Machine Learning-based Classification 

 

 Feature extraction and feature classification steps shown in the previous section may 

consist of either hand-crafted or machine learning-based algorithms. Machine learning can 

be broadly divided to supervised and unsupervised learning. Referring to Figure 2.2, 

supervised learning involves extracting relationship information between a set of training 

data and labels. This means that both feature extraction and feature classification is fully 

automated through the machine learning algorithm. 

 

 

Figure 2.2: Workflow of Supervised Learning (A. Zhang et al., 2021) 
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2.2  Deep Neural Networks 

 

 According to (Goodfellow et al., 2016), deep neural networks are end-to-end 

machine learning algorithms. Neural network parameters are optimized with training data 

through a loss function in order to maximize its accuracy.  

 

2.2.1  Network Architecture 

 

 Referring to Figure 2.3, Neural Networks are feedforward computational graphs 

consisting of multiple layers. Each layer in the graph has a set of weights and biases that are 

altered through the optimization process. 

 

 

Figure 2.3: Example of Simple Feedforward Neural Network (Goodfellow et al., 2016) 

 

 On the left, the architecture of neural network is drawn in detail of each of the neuron 

unit. Each arrow represents the multiplication operation with a weight while each node 

represents the summation of the value with a bias. On the right, each layer is represented 

with a node. This representation is used for larger neural networks where it would be too 

space consuming to draw every single unit.  
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2.2.2  Activation Functions  

 

 Activation functions are functions that introduce non linearity to the deep neural 

networks. At the end of each layer, the feature variables are passed through activation 

functions. Examples of activation functions reviewed by Zaheer & Shaziya (2018) is as 

shown in Table 2.1. 

 

Table 2.1: Example of Four Common Activation Functions 

Function Sigmoid Tanh ReLu ELU 

Function 

Shape 

    
Output 

Range 
0 to 1 -1 to 1 0 to ∞ - ∞to ∞ 

 

 

2.2.3  Loss Function 

 

 Loss functions is a representation of how well the Deep Neural Network is 

performing. In the training process, this function is minimized by tuning the network 

parameters. For classification problems, probabilistic loss functions are used. For example, 

Ruby & Yendapalli (2020) applied the Binary Cross Entropy loss function to classify 

whether the input is a flower and achieved 95.63% accuracy in their experiment.  
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2.2.4  Backpropagation and Optimization  

 

 Non linearity introduced by activation functions pose a challenge in computing 

derivatives, which is solved through backpropagation. The derivatives are computed layer-

by-layer, from output to input, using a chain rule.  

 

 In general, the optimization algorithm for Deep Neural Network training is based on 

gradient descent methods. Gradient descent methods make use of derivatives in a function 

in order to compute the parameters that minimizes it. Specifically, weights and biases are 

iteratively calculated using the negative of the derivative in order to step towards a minimum.  

 

 Huda et al. (2019) compared two optimizers, Adam and Stochastic Gradient Descent 

(SGD) in their work. It is found that Adam optimizer converges more quickly and reaches a 

lower loss value. However, it is prone to overfitting as the model achieves a lower training 

loss but did not perform better on validation data.  

 

 

2.2.5  Regularization and Normalization 

 

 Regularization of network weights is a needed process to improve network 

generalizability. The weights in a neural network can be interpreted as degree of emphasis 

of a certain feature in determining the output. This means that without regularization, the 

neural network may overemphasize some features while overlooking others. 

 

 Batch normalization is one of the methods in network regularization. For each batch 

of training data, weights of a given layer are scaled to be zero mean and unit variance. Batch 

normalization of network weights ensure the difference of weights between layers are not 

too large. Hence, derivatives of loss function at each layer will not vary too much and 

overshooting of minimization steps are reduced. For example, Chen et al.(2018) applied 

batch normalization on their vehicle detection algorithm and achieved 1.9% improvement 

on mean average precision compared to the model trained without normalization.  
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2.3  Convolution Neural Networks (CNN) 

 

 Convolutional Neural Networks (CNNs) are a family of neural networks that utilizes 

convolution operation in computing layer outputs. The use of convolution operations allows 

better feature extraction which greatly improves performance of the neural network. For 

example, Vasan et al. (2020) applied convolutional neural network to classify malware by 

converting software binary into a 2D image. 

 

 

Figure 2.4: Example of Convolutional Neural Network Architecture (Vasan et al., 2020). 
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2.3.1  Convolution Operation 

 

 Convolution in a 2D image is a signal processing operation in which the output at a 

certain pixel position is the weighted sum of surrounding pixel values of the input. This 

operation is ubiquitous in image feature extraction algorithms.  

 

 By applying convolution in deep learning, instead of a vector, layer outputs are 

treated as feature maps of the input image. The use of feature maps allows the neural network 

to retain positional information of each pixel in the image. Furthermore, the automatic 

optimization of convolution weights allows for hidden patterns in images to be discovered. 

Figure 2.5 illustrates how features can be filtered from an image by convolving a 3x3 kernel 

across it.  

 

Figure 2.5: Moving 3x3 Filter Across Image to Detect Features (Glassner, 2021).  
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2.3.2  Common CNN used for Classification 

 

 Various state-of-the-art CNN architectures are used in deep learning research. These 

architectures are easily accessible through deep learning library such as Tensorflow and 

Pytorch. For example, Ghaderzadeh & Asadi (2021) have identified ResNet, DenseNet, 

MobileNet, VGG, and Inception among the most popular CNN models used in research of 

CNN-based COVID 19 diagnosis. Table 2.2 shows the common CNN models, with time per 

inference step and accuracy evaluated against ImageNet dataset (Martín Abadi et al., 2015). 

 

Table 2.2: Common CNN Architectures used in Research  

Architecture Original Author Parameters Time (ms) per inference step Accuracy 
ResNet50 He et al. (2015) 25,636,712 4.55 0.921 

DenseNet121 Huang et al. (2018) 8,062,504 5.38 0.923 

MobileNetV2 Sandler et al. (2019) 3,538,984 3.83 0.901 

VGG16 Simonyan & 

Zisserman (2015) 

138,357,544 4.16 0.901 

InceptionV3 Szegedy et al. (2015) 23,851,784 6.86 0.937 
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2.4  Image Data Augmentation Methods 

 

 Data augmentation is a method to artificially increase training data in order to 

improve the performance of deep learning classifier. According to Shorten & Khoshgoftaar,  

(2019) conventional image data augmentation methods include geometric transformation 

and color space manipulation. Moreover, an emerging method of augmenting data is through 

the use of generative networks.  

 

 Taylor & Nitschke (2018) compared different data augmentation schemes and the 

results are shown in Table 2.3 below. Image Data Augmentation methods are not necessarily 

mutually exclusive. In fact, the combination of different Image Data Augmentation methods 

will likely provide improvement over using only an individual method (Shijie et al., 2017). 

 

Table 2.3: Comparison of Data Augmentation Effect on CNN Performance (Taylor & Nitschke, 2018) 

Method Example Image Description Accuracy 

Baseline 

 

The image without augmentation. 64.50 ± 0.65% 

Flipping 

 

Image is flipped along its vertical axis. 67.36 ± 1.38% 

Rotating 

 

The image is rotated along its center. 69.41 ± 0.48% 

Cropping 

 

The image is cropped, resulting in many 

images of smaller resolution. 

79.10 ± 0.80% 

Color 

Jittering 

 

Color properties such as Hue, Saturation 

and Brightness are altered. 

67.18 ± 0.42% 

Edge 

Enhancement 

 

Sobel filter is used to detect edges, which 

are then intensified. 

66.49 ± 0.84% 

Fancy PCA 

 

Random noise is added to Principal 

Components of an Image. 

67.54 ± 1.01% 
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2.5  Generative Adversarial Networks (GAN) 

 

 Generative Adversarial Networks (GANs) falls under generative models in machine 

learning. Generative models are approaches in statistical classification which aims to 

produce samples that mimic true data distribution. In order words, the distribution of training 

samples is modeled which allows for artificial samples to be generated.  

 

 

2.5.1  GAN Framework 

 

 Referring to Figure 2.6, GAN consists of two neural networks, the generator and 

discriminator. The generator network in a GAN takes in random noise as input and produces 

a sample from its trained distribution. This generator network is trained under an adversarial 

training process along with a discriminator network (Goodfellow et al., 2014). The objective 

of training the discriminator network is to distinguish between samples generated from 

generator network and the actual training data. On the other hand, the generator network is 

trained to produce samples which are hard for the discriminator network to discern.  

 

 

Figure 2.6: Overview of GAN Framework (Harada et al., 2019). 
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2.5.2  Deep Convolution GAN (DCGAN)  

 

 DCGAN is the application of GAN framework in generating images. Convolutional 

layers are used within the architecture of the generator network and discriminator network. 

In this case, convolutional layers provide learned feature that aid in representing images 

effectively (Radford et al., 2016).  

 

 

2.5.3  Conditional GAN 

 

 Conditional GAN is a variation of GAN that allows generation of samples that are 

conditioned with the class information of the training data. Conditional GAN allows 

selective generation of samples. For example, the conditional GAN can be trained with data 

consisting of defective and non-defective samples, while selectively output only defective 

generated samples. This is achieved by modifying the input for both the generator and 

discriminator networks to include the class label information (Mirza & Osindero, 2014). 

Referring to Figure 2.7, conditional input y is supplied to discriminator and generator, in 

addition to the original input x (image to be discriminated) and input z (random variable). 

 

 

Figure 2.7: Framework of Conditional GAN (Mirza & Osindero, 2014) 
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2.5.4  MSG-GAN 

 

 Multi-Scale Gradient GAN (MSG-GAN) (Karnewar & Wang, 2019) is a state-of-

the-art GAN framework that incorporates various existing implementations in addition to 

novel techniques. The resulting GAN is capable of generating high resolution output with 

good fidelity.  

 

 

Figure 2.8: Overview of MSG-GAN architecture 

 

 Progressive synthesis network are shown to improve training speed and output 

quality (Karras et al., 2018). Moreover, MSG-GAN incorporates progressive network in the 

generator due to the capability to control image features at different level of resolutions. 

 

 The main idea of MSG-GAN is to control fluctuations in discriminator loss during 

training. As the loss function is applied at differect level of resolutions, GAN training will 

be more stable and risk of training failure such as modal collapse is reduced.  

  



21 

 

2.5.5  Sequential Image Generation using GAN 

 

 Sequential Image Generation GAN (Turkoglu et al., 2019) is a GAN architecture that 

enables foreground images to be “painted” onto background image sequentially. As shown 

in Figure 2.9, numerous foreground objects can be created on a background image by passing 

the image iteratively through the GAN.  

 

 

Figure 2.9: Overview of Sequential Image Generation GAN 
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2.6  Deep Learning Methodology 

 

2.6.1  Transfer Learning  

 

 Transfer learning is the adaptation of model trained on large dataset onto a new, 

smaller dataset (Weiss et al., 2016). This is achieved by using the network parameters of the 

trained model to train on a new dataset. The benefit of using pre-trained model is faster 

convergence in training and less data is required to train the network for good performance. 

Moreover, transfer learning not only applies to CNN but it can also be used in training GAN 

(Wang et al., 2018). 

 

 

2.6.2  Model Validation 

 

 Holdout test set refers to a subset of input data that is not used in training (Pal & 

Patel, 2020). This set of data is withheld and used to evaluate the model at the end of the 

model tuning process. Holdout test set ensures the validity of the experiment as the model is 

not altered anymore after evaluation on holdout test.  

 

 Validation is performed at each training step of a deep learning model in order to 

assess its performance. Cross validation is a method to obtain an accurate estimate of a model 

performance (Berrar, 2018). Particularly, k-fold cross validation is a cross validation method 

with low bias.  

 

  

  



23 

 

 In k-fold cross validation, data is separated into k number of sets. At each validation 

step, one set is withheld while the rest is used to train the model. The performance of the 

model is then evaluated on the withheld data. This is repeated k times, using different sets 

as the validation data. After the model is trained and evaluated on all k validation sets, the 

performance value is averaged out to obtain the estimate of true model performance. 

 

 

Figure 2.10: Illustration of 10-fold Cross Validation (Berrar, 2018). 

 

 

2.6.3  Model Selection 

 

 Various statistical methods are available in the process of machine learning model 

selection and comparison. Model comparison revolves around statistical testing for 

difference in proportion. Particularly, McNemar’s Test is typically used for comparing two 

models (Raschka, 2020). When many machine learning models are involved, multiple 

hypotheses testing such as F-test is required.  
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2.6.4  Performance Metric 

 

 In binary classification problem, performance of the model revolves around the ratio 

of True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN) 

(Flach & Kull, 2015). These metrics are summarized in Table 2.4 below. 

 

Table 2.4: Performance Metric of Classification Model 

Metric Formula Description 
Accuracy 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

Used to show the likelihood of the model 

producing the correct output. 

Precision 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Used to show the performance of the model 

when False Positives are concerned.  

Recall 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Used to show the performance of the model 

when False Negatives are concerned. 

F1 Score 
2 ×  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Harmonic mean between precision and recall. 

Shows the weighted average of precision and 

recall. 

 

 On the other hand, two popular performance metrics for GANs are Fréchet 

Inception Distance (FID) and Inception Score (IS) (Chong & Forsyth, 2020). GAN 

performance metrics are summarized in Table 2.5. 

 

Table 2.5: Performance Metric of GAN 

Metric Formula Description 
Fréchet 

Inception 

Distance 

‖𝑀𝑡 − 𝑀𝑔‖
2

2
+ Tr (𝐶𝑡 + 𝐶𝑔

− 2(𝐶𝑡𝐶𝑔)
1
2 ) 

 

Where  

M is mean matrix,  

C is covariance matrix, 

t is training data, 

and g is generated data 

Represents difference of training and generated 

data, along with difference in measure of 

dispersion in these data. 

 

Generated images that more closely resemble 

training data numerically will produce a lower 

Fréchet Inception Distance, which is more 

desirable. 

Inception Score exp [ 𝔼𝑧~𝑝(𝑧)[ 𝔻(p(y|g(z)) || p(y))]] 

 

Where 

y is a label, 

p(y|x) is probability of the label to be 

computed on image x using 

Inceptionv3 model, 

p(y) is the marginal class distribution,  

and 𝔻(p || q)  is the Kullback Leibler 

divergence between probability p and 

q, 

 

Represents variety in the images generated and 

how distinctive each image is. Assesses GAN 

based on probability distributions of a classifier 

output.  

 

Generated images that are more easily 

distinguished and classified will result in a 

higher score, which is more desirable. 
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2.6.5  Software  

 

 Python 3 is a high level programming language that is and commonly used in 

machine learning research (Raschka, 2015). Python is dynamically typed and supports 

multiple programming paradigm including object-oriented programming.   

 

 In addition, Google Colaboratory or Google Colab is a cloud-based machine learning 

research platform using Python  (Bisong, 2019). Colab enables deep learning model to be 

trained on the cloud and is easily accessible to researchers. The symbols for Python and 

Google Colab are shown in Figure 2.11. 

 

 

Figure 2.11: Symbol of Python and Google Colab (Parmar, 2021). 

 

 Besides, deep learning libraries are used to enable tensor computations required for 

deep learning. Figure 2.12 shows two of the most popular deep learning libraries which are 

TensorFlow (Martín Abadi et al., 2015) and Pytorch (Paszke et al., 2019). Both of these 

libraries include functions to specify network architecture and contain optimizer algorithms 

to perform training. There is little difference between Tensorflow and Pytorch and the choice 

of library is mostly depending on the researcher.  

 

 

Figure 2.12: Symbol of Pytorch (left) and Tensorflow (right) (PyTorch vs TensorFlow, 2021). 
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2.7  Related Works 

Table 2.6: Summary of Related Works 

Title Defect-GAN: High-Fidelity Defect 

Synthesis for Automated Defect 

Inspection 

Defect Image Sample Generation with 

GAN for Improving Defect Recognition 

Defect Enhancement Generative Adversarial 

Network for Enlarging Data Set of Microcrack 

Defect 

Author Zhang et al. (2021) Niu et al. (2020) Lin et al. (2019) 

Use Case Applied on CODEBRIM dataset which 

consists of surface defects in concrete 

bridges. 

Applied on commutator cylinder surface 

defect dataset. 

Applied on captured images of magnetic ring that 

contain microcrack defects. 

Classifier ResNet34 

DenseNet121 

VGG16 Lenet5 

Alexnet 

SVM 

GAN • Novel Defect-GAN introduced in the paper 

• Generator networks consist of two 

autoencoders 

• The two autoencoders mimic defacement 

and restoration process  

• Novel SDGAN introduced in the paper  

• D2 Adversarial loss and Cycle consistency 

loss is proposed  

• One generator network produces defect 

image output while the other produces a 

defect free output  

• Novel DEGAN introduced in the paper 

• Based on DCGAN using convolutional layers  

• Applies discriminator model from BEGAN which 

contains an autoencoder structure 

• Introduces a novel reconstruction error as loss function 

Compared 

Against 

StackGAN++ 

StyleGAN v2 

StarGAN  

CNN without data augmentation 

WGAN 

D2GAN 

CycleGAN 

Comparison is made between the classifiers trained on 

DEGAN augmented data and classifiers trained only on 

original training data. 

Performance 

metrics 

Accuracy 

Fréchet Inception Distance 

Error rate 

Fréchet Inception Distance 

Training time  

Accuracy 

Sensitivity 

Specificity 

Findings • The proposed Defect-GAN using 

defacement and restoration process 

generates data that can train a more accurate 

classifier 

• CNN trained on GAN augmented data 

performs better than CNN trained on only 

original training data. 

• Models trained on GAN augmented data is 

more robust to ‘dirty’ data outliers 

• The proposed SDGAN generates high 

quality data that can capture variations in 

lighting condition 

 

• The proposed DEGAN is capable of expanding 

training data and produce better classifier performance 

• Classifier trained on GAN augmented data produces 

better sensitivity and specificity characteristics 
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CHAPTER 3 

METHODOLOGY 

 

 

 

3.1  Project Overview 

 

 Figure 3.1 shows the steps that are conducted throughout the project. Background 

study is conducted on theory related to the project. In addition, project planning is performed 

through the use of flow chart and Gantt chart. Next, textbooks and journals relating to 

architecture of classifier and GAN neural networks are studied. Furthermore, similar works 

to the project are searched and compared. 

 

 Following literature search, project methodology including experiment design is 

completed. Data collection is performed by referring to open-source surface defect data in 

addition to data from collaboration company. Image data is preprocessed through resizing 

and cropping to the appropriate resolution and is split into train and test sets.   

 

 Train data set is used for training GANs and classifier networks while test data set is 

used to evaluate the classifier performance. The GANs are trained until the outputs are 

visually similar to training data. The trained GANs are then be used to augment the training 

data. Meanwhile, the training data is also separately augmented using conventional methods. 

The GAN augmented data and conventionally augmented data are used to separately train 

the CNN classifier.  
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 With both the GAN and conventionally augmented data, the CNN classifier is trained 

until the loss function converges and does not improve further. The performance of the CNN 

classifier on the test data set is recorded. Further, McNemar’s Test is used to compare the 

performance of CNN classifier trained on GAN and conventionally augmented data.  

 

 One possible error that might occur is improper hyperparameter of GAN. If classifier 

performance on GAN generated data is significantly worse than conventional data 

augmentation, GAN hyperparameters such as input resolution will be tuned. In addition, 

“dirty” data such as inconsistent input sample characteristics will also affect performance. If 

classifier performance is poor, the problematic data set will be inspected and cleaned before 

running the experiment on it again. 
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Figure 3.1: Project Planning 
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3.2  Design of Experiment 

 

 The experiment tree of the project is shown in Figure 3.2 below. One variable is varied 

which is augmentation technique. GAN-based data augmentation is compared to 

conventional data augmentation to determine the viability of the proposed system. True 

Positive, True Negative, False Positive, and False Negative (shortened as TP, TN, FP and 

FN) are used to evaluate the performance of model trained on augmented image data. 

 

 

Figure 3.2: Experiment Tree of the Project 
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3.3  Project Software and Tools 

 

3.3.1  Programming Language, Libraries and Platform 

 

 Python is used as the programming language for the project. Python is popular in 

machine learning research and the CNN and GAN source code used is programmed in this 

language. Furthermore, Tensorflow library is used as the deep learning library. Additionally, 

supporting library including NumPy for matrix data manipulation, and Python Image Library 

and OpenCV for Image manipulation are used.  

 

 

3.3.2  Transfer Learning 

 

 Transfer Learning and fine tuning are used to speed up training process of the CNN 

classifier. The transfer learning procedure is shown in Figure 3.3 below. First, the weights of 

a pre-trained model is imported and frozen meaning it will not be tuned in the training 

processed. Next, new layers are appended on the base model and the model is trained until 

convergence. Afterwards, the base model is unfreezed and trained again. 

 

 

Figure 3.3: Flowchart of Transfer Learning and Fine Tuning.  
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3.3.3  Data Source 

 

 The project is applied on microcrack defect detection. The proposed system is tested 

on microcrack defect dataset from ViTrox Technologies Sdn. Bhd., the collaborating 

company. Samples from the defect data used in the experiment are as Figure 3.4 below. Note 

that only line shaped defects are chosen as train set. This is done to illustrate whether the 

proposed system can generalize defect shapes into those from the test set. 

 

Figure 3.4: Microcrack Defect Samples from ViTrox. 
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3.3.4  Neural Network Configuration 

 

 The proposed system, as shown in Figure 3.5, consists of two GANs that takes in 

bounding box input vector and non-defect input image to generate defect images. Mask GAN 

is trained on defect mask labels and generates defect mask from bounding box information. 

On the other hand, Defect Image GAN is trained on mask-image pair to generate defect 

images from defect mask and non-defect images. The architecture used Mask GAN is MSG-

GAN (Karnewar & Wang, 2019) while Defect Image GAN uses Sequential Image GAN 

(Turkoglu et al., 2019). Furthermore, the classifier architecture used is ResNet (He et al., 

2015).  

 

Figure 3.5: Configuration of proposed system 
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3.3.5  Conventional Data Augmentation Methods 

 

 Conventional data augmentation methods used are shown in Table 3.1 below. 

Table 3.1: Conventional Data Augmentation Methods Used. 

Data Augmentation Method Parameters 

Rotation 0  ͦ, 90  ͦ 

Flipping Horizontal, Vertical 

 

 

3.3.6  Performance Evaluation Metric 

 

 Performance Evaluation Metric for the project are listed in Table 3.2 below. True 

Positive, True Negative, False Positive, and False Negative metrics are summarized into a 

confusion matrix. 

Table 3.2: Performance Metrics Used 

Metric Justification 

True Positive Number of correctly predicted defect images 

True Negative Number of correctly predicted nondefect images 

False Positive Number of incorrectly predicted nondefect images 

False Negative Number of incorrectly predicted defect images 

Visual Inspection Qualitative inspection of GAN output 
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 CHAPTER 4 

RESULTS AND DISCUSSIONS 

 

 

 

4.1  GAN Image Generation 

4.1.1  Mask GAN Output 

 

 The output of Mask GAN is shown in Figure 4.1 below. Each row represents images 

that are generated with the same bounding box input. Significant variation between each 

image can be seen which means that the GAN can generate defects of varying shape within 

the same bounding box.  

 

 

Figure 4.1: Output of Mask GAN 
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4.1.2  Defect GAN Output 

 

 The output of Defect Image GAN is shown in Figure 4.2Figure 4.1 below. The first 

column is the actual images from the dataset and the following columns are images generated 

with different latent variables. In each row, the same defect mask is provided to the Defect 

Image GAN. There are no observable variation in the output images and the defects are not 

textured. Hence, Defect Image GAN can only produce defect images by painting a single 

tone at specified image mask. 

 

 

Figure 4.2: Output of Defect Image GAN 
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4.2  Classifier Performance Analysis  

4.2.1  Rotate and Flip Augmented Data 

 

 The result of classifier trained on rotate and flip augmented data is shown in Figure 

4.3 below. The number of correct predictions is the sum of diagonal cell values, which is 14. 

6 defect images are predicted as pass, meaning that there are 6 false negatives that are 

produced by the classifier.  

 

Figure 4.3: Confusion Matrix of Classifier trained on Rotate and Flip Augmented Data 

  

The poor performance of classifier trained on rotate and flip augmented data is 

explained by inspecting images which produces incorrect predictions. As shown in Figure 

4.4, the false negatives are produced by images that are disimmilar to the training data. 

Rotate and flip data augmentation is incapable of producing defect shapes that are different 

from the original data.  

 

Figure 4.4: Images that produce False Negative results in Classifier trained on Rotate and Flip 

Augmented Data 
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4.2.2  GAN-Augmented Data 

 

 The result of classifier trained on rotate and flip augmented data is shown in Figure 

4.5 below. The number of correct predictions is the sum of diagonal cell values, which is 20. 

In this case, the classifier trained on GAN augmented data achieves an accuracy of 100%. 

The 100% accuracy does not actually reflect real-life performance. Instead, the exceptionally 

good performance is due to the small quantity of data available for evaluation. Nevertheless, 

GAN augmented data is shown to minimize false negatives, provided that bounding box 

information that reflect real world data is given to the GAN-based data augmentation system.  

 

Figure 4.5: Confusion Matrix of Classifier trained on GAN-Augmented Data 
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4.2.3  McNemar’s Test 

 

 McNemar’s Test is used to evaluate the significance of difference between 

performance in classifier trained on rotate and flip augmented data and classifier trained 

GAN augmented data. The correct and incorrect predictions of each model is formulated into 

a matrix as shown in Figure 4.6 below. 

 

Figure 4.6: McNemar's Test Matrix of Classifier trained on GAN-Augmented Data and Rotate and 

Flip Augmented Data 

 

 A null hypothesis is formed, stating that the probability of occurrence in the off-

diagonal cells are the same. 

 

H0 : π = 0.5 

H1 : π ≠ 0.5 

Significance level, α: 0.05 (95% confidence) 

p-value: 0.03125 

 

 At a confidence level of 95%, p-value is smaller than significance level of 0.05. 

Therefore, the null hypothesis is rejected. There is a significant difference between GAN-

based data augmentation and Rotate and flip data augmentation.   
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4.2.4  Loss Curve 

 

 Further analysis of classifier performance between each data augmentation method 

can be analyzed by inspecting the loss curve, as shown in Figure 4.7. Classifier trained on 

rotate and flip augmented data produces a smoother loss curve than classifier trained on GAN 

augmented data. The smooth loss curve is produced when there is little variation among the 

training data. Conversely, GAN augmented data is varied and therefore the classifier requires 

more iterations to converge. Hence, the loss curve illustrates that GAN-based data 

augmentation increases variation in data. The significant increase in performance of 

classifier proves that meaningful variation of data is produced by GAN-based data 

augmentation. 

 

Figure 4.7: Loss Curve of Classifier trained on data augmented with both methods 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

 

 

 

5.1  Conclusion 

 

 In this project, a data augmentation system using GAN is developed. The GAN-based 

image data augmentation system takes in bounding boxes information and produces images 

with defects on the specified locations. The developed system is compared with conventional 

data augmentation method, specifically random rotation and flipping, by training a classifier 

on the augmented data. The classifiers trained on both data augmentation methods are 

evaluated using confusion matrix and compared using McNemar’s Test. As a result, 

classifier trained on GAN-augmented data is shown to be better than classifier trained on 

rotate and flip augmented data at a confidence level of 95%. In short, the developed GAN-

based data augmentation system is capable of creating user-customized defect dataset which 

improves the performance of classifier trained on the data.  

 

 

5.2  Recommendations 

 

 As shown in Chapter 4, images generated from the defect image GAN has little 

variation in texture within defects. One suggestion to improve the system is to tune this GAN 

so that different textures of defects can be produced. Introducing variation in defect texture 

will lead to more realistic generated images that reflect actual images occurring within 

production lines.  

 In addition, GAN based data augmentation system can be configured to support 

multiple defect types. Both the Mask GAN and Defect Image GAN can be conditioned on 

defect class labels and produce different type of defects when different label inputs are given. 

This will remove the limitation of defect type for the system, and reduce the training time by 

avoiding having to train the whole system separately for each type of defect needed.   
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5.3  Sustainability of Project 

 

 The GAN-based data augmentation system aims to improve classifiers performance 

in detecting defect. By detecting defect early within the production line, steps can be taken 

to isolate and fine tune problematic areas in the production system. This reduces the chances 

of defect occurring and reduces the material and labor cost of reworking. Hence, the 

completion of this project is another step towards improving quality of production line and 

reducing wastes. 

 

 

5.4  Project Complexity 

 

 This project involves complex engineering knowledge including statistical methods. 

Moreover, conflicting requirements such as balancing training time of GAN and its 

performance are required. In addition, the application of GAN in data augmentation is novel 

and explored with experiments in this project. Furthermore, this project has real life 

implications in improving defect detection in a production environment.  

 

 

5.5  Basic Entrepreneurship  

 

 The GAN-based data augmentation system is produced under collaboration with 

ViTrox Corporation Berhad. The aim of this project is to improve current defect detection 

algorithms in the company. The application of GAN-based data augmentation will improve 

defect detection and lead to increased customer satisfaction and product quality.  
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