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ABSTRACT 

Recent years have seen an increase in the need for eco - friendly products as a result of the 

accumulation of non-biodegradable waste, especially disposable products. As a result, 

several environmentally friendly materials have been established to solve this problem. 

Biopolymer developed from renewable resources has the potential to be a viable alternative 

to petroleum-based polymers due to its high biodegradability and consequently 

environmental friendliness. Among other biodegradable materials, cassava starch 

biopolymer has been identified as a fully biodegradable substance that can be generated by 

a variety of plants and is one of the most abundant renewable, biodegradable, and cost-

effective resources accessible. Due to widespread concern about environmental pollution, 

thermoplastic cassava starch is now widely study in packaging materials, with some 

formulations including bio-fillers or fiber to strengthen the bio-based plastic. As a 

consequence, Napier grass fiber is employed to reinforce a bio-based composite. Napier 

grass is regarded for its high yield, and resistance to insects. Additionally, this tropical 

perennial grass has a significant fiber reserve as a result of vegetative regeneration after stem 

removal. Numerous early studies on the characteristics and properties of Napier grass have 

been published; nevertheless, a comprehensive and in-depth examination of this tropical 

grass's use as a non-wood packaging replacement is nearly unknown. The aim of this study 

is to develop biodegradable thermoplastic cassava starch reinforced with Napier grass fiber, 

in order to investigate its water affinity properties, morphology, density, and environmental 

properties. To strengthen the cassava starch biopolymer's shortcomings, biocomposites has 

been developed by incorporating 0,10,20,30,40, and 50wt% of Napier grass fiber into 

thermoplastic cassava starch matrix. All components were mixed uniformly, and the 

components were formed utilizing hot compression molding. The functional properties of 

TPCS/NGF biopolymer composites were then evaluated to determine their suitability as 

biodegradable materials. The 50% of fiber has the lowest moisture content. Water absorption 

showed that when fiber content is increased, then the water absorbed is decreased. Water 

solubility testing demonstrates a decrease in weight loss when fiber content is increased. For 

soil burial tests, all samples were decreases as the fiber content increases. The FTIR spectrum 

indicates the presence of chemical bonding between fiber and matrix, whilst the SEM 

micrograph indicates a change in the structure of the composite as the fiber concentration 

increases. In general, the present study's results indicated that TPCS/NGF has the ability to 

significantly enhance the composite's qualities. To summarize, TPCS/NGF may be a viable 

alternative material for biodegradable products, such as disposable packaging trays with 

increased features. 
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ABSTRAK 

Beberapa tahun kebelakangan ini telah menyaksikan peningkatan dalam keperluan produk 

mesra alam akibat daripada pengumpulan sisa tidak terbiodegradasi, terutamanya produk 

pakai buang. Hasilnya, beberapa bahan mesra alam telah diwujudkan untuk menyelesaikan 

masalah ini. Biopolimer yang dibangunkan daripada sumber boleh diperbaharui berpotensi 

menjadi alternatif yang berdaya maju kepada polimer berasaskan petroleum kerana 

kebolehbiodegradasiannya yang tinggi dan seterusnya mesra alam. Antara bahan 

terbiodegradasi lain, biopolimer kanji ubi kayu telah dikenal pasti sebagai bahan 

terbiodegradasi sepenuhnya yang boleh dijana oleh pelbagai tumbuhan dan merupakan 

salah satu sumber yang boleh diperbaharui, terbiodegradasi dan kos efektif yang paling 

banyak boleh diakses. Disebabkan kebimbangan meluas tentang pencemaran alam sekitar, 

kanji ubi kayu termoplastik kini digunakan secara meluas dalam bahan pembungkusan, 

dengan beberapa formulasi termasuk pengisi bio atau gentian untuk mengukuhkan plastik 

berasaskan bio. Oleh itu, serat rumput Napier digunakan untuk mengukuhkan komposit 

berasaskan bio. Rumput napier dianggap sebagai hasil yang tinggi, dan ketahanan terhadap 

serangga. Selain itu, rumput tropika ini mempunyai rizab gentian yang ketara hasil 

daripada penjanaan semula vegetatif selepas penyingkiran batang. Banyak kajian awal 

tentang ciri dan sifat rumput Napier telah diterbitkan; namun begitu, kajian menyeluruh dan 

mendalam tentang penggunaan rumput tropika ini sebagai pengganti pembungkusan 

biodegradasi hampir tidak diketahui. Matlamat kajian ini adalah untuk membangunkan 

kanji ubi kayu termoplastik terbiodegradasi diperkukuh dengan serat rumput Napier, untuk 

menyiasat sifat pertalian air, morfologi, ketumpatan, dan sifat persekitarannya. Untuk 

mengukuhkan kekurangan biopolimer kanji ubi kayu, biokomposit telah dibangunkan 

dengan menggabungkan 0,10,20,30,40, dan 50wt% serat rumput Napier ke dalam matriks 

kanji ubi kayu termoplastik. Semua komponen dicampur secara seragam, dan komponen 

dibentuk menggunakan acuan mampatan panas. Sifat kefungsian komposit biopolimer 

gentian rumput TPCS/Napier kemudiannya dinilai untuk menentukan kesesuaiannya 

sebagai bahan terbiodegradasi. 50% serat mempunyai kandungan lembapan paling rendah. 

Penyerapan air menunjukkan apabila kandungan serat meningkat, maka air yang diserap 

akan berkurangan. Ujian keterlarutan air menunjukkan penurunan dalam penurunan berat 

badan apabila kandungan serat meningkat. Selepas 4 dan 8 minggu pengebumian tanah, 

semua sampel yang diuji telah kehilangan berat badan dan boleh merosot. Spektrum FTIR 

menunjukkan kehadiran ikatan kimia antara gentian dan matriks, manakala mikrograf SEM 

menunjukkan perubahan dalam struktur komposit apabila kepekatan gentian meningkat. 

Secara umumnya, keputusan kajian ini menunjukkan bahawa TPCS/NGF mempunyai 

keupayaan untuk meningkatkan kualiti komposit dengan ketara. Ringkasnya, TPCS/NGF 

mungkin merupakan bahan alternatif yang berdaya maju untuk produk terbiodegradasi, 

seperti pembungkusan pakai buang dengan ciri yang dipertingkatkan. 
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INTRODUCTION 

1.1 Background 

Biodegradable products have been the subject of studies in recent years as a possible 

replacement for petroleum-based plastics in packaging applications. Biopolymers are the most 

promising commodity for this reason due to their biodegradability and long shelf life properties 

such as tolerance to chemical or enzymatic reactions (Khan et al., 2017). These issues have led 

to new research on the development of biodegradable materials.  

 

Globally, plastic manufacture and distribution have been gradually rising through time. 

Petroleum-based plastics are often used as single-use plastics in our everyday lives since they 

have developed an incredible amount of utility owing to their adaptability, durability, 

flexibility, and toughness (Sahari et al., 2013). Furthermore, they are inexpensive on the market 

and readily available in any grocery shop. Marichelvam et al., (2019) stated that plastic is 

commonly used in a variety of sectors, most notably the packaging industry; the global output 

of petroleum-based plastic exceeded 300 million tons until 2015, with only 1% being 

bioplastic.  The fast increase in plastic consumption is a result of the variety of plastic items 

now available on the market, which range from home and personal goods to packaging and 

building materials. The widespread usage of plastics has resulted in an abundance of plastic 

waste in the environment. Based on research about Biodegradable Tray by Ferreira et al., 

(2020), this could eventually result in significant worldwide problems for the environment and 

people, since the disintegration rate of these materials is very slow, about 100 years, owing to 

their hydrophobic characteristics and their ability to effectively escape quick microbial 
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activity.  

 

To tackle this problem, it is necessary to make a switch from petroleum-based plastic 

to biodegradable plastic in order to preserve a healthier environment for future generations and 

also to give more plastic disposal alternatives. Among biopolymers, starch is one of the most 

promising prospects and alternatives to petroleum-based plastics, owing to the fact that starch 

is fully biodegradable and plentiful in nature. It is abundant in plants such as maize, cassava, 

potato, and tuber, among others. According to López et al., (2019), starch is stored in plants in 

the granule-packed state of amorphous and crystalline. Due to widespread concern about 

environmental pollution, starch-based bioplastics such as thermoplastic starch (TPS) are 

increasingly widely employed in packaging materials, with some formulations including bio-

fillers or fiber to strengthen the bio-based plastic.  

 

Starch is mostly employed as a matrix or resin in biocomposites structures during the 

manufacturing of biopolymers. Numerous varieties of natural starch have been researched 

during the last several decades, including cassava starch, maize starch, and sugar palm starch. 

However, when compared to other sources of starch, cassava starch contributes the most in 

terms of productivity output (Jumaidin et al., 2020).  Starch is a versatile material since it can 

be converted to chemicals such as ethanol, acetone, and organic acids utilized in the creation 

of synthetic polymers such as polylactic acid (PLA) (Carvalho, 2008). As well as turned to 

thermoplastic starch (TPS) with the assistance of a plasticizer under shear temperature 

conditions. Numerous research on thermoplastic starch (TPS) have been undertaken 

extensively and worldwide for a variety of starch sources, including cassava, potato, and maize 

(Bergel et al., 2017) (Asrofi et al., 2020). 
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Natural fibers derived from plants have enormous potential for use in the plastics, 

automotive, and packaging industries due to their superior properties such as low density, high 

specific stiffness, good mechanical properties, biodegradability, eco-friendliness, toxicological 

safety, and excellent thermal and acoustic insulation (Thakur et al., 2013) (Mohanty et al., 

2004). Consequently, these cellulosic fibers have a lower cost of material than the beginning 

polymer. At the melting point of the majority of polymers, natural fibers disintegrate. As a 

result, it is prudent to investigate the thermal stability of natural fibers prior to contemplating 

their use as reinforcement in thermoplastic matrices. Rajulu et al., (2002) investigated the 

thermal degradation of Hildegardia, Bamboo, and Tamarind fruit fibers and concluded that 

they were suitable for use as reinforcements in polyolefin matrices. Yang et al., (2007) 

investigated the pyrolysis properties of wood materials.  

 

Pennisetum purpureum fiber, commonly known locally as Napier grass, has 46% 

cellulose, 34% hemicellulose, and 20% lignin (Reddy et al., 2012). It may be harvested 3–4 

months after planting and can be harvested at intervals of 6–8 weeks for up to 5 years, yielding 

40 tons of dry biomass per hectare each year. Each plant produces around 40% fiber. The 

exceptional high modulus of these fibers was a primary rationale for their selection (Rajulu, 

2009). Fibers were extracted from the internodes of Napier grass stems. Water affinity testing, 

environmental analysis, and physical analysis were used to achieve this. 

 

Due to the environmental concerns associated with conventional thermoplastics, the 

production of biodegradable thermoplastic materials is accelerating. Biodegradable materials 

are both safe for the user and the climate. Thus, it is prudent to minimize the use of non-

biodegradable plastic and encourage biodegradable plastic. 
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1.2 Problem Statement 

The widespread use of non-biodegradable materials has had a detrimental effect on 

humanity and the climate. Non-biodegradable materials are composed of petroleum-based 

plastic polymers that are detrimental to the atmosphere due to their inability to dissolve in 

landfills. The issue arises in the landfill as these synthetic polymers persist for an extended 

period of time and interfere with groundwater, forming toxic substances and affecting drinking 

water safety (Emadian et al., 2017). In landfills, non-biodegradable materials require hundreds 

of years to decompose. Additionally, a disadvantage of utilizing synthetic polymers is that they 

contain toxic chemicals and release poisonous gases during the incineration phase. Essentially, 

most polymers are produced from petroleum, which requires additional fossil fuels, resulting 

in emissions (Marichelvam et al., 2019). 

 

 However, the downsides of natural fibers are their high moisture sensitivity, low 

chemical resistance, low thermal breakdown temperature, low wettability, and incompatibility 

with other composite materials during composite processing. Based on Singha et al., (2009) 

research, these effects have a major effect on the strength of the fiber-matrix interface. Thus, 

their inclusion into a polymer matrix requires the fibers to be treated physically or chemically 

to overcome interfacial incompatibility. John & Anandjiwala, (2008) stated that the use of 

various physical testing and chemical treatments results in a decrease in moisture absorption 

as well as modifications to the fiber surface. Understanding the physicochemical qualities and 

mechanical behavior of natural fibers is critical for optimizing the performance of composites. 

The majority of research has been conducted to determine the effect of fiber treatment on its 

chemical composition, surface morphology, crystallinity, and mechanical properties (John & 

Anandjiwala, 2008). 

 




