

MECHANICAL PROPERTIES AND SURFACE QUALITY OF NATURAL RUBBER-POLY (LACTIC ACID) COMPOSITES FOR FUSED DEPOSITION MODELLING TECHNOLOGY

by

AMIRAH MAISARAH BINTI ALIAS B051810115 971021-04-5374

FACULTY OF MANUFACTURING ENGINEERING

2022

UNIVERSITI TEKNIKAL MALAYSIA MELAKA			
BORAN	G PENGESAHAN STATUS LAPO	RAN PROJEK SARJANA MUDA	
Tajuk:MECHANICAL PROPERTIES AND SURFACE QUALITY OF NATURAL RUBBER-POLY(LACTIC ACID) COMPOSITES FOR FUSED DEPOSITION MODELLING TECHNOLOGY			
Sesi Pengajian: 2	021/2022 Semester 2		
Saya AMIRAH MAISARAH BINTI ALIAS (971021-04-5374) mengaku membenarkan Laporan Projek Sarjana Muda (PSM) ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:			
 Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi. *Sila tandakan (√) 			
SULIT (Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972)			
TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/ badan di mana penyelidikan dijalankan)			
TIDAK 7	ERHAD	Disahkan oleh:	
Giule	- Meinle	17mg	
Alamat Tetap: KM 1665, Jalan Taman Seri Bay 78000 Alor Gaja Melaka.	Bayu 2, u 2, h,	Cop Rasmi: DR RAHIMAH BINTI HJ ABDUL HAMID Senior Lecturer Faculty of Manufacturing Engineering Universiti Teknikal Malaysia Melaka.	
Tarikh: 1 JUN 2	022	Tarikh: 1 JUN 2022	

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitled "Mechanical Properties and Surface Quality of Natural Rubber-Poly (Lactic Acid) Composites for Fused Deposition Modelling Technology" is the results of my own research except as cited in reference.

	MALAYSIA
2	6.011.0
Signature	:
Author's Name	: AMIRAH MAISARAH BINTI ALIAS
Date	: 1 JUN 2022
12	اونيوم سيتي تيكنيكل مليسيا ملا
UN	IVERSITI TEKNIKAL MALAYSIA MELAKA

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of Universiti Teknikal Malaysia Melaka as a partial fulfillment of the requirement for a Degree of Manufacturing Engineering (Hons.). The members of the supervisory committee are as follow:

ABSTRAK

Teknologi pembuatan tambahan membina bahagian lapisan demi lapisan melalui pemendapan bahan tercair mengikut reka bentuk 3D digital. FDM telah menjadi yang paling lazim dalam teknologi percetakan 3D. Poli (asid laktik) atau PLA, adalah polimer termoplastik dalam percetakan 3D yang boleh terbiodegradasi dan berpotensi untuk aplikasi bioperubatan. Kelemahan PLA ialah rapuh, mempunyai keliatan yang rendah, dan tidak fleksibel dalam bentuk tulennya. Disebabkan ini, banyak usaha telah dijalankan untuk membangunkan bahan tambahan yang berkesan untuk pengubahsuaian PLA bagi memperluaskan aplikasi. Oleh itu, nisbah campuran polimer dan bahan tambahan yang betul perlu dikenal pasti. Dalam kajian ini, keserasian campuran berasaskan NR dan PLA untuk fabrikasi filamen dalam teknologi FDM melalui analisis sifat mekanikal. Pada mulanya, adunan telah disediakan mengikut nisbah NR/PLA 10/90, 20/80, 30/70, 40/60, 50/50, 60/40, 70/30, dan 90/10, dan mencairkan sebatian dengan pengadun dalaman. Selepas itu, sifat mekanikal spesimen PLA diperkuatkan NR yang dibuat melalui mesin tekan panas dibandingkan dengan PLA tulen untuk kekuatan tegangan dan lentur. Kompaun spesimen fabrikasi telah dibentuk menggunakan kaedah mampatan tekan panas yang mematuhi ASTM-D638 (Jenis IV) dan ASTM-D790, diuji menggunakan Mesin Pengujian Universal Shimadzu (UTM) pada kelajuan 5 mm/minit dan 50 mm/minit. Profilometer Mitutoyo Surftest SJ-301 digunakan untuk memeriksa kualiti permukaan (Ra) spesimen PLA diperkuatkan NR berbanding spesimen PLA tulen yang direka melalui cetakan 3D. Keratan rentas spesimen tegangan patah digunakan untuk analisis struktur mikro untuk mengkaji mekanisme pengadunan NR/PLA. Keputusan kajian ini menunjukkan bahawa komposisi 40 phr NR/PLA meningkatkan kekuatan tegangan dan lentur berbanding dengan PLA tulen. Walau bagaimanapun, 20 phr NR/PLA merupakan nilai R_a yang lebih baik untuk spesimen yang ditekan panas. Selain itu, imej SEM menunjukkan bahawa saiz titisan NR meningkat dengan penurunan kandungan getah. Kesimpulannya, nisbah adunan NR40/PLA60 didapati terbaik untuk fabrikasi filamen FDM memandangkan sifat mekanikal lebih memudaratkan daripada kekasaran permukaan dalam pertimbangan ini. Sebagai cadangan, analisis lanjut bagi komposit NR/PLA hendaklah dijalankan untuk DSC, FTIR, ujian kekerasan, ujian hentaman, ujian penyerapan air, atau XRD untuk menganalisis lebih lanjut sifat komposit NR/PLA ini. Ini penting dengan mengambil kira kos pelet PLA, sebagai tambahan kepada masa yang diperlukan untuk penyediaan jumlah adunan NR/PLA yang mencukupi sebelum filamen NR/PLA boleh dihasilkan melalui penyemperit skru tunggal.

ABSTRACT

Additive Manufacturing (AM) technology builds parts layer by layer through the deposition of liquidized material according to digital 3D design data. Fused Deposition Modelling (FDM) has been the most prevalent in 3D printing technology. Poly (lactic acid) or PLA, is one of the thermoplastic polymers in 3D printing that is biodegradable and has potential for biomedical applications. The only drawback is that the PLA is brittle, has low toughness, and inflexibility in its pure form. Due to this, many efforts have been undertaken to develop effective additives for PLA modification in order to expand application possibilities. Therefore, the correct blending ratio of the polymer and additives needs to be identified. In this study, the compatibility of NR and PLA-based blends were investigated for filament fabrication in FDM technology through mechanical properties analysis. Initially, the blends were prepared according to NR/PLA ratios of 10/90, 20/80, 30/70, 40/60, 50/50, 60/40, 70/30, and 90/10, and melt compounding with an internal mixer. Subsequently, the mechanical properties of NR-reinforced PLA specimens fabricated via a hot-pressed machine were compared with the pure PLA for tensile and flexural strength. The compound of fabricated specimens was moulded using a hot-press compression method that conforms with the ASTM-D638 (Type IV) and ASTM-D790, tested using the Shimadzu Universal Testing Machine (UTM) at the speed of 5 mm/minute and 50 mm/minute, respectively. A Mitutoyo Surftest SJ-301 profilometer was used to examine the surface quality (R_a) of the NR-reinforced PLA specimens compared to the pure PLA specimen fabricated via 3D printing. The cross-sectional of the fractured tensile specimen was used for microstructure analysis to study the blending mechanism of the NR/PLA. The result of this study shows that the 40 phr NR/PLA composition enhances the tensile and flexural strength compared to the pure PLA. However, the 20 phr NR/PLA offers a better R_a value for the hot-pressed specimen. Other than that, the SEM images indicated that the size of NR droplets increases with decreasing rubber content. In conclusion, a blending ratio of NR40/PLA60 was found to be the best for FDM filament fabrication in future work since the mechanical properties are more detrimental than the surface roughness in this judgement. As a recommendation, a further analysis of the NR/PLA composites shall be conducted for DSC, FTIR, hardness test, impact test, water absorption test, or XRD to further analyze the properties of these NR/PLA composites. This is important with consideration of the cost of PLA pellets, in addition to the time needed for the preparation of a sufficient amount of NR/PLA blends before NR/PLA filament could be manufactured via a single screw extruder.

DEDICATION

Only

my beloved father, Alias bin Ismail

my true loved mother, Halijah binti Sharip

my adored brother, Muhammad Asyraf bin Alias

for giving me moral support, money, cooperation, encouragement, and also understanding

ACKNOWLEDGEMENT

More than anything else, all praise and thanks of all glory to Allah s.w.t, the Almighty for His showers of mercy, grace, and blessing in giving me full strength all through the possibility for the determination and the intrepidness to complete this whole final year project successfully without difficulty.

It is my resplendent sentiment to place a heartfelt sense of thankfulness to my respected supervisor, Dr Rahimah binti Abdul Hamid whose have given her full endeavor in guiding me achieving the goal, guidance, and endless support to finish this project which was massively valuable to me and maintain my progress in track. It has been a gratification to have her as my supervisor.

I want to acknowledge with warmest thanks to the head of PSM Committee, En Nor Akramin bin Mohamad for enlightenment and major teaching. He delivered to me resources used for the main reference for this study and also for sticking around answering and clearing all the doubtfulness while performing the project work.

ever m

Last but not least, I want to express my affection to beloved family members with their prayers, constant love, sacrifice, and strength which build the perfect version of this project that boost my courage when I have to face various obstacles in finishing this project. Thanks to all my friends and everybody who helped by encouraging my work and helping me in advance with their knowledge and valuable suggestions during this project. I hope that all the deeds and efforts every single day will benefit us in the future. Finally, I want to thank me for believing in me, for doing all this hard work, for having no days off, and for never quitting. I have no valuable words to express my thanks, but my heart is still full of favors received from every person. Thank you very much.

TABLE OF CONTENTS

Abs	strak	i
Abs	stract	ii
Ded	lication	iii
Ack	knowledgement	iv
Tab	le of Contents	v
List	of Tables	ix
List	of Figures	xi
List	of Abbreviations	xi
List	of Symbols	xvii
СН	APTER 1: INTRODUCTION	
1.1	Background of Study	1
1.2	Problem Statements	3
1.3	Objectives of Study	5
1.4	Scope of Study	5
1.5	ويور سيتي بيڪنيڪل ملي Significance of Study	7
СН	UNIVERSITI TEKNIKAL MALAYSIA MELAKA APTER 2: LITERATURE REVIEW	
2.1	Overview of Additive Manufacturing (AM)	8
2.2	Fused Deposition Modelling (FDM)	10
2.3	Working Process of FDM	11
2.4	FDM Materials	12
2.5	Fillers	13
2.6	Natural Rubber	15
2.7	Elastomer	16
2.8	PLA Reinforced Filler Preparation	17
2.9	Previous Works of Natural Fillers in PLA Filament	20
	2.9.1 PLA and Carbon Fibre	20
	2.9.2 PLA and Microcrystalline Cellulose	21
	2.9.3 PLA and Core Shell Rubber	22

2.9.4	PLA and Hemp Hurd	22
2.9.5	PLA and Cellulose Nanofibres	23
2.9.6	PLA with Hemp and Harakeke	23
2.9.7	PLA and Wood	23
2.9.8	PLA and Talc	24
2.9.9	PLA and Cork	24
2.9.10	PLA and Coffee	25
2.9.11	Cellulose	26
2.9.12	Rice Husk	27
2.9.13	Flax	27
2.9.14	Coconut	28
2.9.15	Bamboo	29
2.9.16	Hemp	29
2.9.17	Wood Flour	30
2.10 Elastor	mer 3D Printing Challenges	32
2.10.1	Vat Photopolymerization	32
2.10.2	Fused Filament Fabrication	33
2.10.3	Direct Ink Writing	34
2.10.4	Powder Bed Fusion	34
2.11 Hot-Pr	ress Compression Moulding	35
2.12 Mecha	nical Testing	35
2.12.1	Tensile Test	36
2.12.2	Flexural Test	38
2.13 Surfac	e Roughness Analysis	39
2.14 Sputte	r Coating Process	39
2.15 Micros	structure Analysis by SEM	40
2.16 Summ	ary of Literature	41

CHAPTER 3: METHODOLOGY

3.1	Relationship between the Objectives and Methodology	42
3.2	Flow Chart of Study	43
3.3	Preparation of the Natural Rubber	46
3.4	Preparation of NR-PLA Melt Compounding	46
3.5	Blending of Polymer	51

3.6	Density Test	52
3.7	Hot-Pressed of the NR/PLA Blending	53
3.8	FDM 3D Printing of CAD Modelling	55
3.9	FDM 3D Printing Process	57
3.10	3D Printing Parameter Settings	58
3.11	Number of Samples	59
3.12	Tensile Test	60
3.13	Flexural Test	62
3.14	Surface Roughness Testing	63
	3.14.1 Calibration Process	67
3.15	Sputter Coating	69
3.16	Scanning Electron Microscopy (SEM) Analysis	71
3.17	Summary of Methodology	72
	NALAYSIA MA	
CHA	APTER 4: RESULT AND DISCUSSION	
4.1	Composite Fabrication of NR-PLA Samples	73
4.2	Surface Roughness Analysis	75
	4.2.1 The Ra Average Reading of Tensile Pure PLA	76
	4.2.2 The Comparison of the Ra Average Reading of Tensile NR-PLA Specimen	78
	4.2.3 The Ra Average Reading of Flexural Pure PLA	93
	4.2.4 The Comparison of The Ra Average Reading of Flexural NR-PLA Specime	n 95
4.3	Density Analysis	110
4.4	Tensile Test	113
	4.4.1 Tensile Stress-Strain Analysis	114
	4.4.2 Pure PLA and NR-PLA	115
4.5	Flexural Test	119
	4.5.1 Flexural Stress-Strain Analysis	120
	4.5.2 Pure PLA and NR-PLA	120
4.6	Microstructure Analysis	123
	4.6.2 Pure PLA and NR-PLA	124

CHAPTER 5: CONCLUSION AND RECOMMENDATION

5.1	Conclusion	128
5.2	Recommendation	129
5.3	Sustainability Design and Development	130
5.4	Complexity	130
5.5	Life Long Learning	131

REFERENCES

132

APPENDICES

А	Gantt Chart of PSM 1	141
В	Gantt Chart of PSM 2	142

Gantt Chart of PSM 2 В

LIST OF TABLES

2.1: The content of nanocomposite	18
3.1: The relationship between the study's objective and methodology	42
3.2: Natural Rubber and PLA filler compositions	49
3.3: Composition of NR/PLA vulcanization	52
3.4: Mixing time of NR/PLA blend	52
3.5: FDM 3D printing process parameters	59
3.6: Number of samples fabricated for the study	59
3.7: Procedures for calibration	68
WALAYSIA MA	
4.1: Data collection of surface roughness for top tensile NR 0: PLA 100	76
4.2: Data collection of surface roughness for bottom tensile NR 0: PLA 100	77
4.3: Data collection of surface roughness for top tensile NR 20: PLA 80	78
4.4: Data collection of surface roughness for bottom tensile NR 20: PLA 80	79
4.5: Data collection of surface roughness for top tensile NR 30: PLA 70	80
4.6: Data collection of surface roughness for bottom tensile NR 30: PLA 70	81
4.7: Data collection of surface roughness for top tensile NR 40: PLA 60	82
4.8: Data collection of surface roughness for bottom tensile NR 40: PLA 60	83
4.9: Data collection of surface roughness for top tensile NR 50: PLA 50	84
4.10: Data collection of surface roughness for bottom tensile NR 50: PLA 50	85
4.11: Data collection of surface roughness for top tensile NR 60: PLA 40	86
4.12: Data collection of surface roughness for bottom tensile NR 60: PLA 40	87
4.13: Data collection of surface roughness for top tensile NR 70: PLA 30	88
4.14: Data collection of surface roughness for bottom tensile NR 70: PLA 30	89
4.15: Data collection of surface roughness for top tensile NR 90: PLA 10	90
4.16: Data collection of surface roughness for bottom tensile NR 90: PLA 10	91
4.17: Data collection of surface roughness for top flexural NR 0: PLA 100	93
4.18: Data collection of surface roughness for bottom flexural NR 0: PLA 100	94
4.19: Data collection of surface roughness for top flexural NR 20: PLA 80	95
4.20: Data collection of surface roughness for bottom flexural NR 20: PLA 80	96

4.21: Data collection of surface roughness for top flexural NR 30: PLA 70	97
4.22: Data collection of surface roughness for bottom flexural NR 30: PLA 70	98
4.23: Data collection of surface roughness for top flexural NR 40: PLA 60	99
4.24: Data collection of surface roughness for bottom flexural NR 40: PLA 60	100
4.25: Data collection of surface roughness for top flexural NR 50: PLA 50	101
4.26: Data collection of surface roughness for bottom flexural NR 50: PLA 50	102
4.27: Data collection of surface roughness for top flexural NR 60: PLA 40	103
4.28: Data collection of surface roughness for bottom flexural NR 60: PLA 40	104
4.29: Data collection of surface roughness for top flexural NR 70: PLA 30	105
4.30: Data collection of surface roughness for bottom flexural NR 70: PLA 30	106
4.31: Data collection of surface roughness for top flexural NR 90: PLA 10	107
4.32: Data collection of surface roughness for bottom flexural NR 90: PLA 10	108
4.34: Density data collection for NR-PLA blends	111
4.35: Data of tensile sample of pure PLA between 3D printer and hot-press	115
4.36: Average maximum force and maximum stress result for tensile test	115
4.37: Data of flexural sample of pure PLA between 3D printer and hot-press	120
4.38: Average maximum force and maximum stress result for flexural test	120

SAINO . اونيۈم سيتي تيكنيكل مليسيا ملاك

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF FIGURES

2.1: The product development cycle	9
2.2: FDM working mechanism and major components	12
2.3: Cis-1,4-polyisoprene structure	16
2.4: Elastomer's structure	17
2.5: In 438x magnification which SEM micrographs indicate at (a) Raw Ox-SC	CG, (b) A
fracture surface about a printed PLA sample, and (c) A fracture surface of the printed PLA sample, and	inted Ox-
SCG and PLA composite sample	25
2.6: TEM images containing CNF including cross-sections from composite filam	ents after
annealing which (a) An original CNF, (b) The grafted CNF, and (c)-(f) The c	omposite
filaments with a PLA-g-CNF content of 0, 1, 3, and 5wt% sequentially	26
2.7: Rice husk powder as viewed using SEM	27
2.8: SEM of flax fibres with (a) A raw flax fibre, (b) NaOH treated flax fibre of 10	%, (c) An
enzyme treated flax fibre for 18 hours, (d) A raw elementary fibre, (e) NaOl	H treated
elementary fibre of 10%, and (f) An enzyme treated elementary fibre for 18 hours	28
2.9: (a) SEM of the untreated bamboo fibres bundles surface and (b) SEM of th	e surface
bamboo fibre bundles treated with 6% NaOH	29
2.10: The SEM of surface on impact fracture for FDM samples with (a)(b) PLA and	d HH (0),
(c)(d) PLA and HH (10), (e)(f) PLA and HH (20), also (g)(h) PLA and HH ((40). The
boundary of the layer is depicted in (c)(d) by using dotted rectangles at (e)	30
2.11: SEM images of the freeze fracture surfaces comprising PLA with wood flo	our micro
composites 30wt% and (b) Shows an enlarged view of the area while arrows si	gnify the
matrix particle interface while the gaps denote insufficient interfacial bonding	31
2.12: The effect of the wood flour content on the impact characteristics of PLA a	and wood
flour micro composites in contrast to PLA	31
2.13: Shows Gotech hot-press compression moulding machine	35
2.14: The stress-strain curves for (a) A brittle polymer, (b) A thermoplastic materia	ıl, and (c)
An elastomer respectively	36
2.15: Tensile test set up	37
2.16: Tensile characteristics of PLA and NR blends as measured by tensile stre	ngth also
modulus of elasticity	37

2.17: Flexural test set up	38
2.18: Surface Roughness Tester	39
2.19: The SEM figure of PLA and NR blends at (a) 5%, (b) 10%, (c) 20%, and (d) 30%	41
3.1: The flow chart used to achieve the stated objectives in this study	45
3.2: Agate mortar	46
3.3: The materials for the melt compounding (a) PLA pellets, (b) Natural Rubber (NR)	, (c)
Stearic Acid, (d) Zinc Oxide, and (e) Sulphur	48
3.4: A single screw extruder machine at the laboratory, (a) Extruder diameter of 3 mm,	, (b)
Haake Rheomix OS, (c) The hopper to feed the materials, and (d) The conveyor used du	ring
the extrusion process	48
3.5: The mixing tool selection was made in the computer before mixing which was se	et to
Roller Rotors R600	49
3.6: (a) Roller Rotors R600 tool and (b) The mixing container	50
3.7: Mixer machine set up in the single screw extruder's desktop computer	50
3.8: The mixing graph	51
3.9: NR/PLA blend after dumped from internal mixer	52
3.10: Densimeter MD-300S machine	53
3.11: Sheet metal mould was laser cut according to ASTM standards	54
3.12: GT7014-A, Gotech hot-pressed machine	54
3.13: Dimension in mm of the tensile specimen based on the ASTM-D638 (Type	IV)
standard	55
3.14: Dimension in mm of the flexural specimen based on the ASTM-D790 standard	55
3.15: The CAD model of ASTM-D638 (Type IV) standard	56
3.16: The CAD model of ASTM-D790 standard	56
3.17: Ender-3 V2 3D printer machine	57
3.18: Tensile test set up	60
3.19: Universal testing machine	60
3.20: Elongation at break and tensile characteristics graph	61
3.21: Flexural test set up	63
3.22: Flexural strength test	63
3.23: Mitutoyo Surftest SJ-301 surface roughness tester	64
3.24: Reference workpiece for the calibration purpose	64
3.25: Measurement area on each side of tensile sample	65

3.26: Measurement area on each side of flexural sample	65
3.27: The arithmetic means roughness value which Ra	66
3.28: The flow of measurement during the surface roughness test	66
3.29: Example of measurement results on Mitutoyo Surftest SJ-301	69
3.30: SC 7620 Mini Sputter Coater at the laboratory	70
3.31: Carl Zeiss Evo 50 SEM Machine at FKP laboratory	72
4.1: The flow chart of the rubber compounding process	74
4.2: (a) Compound was placed in the mould (b) The finished sample	75
4.3: Surface roughness result for top tensile NR 0: PLA 100	76
4.4: Surface roughness result for bottom tensile NR 0: PLA 100	77
4.5: Surface roughness result for top tensile NR 20: PLA 80	78
4.6: Surface roughness result for bottom tensile NR 20: PLA 80	79
4.7: Surface roughness result for top tensile NR 30: PLA 70	80
4.8: Surface roughness result for bottom tensile NR 30: PLA 70	81
4.9: Surface roughness result for top tensile NR 40: PLA 60	82
4.10: Surface roughness result for bottom tensile NR 40: PLA 60	83
4.11: Surface roughness result for top tensile NR 50: PLA 50	84
4.12: Surface roughness result for bottom tensile NR 50: PLA 50	85
4.13: Surface roughness result for top tensile NR 60: PLA 40	86
4.14: Surface roughness result for bottom tensile NR 60: PLA 40	87
4.15: Surface roughness result for top tensile NR 70: PLA 30	88
4.16: Surface roughness result for bottom tensile NR 70: PLA 30	89
4.17: Surface roughness result for top tensile NR 90: PLA 10	90
4.18: Surface roughness result for bottom tensile NR 90: PLA 10	91
4.19: Surface roughness result for top flexural NR 0: PLA 100	93
4.20: Surface roughness result for bottom flexural NR 0: PLA 100	94
4.21: Surface roughness result for top flexural NR 20: PLA 80	95
4.22: Surface roughness result for bottom flexural NR 20: PLA 80	96
4.23: Surface roughness result for top flexural NR 30: PLA 70	97
4.24: Surface roughness result for bottom flexural NR 30: PLA 70	98
4.25: Surface roughness result for top flexural NR 40: PLA 60	99
4.26: Surface roughness result for bottom flexural NR 40: PLA 60	100
4.27: Surface roughness result for top flexural NR 50: PLA 50	101

4.28: Surface roughness result for bottom flexural NR 50: PLA 50	102
4.29: Surface roughness result for top flexural NR 60: PLA 40	103
4.30: Surface roughness result for bottom flexural NR 60: PLA 40	104
4.31: Surface roughness result for top flexural NR 70: PLA 30	105
4.32: Surface roughness result for bottom flexural NR 70: PLA 30	106
4.33: Surface roughness result for top flexural NR 90: PLA 10	107
4.34: Surface roughness result for bottom flexural NR 90: PLA 10	108
4.35: Relationship between the composition of compound and density for NR-PLA	112
4.36: Tensile test by using Shimadzu AGS-X universal testing machine	114
4.37: Tensile maximum force (N) plot for all compositions	115
4.38: Tensile stress-strain curve of the PLA blends with different NR contents	118
4.39: Flexural test by using Shimadzu AGS-X universal testing machine	119
4.40: Flexural maximum force (N) plot for all compositions	121
4.41: Flexural stress-strain curve of the PLA blends with different NR contents	122
4.42: SEM micrograph showing tensile fracture surface for the NR compounds at 20	phr at
(a) 50x, (b) 100x, and (c) 200x magnifications	125
4.43: SEM micrograph showing tensile fracture surface for the NR compounds at 40	phr at
(a) 50x, (b) 100x, and (c) 200x magnifications	126
4.44: SEM micrograph showing tensile fracture surface for the pure PLA of the b	roken
ويور سيبي بيه ميسيا ميسيا ما composite sample	126
4.45: SEM micrograph showing tensile fracture surface for the pure PLA of the broke	en 3D
printer sample	126

LIST OF ABBREVIATIONS

2D	-	Two Dimensional
3D	-	Three-Dimensional
ABS	-	Acrylonitrile Butadiene Styrene
AC	-	Alternating Current
AM	-	Additive Manufacturing
ASTM	-	American Society for Testing and Materials
Au	-	Gold
CAD	-	Computer Aided Design
CNT	-	Carbon Nanotube
CSS	-	Core Shell Shape
DRC	AL MALAY	Dry Rubber Content
EGMA		Ethylene Glycidyl Methacrylate
ENR	목 1	Epoxidized Natural Rubber
FDM	E.	Fused Deposition Modelling
FFF	Ainn	Fused Filament Fabrication
FKP	سا ملاك	Fakulti Kejuruteraan Pembuatan
GMA		Glycidyl Methacrylate
GPTMS	UNIVERS	Glycidyloxypropyl Trimethoxysilane
HH	-	Hemp Hurd
ISO	-	International Organization for Standardization
LCD	-	Liquid Crystal Display
MCC	-	Microcrystalline Cellulose
NaOH	-	Sodium Hydroxide
NR	-	Natural Rubber
PA	-	Polyamide
PBAT	-	Polybutylene Adipate Terephthalate
PBF	-	Powder Bed Fusion
PC	-	Polycarbonate
Pd	-	Palladium

PE	-	Polyethylene
PEEK	-	Polyether Ether Ketone
PEI	-	Polyetherimide
PET	-	Polyethylene Terephthalate
PETG	-	Polyethylene Terephthalate Glycol
PLA	-	Polylactic Acid
PP	-	Polypropylene
PPSF	-	Polyphenylsulfone
PSM	-	Projek Sarjana Muda
RP	-	Rapid Prototyping
SEM	-	Scanning Electron Microscope
STL	ALAYSI	Stereolithography
TBC	J. T.	Tributyl Citrate
Tg	No.	Glass Transition Temperature
TPU	5	Thermoplastic Polyurethane
UTeM	Search -	Universiti Teknikal Malaysia Melaka
UTS	in in in its second sec	Ultimate Tensile Strength
VPP	بسيا ملاك	ويبور سيني Vat Photopolymerization

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF SYMBOLS

α	-	Alpha
°C	-	Degree Celsius
0	-	Degree
%	-	Percent
g	-	Gram
g/cm ³	-	Gram per Centimetre Cubic
g/min	-	Gram per Minute
g/ml	-	Gram per Millilitre
g/mol	-	Gram per Molecule
GPa	-	Gigapascal
K	- ar MA	Thousand
kg	E.	Kilogram
kN	Ë.	Kilo Newton
mm	Elect	Millimetre
MJ/m ³	AIN	Megajoules per Metre Cubic
ML	all	Mooney Viscosity
mm/min	_	Millimetre per Minute
mm/s	UNIVE	Millimetre per Second
mol%	-	Mole Percent
MPa	-	Megapascal
Ν	-	Newton
N/mm ²	-	Newton per Square Millimetre
nm	-	Nanometre
phr	-	Part per Hundred of Rubber
Ra	-	Average Roughness
rpm	-	Revolution per Minute
wt%	-	Weight Percentage
Zi	-	Standard Deviation
μm	-	Micrometre

CHAPTER 1

INTRODUCTION

This chapter describes the preface of this investigation work which includes the background, problem statement, objectives, scope, and significance of the study. The experimentation of the influence of adding Natural Rubber (NR) as fillers with Polylactic acid (PLA) composites on the mechanical properties and surface quality is carried out in this work.

1.1 Background of Study

Additive Manufacturing (AM) or 3D printing technology has developed importance in every field due to its affordability and simple working principle for creating complex geometries from 3D CAD data. The technology enables the manufacture of customized products without requiring manufacturing costs as no special tools or moulds are needed. Due to the accessibility of relatively low cost 3D printing equipment, the use of AM technology has increased dramatically in both quantity and range. More than that, AM technology makes the rapid production of complex and integrated functional designs possible that potentially reducing the exigency of assembly work.

Fused Deposition Modelling (FDM) is a well known technique for 3D printing technology with a relatively low cost, quick, and easy printing process for a wide range of thermoplastic polymer materials. The low cost FDM 3D printer is affordable but also portable and simple to maintain compared to other AM technologies. FDM allows the production of solid parts made of thermoplastic polymers which extrude a material onto the build platform according to the desired CAD design. The thermoplastic polymers form a

filament that is heated and transformed to a semi-liquid state and injected into a nozzle following the input from the slicing software.

Thermoplastic polymers like polylactic acid (PLA), polyethylene (PE), polypropylene (PP), and acrylonitrile butadiene styrene (ABS) are some types of materials used in FDM. Park and Fu (2021) claimed that PLA is an amorphous, durable, strong thermoplastic material that is healthy, pollution free, and prints exceptional. As a result, PLA is a frequently used material in 3D printing. Torres *et al.* (2016) supported that PLA is amongst the most widely recognized plastics for 3D printing and is economically beneficial due to its low melting temperature and outstanding biodegradability. PLA is a common thermoplastic polymer material in FDM with a broad assortment of potential applications due to its biodegradability and biocompatible characteristics and mainly used (Pakkanen *et al.*, 2017).

Natural Rubber (NR) may be used as a filler for a matrix material in natural polymers. NR is derived from the rubber tree, scientifically known as Hevea Brasiliensis. NR is biodegradable, inexpensive, and poses no health risks. In other respects, NR is a highly versatile and widely used elastomer because of its abrasion resistance, durability, elasticity, flexibility, and excellent strength. Due to this fact, the combination of PLA and NR as the filler might have many possible applications, particularly in the biomedical field. NR mechanical properties can be improved by adding fillers to the NR which can act as reinforcements such as carbon black (Karasek and Sumita, 1996) and silica (Zeng et al., 2009). There has been an increasing interest in enhancing the performance of composites through renewable reinforcements. Composite materials can be created by meticulously combining and controlling the properties of various materials. The effect of a particular filler differs depending on the polymer. Skelhorn (2003) confirmed that one way to tell those apart is through their impact on pure natural rubber. A reinforcing filler can improve abrasion resistance with tensile and tear strengths. The softening of plastic strain is characterized by matrix localization caused by multiple crazing, extensive yielding under shear, or a combination of these elements.

Enhancing the polymer toughness is critical for a wide variety of interrelated applications. Toughness and fracture toughness are terms used to refer to the physical absorption of energy during the emergence of a deformation in a fracture. Typically, polymer modification aims to create a material that possesses a significant plastic elongation at break while retaining desirable properties of comparatively stiffness and strength augmented by a dominant high toughness. This can be done by altering the structure in a particular way that facilitates plastic deformation capable of absorbing energy. One of the most significant disadvantages of polymers is their low resistance to impact. In order to further enhance this performance, considerable effort has been spent incorporating an elastomeric phase dispersed within a polymer matrix. Currently, the rubber toughening in polymer performance is undergoing extensive research. Be that as it may, it is discerning to establish that the toughened polymer can become brittle because temperatures are relatively low or have high loading rates. Some suggest that the brittleness of toughened polymers is caused by the glass transition in the rubbery phase at low temperatures. Therefore, this study aims to evaluate the NR/PLA performance at different NR/PLA compositions to identify the best blending compositions for the NR/PLA FDM filaments as the potential application. The emphasis is given to the mechanical properties behavior, which is critical for biomedical applications.

ويونر سيتي تيڪنيڪل Problem Statements

FDM is one of the most popular AM technologies due to its affordability and simple technology (Masood and Song 2004). The thermoplastic polymer is used which includes ABS, PP, PLA, TPU, PETG, PEEK, and PA (PA6, PA12). However, FDM technology's manufacturing process involves the extrusion of pre-heated polymers and offers lower mechanical properties, strength, and toughness (Oksiuta *et al.*, 2020). Rezvani Ghomi *et al.* (2021) found that PLA has a biodegradability property from natural sources. However, PLA is brittle while having a low toughness and flexibility in a pure form (Farah *et al.*, 2016). Due to these limitations, its prospective applications that need excellent impact toughness and flexibility are limited. Various attempts have been made to identify viable additives for PLA modifications in order to enable enhanced applications.

According to Deb and Jefferson (2021), PLA has a low deformation at break and a low resistance to impact. PLA is typically modified to overcome these drawbacks by