NEW TECHNIQUE OF PLASTIC MOULD FOR THERMOSET COMPOSITE FABRICATION

MOHAMAD MUSTAQIIM B. CHE HASSAN

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

NEW TECHNIQUE OF PLASTIC MOULD FOR THERMOSET COMPOSITE FABRICATION

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Engineering Materials) with Honours.

by

MOHAMAD MUSTAQIIM BIN CHE HASSAN

FACULTY OF MANUFACTURING ENGINEERING 2010

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: New Technique of Plastic Mould for Thermoset Composite Fabrication

SESI PENGAJIAN: 2009/2010 Semester 1

Saya MOHAMAD MUSTAQIIM BIN CHE HASSAN

mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan ($\sqrt{}$)

JSULITITERHADITIDAK TERHAD	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia yang termaktub di dalam AKTA RAHSIA RASMI 1972) (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan) Disahkan oleh:	
Alamat Tetap: Cop Rasmi:		
Lot 4720, Kg. Tersusun Bt.	6,	
31150 Ulu Kinta,		
Ipoh, Perak.		
Tarikh: 20 April 2010	Tarikh: 20 April 2010	
** Jika Laporan PSM ini SULIT atau berkenaan dengan menyatakan se SULIT atau TERHAD.	TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi kali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai	

C) Universiti Teknikal Malaysia Melaka

DECLARATION

I hereby, declared this report entitled "New Technique of Plastic Mould For Thermoset Composite Fabrication" is the results of my own research except as cited in references.

Signature	:	
Author's Name	:	MOHAMAD MUSTAQIIM B. CHE HASSAN
Date	:	20 APRIL 2010

C Universiti Teknikal Malaysia Melaka

APPROVAL

This report is submitted to the Faculty of manufacturing Engineering of UTeM as a partial fulfilment of the requirements for the degree of Bachelor of Manufacturing Engineering (Engineering Materials) with Honours. The member of the supervisory committee is as follow:

.....

(Principal Supervisor) (Mohd Yuhazri Bin Yaakob)

ABSTRACT

This research relates to a new technique of plastic mould for thermoset composite fabrication. Currently mild steel, wood and aluminium are as the moulds for moulding the plastic products as they hard and tough. However these moulds require high tooling cost and some complex shapes cannot be produced. Thus, this research is a development of new technique that used plastic as the moulds. The plastic that was used is PVC film from thermoplastic material. For manufacturing the thermoset composite, a new technique was developed from Vacuum Assisted Resin Infusion Moulding (VARIM) process but different from the moulds. Both of the upper and bottom mould used were flexible moulds from PVC film. A polyester resin was used as the matrices and fibreglass was used as the reinforcement for manufacture the thermoset composite. Lastly, after the composite were produced they had been inspected for quality assurance to measure the successful of this new technique of plastic mould. These involved mould capability, surface quality of the resulted composite and manufacturing complexity based on three experimental product designs that had been decided which are simple design, medium design and complex design. In general, the results showed that this new technique of plastic mould for thermoset composite fabrication was successfully produced and feasible for fabrication trial products or a small quantity of productions with reducing the manufacturing costs. The new technique of plastic mould also increases most of the mechanical properties of the thermoset composite than if they were produced by hand lay up technique or vacuum infusion technique. In addition, the plastic mould can also be repeated for almost 8 times. Due to that this technique significantly reduced the tooling cost and time for making the mould.

ABSTRAK

Kajian ini melibatkan pembangunan teknik menghasilkan komposit termoset di mana acuan yang digunakan ialah daripada bahan plastik. Kebiasaannya, bahan acuan mestilah lebih kuat dan keras dari bahan yang akan dihasilkan seperti acuan dari besi, kayu dan aluminium. Akan tetapi, bahan acuan tersebut memerlukan kos yang tinggi dan tidak sesuai dalam menghasilkan produk yang mempunyai bentuk yang kompleks. Berdasarkan masalah tersebut, kajian ini merupakan pembangunan teknik baru yang akan menggunakan plastik sebagai bahan acuan. Plastik yang akan digunakan adalah filem PVC daripada bahan termoplastik. Untuk menghasilkan komposit termoset, proses yang akan digunakan mirip dengan proses Vacuum Assisted Resin Infusion Moulding (VARIM) tetapi berbeza daripada segi bahan acuan. Bahan acuan yang fleksibel iaitu filem PVC dan resin poliester digunakan sebagai bahan pengikat untuk menghasilkan termoset komposit. Akhir sekali, setelah komposit dihasilkan, ianya akan diperiksa untuk mengukur kejayaan teknik baru ini. Ianya melibatkan keupayaan bahan acuan ini, kualiti permukaan termoset yang dihasilkan dan kesukaran penghasilan berdasarkan pada tiga jenis model eksperimen yang telah diputuskan iaitu reka bentuk mudah, reka bentuk sederhana dan reka bentuk kompleks. Secara umum, hasil yang diperolehi membuktikan bahawa teknik baru ini yang menggunakan bahan acuan daripada plastik untuk menghasilkan komposit termoset berjaya dibangunkan dan sesuai untuk pembuatan produk percubaan dan sejumlah kecil produk dengan mengurangkan kos pengeluaran. Komposit termoset yang dihasilkan melalui teknik ini menunjukkan peningkatan bagi sifat mekanikal komposit tersebut dan cuan plastik yang digunakan dapat diguna pakai sehingga 8 kali. Oleh itu, ianya dapat menjimatkan kos peralatan dan masa yang diperlukan untuk menghasilkan acuan.

DEDICATION

To my family; Hassan Ishak, Aini Hamzah, Zureen Hassan and Jannah Hassan who is always there when it matters, to all my friends, for the big things and little ones. every hour, every moment of every day, I will always love you all with my heart and love...

ACKNOWLEDGEMENT

Alhamdulillah, thankful to Allah S.W.T and the prophet Nabi Muhammad S.A.W. with the power and permission from Allah I have finished my research proposal on the specified deadline.

Firstly, I would like to thank to my supervisor, En. Mohd Yuhazri B. Yaakob who is always guides me in this research. Much knowledge about the composite and manufacturing processes that I had learned throughout my research period. All the practical work and experience gained in this research pose precious value as bits and pieces of my working experience which will be ultimately helpful in my future endeavours.

Lastly, my heartfelt appreciation also goes to my family, my friends and everybody in UTeM for their help and knowledge they give to me. Their advices and cooperation had helped me a lot throughout my research and I am forever grateful for that. May Allah bless you all always.

TABLE OF CONTENT

CHAPTER

1.0

2.0

TOPIC

PAGES

Abstra	Abstract		
Abstra	Abstrak		
Dedic	ation	iii	
Ackno	owledgement	iv	
Table	of Content	V	
List o	f Tables	ix	
List o	f Figures	Х	
List o	f Abbreviations	xii	
List o	f Symbols	xiv	
INTR	RODUCTION	1	
1.1	Background	1	
1.2	Problem Statement	2	
1.3	Objectives 3		
1.4	Scope	3	
1.5	Rational of Research	4	
1.6	Research Methodology	5	
1.7	Thesis Frame	6	
LITE	RATURE REVIEW	8	
2.1	Introduction	8	
2.2	Previous Invention of Plastic Mould	10	
2.3	Mould	12	
2.4	Plastic Materials	13	
	2.4.1 Thermoplastics	13	
	2.4.1.1 PVC Film	14	
	2.4.2 Thermosets	16	

v

		2.4.2.1	Polyester Resin	18
		2.4.2.2	Epoxy Resins	19
		2.4.2.3	Summary of Resin	19
2.5	Fibres			20
2.6	Overvie	ew of Therm	oset Composite Fabrication	21
	2.6.1	Hand Lay	Up Process	21
	2.6.2	Spray Up F	rocess	22
	2.6.3	Vacuum Ba	ag Autoclave Process	23
	2.6.4	Resin Tran	sfer Moulding Process	25
	2.6.5	Vacuum A	ssisted Resin Infusion	26
		Moulding (VARIM) Process	
	2.6.6	Summary of	of Thermoset Composite	28
		Fabrication	l	
2.7	Non De	structive Te	sting	29
	2.7.1	Visual Insp	pection	29
MET	HODOL	OGY		30
3.1	Introdu	ction		30
3.2	Method	ology of Flo	w Chart	30
3.3	Materia	ls Selection		31
	3.3.1	PVC Film		32
	3.3.2	Polyester R	Resin	33
3.4	Process	Equipments	5	35
	3.4.1	Woven rov	ing fibreglass type E	35
	3.4.2	Polyester r	esin	35
	3.4.3	Hardener (MEKP)	35
	3.4.4	Released a	gent / gel coat	36
	3.4.5	Plastic tape		36
	3.4.6	Vacuum pu	ımp	36
	3.4.7	Resin trap		36
	3.4.8	Spherical t	ube	37
	3.4.9	PU tube		37
3.5	Experin	nental Desig	n	37

3.0

vi

		3.5.1	Design 1: Simple Design	38
		3.5.2	Design 2: Medium Design	38
		3.5.3	Design 3: Complex Design	39
	3.6	Process	ing	40
		3.6.1	Original VARIM Process	40
		3.6.2	Modification on VARIM Process	41
			3.6.2.1 Procedures	44
	3.7	Testing	of the Product	45
		3.7.1	Mould Capability	46
		3.7.2	Surface Finish Quality	46
		3.7.3	Complexity Manufacturing	48
4.0	EXPE	ERIMEN	TAL WORKS OF NEW	49
	TECH	INIQUE		
	4.1	Introdu	ction	49
	4.2	Experir	nental Procedure	49
		4.2.1	Simple Design Fabrication	50
		4.2.2	Medium Design	52
		4.2.3	Complex Design	54
5.0	RESU	JLTS AN	ID DISCUSSION	58
	5.1	Introdu	ction	58
	5.2	Mould	Capability Analysis	59
	5.3	Surface	Quality Analysis	62
	5.4	Comple	exity Manufacturing Analysis	67
		5.4.1	Design 1: Simple Design	68
		5.4.2	Design 2: Medium Design	68
		5.4.3	Design 3: Complex Design	69
	5.5	Mechar	nical Properties Analysis	70
	5.6	Summa	ry of Analysis	72

6.0	CONCLUSION AND RECOMMENDATIONS	74
	6.1 Conclusion	74
	6.2 Recommendations	76

77

REFERENCES

APPENDICES

А	PSM 1 Gantt Chart	83
В	PSM 2 Gantt Chart	84
С	Process Equipments and Materials	85
D	Plastic Mould	87
E	Experimental Work	88
F	Final Composite	89
G	Surface Roughness Result on Final Composite	90
Н	Award	91

LIST OF TABLES

NO TITLES PAGES

2.1	Physical properties of PVC	15
2.2	Physical properties of PVC films	16
2.3	Some characteristics and uses of epoxy and polyester	20
	thermosets	
3.1	PVC film specification	33
5.1	Non repeated equipments price comparison	60
5.2	Repeated equipments price comparison	61
5.3	Surface roughness result	63
5.4	Comparison on the mechanical properties of the sample	70
	composites from different techniques	

LIST OF FIGURES

TITLES PAGES

NO

1.1	Research methodology flowchart	5
2.1	Repeating chemical structural unit of PVC	15
2.2	Fibreglass type E	20
2.3	Hand lay up process	22
2.4	Spray up process	23
2.5	Vacuum bag autoclave process	24
2.6	Resin transfer moulding process	25
2.7	Vacuum assisted resin infusion moulding (VARIM) process	27
3.1	Methodology of flowchart for developing a new technique	31
	of plastic mould for thermoset composite fabrication	
3.2	PVC film	32
3.3	Polyester resin	33
3.4	Methyl ethyl ketone peroxide (MEKP) hardener	34
3.5	Rectangular shape as a simple design	38
3.6	Round kitchen sink as a medium design	38
3.7	Jimny back door as a complex design	39
3.8	Schematic illustration of the vacuum assisted resin infusion	40
	moulding (VARIM) process	
3.9	Setup in a new technique of plastic mould for thermoset	42
	composite fabrication.	
3.10	Process flow chart of the new technique.	44
3.11	Portable surface roughness taste, SJ-301	47
4.1	Release agent is applied to the mould	50
4.2	Fabrication process on simple design	51
4.3	Final product of simple design	52
4.4	Gel coat is applied on the frying pan	52
4.5	The PVC film was formed to the shape of the frying pan	53

4.6	The final product in the shape of round sink	54
4.7	The Suzuki Jimny back door	54
4.8	General sequence of producing the Jimny back door	55
4.9	The PVC film successfully followed the Jimny dimension	56
4.10	The results of the Jimny	56
5.1	Surface roughness measurement	62
5.2	Graph of surface roughness result	64
5.3	Misaligned defect in composite product	65
5.4	Non uniform resin distribution in simple design fabrication	66
5.5	Non uniform resin distribution in complex design fabrication	67
5.6	Rectangular shape; (a) original design, (b) actual product	68
5.7	Round kitchen sink; (a) original design, (b) actual product	68
5.8	Suzuki Jimny back door; (a) original design, (b) actual	69
	product	

LIST OF ABBREVIATIONS

ABS	-	Acrylonitrile Butadiene Styrene
BMC	-	Bulk Moulding Compound
С	-	Carbon
С	-	Celsius
CAL	-	Calibration
FRP	-	Fibre Reinforced Plastic
g	-	Gram
GPa	-	Giga Pascal
Н	-	Hydrogen
Hg	-	Mercury
Ι	-	International
J	-	Joule
Κ	-	Kelvin
kg	-	Kilogram
kN	-	Kilo Newton
lb	-	Pound
m	-	Metre
MEKP	-	Methyl Ethyl Ketone Peroxide
mm	-	Millimetre
MPa	-	Mega Pascal
NDT	-	Non Destructive Testing
NR	-	Non Repeated
PBT	-	Polybutylene terephthalate
PET	-	Polyethylentherephthalate
PC	-	Polycarbonate
Psi	-	Pound per square inch
PU	-	Polyurethane

xii

PVC	-	Polyvinyl Chloride
R	-	Repeated
Ra	-	Arithmetic mean value
Rq	-	Root-mean-square average
Ry	-	Maximum roughness height
Rz	-	Ten-point height of irregularities
RTM	-	Resin Transfer Moulding
S.D.D	-	Shore Durometer Type D
SCRIMP	-	Seemann Composites Resin Infusion Moulding Process
SI	-	International System
SMC	-	Sheet Moulding Compound
UV	-	Ultraviolet
VARI	-	Vacuum Assisted Resin Infusion
VARIM	-	Vacuum Assisted Resin Infusion Moulding
VARTM	-	Vacuum Assisted Resin Transfer Moulding
VBRTM	-	Vacuum Bag Resin Transfer Moulding

LIST OF SYMBOLS

%	-	Percent
μ	-	Micro
0	-	Degree

xiv

C Universiti Teknikal Malaysia Melaka

CHAPTER 1 INTRODUCTION

1.1 Background

Within a decade, fibre reinforced plastic (FRP) materials composites were being used by several industries, for example in the automobile industry. Manufacturing of composite materials is very different from metals. This is because when making a metal part, the properties of the virgin material and the finished part are fundamentally unchanged. However for composites, their manufacturing process plays a key role. During composite processing, manufacturer makes not only the part of the desired shape, but also the material itself with specific properties as Coleman, D., *et al.* (2006) stated that the properties of composite can be changed by varying the type and quantity of its ingredients. Fibre type, length, and mix proportion help determine properties such as strength and rigidity. In addition, resin characteristics can be changed to provide the desired process ability, durability, heat, and corrosion resistance.

However, the lacked of automated and repeatable manufacturing processes drive the cost of composite parts up and limited the number of potential uses. The majority of the manufacturing composite was very labour intensive and not very cost effective. According to the study by Foster, N.G., (1998), in early stages of development, the cost of composite materials was very high and only selected industries involved. They took advantages because of their properties such as light weight and the high strength which outweighed the cost factor.

Many different processes are used to manufacture composite into final products such as sheet, rods, extruded sections, pipe, or finished mould parts. The process used depends to a certain extent on whether the plastic is a thermoplastic or thermoset one. Thermoplastic are usually heated to a soft condition and then reshaped before cooling. On the other hand, thermoset materials not having been completely polymerized before processing to the finished shape use a process by which a chemical reaction occurs to cross link polymer chains into a network polymeric material. The final polymerization can take place by the application of heat and pressure or by catalytic action at room temperature or higher temperatures.

1.2 Problem Statement

This research is focused on new technique of plastic mould for thermoset composite fabrication which it involves development for mould that made from plastic. Then, the mould is used to make the composite products where polyester as the matrix and fibreglass as the reinforcement.

There are generally used a mild steel, tool steel, wood, and aluminium mould for moulding plastic products as they hard and tough. However these moulds require high tooling cost and some complex shapes cannot be produced. The choice of material to build a mould from plastic is primarily one of economics than the steel mould which is generally cost more to construct. Due to intrinsic limitations of steel, a thermoplastic material was selected as replacement material for making the mould. Thermoplastic material provides more strength, dimensional stability, and corrosion resistance than steel, while increasing design flexibility and manufacturing efficiency.

Manufacture of thermoset composite generally using the physics of flows through porous media as the resin viscosity is low enough to move relative to the network of fibre performs which the impregnation of a molten resin into a fibre bundle is easy (Grimsley, B.W., *et al.*, 2001). The apparatus and processes used to make these

structures therefore vary considerably depending upon the specific shape and form of the structure to be produced.

1.3 Objectives

This research focuses to a new technique of plastic mould for thermoset composite fabrication. It involves development for mould made from plastic which is fast, uses inexpensive tooling and provides a wide variety of curved and contour shaping in the moulded article. On the other hand, the objectives also to invent new technique that can reduce costs and efficient for moulding trial products or a small quantity of productions.

1.4 Scope

The research had been conducted within the following scope:

- (a) PVC film from thermoplastic material as the plastic mould.
- (b) Polyester resin from thermoset material as the matrices for composite material.
- (c) The development from vacuum assisted resin infusion moulding process was approached in this research for thermoset composite fabrication.
- (d) Limits on the strength and toughness analysis of the mould.
- (e) Limits on the strength and toughness analysis of the composite product.
- (f) Study the quality of the final composite products.

1.5 Rational of Research

Composite materials containing fibre bundles or flakes as reinforcements in a thermoset resin matrix. Thermoset composites provide more strength, dimensional stability, and corrosion resistance than metals, while increasing design flexibility and manufacturing efficiency. In addition Coleman, D., *et al.* (2006) highlighted that thermoset composite structures have long life spans and low maintenance requirements. Due to the intrinsic limitations of metals many design engineers utilize thermoset composites as a metal replacement material for high performance applications.

Manufacture of thermoset composite generally requires high strength precision but it is well known that the impregnation of a molten resin into a fibre bundle is easy. The apparatus and processes used to make these structures therefore vary considerably depending upon the specific shape and form of the structure to be produced. A technique that was developed from Vacuum Assisted Resin Infusion Moulding (VARIM) process had been used to form fibre reinforced plastic structures. In this technique, flexible moulds are used to cover the pattern and vacuum serves to shape the mould, to draw the resin through the fibreglass and to remove any air. Traditionally, moulds have been expensive to manufacture. They were usually only used in mass production where thousands of parts were being produced. There are generally used a mild steel, tool steel, wood, and aluminium mould for moulding plastic products as they hard and tough. However this type of mould requires high tooling cost and some complex shapes cannot be produced.

The choice of material to build a mould from plastic is primarily one of economics and easy for processing. With the advantage and limitations of the thermoplastic and thermoset material, they offer the composite industry a spectrum of choice which gives the opportunity for further expansion of the industry as a whole (Munirah, M., 1995). Thus, the objective of the research is to provide plastic moulds having good in durability to be used for thermoset composite fabrication.

1.6 Research Methodology

Figure 1.1 shows the flowchart of the research. The flow is summarized by defining the steps taken in order to fulfil the objectives for this research. There are generally five major steps need to be concentrated at in ensuring the research run smoothly.

As shown in the Figure 1.1, the steps need to be put in order where it consists of material selection, parameter selection, processing, testing, and analysis of data collected.

Figure 1.1: Research methodology flowchart.

In material selection steps, plastic material had been identified in this research. Plastic are a large and varied group of synthetic materials that are processed by forming or moulding into shape. Plastics can be divided into two classes, thermoplastics and thermoset materials, depending on how they are structurally chemically bonded. In this research, PVC film from thermoplastic material will be used as the material for moulds and polyester from thermoset material will be used as the matrices in the composite.