

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DESIGN FOR ENVIRONMENT (DFE) IMPROVEMENT ON ELECTRONIC PRODUCT: A CASE STUDY ON A MOBILE PHONE HOUSING

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Manufacturing Design) with Honours.

by

MUHAMMAD FANSURI B MUHYADDIN

FACULTY OF MANUFACTURING ENGINEERING May 2010

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: Design For Environment (DFE) Improvement on Electronic Product: A Case Study on a Mobile Phone Housing

SESI PENGAJIAN: 2009/2010 Semester 2

Saya: MUHAMMAD FANSURI B MUHYADDIN

mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis .
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan ($\sqrt{}$)

SULIT

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI 1972)

TERHAD	(Mengandungi maklumat TERHAD yang telah ditentukan
	oleh organisasi/badan di mana penyelidikan dijalankan)

Disahkan oleh:

(TANDATANGAN PENULIS)

(TANDATANGAN PENYELIA)

Cop Rasmi:

Alamat Tetap: <u>Peti Surat 16,</u> <u>Parit 3 Timur,</u> <u>45300 Sungai Besar,</u> <u>Selangor Darul Ehsan</u> Tarikh: 12 MAY 2010

Tarikh: __

** Jika laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT atau TERHAD.

C Universiti Teknikal Malaysia Melaka

DECLARATION

I hereby, declared this report entitled "Design For Environment (DFE) Improvement on Electronic Product: A Case Study on a Mobile Phone Housing" is the results of my own research except as cited in references.

Signature Author's Name Date

:

:

:

Muhamma

Muhammad Fansuri B Muhyaddin 12 May 2010

i

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Manufacturing Design) with Honours. The members of the supervisory committee are as follow:

.....

Project Supervisor (Official Stamp & Date)

ABSTRACT

•

Design for Environment (DFE), covers any design activity which aims at improving the environmental performance of a product. For further study of Design for Environment, Nokia N70 mobile phone housing was selected as a component to be research. The objective of this research is to analyze the current electronic components by using Design for Environment (DFE) and Design for Sustainability (DFS) approaches analysis. This report describes research about sustainable and environmental impact of mobile phone component. By using Solidworks Sustainability analysis software, the original part of Nokia N70 mobile phone housing was analyzed to know the environmental impact level. New improved design and material selection process was implement in order to eliminate component disposal and to minimize the environmental impact of the product by reduce and modification part and suitable selection material. Finally, the comparative analysis can be made to determine whether the new design have improvement or not.

ABSTRAK

Rekabentuk untuk Persekitaran (DFE), meliputi segala kegiatan rekabentuk yang bertujuan untuk untuk meningkatkan prestasi persekitaran sesuatu produk. Untuk kajian yang lebih lanjut, tentang Rekabentuk untuk Persekitaran (DFE), penutup telefon bimbit Nokia N70 dipilih sebagai komponen kajian. Objektif kajian ini adalah untuk meganalisis komponen elektronik pada masa ini dengan menggunakan pendekatan Rekabentuk untuk Persekitaran (DFE) dan Rekabentuk untuk kebolehtahanan (DFS). Report ini juga menceritakan tentang ketahanan dan kesan persekitaran komponen kepada alam sekitar. Dengan menggunakan perisian Solidwork Sustainability analisis, penutup asal telefon bimbit Nokia N70 akan dianalisis untuk mengetahui tahap kesan kepada persekitaran. Rekabentuk baru dan proses pemilihan bahan yang sesuai akan dilakukan bertujuan untuk mengurangkan komponen yang tidak diperlukan dan juga untuk mengurangkan kesan kepada persekitaran. Akhir sekali, perbandingan analisis akan dibuat sama ada rekabentuk yang baru mempunyai peningkatan atau tidak..

DEDICATION

Special dedicated to my beloved parents, En. Muhyaddin B Idris and Pn. Noriani Bt Mat Aris and who are very concerns, understanding patient and supporting, thank you for everything to my supervisor, En. Tajul Ariffin B Abdullah, special gratitude goes to my special friend, Nur Ija Amirah Bt Shamsuddin, and lastly to all my friends. The work and success will never be achieved without all of you.

ACKNOWLEDGEMENT

I would like to offer thanks and deepest gratitude from the bottom of my heart for all the support, encouragement and inspirations I obtained through the duration of this project. The help rendered to me priceless, be it from the smallest of its kind to the largest. They include;

My parents, En. Muhyaddin B Idris and Pn. Noriani Bt Mat Aris who inspired me for their constant support,

My beloved, Nur Ija Amirah Bt Shamsuddin who kept me through it all,

My supervising lecturer, Mr. Tajul Ariffin B Abdullah of which me had a good working relationship, and who offered me tremendous help and guidance along the completion of this project,

Lecturer and relevant personnel who helped me in one way or other;

Friends and peers who are good companions in time of need.

TABLE OF CONTENT

TITLE	PAGE
Declaration	i
Approval	ii
Abstract	iii
Abstrak	iv
Dedication	V
Acknowledgement	vi
Table of content	vii
List of table	xiii
List of figure	xiv
List of Abbreviations	xix

CHAPTER 1: INTRODUCTION

1.0	Introduction	1
1.1	Background	1
1.2	Problems Statement	3

vii

1.3	Objective	4
1.4	Scope	4

CHAPTER 2: LITERATURE REVIEW

2.0	Introduction	5
2.1	Design for environment (DFE)	5
2.1.1	Objective of Design for Environment (DFE)	7
2.1.2	Design for Environment (DFE) Benefit	7
2.1.3	Implementation of DFE and General Guideline	8
2.1.4	Element to be consider in Design for Environment	13
2.1.4.1	Reduce impact of raw materials	13
2.1.4.2	Reducing impact of manufacturing and distribution	15
2.1.4.3	Green design	15
2.1.4.4	Eco-efficiency	16
2.1.4.5	Environmental Foundation	17
2.1.4.6	Industrial Ecology	18
2.2	Design for Recycling	19
2.3	EcoDesign	21
2.3.1	LCE and EcoDesign	22

2.3.2	LCA and product design	23
2.4	Design for Environment tools	24
2.4.1	Life Cycle Assessment	24
2.4.2	Life Cycle Assessment Methodology	25
2.5	Design for sustainability	28
2.5.1	Sustainable development	29
2.5.1.1	Guidelines for sustainable development	33
2.5.1.2	A sustainable product must be a successful product	33
2.5.1.3	Key Factor in sustainable Development and the Role of Environment	34
	Protection	
2.5.2	Sustainability Initiatives	35
2.5.3	Design for Sustainability: Approaches to Innovation	36
2.5.4	Redesign	37
2.5.5	New Product Design	38
2.5.6	Product Life Cycles and Sustainable Design	39
2.5.7	Sustainability strategies for design	40
2.6	Solidworks	42
2.6.1	Solidworks Sustainability Xpress	43
2.6.1.1	Life Cycle Assessment	43
2.6.1.2	Environmental Impact Dashboard	44
2.7	Materials selection	45

2.7.1	Guidelines for materials selection and design	46
2.8	History and Evolution of Mobile Phones	46
2.8.1	Mobile Phone Components	49
2.8.2	Waste Toxic in Mobile Phone	52
2.9	Nokia N70 Mobile Phone	53
2.9.1	Separation Nokia N70 Mobile Phone Component Parts	54

CHAPTER 3: METHODOLOGY

3.0	Introduction	57
3.1	Introduction Methodology	57
3.2	Planning of the study	58
3.2.1	Choosing title for PSM	60
3.2.2	Identify the Problem Statement, Objectives and Scope of project	60
3.2.3	Literature Review	60
3.2.4	Writing report for PSM 1 and presentation	61
3.3	PSM 2 Description	62
3.3.1	Analyzing of Product Using Solidworks Sustainability Analysis	62
3.3.1.1	Environmental Impact	66
3.4	Result and Discussion	67

3.5	Conclusion and recommendation	67
3.6	Report Writing and Submission	67

CHAPTER 4: RESULT AND DISCUSSION

4.0	Introduction	68
4.1	Product Information	69
4.1.1	Product Specifications	69
4.1.2	Product Information Detail	70
4.2	Draw design using Solidworks software	73
4.2.1	Original Design Exploded View	73
4.3	Flow Chart for Result and Analysis	75
4.4	Environmental Impact Analysis for Original Product	76
4.4.1	Result	77
4.4.2	Analysis Summary for Original Product	86
4.5	Improve design	87
4.5.1	Comparison between original design and improve design	89
4.6	Material Selection Process	90
4.6.1	Material Properties Consideration For Selection Material	91
4.7	Environmental Impact Analysis For New Design	94

4.8	Comparison Environmental Impact Analysis Material	104
4.8.1	Comparison of Top Cover and Battery Cover Material	105
4.8.1.1	Comparison of Top Cover Material	105
4.8.1.2	Comparison of Bottom Cover Material	107
4.8.2	Comparison of Screen Material	109
4.8.3	Comparison Keypad and switch Material	112
4.8.3.1	Comparison of Keypad Material	112
4.8.3.2	Comparison Switch Material	114
4.9	Comparison Original Product Analysis and New Design Analysis	117

CHAPTER 5: CONCLUSION

5.1	Conclusion	119
5.2	Recommendation	121

122

REFERENCES

Appendix A

Appendix B

LIST OF TABLES

TITLE		PAGE
Table 2.1:	Description Mobile Phone Components	49
Table 2.2:	Nokia N70 Mobile Phone Component Parts	54
Table 4.1:	Product Specifications	69
Table 4.2:	Product Information Detail	70
Table 4.3:	Original Product Part Quantity	76
Table 4.4:	Existing Product Analysis	86
Table 4.5:	Detail Comparison Environmental Impact Analysis for	
	Material PC High Viscosity and PE High Density	107
Table 4.6:	Detail Comparison Environmental Impact Analysis for	
	Material Acrylic (Medium-high impact) and	
	Polymethylmethacrylate (PMMA)	109
Table 4.7:	Comparison Environmental Impact Analysis for	
	Material ABS, PC and PE High Density.	114
Table 4.8:	Original Product Analysis Result	115
Table 4.9:	Improvement Design Analysis Result	115

LIST OF FIGURES

TITLE

PAGE

Figure 2.1:	Approach to improve product life cycle		
Figure 2.2:	A Design for the environment methodology		
Figure 2.3:	Element of reducing impacts of raw materials		
Figure 2.4:	Keywords of Life Cycle Engineering (Jeswiet, J 2003).		
Figure 2.5:	The phases of LCA according to ISO 14040		
Figure 2.6:	Flow diagram of the packaging life cycle		
Figure 2.7:	Scheme of sustainable development by (UCN. 2006)		
Figure 2.8:	Another representation of sustainability showing how both		
	economy and society are constrained by environmental limits.	31	
Figure 2.9:	Concentric model of sustainability	32	
Figure 2.10:	: Life cycle assessment		
Figure 2.11:	Mobile phones over time		
Figure 2.12:	2: Mobile Phone Components		
Figure 2.13:	Charger	52	

Figure 3.1:	Process flow chart for PSM	59
Figure 3.2:	Product manufactured and Transportation	63
Figure 3.3:	Pie Chart	66
Figure 3.4:	Bars	66

Figure 4.1:	Nokia N70 Mobile Phone Housing		
Figure 4.2:	Original design of Nokia N70 mobile phone housing		
Figure 4.3:	Result and Analysis Flow Chart	75	
Figure 4.4:	Pie Chart Environmental Impact of ABS material		
Figure 4.5:	Pie Chart Environmental Impact of ABS material	78	
Figure 4.6:	Pie Chart Environmental Impact of ABS material	79	
Figure 4.7:	Pie Chart Environmental Impact of ABS material	80	
Figure 4.8:	Pie Chart Environmental Impact of Silicon material	81	
Figure 4.9:	Pie Chart Environmental Impact of Aluminum material	82	
Figure 4.10:	Pie Chart Environmental Impact of Polycarbonate (PC) material	83	
Figure 4.11:	Pie Chart Environmental Impact of Aluminum material	84	
Figure 4.12:	Pie Chart Environmental Impact of Silicon material	85	
Figure 4.13:	Part new design	87	
Figure 4.14:	New design of Nokia N70 mobile phone housing	88	

Figure 4.15:	: Comparison between original design and improve design		
	of mobile phone housing.	89	
Figure 4.16:	Polycarbonate (PC) Properties	91	
Figure 4.17:	High Density Polyethylene (HDPE) Properties		
Figure 4.18:	Acrylic Properties		
Figure 4.19:	PMMA Properties		
Figure 4.20:	Rubber Properties	93	
Figure 4.21:	Polybutadiene (PB) Properties	93	
Figure 4.22:	Pie Chart Environmental Impact of PC		
	High Viscosity material	94	
Figure 4.23:	Pie Chart Environmental Impact of		
	PE High Density material	95	
Figure 4.24:	Pie Chart Environmental Impact		
	PC High Viscosity material	96	
Figure 4.25:	Pie Chart Environmental Impact of		
	PE High Density material	97	
Figure 4.26:	Pie Chart Environmental Impact of Acrylic		
	(Medium-high impact) material	98	
Figure 4.27:	Pie Chart Environmental Impact of PMMA material	99	
Figure 4.28:	Pie Chart Environmental Impact of Rubber material	100	
Figure 4.29:	Pie Chart Environmental Impact of Polybutadiene (PB) material	101	

Figure 4.30: P	ie Chart Environmental Impact of Rubber material	102	
Figure 4.31: Pie Chart Environmental Impact of Polybutadiene (PB) material 103			
Figure 4.32:	Comparison of Top Cover Material for Carbon Footprint		
Figure 4.33:	Figure 4.33: Comparison of Top Cover Material for		
	Water Eutrophication	105	
Figure 4.34:	Comparison of Top Cover Material for Air Acidification	106	
Figure 4.35:	Comparison of Top Cover Material for		
	Total Energy Consumed	106	
Figure 4.36:	Comparison of Bottom Cover Material for Carbon Footprint	107	
Figure 4.37:	Comparison of Bottom Cover Material for		
	Water Eutrophication	107	
Figure 4.38:	Comparison of Bottom Cover Material for		
	Air Acidification	108	
Figure 4.39:	Comparison of Bottom Cover Material for		
	Total Energy Consumed	108	
Figure 4.40:	Comparison of Screen Material for Carbon Footprint	109	
Figure 4.41:	Comparison of Screen Material for Water Eutrophication	109	
Figure 4.42:	Comparison of Screen Material for Air Acidification	110	
Figure 4.43:	Comparison of Screen Material for Total Energy Consumed	111	
Figure 4.44:	Comparison of Keypad Material for Carbon Footprint	112	
Figure 4.45:	Comparison of Keypad Material for Water Eutrophication xvii	112	

Figure 4.46:	Comparison of Keypad Material for Air Acidification		
Figure 4.47:	Comparison of Keypad Material for Total Energy Consumed	113	
Figure 4.48:	Comparison of Switch Material for Carbon Footprint	114	
Figure 4.49:	Comparison of Switch Material for Water Eutrophication	114	
Figure 4.50:	Comparison of Switch Material for Air Acidification	115	
Figure 4.51:	Comparison of Switch Material for Total Energy Consumed	115	

xviii

LIST OF ABBREVIATIONS

ABS	-	Acrylonitrile butadiene styrene
DFA	-	Design for Assembly
DFD	-	Design for Disassembly
DFE	-	Design for Environment
DFM	-	Design for Manufacturing
DFP	-	Design for Production
DFR	-	Design for Recycling
ELP	-	End of Life Products
EPA	-	Environmental Protection Agency's
HDPE	-	High Density Polyethylene
LCA	-	Life cycle assessment
LCD	-	Liquid Crystal Display
LCE	-	Life Cycle Engineering
LCI	-	Life Cycle Inventory analysis
LCIA	-	Life Cycle Impact Assessment
OPPT	-	Pollution Prevention and Toxics
PB	-	Polybutadiene
PC	-	Polycarbonate
PDP	-	Product development process
PMMA	-	Polymethylmethacrylate
PSM	-	Projek sarjana muda
PSS	-	Product-Service Systems
UTEM	-	Universiti Teknikal Malaysia Melaka

CHAPTER 1

INTRODUCTION

1.0 Introduction

This chapter presents the general ideas of the research. There are basically containing four main sections in this chapter such as background, problem statement, objective and scope of this project.

1.1 Background

Nowadays, many people in our society are beginning to focus on the importance of environmental preservation. Pollution is increasingly making the surrounding air, water and ground contaminated. This is bringing the environmental practices of industry into the neighborhoods, communities and homes of all citizens. As a result, many citizens are becoming concerned with the environmental practices of the industries that surround them. Governments are also stepping up on their environmental regulations, policies, and procedures which restrict industry's environmental practices. This in turned has compelled many industries to improve their environmental record to produce greener products and use greener processes. With the environmental issues problem that occurs today, there are many companies promote to implementing Design for Environment (DFE) approaches on their product to be an environmental friendly.

Design for Environment (DFE) is a concept that refers to a variety of design approaches that attempt to reduce the overall environmental impact of a product, process or service, where environmental impacts are considered across its life cycle. DFE also know as Life cycle Assessment (LCA), Eco-Design, End-of-Life (EoL) design, green product, design and environmental friendly product. Although, it has a referred with different name, but it"s still stay the same with its objective, benefit and its method. The main aim for implementation DFE is to ensure our environment is under control from dangerous threat from poison which produces by the product. Design for Environment at each of its life stages and to make better decisions during product design so that environmental attributes of the product are kept at a desired level.

Global environmental issues have been brought about with the expansion of human activities and are related to everyday social activities. The electronic and electrical industries have a very close relationship with such global environmental issues, because of their products, which are being utilized in everyday human life, and because of their production processes. The relationship of environmental issues with the electronic and electrical industries begins with the traditional activity of prevention of the pollution and the contamination which production processes generate in the area close to their facilities. The relationship is found in such areas as the prevention of harmful effects on the global environment which production activities cause extensively around their facilities and, moreover, in the reduction of the impact the products have on the global environment, both during and after use. Recently, such a relationship has been observed in the development of technologies and in the manufacturing of products which contribute to the prevention or reduction of pollution in the global environment.

As an example, electronic industries today generate more electronic products for human utility and at the same time it also increases the electronic waste (e-waste). Electronic product contains toxic and hazardous materials, and if thrown away in landfill, can cause environmental damage. Electronic product and accessories contain concentrations of toxic heavy metals or other metals including cadmium, lead, nickel, mercury, manganese, lithium, zinc, arsenic, antimony, beryllium, and copper. These metals are non bio degradable and are also bio-accumulative. They do not break down naturally. Decomposing waste forms poisonous liquids that can seep into groundwater and then into rivers and streams, contaminating the soil. The metals that build up in the soil can harm the environmental ecosystem. That"s why every industry electronic company today focusing on design for environment for every product that they produce in order to minimize the hazardous material and at the same time they can maximizing the recycling of the product.

1.2 Problem statement

Nowadays, with residential population total increase in our country Malaysia around twenty four millions, utilization rate of electronic product also increasing together by technological advancements. So, with utilization rate increase electronic product today, indirectly it also raise the rate of elimination electronics know as e-waste. Mobile phone is one of example electronic product that contain toxic and hazardous. The toxic substances contained in each of these components pose a serious environmental problem by leaching from decomposing waste in landfills into ground water, contaminating the soil. The materials that build up in the soil can harm the environmental ecosystem. Toxic and hazardous materials disposal that contain in mobile phone also can give serious impact on human health such as cancer and so on.